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Countably convex Gδ sets

by

Vladimir Fonf and Menachem Kojman (Beer Sheva)

Abstract. We investigate countably convex Gδ subsets of Banach spaces. A subset
of a linear space is countably convex if it can be represented as a countable union of
convex sets. A known sufficient condition for countable convexity of an arbitrary subset
of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in
a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there
exists a finite set X ⊆ P ∩ u such that conv(X) 6⊆ S. For closed sets this condition is also
necessary.

We show that for countably convex Gδ subsets of infinite-dimensional Banach spaces
there are no necessary limitations on cliques and semi-cliques.

Various necessary conditions on cliques and semi-cliques are obtained for countably
convex Gδ subsets of finite-dimensional spaces. The results distinguish dimension d ≤ 3
from dimension d ≥ 4: in a countably convex Gδ subset of R3 all cliques are scattered,
whereas in R4 a countably convex Gδ set may contain a dense-in-itself clique.

1. Introduction. Let S be a subset of a linear space. Let γ(S) denote
the least cardinality of a collection of convex sets whose union is equal
to S. A subset of a linear space is called countably convex if γ(S) ≤ ℵ0,
that is, when S =

⋃
n Cn, where each Cn is convex. We are interested in

structural properties of countably convex sets, especially in characterization
and classification of countably convex subsets of Banach spaces.

Historically, the characterization of unions of convex sets began with
Valentine’s paper [14] in which a closed planar set with no visually indepen-
dent subset of size 3 was shown to be the union of 3 convex sets; a subset
P ⊆ S is visually independent in S if no two points of P “see” each other
through S. Much of the work that followed Valentine dealt with connections
between γ and visually independent subsets in closed planar sets ([5, 2, 1,
3, 13, 12]).

There is a natural framework for discussing convexity numbers, which
we now present. With every set S in an arbitrary linear space, one associates
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a hypergraph G(S), called the convexity hypergraph. The vertices of G are
the points of S and the hyperedges of G are all finite subsets X ⊆ S with
conv(X) 6⊆ S. A hyperedge of G(S) is called a finite defected subset of S.
Much of the geometry of S is lost when passing from S to G(S) (for instance,
one cannot tell from G(S) whether three points of S are co-linear or not),
but G(S) determines γ(S) because γ(S) is equal to the chromatic number of
G(S) [9]. Recall that the chromatic number of a hypergraph is the minimal
size of a partition of the set of vertices into free sets, and a set of vertices is
free if it does not contain hyperedges. Recall also that a set of vertices is a
k-clique if every k-element subset of it is a hyperedge, and is a clique if it is
a k-clique for some k ≥ 2.

Countable convexity of closed sets in Banach spaces is characterized by
topological properties of G(S):

Definition 1 ([9]). Let S be a subset of a topological linear space. A
set P ⊆ S is a semi-clique in S if for every p ∈ P and open neighborhood
u 3 p, there is a finite set X ⊆ P ∩ u so that conv(X) 6⊆ S.

A clique is a semi-clique if and only if it is dense in itself, and a semi-
clique does not have to be a clique or to contain one. It is readily verified
that in every set S the union of all semi-cliques in S is a maximal and closed
semi-clique in S, which is called the convexity radical of S, and is denoted
by K(S).

In [9] it was shown that for every subset S of a separable normed linear
space, the set S \ K(S) is countably convex. Thus, a subset of a Banach
space is countably convex if and only if its radical is coverable by countably
many convex subsets of the set. In a closed set S, a nonempty K(S) cannot
be covered by countably many convex subsets of S because of the Baire
category theorem. Therefore:

Theorem 2 ([9]). A closed subset of a Banach space is countably convex
if and only if it does not contain a semi-clique.

In the present paper, semi-cliques and cliques are examined in countably
convex Gδ subsets of Banach spaces. Theorem 2 above fails badly for Gδ
subsets of Banach spaces: in every infinite-dimensional Banach space there
exists a Gδ set S =

⋃
Cn, where each Cn is convex and dense in S and

so that there exists a dense-in-itself 2-clique P ⊆ S which is dense in S
(see Corollary 12 below). This means that although S is countably convex,
all of S is contained in K(S), and worse: the radical contains a dense and
dense-in-itself 2-clique.

In a finite-dimensional space, however, the situation is better. The radical
of a countably convex Gδ set cannot be dense in the set. In fact, it must be
nowhere dense in the set (Theorem 3 below).
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Can there be a dense-in-itself clique inside the radical of a countably
convex Gδ subset of a finite-dimensional space? Yes, if d ≥ 4 (Example 4
below); no, if d ≤ 3 (Theorem 5 below).

Finally, can any limitation on the dimension make Theorem 2 hold for
Gδ sets? The reader can easily check that Theorem 2 holds for Gδ subsets
of R1, but by Example 6 below it does not hold in any higher dimension.

A word about the method. A Gδ subset of a Banach space satisfies the
Baire category theorem; therefore, if it is countably convex and contains a
radical [a dense-in-itself clique], one of its convex components is somewhere
dense in the radical [in the dense-in-itself clique]. The interior of that con-
vex component cannot contain any point from the radical, so the “bad”
pattern is contained in the topological boundary of that convex component.
This observation reduces the problem to the geometry of cliques which are
contained between convex sets and their closure in some Gδ set. In a finite-
dimensional space, a convex set always has a relative interior. This is the
source of distinction between finite and infinite-dimensions.

The precise geometric property which differentiates the behavior of
countably convex Gδ sets in R3 from that in R4 comes from the combi-
natorics of convex polytopes. For every simplicial convex polytope T ⊆ R3

(a polytope whose faces are triangles) with ≥ 4k vertices there exists a sub-
set of k vertices any two of which are connected by inner diagonals. However,
in R4 there exist simplicial polytopes with any prescribed number of vertices
and with no inner diagonals at all (see [6], p. 61, or Example 4 below).

The results are presented in two sections, which can be read indepen-
dently of each other. Section 2 deals with Gδ sets in finite-dimensional spaces
and Section 3 is devoted to a construction of “bad” countably convex Gδ
subsets in every infinite-dimensional Banach space.

Our notation is standard. In every normed linear space X, BX and SX
denote, respectively, the unit ball and the unit sphere.

2. Finite-dimensional spaces. In this section we investigate countably
convex Gδ subsets of finite-dimensional spaces. We prove several necessary
conditions on the radicals of such sets. In particular, Theorem 5 and Ex-
ample 4 reveal a surprising dependence of radicals on the dimension of the
space.

Theorem 3. If a Gδ set S ⊆ Rn is countably convex , then the convexity
radical of S is nowhere dense in S.

Proof. Assume to the contrary that the theorem fails. Fix a countably
convex S ⊆ Rn with radical K = K(S) so that there exists an open ball u
such that K ∩ u is dense in S ∩ u. Since K is closed in S, K ∩ u = S ∩ u.
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Since S =
⋃
Ck where each Ck is convex, for some k and an open ball

v ⊆ u, Ck ∩ v is dense in S ∩ v.
Set C = Ck ∩ v; then C is convex and dense in S ∩ v = K ∩ v.
Let H be the affine span of C. Since K has no isolated points, C contains

at least two points, and therefore dimH > 0. We have S ∩ v = K ∩ v ⊆
clC ⊆ H (the assumption of finite-dimensionality is used here, since H is
closed in Rd). Choose an open ball w so that ∅ 6= w ∩ C ⊆ intH C. Since
S ∩ w ⊆ H and H ∩ w ⊆ C, we have K ∩ w ⊆ C, which is a contradiction,
since C ⊆ S is convex and K ∩ w contains defected subsets.

The next thing to examine is whether the radical of a finite-dimensional
countably convex Gδ set may contain a dense-in-itself clique.

Example 4. There is a countably convex Gδ set in R4 which contains
a dense-in-itself 2-clique.

Proof. In the construction we use the moments curve in R4 and its
supporting hyperplanes as presented in the construction of a cyclic poly-
tope in [6], p. 61. For a real number t, let L(t) = (t, t2, t3, t4) ∈ R4,
L = {L(t) : t ∈ [0, 1]} and S1 = conv(L). Clearly, L is compact, and
therefore S1 is a compact convex subset of R4.

For any two reals t1, t2, the polynomial (t − t1)2(t − t2)2 =
∑4
i=0 ait

i

takes strictly positive values at t 6= t1, t2 and 0 at t = t1, t = t2. Define an
affine functional ϕt1,t2(x) = a0 +

∑4
i=1 aixi, x = (x1, x2, x3, x4) ∈ R4.

It is clear that for t1, t2 ∈ [0, 1], the hyperplane Ht1,t2 = {x ∈ R4 :
ϕt1,t2(x) = 0} is a supporting hyperplane for S1 and that Ht1,t2 ∩ S1 =
[L(t1), L(t2)], so

(2.1) S1 − [L(t1), L(t2)] is convex.

For t1, t2 ∈ [0, 1] let yt1,t2 = (L(t1) + L(t2))/2. Define

(2.2) S = S1 − {yt1,t2 : t1, t2 ∈ Q ∩ [0, 1], t1 6= t2}.
Then S is a Gδ set, since it is obtained by subtracting a countable set from
a closed set. The set

(2.3) S −
⋃
{[L(t1), L(t2)] : t1, t2 ∈ Q ∩ [0, 1]}

=
⋂
{S1 − [L(t1), L(t2)] : t1, t2 ∈ Q ∩ [0, 1]}

is convex by (2.1) and therefore the set

S = S −
⋃
{[L(t1), L(t2)] : t1, t2 ∈ Q ∩ [0, 1]}(2.4)

∪
⋃

t1,t2∈Q∩[0,1]

[L(t1), yt1,t2)

is countably convex.
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Finally, put P = {L(t) : t ∈ Q ∩ [0, 1]}. From the construction it is clear
that P ⊆ S, that P is dense in itself and that P is a 2-clique in S.

Theorem 5. If d ≤ 3 then a countably convex Gδ subset of Rd does
not contain a clique which is dense in itself.

Proof. By induction on d ≤ 3. If d = 0 then no subset of Rd is dense in
itself.

Suppose now that 0 < d ≤ 3 and, to the contrary, that S ⊆ Rd is a Gδ
set, S =

⋃
n Cn where each Cn is convex and that P ⊆ S has no isolated

points and is a k-clique for some k ≥ 2.
Set P = clS P , the closure of P in S. Since P is closed in S and S is

Gδ, P satisfies the Baire category theorem, and therefore for some n and an
open ball u, the set u ∩Cn ∩ P is dense in u ∩ P . Define C = Cn ∩ u. Thus
C is convex and C ∩ P is dense in P ∩ u. Therefore, P ∩ u ⊆ clS C.

Let H be the affine span of C, and consider S′ = S ∩H. This is again
a countably convex Gδ set. Since H is closed, clC ⊆ H, so S ∩H contains
a dense-in-itself clique. If dimH < d, then a contradiction to the induction
hypothesis is reached. Assume, then, that the affine span of C is Rd (so C
has nonempty interior in Rd). The interior of C contains no points from P ,
so P is contained in the boundary of C.

If d = 1 then again a contradiction is reached, since the boundary of C
is finite and cannot contain a dense-in-itself set. Suppose, then, that d > 1.

We next argue that P is contained in a finite union of hyperplanes in
Rd. Suppose this is not so. Then we can choose a sufficiently large subset
{x0, . . . , xl−1} ⊆ P in general position (and, since all points belong to ∂C,
it will also be in convex position) and set T = conv(x0, . . . , xl−1). Then T
is a convex polytope in Rd whose vertices are {x0, . . . , xl−1}. If d = 2 then
T is a polygon and if d = 3 then T is a simplicial polytope (that is, every
face of T is a triangle). To contradict the assumption that P is a k-clique
it is enough to find a k-element subset {y0, . . . , yk−1} of vertices so that
conv(y0, . . . , yk−1)− {y0, . . . , yk−1} ⊆ intT .

If d = 2 then l = 2k suffices, since for a polygon with 2k vertices, taking
every second vertex in a cyclical ordering gives a polygon that, except for
its vertices, is contained in the interior of the original polygon. If d = 3 then
let l = 4k. Since the graph of T is planar, the vertices of T are colorable
by 4 colors so that no two vertices which are joined by an edge have the
same color (by the 4-colors theorem). Find k vertices with the same color,
and observe that in a simplicial polytope in R3, two vertices which are not
joined by an edge are joined by an inner diagonal.

Since P is contained in a finite union of hyperplanes, there exists a
hyperplane F so that P ∩F contains a dense-in-itself set. Now the induction
hypothesis is violated by S ∩ F . This completes the proof.
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Remarks. Our first remark is that the full power of the 4-colors theorem
is not really needed. All we need is some fixed bound on the chromatic
number of all graphs of 3-polytopes—and a bound of 5 follows easily from
Euler’s equation and is known since the middle of the 19th century. Our
second remark is that lower and upper bounds on the number of inner
diagonals in a polytope were computed in [4].

We conclude this section with an example that shows that even in R2

there are countably convex Gδ sets with nonempty radicals. It is easy to
check that in R1 no such example exists.

Example 6. There exists a Gδ set in R2 which is countably convex and
has a nonempty radical.

Proof. Let D be the closed unit disk in R2 and let C be the upper half
of its boundary. Subtract from F an open half-plane that contains exactly
the middle third of C. Continue inductively, where at stage n, for each of
the remaining 2n subarcs Cni , i < 2n, of C, we subtract from D an open
half-plane which contains the middle third of Cni . Let Sn be the set which
is obtained at stage n and set S =

⋂
n Sn.

Let P be the Cantor set constructed by this process inside C. Clearly,
P ⊆ S. Put P = P1 ∪ P2 where P1 is the set of all end-points of all Cni ,
n <∞, i < 2n, and P2 = P − P1.

Clearly S is a Gδ set, since S = intS∪P∪C ′, where C ′ is the lower half of
∂D: a union of an open set and two closed sets. Further, P is easily verified
to be a semi-clique in S. Finally, S is countably convex, since intS ∪P2∪C ′
is convex, while P1 is countable.

3. Infinite-dimensional spaces. All Banach spaces in this section are
infinite-dimensional. We will see that the infinite-dimensional case is com-
pletely different from the finite-dimensional one. We start with two standard
auxiliary results (which we prove just for the completeness of presentation)
and then prove Theorem 9 which is the main ingredient for the main Corol-
lary 12.

Recall that for a Banach space E, a subspace Y ⊆ E∗ is 1-norming if
‖x‖ = sup{f(x) : f ∈ BY } for each x ∈ E.

Lemma 7. A subspace Y ⊂ E∗ is 1-norming iff BY is w∗-dense in BE∗ .

Proof. Clearly, if BY is w∗-dense in BE∗ then Y ⊂ E∗ is 1-norming.
Conversely, assume that Y ⊂ E∗ is 1-norming and suppose to the contrary
that there is an f ∈ BE∗ \w∗-clBY . Apply a separating theorem to find an
x ∈ E such that f(x) > 1 > sup{g(x) : g ∈ w∗- clBY }, a contradiction.

Lemma 8. Let E be a Banach space with separable dual. Then each
norm-closed subset F of BE∗ is a w∗-Gδ set.
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Proof. For each f ∈ BE∗ \ F set df = d(f, F ). It is clear that

BE∗ \ F =
⋃

f∈BE∗\F

((
f + 1

2 intBE∗
)
∩BE∗

)
.

By the Lindelöf theorem there is a countable subcovering, i.e.

BE∗ \ F =
∞⋃

i=1

((
fi + 1

2 intBE∗
)
∩BE∗

)
.

By passing to closed balls we get

BE∗ \ F =
∞⋃

i=1

((
fi + 1

2BE∗
)
∩BE∗

)
.

Since BE∗ is w∗-Gδ and each
(
fi+ 1

2BE∗
)
∩BE∗ is w∗-closed, it follows that

F is a w∗-Gδ set.

We denote by KerF , for F ∈ E∗, the null space of the functional F .

Theorem 9. Let E be a Banach space with separable dual E∗ such that
there is a 2-dimensional subspace M ⊂ E∗∗ with the property : for each
F ∈ M , KerF is 1-norming. Then there is a sequence {Ci}∞i=1 of convex
subsets of BE∗ such that

(i) The set S =
⋃∞
i=1 Ci is w∗-Gδ.

(ii) Each Ci is w∗-dense in S.
(iii) There is a subset P = {fi} ⊂ S which is w∗-dense in S, does not

contain w∗-isolated points and the interval [fi, fj ] is not contained in S for
i < j.

Proof. Let the functionals F,G ∈ SM form a basis of M . Put

F1 = F, Fn = F+
1
n
G, n = 2, 3, . . . , Cn = KerFn∩BE∗ , S =

∞⋃

i=1

Ci.

To check that S is w∗-Gδ in BE∗ , in view of Lemma 8 it is enough to show
that S is norm-closed. Let limhk = h, hk ∈ S. Since S =

⋃∞
i=1 Ci and each

Ci is norm-closed, we may assume that hk ∈ Cnk , nk 6= nm, k 6= m. However
‖ · ‖-limFnk = F1 and hence 0 = Fnk(hnk) → F1(f). Thus h ∈ C1 ⊂ S,
which proves that S is ‖ · ‖-closed, and w∗-Gδ by Lemma 8.

By Lemma 7 each Cn is w∗-dense in BE∗ . Next put L =
⋂∞
n=1 Cn. By

using the definition of Cn it is easy to see that for each pair p 6= q,

(3.5) L = Cp ∩ Cq.
For each n it is clear that Cn \ L is norm-dense in Cn and thus Cn \ L is
w∗-dense in BE∗ .
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We now construct the set P = {fi} as in (iii). Fix a sequence {gi} ⊂
BE∗ which is w∗-dense in BE∗ . Denote by d a metric which generates the
w∗-topology on BE∗ .

Take f1 ∈ C1 \L with d(g1, f1) < 1. Next, using the density of C2 \L in
BE∗ find f2 ∈ C2 \ L with d(f1, f2) < 1.

Now choose f3 ∈ C3 \ L with d(g2, f3) < 1/2. Next we approximate
f1, f2, f3. Choose f4 ∈ C4 \ L, f5 ∈ C5 \ L, f6 ∈ C6 \ L so that

d(f1, f4) < 1/2, d(f2, f5) < 1/2, d(f3, f6) < 1/2.

Now choose f7 ∈ C7\L with d(g3, f7) < 1/3. The rest of the construction
is clear.

In this way we construct a dense-in-itself sequence P = {fi}∞n=1,
fi ∈Ci \ L, such that each point in S (even in BE∗) is a w∗-cluster point
of P .

We check that for i < j the interval [fi, fj ] is not contained in S. Indeed,
from (3.5) it follows that for each p the intersection Cp ∩ [fi, fj ] is either a
singleton or empty. Thus S ∩ [fi, fj ] is countable, which completes the proof
of the theorem.

Remark 10. We now show how to get an example of a Banach space E
with the property required by Theorem 9. Let X be a Banach space with
separable dual X∗ and such that dimX∗∗/X = ∞, i.e. X is not quasi-
reflexive (e.g. X = c0). Let M ⊂ X∗∗ be a 2-dimensional subspace of X∗∗

with M ∩X = {0}. Define a new norm in X as follows:

|||x||| = sup{f(x) : f ∈M⊥, ‖f‖ = 1}
where M⊥ = {f ∈ l1 : F (f) = 0, F ∈M}. We now check that the new norm
is equivalent to the original one. First, from M ∩X = {0} and dimM <∞
it follows that

a = inf{d(x,M) : x ∈ SX} > 0.

Take an x ∈ SX and by the Hahn–Banach theorem find an f̃ ∈ SM⊥ with
f̃(x) = d(x,M) ≥ a. Now by using the w∗-density of M⊥ in M⊥ we find for
each δ > 0 a functional fδ ∈ SM⊥ so that |(f̃ − fδ)(x)| < δ. Now it is clear
that a‖x‖ ≤ |||x||| ≤ ‖x‖ for each x ∈ X.

It is trivial that the space E = (X, ||| · |||) has the property required by
Theorem 9.

Next we slightly change the formulation of Theorem 9. More precisely, we
want to transfer the set S into some Banach space X in such a way that the
w∗-properties of the sets S and P in E∗ coincide with the norm-properties
in X.

Theorem 11. There exists a separable Banach space X which contains
a subset S̃ with the following properties:
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(i) K = cl S̃ is compact.
(ii) S̃ is a Gδ set.
(iii) S̃ =

⋃∞
i=1 C̃i where each C̃i is convex and dense in S̃.

(iv) There is a dense-in-itself 2-clique P̃ ⊂ S̃ which is dense in S̃.

Proof. Let {xi}∞i=1 be a dense subset of SE . Define a weaker norm on
E∗ as follows:

|||f ||| =
∞∑

k=1

2−k|f(xk)|.

Then the set K = (BE∗ , ||| · |||) is homeomorphic to (BE∗ , w∗) and hence
is compact. In particular, (E∗, ||| · |||) =

⋃∞
n=1 nBE∗ is separable. Denote by

X the completion of (E∗, ||| · |||). Thus X is a separable Banach space. Let
J : E∗ → X be a natural embedding. Now use the notation of Theorem 9.
Put C̃i = J(Ci), S̃ = J(S) and P̃ = J(P ). All the properties (i)–(iv) are
clear.

Corollary 12. Every infinite-dimensional Banach space Y contains
subsets S and P which have all the properties of S̃ and P̃ from Theorem 11.

Proof. Let X be the Banach space from Theorem 11 and let T :
X → Y be a compact 1-1 operator. Since K ⊂ X is compact, it follows that
K1 = T (K) is compact and hence Gδ in Y . The restriction T �K is an affine
homeomorphism of K onto K1. Clearly, the sets S = T (S̃) and P = T (P̃ )
have the same properties as the sets S̃ and P̃ from Theorem 11.

The authors wish to thank the referee for valuable remarks.
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[12] J. Matoušek and P. Valtr, On visibility and covering by convex sets, Israel J. Math.
113 (1999), 341–379.

[13] M. A. Perles and S. Shelah, A closed n + 1-convex set in R2 is the union of n6

convex sets, ibid. 70 (1990), 305–312.
[14] F. A. Valentine, A three point convexity property , Pacific J. Math. 7 (1957), 1227–

1235.

Department of Mathematics
Ben Gurion University of the Negev
Beer Sheva, Israel
E-mail: kojman@math.bgu.ac.il

Received 23 May 2000;
in revised form 21 November 2000


