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Abstract. We study Markov shifts over countable (finite or countably infinite) al-
phabets, i.e. shifts generated by incidence matrices. In particular, we derive necessary and
sufficient conditions for the existence of a Gibbs state for a certain class of infinite Markov
shifts. We further establish a characterization of the existence, uniqueness and ergodicity
of invariant Gibbs states for this class of shifts. Our results generalize the well-known
results for finitely irreducible Markov shifts.

1. Introduction. Symbolic dynamics has been a subject of scrutiny for
more than a century. Symbolic systems are fundamental as they can be used
to encode information and since they are often embedded into more gen-
eral dynamical systems. Among all symbolic systems, shifts and especially
Markov shifts have drawn the interest of a great many mathematicians (see,
for instance, [4] and [3]). Given an incidence matrix A : E2 → {0, 1}, where
E is a finite or countably infinite alphabet, we study the dynamics of the
shift map, which acts on the space E∞A of all one-sided infinite sequences of
letters so that A equals 1 on all pairs of consecutive letters. The action of
the shift map consists in removing the first letter of every word and shifting
each of the remaining letters one place to the left. The resulting dynami-
cal system is called a Markov shift. Depending on the cardinality of E, the
system is called finite or infinite.

Finite Markov shifts have been studied for a long time. More recently,
infinite systems have caught attention. In an overwhelming majority of in-
stances, irreducible shifts have been examined (see, among others, [1] in the
finite case and [6] in the infinite case). In this paper, we shall be especially
interested in non-irreducible Markov shifts, i.e. Markov shifts that can be
split in some sense. To study these systems, we need to pay close attention
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to their irreducible components, as well as their isolated letters. Such sys-
tems have been scarcely investigated in the past (see, for instance, [7], [2]
and [8]).

Our aim is to provide a characterization of the existence of Gibbs states,
as well as to give necessary and sufficient conditions for the existence, unique-
ness and ergodicity of invariant Gibbs states, for a certain natural class of
infinite Markov shifts when subject to Hölder continuous potentials.

The question about invariant states was solved by Bowen [1] in the topo-
logically mixing (also called irreducible) case for subshifts of finite type. For
topologically mixing countable Markov shifts, Mauldin and Urbański [6] and
Sarig [9] proved that a necessary and sufficient condition for the existence of
an invariant Gibbs state is that the incidence matrix be finitely irreducible
(cf. Theorem 2.2.6 in [6]). This Gibbs state is unique, ergodic, and even
completely ergodic when the matrix is finitely primitive (cf. Theorems 2.3.3
and 2.2.4 in [6]).

In Section 2 we present some preliminaries on Markov shifts. In Sec-
tion 3 we define the notion of normalization for boundedly super- and sub-
multiplicative sequences of real numbers. In particular, we prove that the
normalization of a boundedly supermultiplicative and boundedly submulti-
plicative sequence is bounded. We also provide some bounds for the nor-
malization sequence. Furthermore, we define normalized partition functions
(see Definition 3.6). In Section 4 we introduce the concepts of connected
and strongly connected components of a system, and we establish a partial
ordering on the latter. This ordering is a one-way communication between
strongly connected components. We further define the notion of isolated
letter and finitely linked isolated letters. In addition, we give sufficient con-
ditions for the existence of a component of maximal pressure for some class
of Markov shifts (see Proposition 4.10), which includes all finite Markov
shifts. Finally, in Section 5 we describe the conditions under which Gibbs
states exist (see Theorem 5.1) and under which invariant Gibbs states exist,
are unique and are ergodic (see Theorem 5.2) for a natural class of Markov
shifts, which includes all finite Markov shifts. To do so, we derive a series of
results, most of which revolve around the boundedness (resp. the unbound-
edness) of the normalized partition functions. Furthermore, we point out
conditions under which non-irreducible infinite Markov shifts do not admit
any Gibbs state (see Propositions 5.10 and 5.11).

2. Preliminaries on Markov shifts. Let E be a finite or countably
infinite set. We shall think of E as an alphabet. The elements of E will
thereafter be called letters. Let A : E2 → {0, 1} be a 0-1 matrix, also called
an incidence or transition matrix. Let

E∞A = {ω ∈ E∞ : Aωnωn+1 = 1, ∀n ≥ 1}
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be the set of all infinite one-sided A-admissible words. For each n ≥ 1, we
will denote by EnA the set of all blocks of n consecutive letters appearing
in words in E∞A , also called A-admissible n-words. The word ε, called the
empty word, is by convention the only A-admissible word of length 0. Thus,
E0
A = {ε}. We shall further denote by E∗A the set of all finite A-admissible

words, i.e. E∗A =
⋃
n≥0E

n
A. We will, throughout this paper, assume that the

matrix A has at least one positive entry in each of its rows and in each of
its columns.

Given ω ∈ E∗A∪E∞A , we denote by |ω| the length of ω. For ω ∈ E∗A∪E∞A
and 1 ≤ n ≤ |ω|, let

ω|n = ω1 . . . ωn

denote the initial n-subword of ω. In particular, note that ω||ω| = ω. Fur-
thermore, we shall denote by

[ω] = {τ ∈ E∞A : τ ||ω| = ω}
the set of all infinite A-admissible words whose initial subword is ω. Such
a set is often called a cylinder. Given ω, τ ∈ E∗A ∪ E∞A , we define ω ∧ τ to
be the longest initial subword common to both ω and τ . For every α > 0
we define a metric dα on E∞A by setting dα(ω, τ) = e−α|ω∧τ |. These metrics
are all Hölder equivalent and therefore induce the same topology and Borel
σ-algebra. In fact, the induced topology has for base the cylinders. Moreover,
a function is continuous (resp. uniformly continuous) with respect to one of
these metrics if and only if it is continuous (resp. uniformly continuous)
with respect to all. A function is Hölder continuous with respect to one of
these metrics if and only if it is Hölder with respect to all. The Hölder order
depends on the metric, though. If no metric is specified, we shall take it to
be d1. The following result is obvious.

Lemma 2.1. A function f : E∞A → R is Hölder continuous with exponent
or order α > 0 if and only if

Vα(f) := sup
n≥1

Vα,n(f) <∞,

where

Vα,n(f) := sup{|f(ω)− f(τ)|eαn : ω, τ ∈ E∞A , |ω ∧ τ | ≥ n}.
The dynamics on E∞A will be governed by the (left) shift map σ :

E∞A → E∞A which acts on every word by throwing away its first letter. The
couple (σ,E∞A ) is called a Markov shift. It is said to be finite if E is finite,
and infinite if E is infinite. The incidence matrix A is said to be irreducible
if there is a set Ω ⊆ E∗A such that for every e1, e2 ∈ E there exists a word
ω = ω(e1, e2) ∈ Ω such that e1ωe2 ∈ E∗A. The matrix A is called finitely
irreducible if there exists a finite set Ω with the above property. Of course,
the concept of finite irreducibility coincides with that of irreducibility when
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E is finite. Irreducibility of A is equivalent to saying that σ is topologically
mixing, i.e. for any two non-empty open subsets U, V of E∞A there exists
n ≥ 1 such that σn(U) ∩ V 6= ∅.

It is also fundamental to recall that the ergodic sums of every Hölder
continuous function f : E∞A → R exhibit a bounded variation. Remember
that the nth ergodic sum of f , also called the nth partial orbit sum of f with
respect to σ, is the function (cf. [10], [6]) defined as

Snf =
n−1∑
j=0

f ◦ σj .

These sums obey the following principle of bounded variation.

Lemma 2.2. Let f : E∞A → R be a Hölder continuous function. There
exists a constant K = K(f) ≥ 1, called a constant of bounded variation
for f , such that for every ω, τ ∈ E∞A and 1 ≤ n ≤ |ω ∧ τ | we have

K−1 exp(Snf(τ)) ≤ exp(Snf(ω)) ≤ K exp(Snf(τ)).

Functions f : E∞A → R are sometimes called potentials.

Definition 2.3. A potential f : E∞A → R is said to be summable if∑
e∈E

exp(sup(f |[e])) <∞.

Notice that if E is finite, then every continuous potential is summable
since E∞A is then compact.

Given F ⊆ E, we let

F∞A = {ω ∈ E∞A : ωn ∈ F, ∀n ≥ 1}
be the set of all infinite A-admissible words consisting exclusively of letters
from the subalphabet F . Given a potential f : E∞A → R, we define the
nth(-level) partition function of f |F∞A by

Zn,F (f) =
∑
ω∈FnA

exp(sup(Snf |[ω∩F ])),

where [ω∩F ] := [ω]∩F∞A . To alleviate notation, in the case F = E we simply
omit E. Notice that Zn,G(f) ≤ Zn,F (f) for all n ≥ 1 whenever G ⊆ F . Note
further that f is summable if and only if Z1(f) <∞. It is also easy to show
that the sequence (Zn,F (f))n≥1 is submultiplicative and hence the following
definition makes sense. The topological pressure of f with respect to the shift
map σ : F∞A → F∞A is defined as

PF (f) = lim
n→∞

1

n
logZn,F (f) = inf

n≥1

1

n
logZn,F (f).

In particular, note that PG(f) ≤ PF (f) whenever G ⊆ F . Observe also that
P (f) <∞ whenever f is summable.
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The following theorem is a characterization of the topological pressure
as a Poincaré exponent. This is Theorem 2.1.3 in [6].

Theorem 2.4. For every function f : F∞A → R, we have

PF (f) = inf
{
t ∈ R :

∑
ω∈F ∗A

exp(sup(S|ω|f |[ω∩F ]))e
−t|ω| <∞

}
.

Notice that PF (f) > −∞ if f |F∞A is bounded from below or is Hölder
continuous and F∞A has a periodic point. In particular, note that −∞ <
PF (f) < ∞ if f is continuous and F is finite. Finally, note that if f is
summable, Hölder continuous and F∞A has a periodic point, then −∞ <
PF (f) ≤ P (f) <∞.

Moreover, the topological pressure of a finitely irreducible shift is equal
to the supremum of the topological pressures of its finite subshifts. This is
Theorem 2.1.5 in [6].

Theorem 2.5. For every Hölder function f : E∞A → R and finitely
irreducible matrix A, we have

P (f) = sup{PF (f) : F is a finite subset of E}.

We now turn our attention to measures.

Definition 2.6. A Borel probability measure m on E∞A is called a Gibbs
state for f : E∞A → R if there exist constants Q ≥ 1 and Pm ∈ R such that
for every ω ∈ E∗A and for every τ ∈ [ω] we have

(2.1) Q−1 ≤ m([ω])

exp(S|ω|f(τ)− Pm|ω|)
≤ Q.

If, in addition, m is σ-invariant, then it is called an invariant Gibbs state.

Remark 2.7. The sum S|ω|f(τ) in (2.1) can be replaced by sup(S|ω|f |[ω])
or by inf(S|ω|f |[ω]). Note also that if m is a Gibbs state and µ and m are

boundedly equivalent measures, i.e. there is some B ≥ 1 so that B−1 ≤
µ([ω])/m([ω]) ≤ B for all ω ∈ E∗A, then µ is a Gibbs state for the function f
too.

The following result is Proposition 2.2.2 in [6].

Proposition 2.8. For every Gibbs state m, we have Pm = P (f). Fur-
thermore, any two Gibbs states for the function f are boundedly equivalent,
with Radon–Nikodym derivatives bounded away from zero and infinity.

Finally, we remind the reader of a well-known situation in which a Gibbs
state is guaranteed to exist. Note that the existence of a Gibbs state implies
that f must be summable. The next result is Corollary 2.7.5(c) in [6].
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Theorem 2.9. Suppose that f : E∞A → R is a summable, Hölder contin-
uous potential and that the incidence matrix A is finitely irreducible. Then
f admits a unique σ-invariant Gibbs state.

3. Super- and submultiplicative sequences of real numbers. Re-
call that a sequence (an)n≥1 of positive real numbers is said to be boundedly
submultiplicative with constant B > 0 if

am+n ≤ Baman
for all m,n ≥ 1. If B = 1, then the sequence is simply said to be submulti-
plicative.

Similarly, a sequence (an)n≥1 of positive real numbers is said to be bound-
edly supermultiplicative with constant C > 0 if

C−1aman ≤ am+n

for all m,n ≥ 1. If C = 1, then the sequence is simply said to be supermul-
tiplicative.

The following result is due to Fekete (for a proof, see Theorem 4.9 in [10]).

Theorem 3.1. If (an)n≥1 is a boundedly submultiplicative sequence with
constant B, then

lim
n→∞

1

n
log an = inf

n≥1

1

n
log(Ban).

The limit may be −∞ but if infn≥1 an > 0, then the limit is non-negative.

The counterpart to this result is the following.

Theorem 3.2. If (an)n≥1 is a boundedly supermultiplicative sequence
with constant C, then

lim
n→∞

1

n
log an = sup

n≥1

1

n
log(C−1an).

The limit may be ∞ but if supn≥1 an <∞, then the limit is finite.

We now introduce a concept of normalization for boundedly super- or
submultiplicative sequences.

Definition 3.3. The normalization of a boundedly super- or submulti-
plicative sequence (an)n≥1 is the sequence (ãn)n≥1, where

ãn = ane
−Pn and P = lim

n→∞

1

n
log an.

Observe that the normalization of a boundedly submultiplicative se-
quence (an)n≥1 is a boundedly submultiplicative sequence with the same
constant B and that

lim
n→∞

1

n
log ãn = inf

n≥1

1

n
log(Bãn) = 0.
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Similarly, the normalization of a boundedly supermultiplicative sequence
(an)n≥1 is a boundedly supermultiplicative sequence with the same con-
stant C and

lim
n→∞

1

n
log ãn = sup

n≥1

1

n
log(C−1ãn) = 0.

Theorem 3.4. The normalization (ãn)n≥1 of a boundedly supermulti-
plicative and boundedly submultiplicative sequence (an)n≥1 of positive num-
bers such that −∞ < P < ∞ is a bounded sequence. More precisely, it is
bounded from below by B−1, where B is any constant of submultiplicativity,
and from above by any constant C of supermultiplicativity.

Proof. Let (an)n≥1 be a sequence such that

C−1aman ≤ am+n ≤ Baman
for all m,n ≥ 1 and such that −∞ < P := limn→∞ n

−1 log an < ∞. Let
ãn = ane

−Pn. Then

lim
n→∞

1

n
log ãn = inf

n≥1

1

n
log(Bãn) = sup

n≥1

1

n
log(C−1ãn) = 0.

Thus, C−1ãn ≤ 1 ≤ Bãn for all n ≥ 1, i.e. B−1 ≤ ãn ≤ C for all n ≥ 1.

It is well known that the partition functions (Zn(f))n≥1 form a sub-
multiplicative sequence of positive real numbers. We shall now prove that
the partition functions of a finitely irreducible Markov shift are boundedly
supermultiplicative. This is a generalization of Proposition 2.3(v) in [8].

Proposition 3.5. Let σ : E∞A → E∞A be a finitely irreducible Markov
shift under a summable, Hölder continuous potential f : E∞A → R. Let
Ω ⊆ E∗A be a finite set which witnesses the irreducibility of A and denote

by EΩ the set of all letters in words of Ω. Then there is a constant K̃ ≥ 1
such that

K̃−1Zm,F (f)Zn,F (f) ≤ Zm+n,F (f) ≤ Zm,F (f)Zn,F (f)

for all m,n ≥ 1 and all F ⊇ EΩ.

Proof. Let EΩ ⊆ F ⊆ E. The submultiplicativity of the partition
functions (Zn,F (f))n≥1 is well known and holds for any Markov shift σ :
F∞A → F∞A . For instance, it has been proved in Lemma 2.1.2 of [6]. To prove
the bounded supermultiplicativity, let ρ = min{exp(sup(S|ω|f |[ω∩EΩ ])) :
ω ∈ Ω} and λ = max{|ω| : ω ∈ Ω}. Then ρ > 0 and λ < ∞. For every
couple (e1, e2) ∈ F 2 let ω(e1, e2) ∈ Ω be such that e1ω(e1, e2)e2 ∈ F ∗A. More
generally, for every couple (τ, χ) ∈ (F ∗A)2 define ω(τ, χ) := ω(τ|τ |, χ1). Fix
m,n ≥ 1. The map

l : FmA × FnA →
λ⋃
k=0

Fm+n+k
A , (τ, χ) 7→ τω(τ, χ)χ,
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is clearly injective. Then

Zm,F (f)Zn,F (f) =
∑
τ∈FmA

∑
χ∈FnA

exp(sup(Smf |[τ∩F ])) exp(sup(Snf |[χ∩F ]))

≤
∑
τ∈FmA

∑
χ∈FnA

exp(sup(Smf |[τ∩F ]))

× ρ−1 exp(sup(S|ω(τ,χ)|f |[ω(τ,χ)∩F ])) exp(sup(Snf |[χ∩F ]))

≤ ρ−1
∑
τ∈FmA

∑
χ∈FnA

K2 exp(sup(S|l(τ,χ)|f |[l(τ,χ)∩F ]))

≤ K2ρ−1
λ∑
k=0

∑
ω∈Fm+n+k

A

exp(sup(Sm+n+kf |[ω∩F ]))

= K2ρ−1
λ∑
k=0

Zm+n+k,F (f) ≤ K2ρ−1
λ∑
k=0

Zk,F (f)Zm+n,F (f)

≤ K2ρ−1(λ+ 1) max{1, (Z1(f))λ}Zm+n,F (f) =: K̃Zm+n,F (f),

where K is a constant of bounded variation for the Hölder potential f . Note
that K̃ <∞ since f is summable. This establishes the bounded supermulti-
plicativity. Finally, observe that K̃ depends only on K, ρ, λ and Z1(f), and
these latter depend solely on f and Ω. Thus, K̃ is independent of F .

The preceding proposition states that all the sequences (Zn,F (f))n≥1,
F ⊇ EΩ, share a common constant of bounded supermultiplicativity and
submultiplicativity (i.e. independent of F ⊇ EΩ). This observation will later
play a crucial role.

The normalization of the partition functions will play an important role
as well.

Definition 3.6. Let f : E∞A → R be a potential. For every n ≥ 1 and
F ⊆ E, let

Wn,F (f) = Zn,F (f)e−nPF (f).

This quantity will be called the nth(-level) normalized partition function
of f |F∞A .

Again, we shall drop the subscript F when F = E. This definition and
terminology are justified by the fact that replacing the original nth partition
function by the corresponding normalized one brings the pressure of the
system to 0. Indeed, limn→∞ n

−1 logWn,F (f) = 0.
The following result states that the sequences (Wn,F (f))n≥1, F ⊇ EΩ,

share a common constant of bounded supermultiplicativity and submulti-
plicativity, as well as common lower and upper bounds (i.e. independent of
F ⊇ EΩ).
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Corollary 3.7. Let σ : E∞A → E∞A be a finitely irreducible Markov shift
under a summable, Hölder continuous potential f : E∞A → R. Let Ω ⊆ E∗A
be a finite set which witnesses the irreducibility of A and denote by EΩ the
set of all letters appearing in words of Ω. Then

1 ≤Wn,F (f) ≤ K̃

for all n ≥ 1 and F ⊇ EΩ, where K̃ is the constant from Proposition 3.5.

Proof. This result follows directly from Proposition 3.5 and Theorem 3.4,
and the fact that−∞ < PF (f) <∞ since f is summable, Hölder continuous,
and F∞A has a periodic point due to the irreducibility of A|F×F .

4. Connected components of Markov shifts. When studying non-
irreducible Markov shifts, we need to pay close attention to their strongly
connected components and their isolated letters. Let us define these con-
cepts, which have appeared in a more rudimentary form in [7], [2] and [8].

Definition 4.1. A letter e1 ∈ E leads to a letter e2 ∈ E provided there
exists ω ∈ E∗A such that e1ωe2 ∈ E∗A. Equivalently, we say that e2 follows e1.

Next, we define the concept of connected component.

Definition 4.2. A subset C ⊆ E of letters is called a connected com-
ponent of E if for any two letters e1, e2 ∈ C there exists ω ∈ C∗A so that
e1ωe2 ∈ C∗A. Equivalently, C is a connected component of E if and only if
the matrix A|C2 is irreducible, i.e. σ|C∞A is a topologically mixing subshift
of σ.

The largest connected components are said to be strongly connected.

Definition 4.3. A connected component C of E is called strongly con-
nected if C is maximal in the set-theoretic sense, that is, in the sense of
inclusion. In other words, E does not have a component that strictly con-
tains C.

Note that the strongly connected components of E are mutually disjoint.

Definition 4.4. A connected component C is said to lead to a letter e
if there is some letter in C which leads to e. Equivalently, we say that e
follows C. A connected component C is said to follow a letter e if there is
some letter in C which follows e.

In particular, a component C leads to and follows each of its letters from
within itself.

Definition 4.5. A connected component C1 is said to lead to a con-
nected component C2 if some letter in C1 leads to some letter in C2. Equiv-
alently, we say that C2 follows C1.
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This defines a partial order on the set of all strongly connected compo-
nents of E. In particular, note that if a strongly connected component C1

leads to another strongly connected component C2, then C2 cannot lead
to C1.

Definition 4.6. Two connected components are said to communicate
if one of them leads to the other.

This implies a one-way communication between distinct strongly con-
nected components.

Definition 4.7. A letter is called isolated if it does not belong to any
(strongly) connected component. The set of isolated letters will be denoted
by I.

Definition 4.8. The alphabet E will be said to have finitely linked
isolated letters if there is a finite set L ⊆ I∗A such that for every e ∈ I there
is a component C(e), a letter β(e) ∈ C(e) and a word τ(e) ∈ L such that
eτ(e)β(e) ∈ E∗A.

The components of maximal pressure will play a crucial role.

Definition 4.9. A connected component C is called a component of
maximal f -pressure if PC(f) = P (f).

We now prove that some class of Markov shifts, including all finite
Markov shifts, admit at least one component of maximal pressure. Note
that under our standing assumption that the matrix A has a 1 in each of
its rows, every finite Markov shift has at least one and, of course, at most
|E| strongly connected components. Infinite Markov shifts might not have
any such component, though. The hypothesis in the following proposition
prevents this from happening. It is also worth mentioning that the following
result generally does not hold if condition (iii) is not satisfied. This result is
inspired from Theorem 3.11 and Corollary 3.15 in [8].

Proposition 4.10. Let σ : E∞A → E∞A be a Markov shift under a
summable, Hölder continuous potential f : E∞A → R such that

(i) f has finitely many strongly connected components;
(ii) all strongly connected components are finitely irreducible;

(iii) words consisting solely of isolated letters are uniformly bounded in
length.

Then

P (f) = max{PC(f) : C is a strongly connected component of E}
= max{PC(f) : C is a connected component of E}.
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Proof. We need only prove that P (f) ≤ maxC PC(f) since the con-
verse is clearly true. The fact that words consisting solely of isolated letters
are uniformly bounded in length ensures that the system has at least one
strongly connected component. Let C be a strongly connected component
such that

(4.1) PC(f) = max{PC(f) : C is a strongly connected component}.

Since C is finitely irreducible, Proposition 3.5 asserts that there exists a
constant K̃C ≥ 1 such that

(4.2) Zm,C(f)Zn,C(f) ≤ K̃CZm+n,C(f) ≤ K̃CZm,C(f)Zn,C(f)

for all m,n ≥ 1. Let ε > 0. There exists N ≥ 1 such that

(4.3) Zn,C(f)enε ≥ Zn,C(f)

for all n ≥ N and all C. Let κ be the number of strongly connected compo-
nents and B the maximal length of words consisting of isolated letters only.
Let n > (κ+1)(B+N). In particular, this implies that there are no n-words
consisting solely of isolated letters, i.e. every n-word must visit at least one
component. Then

Zn(f) =
∑
ω∈EnA

exp(sup(S|ω|f |[ω]))(4.4)

=

κ∑
k=1

∑
ω∈EnA visits exactly
k components

exp(sup(S|ω|f |[ω])).

Consider the set of all ω ∈ EnA which visit the k strongly connected com-
ponents Ck, . . . , C1, and no others. In order for this set to be non-empty,
the components Ck, . . . , C1 must form a subchain of a one-way commu-
nication chain. Then there is a unique way of writing ω as a concatena-
tion

ω = β(k+1)α(k)β(k)α(k−1)β(k−1) . . . α(2)β(2)α(1)β(1),

where β(j) ∈ I∗A and α(j) ∈ (Cj)
∗
A. Note that some (possibly all) of the β(j)

may be the empty word ε. For (sub)words consisting of isolated letters only,
we have the following fact.

Lemma 4.11.∑
β∈I∗A

exp(sup(S|β|f |[β])) ≤
B∑
i=1

(∑
β∈I

exp(sup(f |[β]))
)i

=: L <∞.
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Proof. Indeed,

∑
β∈I∗A

exp(sup(S|β|f |[β])) =
B∑
i=1

∑
β∈IiA

exp(sup(S|β|f |[β]))

≤
B∑
i=1

∑
β1∈I

. . .
∑
βi∈I

exp(sup(f |[β1])) · · · exp(sup(f |[βi]))

=
B∑
i=1

(∑
β∈I

exp(sup(f |[β]))
)i
<∞

since f is summable.

We now continue the proof of Proposition 4.10. Since |β(j)| ≤ B for all j,

we have n ≥
∑k

j=1 |α(j)| ≥ n− (k + 1)B. Therefore

(4.5)
∑

ω∈EnA visits

Ck,...,C1 only

exp(sup(S|ω|f |[ω]))

≤
k+1∏
i=1

∑
β(i)∈I∗A

exp(sup(S|β(i)|f |[β(i)]))

·
∑

(α(k),...,α(1))∈(Ck)∗A×···×(C1)∗A
n≥

∑k
j=1 |α(j)|≥n−(k+1)B

k∏
i=1

exp(sup(S|α(i)|f |[α(i)]))

=
(∑
β∈I∗A

exp(sup(S|β|f |[β]))
)k+1

·
∑

(α(k),...,α(1))∈(Ck)∗A×···×(C1)∗A
n≥

∑k
j=1 |α(j)|≥n−(k+1)B

k∏
i=1

exp(sup(S|α(i)|f |[α(i)]))

≤ Lk+1
k∑
l=1

∑
(α(k),...,α(1))∈(Ck)∗A×···×(C1)∗A
n≥

∑k
j=1 |α(j)|≥n−(k+1)B

with exactly l α(j)’s such that |α(j)|<N

k∏
i=1

exp(sup(S|α(i)|f |[α(i)])).

Recall that there are
(
k
l

)
combinations of l components among k. For any

such combination, the l chosen components form a unique subchain Cjk , . . . ,
Cjk−(l−1)

. Similarly, the remaining k − l components constitute a subchain
Cjk−l , . . . , Cj1 .
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For any component (and in particular for the l chosen components), we
have the following estimate.

Lemma 4.12. For every component C we have

∑
α∈C∗A
|α|<N

exp(sup(S|α|f |[α])) ≤ K
N−1∑
i=1

(Z1(f))i =: Z <∞.

Proof. Indeed,

∑
α∈C∗A
|α|<N

exp(sup(S|α|f |[α])) ≤
N−1∑
i=1

KZi,C(f)

≤ K
N−1∑
i=1

Zi(f) ≤ K
N−1∑
i=1

(Z1(f))i <∞

since f is summable.

For the remaining k − l components, we have the following estimate.

Lemma 4.13. For any m ≤M and 1 ≤ s ≤ k − l, we have

∑
(α(js),...,α(j1))∈(Cjs )∗A×···×(Cj1 )

∗
A

M≥
∑s
i=1 |α(ji)|≥m

|α(ji)|≥N, ∀i

s∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤ KsK̃s−1
C

M s−1eMε
M∑
r=m

Zr,C(f).

Proof. When s = 1 we deduce, using (4.3), that

∑
α(j1)∈(Cj1 )

∗
A

M≥|α(j1)|≥max{m,N}

exp(sup(S|α(j1)|f |[α(j1)])) =

M∑
q=max{m,N}

KZq,Cj1 (f)

≤
M∑

q=max{m,N}

Zq,C(f)eqε ≤ KK̃0
C
M0eMε

M∑
r=m

Zr,C(f).

Suppose now that the statement holds for some 1 ≤ s < k − l. Using (4.3)
and (4.2), we obtain



244 A. E. Ghenciu and M. Roy

∑
(α(js+1),...,α(j1))∈(Cjs+1

)∗A×···×(Cj1 )
∗
A

M≥
∑s+1
i=1 |α

(ji)|≥m
|α(ji)|≥N,∀i

s+1∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

=

M−sN∑
p=N

∑
α(js+1)∈(Cjs+1

)pA

exp(sup(S|α(js+1)|f |[α(js+1)]
))

·
∑

(α(js),...,α(j1))∈(Cjs )∗A×···×(Cj1 )
∗
A

M−p≥
∑s
i=1 |α(ji)|≥max{m−p,sN}
|α(ji)|≥N, ∀i

s∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤
M−sN∑
p=N

KZp,Cjs+1
(f)

·
∑

(α(js),...,α(j1))∈(Cjs )∗A×···×(Cj1 )
∗
A

M−p≥
∑s
i=1 |α(ji)|≥max{m−p,sN}
|α(ji)|≥N,∀i

s∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤
M−sN∑
p=N

KZp,C(f)epε ·KsK̃s−1
C
· (M − p)s−1e(M−p)ε

·
M−p∑

q=max{m−p,sN}

Zq,C(f)

≤ Ks+1K̃s−1
C
·M s−1eMε

M−sN∑
p=N

M−p∑
q=max{m−p,sN}

Zp,C(f)Zq,C(f)

≤ Ks+1K̃s−1
C
·M s−1eMε

M−sN∑
p=N

M−p∑
q=max{m−p,sN}

K̃CZp+q,C(f)

≤ Ks+1K̃s−1
C
·M s−1eMε · K̃C(M − (s+ 1)N + 1)

M∑
r=m

Zr,C(f)

≤ Ks+1K̃s
C
·M seMε

M∑
r=m

Zr,C(f).

We now resume the proof of Proposition 4.10. It follows from the previous
two lemmas that
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(4.6)
∑

(α(jk),...,α(j1))∈(Cjk )
∗
A×···×(Cj1 )

∗
A

n≥
∑k
i=1 |α(ji)|≥n−(k+1)B

|α(ji)|<N,∀i>k−l, |α(ji)|≥N, ∀i≤k−l

k∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤
l∏

i=1

( ∑
α(jk−l+i)∈(Cjk−l+i )

∗
A

|α(jk−l+i)|<N

exp(sup(S|α(jk−l+i)|f |[α(jk−l+i)]
))
)

·
∑

(α(jk−l),...,α(j1))∈(Cjk−l )
∗
A×···×(Cj1 )

∗
A

n≥
∑k−l
i=1 |α

(ji)|≥n−(k+1)B−l(N−1)
|α(ji)|≥N, ∀i≤k−l

k−l∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤ Z l
∑

(α(jk−l),...,α(j1))∈(Cjk−l )
∗
A×···×(Cj1 )

∗
A

n≥
∑k−l
i=1 |α

(ji)|≥n−(k+1)B−l(N−1)
|α(ji)|≥N,∀i≤k−l

k−l∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤ Z lKk−lK̃k−l−1
C

· nk−l−1enε
n∑

r=n−(k+1)(B+N)

Zr,C(f)

≤ max{1, Zκ}(KK̃C)κ · nκenε
n∑

r=n−(κ+1)(B+N)

Zr,C(f)

=: K̂ · nκenε
n∑

r=n−(κ+1)(B+N)

Zr,C(f).

Since there are
(
k
l

)
≤ k! ≤ κ! combinations of l components among k, we

deduce from (4.5) that∑
ω∈EnA visits

onlyCk,...,C1

exp(sup(S|ω|f |[ω]))

≤ max{1, Lκ+1}κκ!K̂ · nκenε
n∑

r=n−(κ+1)(B+N)

Zr,C(f).

As there are at most
(
κ
k

)
≤ κ! combinations of k components among a grand

total of κ, we conclude that∑
ω∈EnA visits exactly
k components

exp(sup(S|ω|f |[ω]))

≤ κ! max{1, Lκ+1}κκ!K̂ · nκenε
n∑

r=n−(κ+1)(B+N)

Zr,C(f).
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It follows from (4.4) that

Zn(f) ≤ κ2(κ!)2 max{1, Lκ+1}K̂ · nκenε
n∑

r=n−(κ+1)(B+N)

Zr,C(f)

=:
ˆ̂
K · nκenε

n∑
r=n−(κ+1)(B+N)

Zr,C(f).

For each n, choose rmax(n) so that n− (κ+ 1)(B +N) ≤ rmax(n) ≤ n and

Zrmax(n),C
(f) = max

n−(κ+1)(B+N)≤r≤n
Zr,C(f).

Then

Zn(f) ≤ ((κ+ 1)(B +N) + 1)
ˆ̂
K · nκenεZrmax(n),C

(f).

Consequently,

P (f) = lim
n→∞

1

n
logZn(f) ≤ lim

n→∞

1

n
logZrmax(n),C

(f) + ε

= lim
n→∞

rmax(n)

n
lim
n→∞

1

rmax(n)
logZrmax(n),C

(f) + ε

= 1 · PC(f) + ε = max
C

PC(f) + ε,

where the last equality follows from (4.1). Since ε is arbitrary, we deduce that
P (f) ≤ maxC PC(f). Since it is clear that P (f) ≥ maxC PC(f), we conclude
that P (f) = maxC PC(f). The proof of Proposition 4.10 is complete.

We obtain the following immediate corollary.

Corollary 4.14. For any Markov shift satisfying the conditions of
Proposition 4.10, the set of strongly connected components of maximal
f -pressure is non-empty.

5. The existence of Gibbs states. In this section, we shall study
necessary and sufficient conditions for the existence of Gibbs states and the
existence, uniqueness and ergodicity of invariant Gibbs states. Let us state
the most important results of this paper. It is worth observing that these re-
sults do apply to all finite Markov shifts. The first result is a characterization
of the existence of Gibbs states.

Main Theorem 5.1. Let f : E∞A → R be a summable, Hölder con-
tinuous potential on a Markov shift which has finitely many strongly con-
nected components each of which is finitely irreducible, has finitely linked
isolated letters, and the words consisting solely of isolated letters are uni-
formly bounded in length. Then this shift admits a Gibbs state if and only if
none of its strongly connected components of maximal f -pressure communi-
cate and each of its letters leads to a component of maximal f -pressure.
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The second result is a characterization of the existence, uniqueness and
ergodicity of invariant Gibbs states.

Main Theorem 5.2. Let f : E∞A → R be a summable, Hölder con-
tinuous potential on a Markov shift which has finitely many strongly con-
nected components each of which is finitely irreducible, has finitely linked
isolated letters, and the words consisting solely of isolated letters are uni-
formly bounded in length. Then this shift admits an invariant Gibbs state if
and only if all its strongly connected components are of maximal f -pressure
and none of them communicate. In other words, such a shift admits an in-
variant Gibbs state if and only if it is the disjoint union of finitely irreducible
subshifts each generating the same amount of pressure.

Such a shift has a unique invariant Gibbs state if and only if it is finitely
irreducible. Otherwise, it has uncountably many invariant Gibbs states, each
of which is a non-trivial convex combination of the componentwise-invariant
Gibbs states.

Furthermore, such a shift admits an ergodic Gibbs state if and only if
it is finitely irreducible. If the system is finitely primitive, then the unique
invariant Gibbs state is completely ergodic.

To prove these characterizations, we will need a series of propositions.
Several of those results revolve around the normalized partition functions.

We first obtain a common positive lower bound for the normalized parti-
tion functions of any shift. The existence of this lower bound follows directly
from the definition of the pressure.

Proposition 5.3. If f is summable, then Wn(f) ≥ 1 for every n ≥ 1.

Proof. When f is summable, we know that P (f) <∞. For every n ≥ 1,

P (f) ≤ 1

n
logZn(f).

Then enP (f) ≤ Zn(f). Thus, 1 ≤ Zn(f)e−nP (f) = Wn(f).

We immediately deduce that any system under a summable potential can
only have finitely many (if any) strongly connected components of maximal
pressure.

Proposition 5.4. Let f : E∞A → R be a summable potential. Then
E has finitely many (if any) strongly connected components of maximal
f -pressure.

Proof. Since f is summable, we know that P (f) < ∞. Fix n ≥ 1.
For every strongly connected component C of maximal f -pressure, Proposi-
tion 5.3 states thatWn,C(f) ≥ 1. If E had infinitely many strongly connected
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components of maximal f -pressure, then we would have

Zn(f)e−nP (f) = Wn(f) ≥
∑
C

Wn,C(f) =∞,

where the summation would run over all strongly connected components of
maximal f -pressure. Thus, we would get Zn(f) =∞ for all n ≥ 1 and hence
P (f) =∞. This would be a contradiction.

We now show that the normalized partition functions have a common
finite upper bound for any shift that admits a Gibbs state (cf. Corollary 3.7).

Proposition 5.5. If a Gibbs state exists under a summable potential f ,
then there exists M ≥ 1 so that 1 ≤Wn(f) ≤M for every n ≥ 1.

Proof. The lower bound is the one from Proposition 5.3 (recall that the
existence of a Gibbs state forces f to be summable). For the upper bound,
let m be a Gibbs state. Then there is Q ≥ 1 so that for every ω ∈ E∗A and
for every τ ∈ [ω] we have

Q−1 ≤ m([ω])

exp(S|ω|f(τ)− P (f)|ω|)
.

Since
∑

ω∈EnA
m([ω]) = 1, we get

Q−1e−nP (f)
∑
ω∈EnA

exp(sup(Snf |[ω])) ≤ 1

for all n ≥ 1, i.e. Q−1e−nP (f)Zn(f) ≤ 1. Therefore Wn(f) ≤ Q =: M for all
n ≥ 1.

Next, we estimate the contribution brought to the system by the com-
plement of the components of maximal pressure.

Lemma 5.6. Let f : E∞A → R be a summable, Hölder continuous poten-
tial on a Markov shift that has finitely many strongly connected components
not of maximal f -pressure, each of which is finitely irreducible, and whose
words consisting solely of isolated letters are uniformly bounded in length.
Let C1, . . . , Cj, where j ≤ ∞, denote the strongly connected components of
maximal f -pressure. Let C0 = E \

⋃
1≤k≤j Ck. Then PC0(f) < P (f) and

therefore there exist constants K0 > 0 and 0 < a < 1 such that

Zn,C0(f)e−nP (f) ≤ K0a
n

for every n ≥ 1. In particular, there exists M0 > 0 so that∑
ω∈C∗0

exp(sup(S|ω|f |[ω]))e−|ω|P (f) =
∑
n≥1

Zn,C0(f)e−nP (f) ≤M0.

Proof. First, note that if C0 does not contain any connected component
of E, then C0 ⊆ I and hence there exists N ≥ 1 such that (C0)

n
A = ∅ for
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all n ≥ N . Therefore Zn,C0(f) = 0 for all n ≥ N and PC0(f) = −∞. Since
P (f) > −∞, the result is trivial in this case. Secondly, observe that if C0 con-
tains a connected component of E, then it contains the strongly connected
component of E comprising that component, and this strongly connected
component is not of maximal f -pressure. Applying Proposition 4.10 with E
replaced by C0, we deduce that

PC0(f) = max{PC(f) : C is a connected component of C0}
= max{PC(f) : C ⊆ C0 is a connected component of E}
= max{PC(f) : C ⊆ C0 is a strongly connected component of E}
≤ max{PC(f) : C is a strongly connected component of E,

C is not of maximal f -pressure}
< P (f).

Since

PC0(f) = lim
n→∞

1

n
logZn,C0(f),

we obtain

lim
n→∞

1

n
logZn,C0(f) < b

for any PC0(f) < b < P (f). Hence for every n large enough,

Zn,C0(f)e−nP (f) < e(b−P (f))n.

Since f is summable, all the Zn(f)’s are finite. The preceding inequality
thus holds for all n ≥ 1 up to a multiplicative constant K0.

We now demonstrate that the normalized partition functions are uni-
formly bounded away from 0 and ∞ when none of the strongly connected
components of maximal f -pressure of the system communicate. This feature
is already known for all finitely irreducible systems (cf. Corollary 3.7).

Proposition 5.7. Let f : E∞A → R be a summable, Hölder continuous
function. Suppose that a shift has finitely many strongly connected compo-
nents, that all of them are finitely irreducible, and that words consisting
solely of isolated letters are uniformly bounded in length. If none of the
strongly connected components of maximal f -pressure communicate, then
there exists a constant M ≥ 1 so that 1 ≤Wn(f) ≤M for all n ≥ 1.

Proof. Of course, the lower bound is the one from Proposition 5.3. For
the upper bound, let C be a strongly connected component of maximal f -
pressure. Let C∗∗A be the set of all finite A-admissible words with at least one
letter from C, and for each m ≥ 1, let C∗∗,mA be the set of words in C∗∗A which
contain exactly m letters from C. Let n ≥ 1. Let C1, . . . , Cj be the strongly
connected components of maximal f -pressure. Let C0 = E \

⋃
1≤k≤j Ck.
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Based on our hypothesis, no admissible word contains letters from distinct
strongly connected components of maximal f -pressure. Thus, every n-word
τ in C∗∗,mA has the form αωβ, where ω ∈ CmA and α, β ∈ C∗0 , with |α|+ |β| =
n−m (α and/or β might be the empty word ε). Since the incidence matrix
A|C2 is finitely irreducible and f is summable and Hölder, Corollary 3.7
ensures that there exists a constant K̃C ≥ 1 such that

1 ≤Wm,C(f) ≤ K̃C

for all m ≥ 1. Since C is of maximal f -pressure, we have PC(f) = P (f).
Using these last two facts and Lemma 5.6, we deduce that∑
τ∈C∗∗A ∩E

n
A

exp(sup(Snf |[τ ]))e−nP (f)

=
n∑

m=1

∑
τ∈C∗∗,mA ∩EnA

exp(sup(Snf |[τ ]))e−nP (f)

≤
n∑

m=1

∑
ω∈CmA

exp(sup(Smf |[ω]))e−mP (f)

·
∑

α,β∈C∗0
|α|+|β|=n−m

exp(sup(S|α|f |[α]))e−|α|P (f) exp(sup(S|β|f |[β]))e−|β|P (f)

≤
n∑

m=1

KWm,C(f)
n−m∑
l=0

[∑
α∈Cl0

exp(sup(Slf |[α]))e−lP (f)

·
∑

β∈Cn−m−l0

exp(sup(Sn−m−lf |[β]))e−(n−m−l)P (f)
]

≤
n∑

m=1

KK̃C

n−m∑
l=0

KZl,C0(f)e−lP (f)KZn−m−l,C0(f)e−(n−m−l)P (f)

≤ K3K̃C

n∑
m=1

n−m∑
l=0

K0a
lK0a

n−m−l = K3K2
0K̃C

n∑
m=1

n−m∑
l=0

an−m

= K3K2
0K̃C

n∑
m=1

(n−m+ 1)an−m

≤ K3K2
0K̃C

∞∑
k=0

(k + 1)ak =
K3K2

0K̃C

(1− a)2
=: K̃C∗∗A

,

where K is a constant of bounded variation for the ergodic sums of the
Hölder potential f . Consequently,
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Wn(f) =
∑
ω∈EnA

exp(sup(Snf |[ω]))e−nP (f)

=
[ j∑
k=1

∑
ω∈(Ck)∗∗A ∩E

n
A

exp(sup(Snf |[ω])) +
∑

ω∈C∗0∩EnA

exp(sup(Snf |[ω]))
]
e−nP (f)

≤
j∑

k=1

K̃(Ck)
∗∗
A

+M0 =: M.

We now aim at showing that the normalized partition functions are not
bounded from above when some finitely irreducible connected components
of maximal f -pressure communicate. But first we need two intermediate
results.

Lemma 5.8. Let f : E∞A → R be a summable, Hölder continuous func-
tion. For any finitely irreducible connected component C of E and any e ∈ C,
we have

inf
n≥1

W t,e
n,C(f) > 0,

where

W t,e
n,C(f) =

∑
ω∈Cn,t,eA

exp(sup(Snf |[ω∩C]))e
−nPC(f)

and Cn,t,eA is the set of all words in CnA whose terminal letter is e.

Proof. Let C be a finitely irreducible connected component of E and
let µC be a σ|C∞A -invariant Gibbs state for the component C. Such a state
exists according to Corollary 2.7.5(c) in [6]. Let e ∈ C and n ≥ 1. Then

µC([e ∩ C]) = µC(σ|−(n−1)C∞A
[e ∩ C]) =

∑
ω∈Cn,t,eA

µC([ω ∩ C])

≤
∑

ω∈Cn,t,eA

QC exp(sup(S|ω|f |[ω∩C])− PC(f)|ω|)

= QCe
−nPC(f)

∑
ω∈Cn,t,eA

exp(sup(Snf |[ω∩C])) = QCW
t,e
n,C(f).

Hence infn≥1W
t,e
n,C(f) ≥ Q−1C µC([e ∩ C]) > 0.

Observe also that if there is an infinite component C of maximal f -
pressure and n ≥ 1 such that infe∈CW

t,e
n,C(f) > 0, then Wn(f) ≥Wn,C(f) =∑

e∈CW
t,e
n,C(f) =∞ and the system does not admit a Gibbs state according

to Proposition 5.5. Moreover, since Wn,C(f) = ∞, the subshift σ|C∞A does
not have a Gibbs state either, and Theorem 2.3.3 in [6] shows that such a
component C cannot be finitely irreducible.
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The counterpart of Lemma 5.8 for a fixed initial letter is

Lemma 5.9. Let f : E∞A → R be a summable, Hölder continuous func-
tion. For any finitely irreducible component C of E and any e ∈ C, we
have

inf
n≥1

W i,e
n,C(f) > 0,

where

W i,e
n,C(f) =

∑
ω∈Cn,i,eA

exp(sup(Snf |[ω∩C]))e
−nPC(f)

and Cn,i,eA is the set of all words in CnA whose initial letter is e.

Proof. Let C be a finitely irreducible connected component of E and let
µC be a (not necessarily σ|C∞A -invariant) Gibbs state for the component C.
Such a state exists by Corollary 2.7.5(c) in [6]. Let e ∈ C and n ≥ 1. Then

µC([e ∩ C]) =
∑

ω∈Cn,i,eA

µC([ω ∩ C])

≤
∑

ω∈Cn,i,eA

QC exp(sup(S|ω|f |[ω∩C])− PC(f)|ω|)

= QCe
−nPC(f)

∑
ω∈Cn,i,eA

exp(sup(Snf |[ω∩C])) = QCW
i,e
n,C(f).

Thus, infn≥1W
i,e
n,C(f) ≥ Q−1C µC([e ∩ C]) > 0.

From the last two lemmas, we establish the following fact.

Proposition 5.10. Let f : E∞A → R be a summable, Hölder continu-
ous function. If two finitely irreducible, strongly connected components of
maximal f -pressure communicate, then supn≥1Wn(f) = ∞. In particular,
a Gibbs state does not exist.

Proof. Let C1 and C2 be two finitely irreducible, strongly connected
components of maximal f -pressure such that C1 leads to C2. Let e1 ∈ C1 and
e2 ∈ C2 be such that there exists ω ∈ [E \ (C1 ∪ C2)]

∗
A so that e1ωe2 ∈ E∗A.

According to Lemma 5.8, we have

µ1 := inf
n≥1

W t,e1
n,C1

(f) > 0.

Similarly, according to Lemma 5.9,

µ2 := inf
n≥1

W i,e2
n,C2

(f) > 0.
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Thus, for any n ≥ 2 we obtain

Wn+|ω|(f) ≥
∑

τ∈En+|ω|A :

e1ωe2 subword of τ

exp(sup(Sn+|ω|f |[τ ]))e−(n+|ω|)P (f)

≥ K−3
n−1∑
k=1

∑
α∈(C1)

k,t,e1
A

∑
β∈(C2)

n−k,i,e2
A

exp(sup(Skf |[α∩C1]))e
−kPC1

(f)

· exp(sup(S|ω|f |[ω]))e−|ω|P (f) exp(sup(Sn−kf |[β∩C2]))e
−(n−k)PC2

(f)

= K−3 exp(sup(S|ω|f |[ω]))e−|ω|P (f)
n−1∑
k=1

W t,e1
k,C1

(f)W i,e2
n−k,C2

(f)

≥ K−3 exp(sup(S|ω|f |[ω]))e−|ω|P (f)µ1µ2(n− 1),

where K is a constant of bounded variation for the ergodic sums of the
Hölder potential f . Since P (f) <∞, we conclude that supn≥1Wn(f) =∞.
It follows from Proposition 5.5 that a Gibbs state cannot exist.

Now, we shall prove that the presence of a letter which does not lead to
a component of maximal pressure prevents a system from having a Gibbs
measure.

Proposition 5.11. Let f : E∞A → R be a summable, Hölder continuous
function on a Markov shift that has finitely many strongly connected com-
ponents not of maximal f -pressure, each of which is finitely irreducible, and
whose words consisting solely of isolated letters are uniformly bounded in
length. If there is a letter which does not lead to a component of maximal
f -pressure, then the system cannot have a Gibbs state.

Proof. Let M be the set of all letters which lead to at least one compo-
nent of maximal f -pressure. By hypothesis, ∅ 6= M 6= E. Let e ∈ E \M .
Assume that the system admits a Gibbs state µ. On the one hand, µ([e]) 6= 0.
On the other hand, it is crucial to observe that eτ ∈ En+1

A if and only if

eτ ∈ (E \ M)n+1
A . Indeed, En+1

A ⊃ (E \ M)n+1
A . Moreover, observe that

if for some k we had τk ∈ M , then τk would lead to a component of
maximal pressure, and so would e a fortiori. Hence we would conclude
e ∈ M , which is not the case. Furthermore, it is fundamental to observe
that PE\M (f) ≤ PC0(f) < P (f) by Lemma 5.6. Let PE\M (f) < b < P (f).
For all n large enough we have

Zn,E\M (f) ≤ enb.

It follows that for all n sufficiently large we have, for some constant Q,
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µ([e]) =
∑

eτ∈En+1
A

µ([eτ ]) =
∑

eτ∈(E\M)n+1
A

µ([eτ ])

≤ Qe−(n+1)P (f)
∑

eτ∈(E\M)n+1
A

exp(sup(Sn+1f |[eτ ]))

≤ Qe−(n+1)P (f) exp(sup(f |[e]))
∑

τ∈(E\M)nA

exp(sup(Snf |[τ ]))

≤ Q exp(sup(f |[e]))e−(n+1)P (f)KZn,E\M (f)

≤ KQ exp(sup(f |[e]))e−(n+1)P (f)enb

≤ KQ exp(sup(f |[e]))e−P (f)e−n(P (f)−b).

Passing to the limit as n → ∞ gives µ([e]) = 0. This is impossible. So the
system does not admit any Gibbs state.

Taken together, Propositions 5.10 and 5.11 establish one of the implica-
tions in Theorem 5.1. Moreover, Propositions 5.7 and 5.11 jointly show that
the existence of a Gibbs state is generally not equivalent to the normalized
partition functions being bounded away from 0 and infinity.

We now prove the converse implication in Theorem 5.1.

Proposition 5.12. Let f : E∞A → R be a summable, Hölder continuous
function. Suppose that the system has finitely many strongly connected com-
ponents each of which is finitely irreducible, that it has finitely linked isolated
letters and that the words consisting solely of isolated letters are uniformly
bounded in length. If none of the strongly connected components of maximal
f -pressure communicate and if every letter leads to a component of maximal
f -pressure, then the system has a Gibbs state.

Proof. First, let us assume that E is finite. For every j ≥ 1 and every
ω ∈ EjA, define the following Borel probability measure on the σ-algebra
on E∞A generated by the cylinders of length j:

µj([ω]) =
exp(sup(Sjf |[ω]))e−jP (f)

Wj(f)
.

For each letter e ∈ E there is a strongly connected component of maximal
f -pressure C(e), a letter β(e) ∈ C(e) and a word τ(e) ∈ E∗A such that

eτ(e)β(e) ∈ E∗A. For every ω ∈ EjA and k ≥ maxe∈E |τ(e)| + 1, we deduce
using Proposition 5.7 that

µj+k([ω]) =
∑

ωα∈Ej+kA

µj+k([ωα]) =
∑

ωα∈Ej+kA

exp(sup(Sj+kf |[ωα]))e−(j+k)P (f)

Wj+k(f)
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≥
∑

α∈(C(ωj))
k−|τ(ωj)|,i,β(ωj)
A

exp(sup(Sj+kf |[ωτ(ωj)α]))e−(j+k)P (f)

Wj+k(f)

≥
W

i,β(ωj)

k−|τ(ωj)|,C(ωj)
(f)

Wj+k(f)
K−3 exp(sup(Sjf |[ω]))e−jP (f)

· exp(sup(S|τ(ωj)|f |[τ(ωj)]))e
−|τ(ωj)|P (f)

·
∑

α∈(C(ωj))
k−|τ(ωj)|,i,β(ωj)
A

exp(sup(Sk−|τ(ωj)|f |[α∩C(ωj)]))e
−(k−|τ(ωj)|)PC(ωj)

(f)

W
i,β(ωj)

k−|τ(ωj)|,C(ωj)
(f)

≥
infn≥1, e∈EW

i,β(e)
n,C(e)(f)

M
K−3 exp(sup(Sjf |[ω]))e−jP (f)

· inf
e∈E

exp(sup(S|τ(e)|f |[τ(e)]))e−|τ(e)|P (f) · 1

= N exp(sup(Sjf |[ω]))e−jP (f),

where

N :=
1

MK3
inf

n≥1, e∈E
W

i,β(e)
n,C(e)(f) · inf

e∈E
exp(sup(S|τ(e)|f |[τ(e)]))e−|τ(e)|P (f) > 0

using Lemma 5.9. On the other hand, using Proposition 5.7 we obtain

µj+k([ω]) =
∑

ωα∈Ej+kA

exp(sup(Sj+kf |[ωα]))e−(j+k)P (f)

Wj+k(f)

≤ Wk(f)

Wj+k(f)
exp(sup(Sjf |[ω]))e−jP (f)

∑
α∈EkA

exp(sup(Skf |[α]))e−kP (f)

Wk(f)

≤ M

1
exp(sup(Sjf |[ω]))e−jP (f)

∑
α∈EkA

µk([α])

= M exp(sup(Sjf |[ω]))e−jP (f).

Now, let µ be a weak∗ cluster point of the sequence (µj)j≥1. Such an ac-
cumulation point exists since E was assumed to be finite and thus E∞A is
compact. The above two inequalities then imply that

N ≤ µ([ω])

exp(sup(S|ω|f |[ω]))e−|ω|P (f)
≤M

for every ω ∈ E∗A. This shows that µ is a Gibbs measure with constant Q :=
max{N−1,M}. In particular, note that the constant M is simply an upper
bound for the sequence (Wn(f))n≥1. By Theorem 3.4, it suffices to choose M
to be a constant of bounded supermultiplicativity and submultiplicativity
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for the sequence (Zn(f))n≥1. Furthermore, observe that N depends on M ,
the constant of bounded variation K and the chosen C’s, β’s and τ ’s.

Let us now assume that E is infinite. As usual, let I denote the set of
isolated letters of E. Denote by C = C(E) the set of all strongly connected
components of E and by Cmax = Cmax(E) the subset of all those among
them that are of maximal f -pressure for E. For each C ∈ C, there is a finite
set ΩC ⊆ C∗A which witnesses the irreducibility of A|C×C . For any ω ∈ E∗A
denote by Eω the set of all letters in the word ω. Let EΩC =

⋃
ω∈ΩC Eω, the

set of all letters in words of ΩC . Let Ω =
⋃
C∈C ΩC , Ωmax =

⋃
D∈Cmax

ΩD,
EΩ =

⋃
C∈C EΩC and EΩmax =

⋃
D∈Cmax

EΩD . Then Ω, Ωmax, EΩ and EΩmax

are all finite sets. By Proposition 4.10, we know that

max
C∈C\Cmax

PC(f) < P (f).

Let 0 < ε < P (f) − maxC/∈Cmax
PC(f). By Theorem 2.1.5 in [6], for each

D ∈ Cmax there is a finite set FD such that EΩD ⊆ FD ⊆ D and

(5.1) max
C/∈Cmax

PC(f) + ε < min
D∈Cmax

PFD(f).

Let Fmax =
⋃
D∈Cmax

FD and F = EΩ ∪ Fmax. Then F is finite and EΩ ⊆
F ⊆

⋃
C∈C C. Let also L ⊆ I∗A be a finite set witnessing the finitely linked

feature of the shift. For each letter e ∈ E there is D(e) ∈ Cmax, a letter
β(e) ∈ EΩD(e)

, and a word τ(e) ∈ E∗A such that eτ(e)β(e) ∈ E∗A. Clearly
the sets {C(e) : e ∈ E} ⊆ Cmax and {β(e) : e ∈ E} ⊆ EΩ are finite and
the τ -words can be chosen so that the set {τ(e) : e ∈ E} is finite (using the
words of L as well as the words of Ω). Let T = {Eτ(e) : e ∈ E}.

There exists an increasing sequence (Fh)h≥1 of finite sets such that F ∪
T ⊆ Fh for every h ≥ 1 and

⋃
h≥1 Fh = E.

Since Fh ⊇ EΩ, the subalphabet Fh has exactly one strongly connected
component in each of the strongly connected components of E, each of them
is finitely irreducible, and the set of isolated letters for Fh is a subset of I.

Moreover, since Fh ⊇ Fmax, by (5.1) the strongly connected components
of maximal f |(Fh)∞A -pressure for Fh are contained in the strongly connected
components of maximal f -pressure for E. Since none of the strongly con-
nected components of maximal f -pressure for E communicate, neither do
the strongly connected components of maximal f |(Fh)∞A -pressure for Fh.

Furthermore, as Fh ⊇ T , every letter of Fh leads to a component of
maximal f |(Fh)∞A -pressure for Fh via a word in (Fh)∗A.

Then, by the first part (the finite case) of the proof, the subshift σh :
(Fh)∞A → (Fh)∞A has a Gibbs state µh such that

Nh ≤
µh([ω ∩ Fh])

exp(sup(S|ω|f |[ω∩Fh]))e
−|ω|PFh (f)

≤Mh
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for every ω ∈ (Fh)∗A, where Nh and Mh are determined by any constant
of bounded supermultiplicativity and submultiplicativity for the sequence
(Zn,Fh(f))n≥1, the constant of bounded variation K and the C’s, β’s and τ ’s.

We now aim at showing that the constants Nh and Mh can be chosen
so that they are independent of h. To do this, it suffices to prove that
the sequences (Zn,Fh(f))n≥1, h ≥ 1, share a common constant of bounded
supermultiplicativity (since these sequences are all submultiplicative).

By (5.1), there exists N ≥ 1 such that

(5.2) max
C/∈Cmax

Zn,C(f) · enε ≤ min
D∈Cmax

Zn,FD(f)

for all n ≥ N . For each h ≥ 1, let Dh ∈ Cmax be such that Fh ∩Dh is a com-
ponent of maximal f |(Fh)∞A -pressure for Fh. By passing to a subsequence, we
may assume that there is Dmax ∈ Cmax such that Fh ∩Dmax is a component
of maximal f |(Fh)∞A -pressure for Fh for all h ≥ 1. Moreover, Proposition 3.5

and the note following it assert that, with K̃ := maxC∈C K̃C , we have

Zm,Fh∩C(f)Zn,Fh∩C(f) ≤ K̃Zm+n,Fh∩C(f)(5.3)

≤ K̃Zm,Fh∩C(f)Zn,Fh∩C(f)

for all m,n ≥ 1, h ≥ 1 and C ∈ C.
Let κ be the number of strongly connected components and let B be

the maximal length of words consisting of isolated letters only. Let n >
(κ + 1)(B + N) + κN and h ≥ 1. In particular, this implies that there are
no n-words consisting solely of isolated letters, i.e. every n-word must visit
at least one component. Then

Zn,Fh(f) ≤
∑

ω∈(Fh)nA

exp(sup(S|ω|f |[ω]))(5.4)

=
κ∑
k=1

∑
ω∈(Fh)nA visits exactly

k components

exp(sup(S|ω|f |[ω])).

Consider the set of all ω ∈ (Fh)nA that visit the k strongly connected com-
ponents Ck, . . . , C1 of Fh, and no others, in this specific order. In order for
this set to be non-empty, the components Ck, . . . , C1 must form a subchain
of a chain. Then there is a unique way of writing ω as a concatenation

(5.5) ω = β(k+1)α(k)β(k)α(k−1)β(k−1) . . . α(2)β(2)α(1)β(1),

where β(j) ∈ I∗A and α(j) ∈ (Cj)
∗
A. Note that some (possibly all) of the β(j)

may be the empty word ε. For (sub)words consisting of isolated letters only,



258 A. E. Ghenciu and M. Roy

Lemma 4.11 states that∑
β∈I∗A

exp(sup(S|β|f |[β])) ≤
B∑
i=1

(∑
β∈I

exp(sup(f |[β]))
)i

=: L <∞.

Therefore

(5.6)
∑

ω∈(Fh)nA visits

Ck,...,C1 only

exp(sup(S|ω|f |[ω]))

≤ Lk+1
k∑
l=1

∑
(α(k),...,α(1))∈(Ck)∗A×···×(C1)∗A
n≥

∑k
j=1 |α(j)|≥n−(k+1)B

with exactly l α(j)’s such that |α(j)|<N

k∏
i=1

exp(sup(S|α(i)|f |[α(i)])).

Recall that there are
(
k
l

)
combinations of l components among k. For any

such combination, the l components Cj such that |α(j)| < N form a unique
subchain Cjk , . . . , Cjk−l+1

. Similarly, the remaining k− l components consti-
tute a subchain Cjk−l , . . . , Cj1 .

For the l components Cj such that |α(j)| < N , Lemma 4.12 asserts that∑
α(j)∈(Cj)∗A
|α(j)|<N

exp(sup(S|α(j)|f |[α(j)])) ≤
N−1∑
i=1

(Z1(f))i =: Z <∞.

For the remaining k−l components, we have the following estimate when
Cjk−l ∈ C(Fh) \ Cmax(Fh).

Lemma 5.13. Suppose that Cjs , . . . , Cj1 are strongly connected compo-
nents of Fh constituting a chain and that Cj1 ∈ C(Fh) \ Cmax(Fh). Then for
any m ≤M , we have∑
(α(js),...,α(j1))∈(Cjs )∗A×···×(Cj1 )

∗
A

M≥
∑s
i=1 |α(ji)|≥m

|α(ji)|≥N,∀i

s∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤ KsK̃s−1 ·M s−1e−εmax{m,sN}
M∑
r=m

Zr,Fh∩Dmax(f).

Proof. The proof is similar to that of Lemma 4.13; it uses (5.2) and (5.3)
and the fact that by construction Fh ∩Dmax ⊇ FDmax .

We resume the proof of Proposition 5.12. When Cjk−l ∈ C(Fh)\Cmax(Fh),
it follows from the previous two lemmas, the choice n > (κ+1)(B+N)+κN
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and (5.3) that (cf. (4.6))

∑
(α(jk),...,α(j1))∈(Cjk )

∗
A×···×(Cj1 )

∗
A

n≥
∑k
i=1 |α(ji)|≥n−(k+1)B

|α(ji)|<N,∀i>k−l, |α(ji)|≥N, ∀i≤k−l

k∏
i=1

exp(sup(S|α(ji)|f |[α(ji)]))

≤ Z lKk−lK̃k−l−1 · nk−l−1e−εmax{n−(k+1)(B+N),kN}

·
n∑

r=n−(k+1)(B+N)

Zr,Fh∩Dmax(f)

≤ Z l(KK̃)k · nke−ε(n−(k+1)(B+N)) [(k + 1)(B +N) + 1]K̃

min0≤j≤(k+1)(B+N) Zj,Fh∩Dmax(f)

· Zn,Fh∩Dmax(f)

≤ 2(κ+ 1)(B +N) max{1, Zκ}(KK̃)κ+1eε(κ+1)(B+N)

min0≤j≤(κ+1)(B+N) Zj,EΩDmax
(f)

· nκe−εnZn,Fh∩Dmax(f)

=: K̂ · nκe−εnZn,Fh∩Dmax(f).

Since there are
(
k
l

)
≤ k! ≤ κ! combinations of l components among k, we

deduce from (5.6) that∑
ω∈(Fh)nA visits
onlyCk,...,C1

exp(sup(S|ω|f |[ω]))

≤ max{1, Lκ+1}κκ!K̂ · nκe−εnZn,Fh∩Dmax(f)

=:
ˆ̂
K · nκe−εnZn,Fh∩Dmax(f)

whenever C1 ∈ C(Fh) \ Cmax(Fh).

However, when C1 ∈ Cmax(Fh), we know that the other Cj ’s are not in
Cmax(Fh). Since C1 ∈ Cmax(Fh) and Fh ∩ Dmax ∈ Cmax(Fh), Corollary 3.7
guarantees that 1 ≤ Wn,C1(f) ≤ K̃ and 1 ≤ Wn,Fh∩Dmax(f) ≤ K̃ for all
n ≥ 1. Then

Zn,C1(f)

Zn,Fh∩Dmax(f)
=

Zn,C1(f)e−nPFh (f)

Zn,Fh∩Dmax(f)e−nPFh (f)
=

Zn,C1(f)e−nPC1
(f)

Zn,Fh∩Dmax(f)e−nPFh∩Dmax (f)

=
Wn,C1(f)

Wn,Fh∩Dmax(f)
≤ K̃

1

for all n ≥ 1. Then
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ω∈(Fh)nA visits
onlyCk,...,C1

exp(sup(S|ω|f |[ω]))

≤
n∑
r=1

∑
τ∈(C1)rA

exp(sup(S|τ |f |[τ ]))
∑

ρ∈(Fh)n−rA visits

onlyCk,...,C2

exp(sup(S|ρ|f |[ρ]))

≤
n∑
r=1

Zr,C1(f) · ˆ̂
K · (n− r)κe−ε(n−r)Zn−r,Fh∩Dmax(f)

≤
n∑
r=1

K̃Zr,Fh∩Dmax(f) · ˆ̂
K · (n− r)κe−ε(n−r)Zn−r,Fh∩Dmax(f)

= K̃
ˆ̂
K

n∑
r=1

(n− r)κe−ε(n−r)Zr,Fh∩Dmax(f)Zn−r,Fh∩Dmax(f)

≤ K̃ ˆ̂
K

n∑
r=1

(n− r)κe−ε(n−r) · K̃Zn,Fh∩Dmax(f)

≤ K̃2 ˆ̂
K
∞∑
s=0

sκe−εs · Zn,Fh∩Dmax(f)

whenever C1 ∈ Cmax(Fh).

As there are at most
(
κ
k

)
≤ κ! combinations of k components among a

grand total of κ, we conclude that∑
ω∈(Fh)nA visits exactly

k components

exp(sup(S|ω|f |[ω]))

≤ κ!
ˆ̂
K
[
nκe−εn + K̃2

∞∑
s=0

sκe−εs
]
Zn,Fh∩Dmax(f).

It follows from (5.4) and the choice of n that

Zn,Fh(f) ≤ κκ!
ˆ̂
K
[
nκe−εn + K̃2

∞∑
s=0

sκe−εs
]
Zn,Fh∩Dmax(f).

Let

M̂ := κκ!
ˆ̂
K
[
max
n≥1

(nκe−εn) + K̃2
∞∑
s=0

sκe−εs
]
<∞.

Then

Zn,Fh(f) ≤ M̂ · Zn,Fh∩Dmax(f)

for all n > (κ+ 1)(B +N) + κN and all h ≥ 1. Furthermore,
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Zn,Fh∩Dmax(f) ≥ Zn,EΩDmax
(f) =

Zn,EΩDmax
(f)

Zn,Fh(f)
· Zn,Fh(f)

≥
[

min
1≤m≤(κ+1)(B+N)+κN

Zm,EΩDmax
(f)

Zm(f)

]
Zn,Fh(f)

for all n ≤ (κ + 1)(B + N) + κN and all h ≥ 1. Consequently, there exists
a constant M̃ > 0 such that

Zn,Fh(f) ≤ M̃ · Zn,Fh∩Dmax(f)

for all n ≥ 1 and all h ≥ 1. It follows that

Zm,Fh(f)Zn,Fh(f) ≥ Zm+n,Fh(f) ≥ Zm+n,Fh∩Dmax(f)

≥ K̃−1Zm,Fh∩Dmax(f)Zn,Fh∩Dmax(f)

≥ K̃−1M̃−2Zm,Fh(f)Zn,Fh(f)

for all m,n ≥ 1 and all h ≥ 1. This proves that the sequence (Zn,Fh(f))n≥1
is boundedly supermultiplicative with a constant independent of h.

Finally, we prove that the sequence (µh)h≥1 of Gibbs measures, which
have a common Gibbs constant Q, is tight. The proof is inspired from that
of Theorem 2.7.3 in [6]. Obviously, PF1(f) ≤ PFh(f) for all h ≥ 1. For every
k ≥ 1 let πk : E∞A → E be the projection onto the kth coordinate, i.e.
πk((ei)i≥1) = ek. Then for every h ≥ 1, each k ≥ 1 and all e ∈ E we have

µh(π−1k (e)) =
∑

ω∈(Fh)kA:ωk=e

µh([ω])

≤ Q
∑

ω∈(Fh)kA:ωk=e

exp(sup(Skf |[ω])− kPFh(f))

≤ Qe−kPF1 (f)
∑

ω∈Ek−1
A

exp(sup(Sk−1f |[ω])) · exp(sup(f |[e]))

≤ Qe−kPF1 (f)Zk−1(f) · exp(sup(f |[e]))

≤ Qe−kPF1 (f)(Z1(f))k−1 · exp(sup(f |[e])).

Therefore (for convenience, we set E = N)

µh(π−1k ([e+ 1,∞))) ≤ Qe−kPF1 (f)(Z1(f))k−1 ·
∑
i>e

exp(sup(f |[i])).

Fix δ > 0 and for every k ≥ 1 choose nk ≥ 1 such that

Qe−kPF1 (f)(Z1(f))k−1 ·
∑
i>nk

exp(sup(f |[i])) ≤
δ

2k
.
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Then µh(π−1k ([nk + 1,∞))) ≤ δ/2k for every h ≥ 1 and every k ≥ 1. Hence

µh

(
E∞A ∩

∏
k≥1

[1, nk]
)
≥ 1−

∑
k≥1

µh(π−1k ([nk + 1,∞)))

≥ 1−
∑
k≥1

δ

2k
= 1− δ.

Since E∞A ∩
∏
k≥1[1, nk] is a compact subset of E∞A , the tightness of the

sequence (µh)h≥1 is proved. Therefore, in view of Prokhorov’s Theorem,
this sequence has a weak accumulation point µ and this accumulation point
is clearly a Gibbs measure with Gibbs constant Q.

We shall now give a proof of our two main theorems, namely, Theo-
rems 5.1 and 5.2.

Proof of Theorem 5.1. Taken together, Propositions 5.10 and 5.11 es-
tablish one of the implications in Theorem 5.1. The other implication is
precisely the object of Proposition 5.12.

Proof of Theorem 5.2. Suppose that the system admits an invariant
Gibbs state µ. By Theorem 5.1, we know that none of the strongly connected
components of maximal f -pressure communicate and each letter leads to
a component of maximal f -pressure. Now, assume that the system has a
strongly connected component C which is not of maximal f -pressure. Since
every letter leads to a component of maximal f -pressure, component C leads
to a strongly connected component C̃ of maximal f -pressure. Component
C further belongs to a chain of one-way communication between strongly
connected components. Let D be the minimal element of that chain. Then
D is not of maximal f -pressure since D leads to C and thereafter to C̃, and
since strongly connected components of maximal f -pressure do not commu-
nicate. Let 0 < ε < P (f)−PD(f). Fix ω ∈ D∗A. The minimality of D implies
that τω ∈ E∗A if and only if τω ∈ D∗A. Since µ is an invariant Gibbs state,
for some constant Q ≥ 1 that for every n ≥ 1,

µ([ω]) = µ(σ−n([ω])) =
∑

τ∈EnA:Aτnω1=1

µ([τω]) =
∑

τ∈DnA:Aτnω1=1

µ([τω])

≤
∑

τ∈DnA:Aτnω1=1

Q exp(sup(Sn+|ω|f |[τω])− P (f)(n+ |ω|))

≤ Q exp(sup(S|ω|f |[ω])− P (f)|ω|)
∑
τ∈DnA

exp(sup(Snf |[τ ])− P (f)n)

≤ Q2µ([ω])
∑
τ∈DnA

exp(sup(Snf |[τ ])− P (f)n)
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≤ Q2µ([ω])
∑
τ∈DnA

exp(sup(Snf |[τ ])− (PD(f) + ε)n)

≤ Q2µ([ω])
∑
τ∈DnA

K exp(sup(Snf |[τ∩D])− PD(f)n) · e−nε

≤ Q2Kµ([ω])Wn,D(f) · e−nε ≤ Q2Kµ([ω])K̃D · e−nε,

where the constant K̃D exists according to Corollary 3.7. Letting n → ∞,
we deduce that µ([ω]) = 0. This is impossible. We hence conclude that
the existence of an invariant Gibbs state prevents the existence of strongly
connected components not of maximal f -pressure. This proves one im-
plication.

To prove the converse, suppose that a Markov shift is such that all its
strongly connected components are of maximal f -pressure and that none
of them communicate. This implies that the system is a union of disjoint,
non-communicating strongly connected components of maximal f -pressure.
Let C1, . . . , Cj be the strongly connected components of the system. Then
E∞A =

⋃
1≤k≤j(Ck)

∞
A and PCk(f) = P (f) for all 1 ≤ k ≤ j. According to

Theorems 2.3.3 and 2.2.4 in [6], each subshift σ : (Ck)
∞
A → (Ck)

∞
A has a

unique invariant Gibbs state µk. These measures can be extended to E∞A by
setting µk(B) := µk(B ∩ (Ck)

∞
A ), where B is a Borel subset of E∞A . Then

any invariant Gibbs state µ for the full system is a non-trivial convex com-
bination of the extensions µk of the component invariant Gibbs states, i.e.
µ =

∑
1≤k≤j αkµk for some αk 6= 0, 1 ≤ k ≤ j, such that

∑
1≤k≤j αk = 1.

This is because the restriction of a Gibbs measure for the full system to any
(Ck)

∞
A is an invariant measure satisfying the Gibbs condition (2.1), albeit

not a probability measure. Normalizing this restriction produces an invariant
Gibbs measure for the subshift σ : (Ck)

∞
A → (Ck)

∞
A . But by Theorem 2.2.4

in [6] there is only one such measure.

Hence, if the system has more than one component, i.e. A is not irre-
ducible, then there are uncountably many invariant Gibbs states, albeit all
of the above form. None of these invariant Gibbs states is ergodic since ev-
ery subset (Ck)

∞
A is invariant and 0 6= µ((Ck)

∞
A ) = αkµk((Ck)

∞
A ) = αk 6= 1.

If the system consists of a single component, i.e. A is finitely irreducible,
then the system has a unique invariant Gibbs measure. This measure is
ergodic according to Theorem 2.2.4 in [6]. If A is finitely primitive, then
Theorem 2.2.4 in [6] asserts that the invariant Gibbs state is completely
ergodic.

It is apropos to recall that for irreducible Markov shifts, Mauldin and
Urbański [6] and Sarig [9] proved that a necessary and sufficient condition
for the existence of an invariant Gibbs state is that the incidence matrix be
finitely irreducible (cf. Theorem 2.2.6 in [6]). Thus, Main Theorem 5.2 does
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not apply to a system consisting of a unique strongly connected component
which is not finitely irreducible. This means that the assumption of finite
irreducibility on the strongly connected components cannot be relaxed in
general.

Moreover, note that under a summable potential, a system with infinitely
many strongly connected components possesses (infinitely many) strongly
connected components that are not of maximal pressure (because there are
finitely many strongly connected components of maximal pressure according
to Proposition 5.4). Thus, if Main Theorem 5.2 holds for such systems,
then no such system admits an invariant Gibbs state. By the argument in
the proof of Theorem 5.2, this is certainly the case for all systems that
have a chain with a minimal strongly connected component not of maximal
pressure. But we do not know whether this is the case more generally.

Finally, it is unclear whether one can relax the hypothesis that isolated
letters are finitely linked and that words consisting only of isolated letters
are uniformly bounded in length.
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[5] R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated func-
tion systems, Proc. London Math. Soc. (3) 73 (1996), 105–154.
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