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Cardinal sequences of length < ω2 under GCH

by
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Abstract. Let C(α) denote the class of all cardinal sequences of length α associated
with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put

Cλ(α) = {s ∈ C(α) : s(0) = λ = min[s(β) : β < α]}.

We show that f ∈ C(α) iff for some natural number n there are infinite cardinals λ0 >

λ1 > · · · > λn−1 and ordinals α0, . . . , αn−1 such that α = α0 + · · · + αn−1 and f =
f0

⌢f1
⌢. . .⌢fn−1 where each fi ∈ Cλi

(αi). Under GCH we prove that if α < ω2 then

(i) Cω(α) = {s ∈ α{ω, ω1} : s(0) = ω};
(ii) if λ > cf(λ) = ω,

Cλ(α) = {s ∈ α{λ, λ
+} : s(0) = λ, s

−1{λ} is ω1-closed in α};

(iii) if cf(λ) = ω1,

Cλ(α) = {s ∈ α{λ, λ
+} : s(0) = λ, s

−1{λ} is ω-closed and successor-closed in α};

(iv) if cf(λ) > ω1, Cλ(α) = α{λ}.

This yields a complete characterization of the classes C(α) for all α < ω2, under GCH.

1. Introduction. For a scattered space X and an ordinal α we let Iα(X)
denote the αth Cantor–Bendixson level of X. The height of X, ht(X), is the
minimal ordinal β with Iβ(X) = ∅. The reduced height ht−(X) is the smallest
ordinal α such that Iα(X) is finite. Clearly, one has

ht−(X) ≤ ht(X) ≤ ht−(X) + 1.
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The sequence of infinite cardinals

〈|Iα(X)| : α < ht−(X)〉

is called the cardinal sequence of X and is denoted by SEQ(X).
We let C(α) denote the class of all cardinal sequences of length α of

locally compact scattered T2 (for short: LCS) spaces. We also put, for any
fixed infinite cardinal λ,

Cλ(α) = {s ∈ C(α) : s(0) = λ ∧ ∀β < α [s(β) ≥ λ]}.

We shall see later that C(α) is uniquely determined if we know Cλ(β) for all
cardinals λ and for all ordinals β ≤ α.

As usual, the concatenation of a sequence f of length α and of a sequence
g of length β is denoted by f⌢g. So the domain of h = f⌢g is α + β,
h(ξ) = f(ξ) for ξ < α, and h(α + η) = g(η) for η < β.

We shall use the notation 〈κ〉α to denote the constant κ-valued sequence
of length α.

In [4], the following simple (to formulate, not to prove!) characterization
of C(ω1) was given in ZFC: The sequence 〈κξ : ξ < ω1〉 ∈ C(ω1) iff κη ≤ κω

ξ

holds whenever ξ < η < ω1. It follows that cardinal arithmetic (in fact
just the operation κ 7→ κω) alone decides whether a sequence of cardinals
of length ω1 belongs to C(ω1) or not. The situation changes dramatically
for longer sequences, in fact already for sequences of length ω1 + 1. For
example, the question if 〈ω〉ω1

⌢〈ω2〉1 ∈ C(ω1 + 1) is not decided by the
following cardinal arithmetic: 2ω = ω2 and 2κ = κ+ for all κ > ω (see [5]
and [8]). Moreover, any cardinal arithmetic is consistent with

〈ω1〉ω1

⌢〈ω2〉1 ∈ C(ω1 + 1),
while one has

〈ω1〉ω1

⌢〈ω2〉1 /∈ C(ω1 + 1)

in the Mitchell model (see [1]).
However, as we shall show in this paper, the elements of C(α) can be

characterized for all α < ω2 if we assume GCH. For example, one has
〈ω〉ω1

⌢〈ω2〉1 /∈ C(ω1 + 1) and 〈ω1〉ω1

⌢〈ω2〉1 ∈ C(ω1 + 1) under GCH.
The following piece of notation is taken from [4]: If X is a scattered space

and x ∈ X then we write ht(x, X) = α iff x ∈ Iα(X). Trivially, then

ht(X) = min{β : ∀x ∈ X [ht(x, X) < β]}.

It is obvious that if Y ⊂ X then ht(x, X) ≥ ht(x, Y ) whenever x ∈ Y , and
if Y is also open in X then actually ht(x, X) = ht(x, Y ). On the other hand,
for the points of X outside of Y one can get the following upper bound.

Fact 1.1. If Y is an open subspace of the scattered space X then for

every point x ∈ X\Y we have ht(x, X) ≤ ht(Y )+ht(x, X\Y ). Consequently ,
ht(X) ≤ ht(Y ) + ht(X \ Y ).
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Indeed, this is proved by a straightforward transfinite induction on
ht(x, X), using Y ⊂ I<ht(Y )(X).

It is well known that any ordinal, as an ordered topological space, is
LCS. It is easy to see that if α < β are ordinals then ht(α, β) = γ iff α can
be written in the form ωγ · (2δ+1), or equivalently, γ is minimal such that α
can be written as α = ε+ωγ . Note that in the notation ht(α, β) the ordinals
play a double role: α is considered as a “point” in the set β. Using the above
characterization of the Cantor–Bendixson levels of ordinal spaces, it is easy
to show that for any infinite cardinal λ and for any ordinal α < λ+ we have
〈λ〉α ∈ C(α).

This paper is a natural sequel to [4], so now we recall a few general
statements concerning cardinal sequences from [4] that will be needed later.

Fact 1.2 ([4, Lemma 1]). If s ∈ C(β) then |β| ≤ 2s(0) and s(α) ≤ 2s(0)

for each α < β.

Fact 1.3 ([4, Lemma 2]). If s ∈ C(β) and α + 1 < β then s(α + 1)
≤ s(α)ω.

Fact 1.4 ([4, Lemma 3]). If s ∈ C(β), δ < β is a limit ordinal and C is

any cofinal subset of δ, then

s(δ) ≤
∏

{s(α) : α ∈ C}.

We shall also need the following general construction from [4] that is
used to obtain an LCS space by gluing together certain others.

Lemma 1.5 ([4, Lemma 7]). Let X be an LCS space with a closed discrete

subset S such that for each s ∈ S there is given a sequence 〈Us,n : n ∈ ω〉 of

pairwise disjoint compact open subsets of X \ S, converging to the point s.
Also, for each s ∈ S let Ys be a separable LCS space such that the collection

{X} ∪ {Ys : s ∈ S} of spaces is disjoint. Then there is an LCS space Z with

the following three properties:

(i) Z = (X\S)∪
⋃
{Ys : s ∈ S} with X\S as an open subspace and each

Ys as a closed subspace. Moreover , {Ys : s ∈ S} forms a discrete

collection in Z.

(ii) ht(x, Z) = ht(x, X) for x ∈ X \ S.

(iii) ht(y, Z) = δs + ht(y, Ys) for y ∈ Ys, where δs is the least ordinal

δ such that the set {n < ω : Us,n ∩ Iδ(X) 6= ∅} is finite. (Clearly ,
δs ≤ ht(s, X).)

2. A reduction theorem. We have noted in the introduction that,
in order to characterize those sequences of length < ω2 which are cardinal
sequences of LCS spaces, it suffices to characterize the classes Cλ(α) for any



38 I. Juhász et al.

ordinal α < ω2 and any infinite cardinal λ. In fact, this follows from the
following general reduction theorem that is valid in ZFC.

Theorem 2.1. For any ordinal α we have f ∈ C(α) iff for some natural

number n there is a decreasing sequence λ0 > λ1 > · · · > λn−1 of infinite

cardinals and there are ordinals α0, . . . , αn−1 such that α = α0 + · · ·+ αn−1

and f = f0
⌢f1

⌢. . .⌢fn−1 with fi ∈ Cλi
(αi) for each i < n.

Proof. We first prove that the condition is necessary, so fix f ∈ C(α).
Let us say that β < α is a drop point in f if for all γ < β we have f(γ) >
f(β). Clearly f has only finitely many, say n, drop points; let {βi : i < n}
enumerate all of them in increasing order. (In particular, we then have
β0 = 0.) For each i < n let us set λi = f(βi); then we clearly have
λ0 > λ1 > · · · > λn−1.

For each i < n − 1 let αi = βi+1 − βi be the unique ordinal such that
βi + αi = βi+1, and define the sequence fi on αi by setting

fi(ξ) = f(βi + ξ)

for all ξ < αi. Similarly, let αn−1 = α − βn−1 be the unique ordinal such
that βn−1 + αn−1 = α, and define fn−1 on αn−1 by

fn−1(ξ) = f(βn−1 + ξ)

for all ξ < αn−1. Now, it is obvious that we have f = f0
⌢f1

⌢. . .⌢fn−1 where
fi ∈ Cλi

(αi) for each i < n.
We shall now prove that the condition is also sufficient. In fact, this will

follow from the next lemma.

Lemma 2.2. If f ∈ C(α), g ∈ C(β), and f(ν) ≥ g(0) for each ν < α then

f⌢g ∈ C(α + β).

Indeed, given the sequences fi for i < n, this lemma enables us to in-
ductively define for every i = 0, . . . , n − 1 an LCS space Zi with cardinal
sequence f0

⌢. . .⌢fi because

fi(0) = λi < λi−1 = min{fj(ν) : j < i, ν < αj}.

In particular, we then have SEQ(Zn−1) = f0
⌢f1

⌢. . .⌢fn−1. 2.1

Proof of Lemma 2.2. Let Y be an LCS space with cardinal sequence g
and satisfying Iβ(Y ) = ∅. Next fix LCS spaces Xy for all y ∈ I0(Y ), each
having the cardinal sequence f and satisfying Iα(Xy) = ∅. Assume also that
the family {Y } ∪

⋃
{Xy : y ∈ Y } is disjoint.

We then define the space Z = 〈Z, τ〉 as follows. Let us first set

Z = Y ∪
⋃

{Xy : y ∈ I0(Y )}.

For any subset V ⊂ Y we let

Z(V ) = V ∪
⋃

{Xy : y ∈ I0(Y ) ∩ V };
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moreover we put

T = {W : W is compact open in some Xy}.

Then the family

B = T ∪
{
Z(V ) \

⋃
T ′ : V is compact open in Y and T ′ ∈ [T ]<ω

}

clearly covers Z and is closed under finite intersections, hence it forms a
base for a topology τ on Z.

Since T ⊂ τ and B ∩Xy is open in Xy for all B ∈ B, each Xy is an open
subspace of Z. We also have

{B ∩ Y : B ∈ B} = {V ⊂ Y : V is compact open in Y },

and the latter is a base of Y , hence Y is a closed subspace of Z. It easily
follows then that any non-empty subspace A ⊂ Z has an isolated point,
hence Z is scattered. It is also easy to check that Z is Hausdorff because so
are Y and all the Xy.

So to see that Z is LCS, it remains to check that it is locally compact.
Now, let V be compact open in Y ; we claim that then Z(V ) is compact in Z.
Indeed, this can be proved by a straightforward transfinite induction on

σ(V ) = max{ht(z, Y ) : z ∈ V }.

It clearly follows from this that all members of B are compact in Z, hence
Z is locally compact.

Note that for any isolated point y of Y the space

Z({y}) = {y} ∪ Xy,

as a subspace of Z, is the one-point compactification of Xy. This clearly
implies that ht(y, Z) = α. From this, with an easy transfinite induction, one
can prove that for all points z ∈ Y we have

ht(z, Z) = α + ht(z, Y ).

On the other hand, since each Xy is an open subspace of Z, it follows
that for every point x ∈ Xy we have

ht(x, Z) = ht(x, Xy) < α.

Consequently, for each ν < α we have

Iν(Z) =
⋃

{Iν(Xy) : y ∈ I0(Y )}.

This implies that ht(Z) = α + β, and if ν < α then

|Iν(Z)| = |I0(Y )| · f(ν) = g(0) · f(ν) = f(ν).

Moreover, if η < β then |Iα+η(Z)| = |Iη(Y )| = g(η), and consequently
SEQ(Z) = f⌢g. 2.2
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3. A general existence theorem on “long” cardinal sequences.

In order to obtain the promised GCH characterization of the classes C(α)
we need one more result, in addition to the ones from [4] that were collected
in the introduction. Unlike those, this result, Theorem 3.9 to be formulated
and proved below, is new. In fact, it extends the main result, Theorem
2.19, of [2]. So for the reader who wants to follow its proof, acquaintance
with [2] is recommended although not absolutely necessary. (The reader who
is mainly interested in the GCH characterization, and is willing to accept
Theorem 3.9 without proof, may simply skip this section.) In any case, we
start by recalling a few definitions from [2].

Definition 3.1. For any family A of sets we define the topological space
X(A) = 〈A, τA〉 as follows: τA is the coarsest topology on A such that
the sets UA(A) = A ∩ P(A) are clopen for each A ∈ A. In other words:
{UA(A),A \ UA(A) : A ∈ A} is a subbase for τA.

Clearly X(A) is a 0-dimensional T2-space.

A family A is called well-founded if the partial order 〈A,⊂〉 is well-
founded. A is said to be ∩-closed iff A ∩ B ∈ A ∪ {∅} whenever A, B ∈ A.

It is easy to see that if A is ∩-closed, then a neighbourhood base of
A ∈ A in the space X(A) is formed by the clopen sets

WA(A; B1, . . . , Bn) = UA(A) \
n⋃

i=1

UA(Bi),

where n ∈ ω and Bi ( A for i = 1, . . . , n. (For n = 0 we have WA(A) =
UA(A).) We shall write U(A) instead of UA(A) if A is clear from the context,
and similarly for the W’s.

The following statement, proved in [2, Lemma 2.2], shows the relevance
of the above concepts to the subject matter of this paper.

Fact 3.2. Assume that A is both ∩-closed and well-founded. Then X(A)
is an LCS space.

To simplify notation, if X(A) is scattered then we write Iα(A) instead
of Iα(X(A)), and I<α(A) instead of

⋃
{Iζ(A) : ζ < α}. In the same spirit,

for A ∈ A we sometimes write ht(A,A) instead of ht(A, X(A)).

We shall say that A is an ordinal family if all members of A are sets
of ordinal numbers, and A is both ∩-closed and well-founded. (As usual,
we shall denote by On the class of all ordinals.) The following definition
makes sense for any ordinal family A and will play an important role in our
construction.

If A is an ordinal family and ξ is any ordinal then we let

A↾ξ = {A ∩ ξ : A ∈ A}, A∗ =
⋃

{A↾ξ : ξ ∈ On}.
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So A∗ is simply the family consisting of all initial segments of all members
of A. Clearly,

A∗ = A ∪ {A ∩ ξ : A ∈ A ∧ ξ ∈ A}.

It is easy to see that if A is an ordinal family then so is A∗, hence both
X(A) and X(A∗) are LCS spaces. A key ingredient in our construction is,
just as in [2], the clarification of the relationship between these two spaces.
The following technical lemma will play a significant role in this. As indicated
above, we shall write U(A) instead of UA(A), U

∗
(A) instead of UA∗(A), and

similarly for the W’s.

Lemma 3.3. Let A be an ordinal family. Then for any A ∈ A we have

ht(U∗(A)) ≤ sup{ht(U∗(A
′)) : A′ ∈ U(A) \ {A}} + ht(tpA + 1).

Proof. Set V =
⋃
{U∗(A

′) : A′ ∈ U(A) \ {A}} and B = U∗(A) \ V. Then
V is open in X(A∗), and covered by the family {U∗(A

′) : A′ ∈ U(A) \ {A}}
of open sets, hence

(⋄) ht(V) = sup{ht(U∗(A
′)) : A′ ∈ U(A) \ {A}}.

Let ζ be the smallest ordinal such that A ∩ ζ ∈ B. Clearly then either
ζ ∈ A or ζ =

⋃
A; moreover it is easy to see that

B = {A ∩ ξ : ξ ∈ A \ ζ} ∪ {A},

hence B is well-ordered by inclusion in some order type β ≤ tpA+1. It then
follows that B as a subspace of X(A∗) is homeomorphic to X(B), that is,
to the ordinal β (see Example 2.3 in [2]). Hence

(•) ht(B) = ht(β) ≤ ht(tpA + 1).

Finally, by Fact 1.1 we have

(⋆) ht(U∗(A)) ≤ ht(V) + ht(B).

Formulas (⋄), (•), and (⋆) together yield what we have to prove. 3.3

What we shall really need in our construction is the following corollary
of Lemma 3.3.

Lemma 3.4. Let A be an ordinal family such that , for a fixed indecom-

posable α ∈ On, we have |A| < cf(α) and ht(tpA) < α for all A ∈ A. Then

ht(X(A∗)) < α.

Proof. Clearly, {UA∗(A) : A ∈ A} forms a cover of X(A∗) by open sets,
hence, by |A| < cf(α), it suffices to prove that ht(UA∗(A)) < α for all A ∈ A.
This, in turn, is easily proved by well-founded induction on A ∈ A, using
our assumptions and the fact that

ht(UA∗(A)) ≤ sup{ht(U∗(A
′)) : A′ ∈ U(A) \ {A}} + ht(tpA + 1)

by Lemma 3.3. 3.4
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Now we shall prove a result showing that, for certain ordinal families H,
the space X(H) is a very special subspace of X(H∗). This result naturally
corresponds to [2, Lemma 2.14].

If ̺ is an ordinal and L ⊂ On then we write

(L)̺ = {K ⊂ L : tpK = ̺}, (L)<̺ =
⋃

{(L)α : α < ̺}.

Lemma 3.5. Let ̺ be an indecomposable ordinal such that ht(̺) = α
is also indecomposable, cf(α) = cf(̺), and ht(ξ) < α for all ξ < ̺. Let

H ⊂ (̺)̺ be an ordinal family such that
∣∣H↾ξ

∣∣ < cf(α) for all ξ < ̺. Then

X(H) forms a “tail” of X(H∗) in the following sense:

(a) X(H) is a closed subspace of X(H∗),
(b) Iβ(H) = Iα+β(H∗) for all β < ht(X(H)),
(c) I<α(H∗) = H∗ \ H.

Proof. As before, we shall write U(A) for UH(A) and U∗(A) for UH∗(A).
Since H = {A ∈ H∗ : tpA = ̺}, we clearly have

U∗(A) ∩H =

{
U(A) if A ∈ H,

∅ if A ∈ H∗ \ H,

hence (a) holds.
Next we prove “half” of (b) in the case β = 0, namely

(b′) I0(H) ⊂ Iα(H∗).

Indeed, if A ∈ I0(H) then there are B1, . . . , Bn ∈ U(A) \ {A} such that

(†) {A} = W(A; B1, . . . , Bn) = U(A) \
n⋃

i=1

U(Bi).

Since here each Bi ( A and the order-type of A is a limit ordinal, we can
fix η ∈ A such that A ∩ η 6⊂ Bi for every i = 1, . . . , n. Now write

W = W∗(A; A ∩ η, B1, . . . , Bn) = U∗(A) \ U∗(A ∩ η) \
n⋃

i=1

U∗(Bi).

We claim that the clopen subspace W of X(H∗) is homeomorphic to the
ordinal ̺ + 1. Indeed, if A 6⊂ C for C ∈ H then A ∩ C ⊂ Bi for some i ≤ n
by (†), so clearly we have C ∩ ξ 6∈ W for any ξ ≤ ̺. It then clearly follows
that

W = {A ∩ ζ : ζ ∈ A \ η} ∪ {A}.

But then W = X(W ) is homeomorphic to ̺ + 1 because tp(A \ η) = ̺ as
̺ is indecomposable. Consequently, we have

ht(A,H∗) = ht(A, W ) = ht(̺, ̺ + 1) = ht(̺) = α,

proving (b′).
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As the next step in the proof, we shall prove “half” of (c), namely

(c′) I<α(H∗) ⊃ H∗ \ H =
⋃
{H↾ξ : ξ < ̺}.

Indeed, for any ξ < ̺ we have, by assumption, |H↾ξ| < cf(α), and moreover

ht(tp(H ∩ ξ)) ≤ ht(ξ) < α

for any member H ∩ ξ of H↾ξ. Therefore we can apply Lemma 3.4 to H↾ξ
to conclude that

ht[(H↾ξ)∗] = ht(H∗↾ξ) < α.

But H∗↾ξ is clearly an open subset of X(H)∗, hence any K ∈ H∗↾ξ satisfies
ht(K,H∗) = ht(K,H∗↾ξ) < α, which proves (c′).

Now, (b′) and (c′) together clearly imply

I<α(H∗) = H∗ \ H,

and so (c) holds. On the other hand, (b′) and (c) immediately imply the
other “half” of (b) for β = 0, so we have I0(H) = Iα(H∗). From this then,
with a straightforward induction on β = ht(H,H), the full clause (b) is
proved easily. 3.5

Remark. It is obvious that Lemma 3.5 remains valid in the more general
formulation where, instead of H ⊂ (̺)̺, we have H ⊂ (L)̺ for some set of
ordinals L ⊂ On with tpL = ̺. (Of course, in this case we also have to
assume |H↾ξ| < cf(α) for all ξ ∈ L instead of ξ < ̺.) In fact, Lemma 3.5
will be used later in this more general form; we only decided to prove the
restricted version to have a clearer presentation.

Lemma 3.5 yields a method to build LCS spaces of the form X(A) such
that the sets appearing on levels of height less than α are “small” (of order
type less than ̺), while the sets on all higher levels are “large” (of order
type equal to ̺). The key step of our construction will be an amalgama-
tion procedure aimed at “gluing together” an appropriate family of spaces
obtained in this manner. The following concept serves this purpose.

Definition 3.6. Two families of sets A0 and A1 are said to be coherent

if A0∩A1 ∈ (A0∩A1)∪{∅} whenever Ai ∈ Ai for i < 2. A system of families
{Ai : i ∈ I} is coherent iff Ai and Aj are coherent for each pair {i, j} ∈ [I]2.

If {Ai : i ∈ I} is a coherent system of well-founded and ∩-closed families
then we can “amalgamate” the spaces {X(Ai) : i ∈ I} as follows: According
to [2, Lemma 2.7], then A =

⋃
{Ai : i ∈ I} is also well-founded and ∩-closed,

hence X(A) is also an LCS space; moreover {X(Ai) : i ∈ I} forms an open
cover of X(A).

Next we introduce a method that transforms an ordinal family A into
another, isomorphic family Â. We do this because, for certain systems of
ordinal families {Ai : i ∈ I}, the new system {Âi : i ∈ I} turns out to be
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coherent. Since X(Ai) and X(Âi) are clearly homeomorphic, in this way the
spaces {X(Ai) : i ∈ I} may be amalgamated in two steps. The definition of

the operation A 7→ Â given below is a slight generalization of the one given
in Definition 2.8 from [2].

Definition 3.7. Given a set of ordinals L ⊂ On of limit order type and
a family A with {L}∗ ⊂ A ⊂ P(L), we first define the map kA on L by the
formula kA(η) = A↾η + 1 for η ∈ L; then we define the map χA on A by
putting χA(A) = k′′A(A), i.e. χA(A) is the kA-image of A ∈ A. Finally, we

define the family Â by

Â = {χA(A) : A ∈ A}.

Let us remark that L ∩ (η + 1) ∈ {L}∗ ⊂ A for each η ∈ L, hence we
have

kA(η) = A↾η + 1 = UA(L ∩ (η + 1)).

By the same token, for any η ∈ L we also have

max
[⋃

kA(η)
]

= max[L ∩ (η + 1)] = η,

and consequently kA is a bijection between the sets L and χA(L). Therefore,

χA is indeed an isomorphism between the partial orders 〈A,⊂〉 and 〈Â,⊂〉,

and so the spaces X(A) and X(Â) are homeomorphic. Note, however, that

the sets χA(A) from Â are not sets of ordinals any more. This is the price
we have to pay for transforming the ordinal family A into the coherent
family Â.

Next, if A0 6= A1 are two families of sets of ordinals then we let

∆(A0,A1) = min{δ : A0↾δ 6= A1↾δ}.

Since A∗
i ↾ξ =

⋃
{Ai↾η : η ≤ ξ}, we clearly have

∆(A0,A1) = ∆(A∗
0,A

∗
1),

provided that A∗
0 6= A∗

1 as well.
The following lemma is a strengthening of [2, Lemma 2.9]. It gives us

a condition under which the transforms Â and B̂ of two families A and B,
respectively, turn out to be coherent.

Lemma 3.8. Assume that L and M are two sets of ordinals of limit

order type such that L∩M is a proper initial segment of both L and M , and

moreover {L}∗ ⊂ A ⊂ P(L) and {M}∗ ⊂ B ⊂ P(M) are ∩-closed families.

If ∆(A,B) = δ + 1 is a successor ordinal then the families Â and B̂ are

coherent.

Proof. By symmetry, it is enough to show that if A ∈ A and B ∈ B
then χA(A) ∩ χB(B) ∈ Â. Assume that kA(α) = kB(β) for some α ∈ A
and β ∈ B. Since max[

⋃
kA(α)] = α and max[

⋃
kB(β)] = β, we then have
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α = β ∈ L ∩ M and so L ∩ α = M ∩ β because L ∩ M is an initial segment
of both L and M .

We also have B∩δ ∈ B↾δ = A↾δ ⊂ A by the choice of δ, and consequently
A ∩ B ∩ δ ∈ A because A is ∩-closed and ∅ ∈ A. So we have

χA(A) ∩ χB(B) =
{
A↾η + 1 : η ∈ A ∩ B ∧ A↾η + 1 = B↾η + 1

}

=
{
A↾η + 1 : η ∈ A ∩ B ∧ η < δ

}
= χA(A ∩ B ∩ δ) ∈ Â,

proving our claim. 3.8

We can now formulate and prove the result that was promised at the
beginning of this section.

Theorem 3.9. Let λ be a cardinal with µ = cf(λ) > ω and λ = λ<µ.

Then for any cardinal κ with λ < κ ≤ λµ and for every ordinal α < µ+ with

cf(α) = µ we have 〈λ〉α
⌢〈κ〉µ+ ∈ C(µ+).

Proof. First we show that it suffices to prove the theorem in the case
when α is indecomposable. Indeed, let α < µ+ be arbitrary with cf(α) = µ.
We may then write α = α′ + α′′ where α′′ is indecomposable and, of course,
cf(α) = cf(α′′) = µ. We may apply Lemma 2.2 to the sequences 〈λ〉α′ ∈ C(α′)
and 〈λ〉α′′

⌢〈κ〉µ+ ∈ C(µ+) to conclude that

〈λ〉α
⌢〈κ〉µ+ = 〈λ〉α′

⌢〈λ〉α′′
⌢〈κ〉µ+ ∈ C(µ+).

So assume now that α is indecomposable and let ̺ = ωα. Clearly then ̺ is
also indecomposable, cf(̺) = cf(α) = µ, moreover ht(̺) = α and ht(ξ) < α
for all ξ < ̺. Let 〈νζ : ζ < µ〉 be a strictly increasing sequence of limit
ordinals cofinal in ̺. As ̺ is indecomposable and cf(̺) = µ, for every set
a ∈ [µ]µ we have

∑
{νζ : ζ ∈ a} = ̺.

Next we fix a disjoint family {Kt : t ∈ <µλ} of intervals of ordinals such
that for any t, s ∈ <µλ we have

(a) tpKt = νdom t,
(b) if s is a proper initial segment of t then supKs < minKt.

We also choose a family G ⊂ µλ of functions with |G| = κ and for every
g ∈ G put

Lg =
⋃

{Kg↾ξ : ξ ∈ µ}.

Then we have

(I) tpLg = ̺ for each g ∈ G,
(II) Lg ∩ Lh is a proper initial segment of both Lg and Lh whenever

{g, h} ∈ [G]2.

In the proof of the main result of [2], namely Theorem 2.19, we con-
structed, for any fixed cardinal µ and for all ordinals γ < µ+, ordinal families
Fγ such that the following five conditions were satisfied:



46 I. Juhász et al.

(i) µ ∈ Fγ ⊂ [µ]µ,
(ii) Fγ is well-founded and ∩-closed,
(iii) ht(X(Fγ)) = γ + 1,
(iv) ∆(Fγ,Fδ) = ∆(F∗

γ ,F∗
δ ) is a successor ordinal if γ 6= δ,

(v) |Fγ↾ξ| ≤ |ξ| + ω < µ for each ξ < µ.

We shall also make use of these families {Fγ : γ < µ+}, more precisely
some transformed versions of them, in the present proof. To this end, we
first fix a function Γ : G → µ+ such that |Γ−1{γ}| = κ for each γ ∈ µ+.
This is possible because |G| = κ ≥ µ+.

Fix g ∈ G and for all F ⊂ µ put

ϕg(F ) =
⋃

{Kg↾ξ : ξ ∈ F};

then we define
Hg = {ϕg(F ) : F ∈ FΓ (g)}.

Note that, by (i), for each g ∈ G we have Hg ⊂ (Lg)
̺.

It is obvious that the map ϕg induces an inclusion-preserving isomor-
phism between the families FΓ (g) and Hg (i.e. between the partial orders
〈FΓ (g),⊂〉 and 〈Hg,⊂〉); consequently, the spaces X(FΓ (g)) and X(Hg) are
homeomorphic. It is also easy to check that, for each g ∈ G, the ordinal fam-
ily Hg satisfies all the requirements of Lemma 3.5, or actually of its more
general version formulated in the Remark following its proof. In view of
this and property (iii), we may sum up the relevant properties of the spaces
X(H∗

g) as follows.

Fact 3.9.0. X(Hg) is a closed subspace of X(H∗
g) and we have

(a) ht(X(H∗
g)) = α + Γ (g) + 1,

(b) Iα+β(H∗
g) = Iβ(Hg) for all β < ht(X(Hg)) = Γ (g) + 1,

(c) I<α(H∗
g) = H∗

g \ Hg.

Our aim is to amalgamate the spaces {X(H∗
g) : g ∈ G}, but to do that

we shall have to transform the families H∗
g by means of the“hat” operation

described in Lemma 3.8.
Since µ ∈ FΓ (g), we have {Lg}

∗ ⊂ H∗
g ⊂ P(Lg) for each g ∈ G. Also,

if {g, h} ∈ [G]2 then Lg ∩ Lh is a proper initial segment of both Lg and

Lh by (II). Consequently, by Lemma 3.8, the system {Ĥ∗
g : g ∈ G} will be

proven to be coherent once the following claim is established.

Claim 3.9.1. ∆(H∗
g,H

∗
h) is a successor ordinal for each {g, h} ∈ [G]2.

Proof. Let ξ < µ be minimal such that g↾ξ 6= h↾ξ. Then we clearly have

η = min(Lg △ Lh) = min(Kg↾ξ ∪ Kh↾ξ).

(As usual, we are using △ to denote symmetric difference.) Now, if FΓ (g)↾ξ =
FΓ (h)↾ξ (this happens for instance if Γ (g) = Γ (h)) then Hg↾η = Hh↾η, and
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so we also have H∗
g↾η = H∗

h↾η. On the other hand, Kg↾ξ ∩ Kh↾ξ = ∅ implies
that

(Lg ∩ Lh) ∪ {η} ∈ (H∗
g↾η + 1) △ (H∗

h↾η + 1),

hence ∆(H∗
g,H

∗
h) = η + 1, and we are done.

Thus we can assume that FΓ (g)↾ξ 6= FΓ (h)↾ξ. In this case, by prop-
erty (iv), we know that ∆(FΓ (g),FΓ (h)) ≤ ξ is a successor ordinal, say δ +1.
But then there is a set A ∈ FΓ (g)↾δ = FΓ (h)↾δ such that

A ∪ {δ} ∈ (FΓ (g)↾δ + 1) △ (FΓ (h)↾δ + 1).

Write σ = minKg↾δ (= minKh↾δ) and put

D =
⋃

{Kg↾ζ : ζ ∈ A} ∪ {σ};

then clearly
D ∈ (H∗

g↾σ + 1) △ (H∗
h↾σ + 1).

On the other hand, FΓ (g)↾δ = FΓ (h)↾δ and g↾δ = h↾δ together imply Hg↾σ =
Hh↾σ and so H∗

g↾σ = H∗
h↾σ. Thus we have ∆(H∗

g,H
∗
h) = σ + 1, completing

the proof. 3.9.1

Consequently, we may now apply Lemma 3.8 to conclude that the family
{Ĥ∗

g : g ∈ G} is coherent. Therefore, by [2, Lemma 2.7], the family H =
⋃
{Ĥ∗

g : g ∈ G} is well-founded and ∩-closed, and so the amalgamation X(H)

is an LCS space that is covered by its open subspaces {X(Ĥ∗
g) : g ∈ G}. As

a consequence, we have

(‡) Iβ(H) =
⋃

{Iβ(Ĥ∗
g) : g ∈ G}

for any ordinal β. Since X(Ĥ∗
g) is homeomorphic to X(H∗

g) we easily deduce
from Fact 3.9.0 that ht(X(H)) = µ+.

Our aim now is to determine the sizes of the levels Iβ(H) of the LCS
space X(H). To simplify notation, for each g ∈ G we shall denote the maps
kH∗

g
and χH∗

g
, both defined in 3.7, by kg and χg, respectively.

Claim 3.9.2. |Iβ(H)| = κ whenever α ≤ β < µ+.

Proof. Let γ be the ordinal such that α + γ = β. Then for every g ∈ G
with Γ (g) ≥ γ we can apply Lemma 3.5 to the family Hg to conclude that
Iβ(H∗

g) = Iγ(Hg) 6= ∅.
On the other hand, for any G ∈ Hg we have G ∈ (Lg)

̺ and so G is cofinal
in Lg, while Lg∩Lh is bounded in both Lg and in Lh whenever {g, h} ∈ [G]2.
So if G ∈ Hg and H ∈ Hh are arbitrary then

χg(G) ∩ χh(H) ⊂ χg(Lg ∩ Lh) = k′′g(Lg ∩ Lh)

implies χg(G) 6= χh(H). In other words, the families

{χg(G) : G ∈ Hg} = I≥α(Ĥ∗
g)
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are pairwise disjoint as g ranges over G. Since we have Iβ(H) ⊃ Iβ(Ĥ∗
g) for

g ∈ G by (‡), we conclude that

|Iβ(H)| ≥ |{g ∈ G : Γ (g) ≥ γ}| = κ.

But by |H| = κ we must have equality here. 3.9.2

Next we show, in a single step, that |Iβ(H)| ≤ λ for each β < α.

Claim 3.9.3. |I<α(H)| ≤ λ.

Proof. To each S ∈ I<α(H) we may assign a quadruple F (S) as follows.

First pick g ∈ G with S ∈ I<α(Ĥ∗
g). Then we have S = χg(T ) for some

T ∈ I<α(H∗
g). By Lemma 3.5(c) this set T must be bounded in Lg, so we

can fix ξ < µ such that T ⊂
⋃
{Kg↾ζ : ζ < ξ}. Then put

F (S) = 〈ξ, g↾ξ,FΓ (g)↾ξ, T 〉.

We shall now show that F is injective, i.e. S can be recovered from the
quadruple F (S).

Indeed, both the sequence 〈Kg↾ζ : ζ < ξ〉 and the ordinal η = minKg↾ξ

are obviously determined by the map g↾ξ. Next, the family H∗
g↾η is deter-

mined by the sequence 〈Kg↾ζ : ζ < ξ〉 and the family FΓ (g)↾ξ because we
clearly have

H∗
g↾η =

{⋃
{Kg↾ζ : ζ ∈ A} : A ∈ FΓ (g)↾ξ

}∗
.

It is easy to see that the family H∗
g↾η determines the map kg↾η and conse-

quently χg↾(H
∗
g↾η) as well. But S = χg(T ) where T ∈ H∗

g↾η, and so we are
done.

Therefore, to conclude, it suffices to prove that there are at most λ
quadruples of the form F (S). To see this, first note that we have µ choices
for ξ. Next, since λ<µ = λ we have λ choices for g↾ξ. By (v) we have

FΓ (g)↾ξ ∈ [P(ξ)]≤|ξ+ω|,

and consequently there are at most 2|ξ+ω| ≤ λ|ξ+ω| = λ choices for FΓ (g)↾ξ.
Finally, it is easy to see that

|H∗
g↾η| ≤

∣∣∣
⋃

{Kg↾ζ : ζ < ξ}
∣∣∣ · |FΓ (g)↾ξ| ≤ µ,

hence, for fixed ξ, g↾ξ, and FΓ (g)↾ξ, there are at most µ choices for T . All
this together clearly gives us

|{F (S) : S ∈ I<α(H)}| = |I<α(H)}| ≤ λ. 3.9.3

We are now almost finished with the proof of Theorem 3.9: the LCS
space X = X(H) satisfies |Iβ(X)| = κ for all α ≤ β < µ+ and |Iβ(X)| ≤ λ
for all β < α. Thus if Y is the disjoint topological sum of λ copies of X then
Y is an LCS space with

SEQ(Y ) = 〈λ〉α
⌢〈κ〉µ+ . 3.9
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4. The GCH characterization. From now on we assume GCH. Our
aim is to characterize the classes Cλ(α) with α < ω2. It follows immediately
from 1.2 and GCH that

Cλ(α) ⊂ α{λ, λ+}.

(For an ordinal α and a set B, as usual, we let αB denote the set of all
sequences of length α taking values in B.) Now, for any s ∈ α{λ, λ+} we
write

Aλ(s) = {β ∈ α : s(β) = λ} = s−1{λ}.

If α is any ordinal, a subset L ⊂ α is called κ-closed in α, where κ is an
infinite cardinal, if sup〈αi : i < κ〉 ∈ L ∪ {α} for each increasing sequence
〈αi : i < κ〉 ∈ κL. Similarly, L is said to be successor closed in α if β + 1 ∈
L ∪ {α} for all β ∈ L. We are now ready to present the promised GCH
characterization of the classes Cλ(α) and consequently, in view of 2.1, the
characterization of C(α) for all α < ω2.

Theorem 4.1. Assume GCH and fix α < ω2.

(i) Cω(α) = {s ∈ α{ω, ω1} : s(0) = ω}.
(ii) If λ > cf(λ) = ω, then

Cλ(α) = {s ∈ α{λ, λ+} : s(0) = λ and Aλ(s) is ω1-closed in α}.

(iii) If cf(λ) = ω1, then

Cλ(α) = {s ∈ α{λ, λ+} : s(0) = λ and

Aλ(s) is both ω-closed and successor closed in α}.

(iv) If cf(λ) > ω1, then

Cλ(α) = {〈λ〉α}.

Proof. The first case, λ = ω, follows immediately from [4, Theorem 9],
which actually implies

α{ω, ω1} ⊂ C(α)

in ZFC.
Now consider the second case: λ > cf(λ) = ω. Let 〈λn : n < ω〉 be an

increasing sequence of cardinals cofinal in λ.

Necessity. Assume s ∈ Cλ(α) and fix an LCS space X with cardinal
sequence s. Suppose β < α, cf(β) = ω1, and Aλ(s)∩β is cofinal in β. We have
to show that β ∈ Aλ(s). Let {βη : η < ω1} ⊂ Aλ(s) be an increasing sequence
cofinal in β. For each x ∈ Iβ(X) let Ux be a compact open neighbourhood
of x such that

Ux \ {x} ⊂
⋃

{Iξ(X) : ξ < β}.

For each η < ω1 pick a point p(x, η) ∈ Ux ∩ Iβη
(X). Then the sequence

〈p(x, η) : η < ω1〉 converges to x. Now since |Iβη
(X)| = s(βη) = λ for all
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η < ω1, the set

S =
⋃

{Iβη
(X) : η < ω1}

has size λ. Let S =
⋃
{Sn : n < ω} where |Sn| = λn for each n < ω. For

each x ∈ Iβ(X) there must be some n < ω such that

Sn ∩ {p(x, η) : η < ω1}

is uncountable and so x ∈ Sn. However, by GCH, we have |Sn| ≤ λ+
n < λ

for each n < ω, and consequently

s(β) = |Iβ(X)| ≤
∣∣∣
⋃

{Sn : n ∈ ω}
∣∣∣ ≤ sup

n<ω
λ+

n = λ,

i.e. β ∈ Aλ(s). This completes the necessity part of the second case.

Sufficiency. We first handle some specific sequences s ∈ α{λ, λ+}. In
particular, as was noted in the introduction, the constant sequence 〈λ〉α is
a member of Cλ(α).

Claim 4.1.1. If 0 < β, γ < ω2 and cf(β) < ω1 then

〈λ〉β
⌢〈λ+〉γ ∈ Cλ(β + γ).

Proof. First we do the case γ = 1, that is, we construct an LCS space Z
with SEQ(Z) = 〈λ〉β

⌢〈λ+〉1.
If cf(β) = ω let 〈βn : n < ω〉 be an increasing sequence converging to β.

If β = ̺ + 1 let βn = ̺ for each n < ω. For each n < ω and each ordinal µ
with λn ≤ µ < λn+1 let Zµ be a copy of the one-point compactification of
an LCS space of height βn such that SEQ(Zµ) = 〈λ〉βn

and {Zµ : µ < λ}
is disjoint. Let {aη : η < λ+} be a collection of almost disjoint subsets of λ
such that |aη ∩ (λn+1 \ λn)| = 1 for all η < λ+ and n < ω. (The existence of
such an almost disjoint family of size λ+ is well known.) Let {pη : η < λ+}
be a set of new points and set

Z = {pη : η < λ+} ∪
⋃

{Zµ : µ < λ}.

Let τ be the topology on Z generated by all sets which are open in
any Zµ along with all sets of the form

{pη} ∪
⋃

{Zµ : µ ∈ aη and µ > λm}

for η < λ+ and m < ω. It is straightforward to show that 〈Z, τ〉 is an LCS
space of height β + 1 with SEQ(Z, τ) = 〈λ〉β

⌢〈λ+〉1.
Now, if γ > 1, then we extend this space Z using Lemma 1.5 with the

choices S = {pη : η < λ+}, Upη ,n = Zζ where {ζ} = aη ∩ [λn, λn+1), and
each Ypη being an LCS space of height γ satisfying SEQ(Ypη) = 〈ω〉γ , i.e.
|Iξ(Ypη)| = ω for all ξ < γ. Note that for each η < λ+ we have δpη = β
here, and consequently we thus obtain an LCS space with cardinal sequence
〈λ〉β

⌢〈λ+〉γ . 4.1.1
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Now let s ∈ α{λ, λ+} be an arbitrary sequence such that s(0) = λ and
Aλ(s) is ω1-closed in α. Our aim is to construct an LCS space X with s as
its cardinal sequence.

Let C = α \ Aλ(s) = {γ < α : s(γ) = λ+}. For each γ ∈ C let βγ =
min{β ∈ C : [β, γ] ⊂ C}. By the choice of s we have βγ > 0 and cf(βγ) < ω1.

By Claim 4.1.1 above, for each γ ∈ C there is an LCS space Xγ with
SEQ(Xγ) = 〈λ〉βγ

⌢〈λ+〉
(γ+1)

.
−βγ

. The final X that we require is simply the

disjoint topological sum of {Xγ : γ ∈ C} ∪ {Y }, where SEQ(Y ) = 〈λ〉α.
Now consider the third case: cf(λ) = ω1.

Necessity. Let s ∈ Cλ(α). By 1.3 and GCH we see that if β + 1 < α and
s(β) = λ then s(β + 1) ≤ s(β)ℵ0 = λ as well, i.e. Aλ(s) is successor closed
in α. Similarly, 1.4 and GCH together guarantee that if β < α, cf(β) = ω,
and Aλ(s) ∩ β is cofinal in β, then s(β) ≤ λω = λ, that is, Aλ(s) is indeed
ω-closed in α. So we have completed the necessity part of this case.

Sufficiency. We make essential use of the following proposition, which
is an immediate corollary to Theorem 3.9.

Proposition 4.2. Let λ be a cardinal with cf (λ) = ω1 and λω = λ.

Then for every ordinal γ < ω2 with cf(γ) = ω1 we have

〈λ〉γ
⌢〈λ+〉ω2

∈ Cλ(ω2).

Now let s ∈ α{λ, λ+} be such that s(0) = λ and Aλ(s) is both ω-closed
and successor closed in α. Let B = α \ Aλ(s) = {β < α : s(β) = λ+}. For
β ∈ B let γβ = min{γ ∈ B : [γ, β] ⊂ B}. Since s(0) = λ and Aλ(s) is both
ω-closed and successor closed, we have

cf(γβ) = ω1 = cf(λ)

for each β ∈ B.
Thus, using Proposition 4.2, we may fix for each β ∈ B an LCS space

Xβ with SEQ(Xβ) = 〈λ〉γβ

⌢〈λ+〉νβ
, where νβ is chosen so as to satisfy

β + 1 = γβ + νβ. Now, let X be the disjoint topological sum of the family of
spaces

{Y } ∪ {Xβ : β ∈ B},

where Y is an LCS space with SEQ(Y ) = 〈λ〉α. Since |B| ≤ ω1 ≤ λ, it is
clear that SEQ(X) = s.

Finally, consider the case when cf(λ) > ω1. For any s ∈ Cλ(α) we may
then use Facts 1.3 and 1.4 along with GCH to inductively show that s(ξ) = λ
for all ξ < α, hence s = 〈λ〉α. Since 〈λ〉α ∈ Cλ(α) is clear, we are done. 4.1

Having given a full characterization, under GCH, of the classes C(α) for
all α < ω2, it is now natural to raise the following question: Can this GCH
characterization be extended to longer sequences, i.e. to C(ω2) and beyond?
This question, however, remains open. In fact, we do not even know if GCH



52 I. Juhász et al.

implies that the constant sequence 〈ω1〉ω2
belongs to C(ω2), although this is

known to be consistent with GCH.
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