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Stabilizers of closed sets in the Urysohn space

by

Julien Melleray (Paris)

Abstract. Building on earlier work of Katětov, Uspenskij proved in [8] that the
group of isometries of Urysohn’s universal metric space U, endowed with the pointwise
convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of
any Polish group). Answering a question of Gao and Kechris, we prove here the following,
more precise result: for any Polish group G, there exists a closed subset F of U such that
G is topologically isomorphic to the group of isometries of U which map F onto itself.

1. Introduction. In a posthumously published article [7], P. S. Urysohn
constructed a complete separable metric space U that is universal (meaning
that it contains an isometric copy of every complete separable metric space),
and ω-homogeneous (i.e. such that its isometry group acts transitively on
isometric r-tuples contained in it).

In recent years, interest in the properties of U has greatly increased,
especially since V. V. Uspenskij, building on earlier work of Katětov, proved
in [8] that the isometry group of U (endowed with the product topology)
is a universal Polish group, that is, any Polish group is isomorphic to a
(necessarily closed) subgroup of it.

In [2], S. Gao and A. S. Kechris used properties of U to study the com-
plexity of the equivalence relation of isometry between certain classes of
Polish metric spaces; as a side-product of their construction, they proved
the beautiful fact that any Polish group is (topologically) isomorphic to the
isometry group of some Polish space. A consequence of their construction is
that, for any Polish group G, there exists a sequence (Xn) of closed subsets
of U such that G is isomorphic to Iso(U, (Xn)) = {ϕ ∈ Iso(U) : ∀n ϕ(Xn)
= Xn}. This led them to ask the following question (cf. [2]):

Can every Polish group be represented, up to isomorphism, by a group
of the form Iso(U, F ) for a single subset F ⊆ U?

The purpose of this article is to provide a positive answer to this question.
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Theorem 1.1. Let G be a Polish group. There exists a closed set F ⊆ U

such that G is (topologically) isomorphic to Iso(F ), and every isometry of F
is the restriction of a unique isometry of U; in particular , G is isomorphic

to Iso(U, F ).

This gives a somewhat concrete realization of any Polish group as a
subgroup of Iso(U).

The construction, which will be detailed in Section 3, starts with
a bounded Polish metric space X such that G is isomorphic to Iso(X)
(the isometry group of X, endowed with the product topology) (Gao and
Kechris [2] proved that such an X always exists). Identifying G with Iso(X),
we construct an embedding of X in U and a discrete, unbounded sequence
(xn) ⊆ U such that F = X ∪ {xn} has the desired properties (here we
identify X with its image via the embedding provided by our construction).

Acknowledgements. Several conversations with Mathieu Florence
while I was working on this paper have been very helpful; for this I am
extremely grateful, and owe him many thanks.

2. Notations and definitions. If (X, d) is a complete separable metric
space, we say that it is a Polish metric space, and often write it simply X.

To avoid confusion, if (X, d) and (X ′, d′) are two metric spaces, we say
that f is an isometric map if d(x, y) = d′(f(x), f(y)) for all x, y ∈ X; if f is
moreover onto, then we say that f is an isometry.

A Polish group is a topological group whose topology is Polish. If X is
a separable metric space, then we denote its isometry group by Iso(X), and
endow it with the product topology, which turns it into a second countable
topological group, and into a Polish group if X is Polish (see [1] or [5] for a
thorough introduction to the theory of Polish groups).

We say that a metric space X is finitely injective if for any finite subsets
K ⊆ L and any isometric map ϕ : K → X there exists an isometric map
ϕ̃ : L → X such that ϕ̃|K = ϕ. Up to isometry, U is the only finitely injective
Polish metric space (see [7]).

Let (X, d) be a metric space; we say that f : X →R is a Katětov map if

∀x, y ∈ X |f(x) − f(y)| ≤ d(x, y) ≤ f(x) + f(y).

These maps correspond to one-point metric extensions of X. We denote by
E(X) the set of all Katětov maps on X and endow it with the sup-metric,
which turns it into a complete metric space.

That definition was introduced by Katětov in [4], and it turns out to be
pertinent to the study of finitely injective spaces, since one can easily see by
induction that a nonempty metric space X is finitely injective if, and only if,

∀A ⊂ X finite ∀f ∈ E(A) ∃z ∈ X ∀a ∈ A d(z, a) = f(a).
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If Y ⊆ X and f ∈ E(Y ), define f̂ : X → R (the Katětov extension of f) by

f̂(x) = inf{f(y) + d(x, y) : y ∈ Y }.

Then f̂ is the greatest 1-Lipschitz map on X which is equal to f on Y ; one
checks easily (see for instance [4]) that f̂ ∈ E(X) and f 7→ f̂ is an isometric
embedding of E(Y ) into E(X).

To simplify future definitions, if f and S ⊆ X are such that

∀x ∈ X f(x) = inf{f(s) + d(x, s) : s ∈ S},

then we say that S is a support of f , or that S controls f . Notice that if S
controls f ∈ E(X) and S ⊆ T , then T controls f .

Also, X isometrically embeds in E(X) via the Kuratowski map x 7→ fx,
where fx(y) = d(x, y).

A crucial fact for our purposes is that

∀f ∈ E(X) ∀x ∈ X d(f, fx) = f(x).

Thus, if one identifies X with its image in E(X) via the Kuratowski map,
then E(X) is a metric space containing X and such that all one-point metric
extensions of X embed isometrically in E(X).

We now go on to sketching Katětov’s construction of U; we refer the
reader to [2], [3], [7] and [8] for a more detailed presentation and proofs of
the results we will use below.

Most important for the construction is the following result:

Theorem 2.1 (Urysohn). If X is a finitely injective metric space, then

the completion of X is also finitely injective.

Since U is, up to isometry, the unique finitely injective Polish metric
space, this proves that the completion of any separable finitely injective
metric space is isometric to U.

The basic idea of Katětov’s construction is this: if one lets X0 = X
and Xi+1 = E(Xi) then, identifying each Xi to a subset of Xi+1 via the
Kuratowski map, we let Y be the inductive limit of the sequence Xi.

The definition of Y makes it clear that Y is finitely injective, since any
{x1, . . . , xn} ⊆ Y must be contained in some Xm, so that for any f ∈
E({x1, . . . , xn}) there exists z ∈ Xm+1 such that d(z, xi) = f(xi) for all i.

Thus, if Y were separable, its completion would be isometric to U, and
one would have obtained an isometric embedding of X into U. The problem
is that E(X) is in general not separable: at each step, we have added too
many functions.

Define then E(X, ω) = {f ∈E(X) : f is controlled by some finite S⊆X}.
Then E(X, ω) is easily seen to be separable if X is, and the Kuratowski map
actually maps X into E(X, ω), since each fx is controlled by {x}. Notice
also that, if {x1, . . . , xn} ⊆ X and f ∈ E({x1, . . . , xn}), then its Katětov
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extension f̂ is in E(X, ω), and d(f̂ , fxi
) = f(xi) for all i. Thus, if one defines

this time X0 = X, Xi+1 = E(Xi, ω), then Y =
⋃

Xi is separable and finitely
injective, hence its completion Z is isometric to U, and X ⊆ Z.

The most interesting property of this construction is that it enables one
to keep track of the isometries of X: indeed, any ϕ ∈ Iso(X) is the restriction
of a unique isometry ϕ̃ of E(X, ω), and the mapping ϕ 7→ ϕ̃ from Iso(X)
into Iso(E(X, ω)) is an isomorphic embedding (of topological groups).

That way, we obtain for all i isomorphic embeddings Ψ i : Iso(X) →
Iso(Xi) such that Ψ i+1(ϕ)|Xi

= Ψ i(ϕ) for all i and all ϕ ∈ Iso(X). This in

turns defines an isomorphic embedding from Iso(X) into Iso(Y ), and since
extension of isometries defines an isomorphic embedding from the isometry
group of any metric space into that of its completion (see [9]), we actually
have an isomorphic embedding of Iso(X) into the isometry group of Z, that
is, Iso(U) (and the image of any ϕ ∈ Iso(X) is actually an extension of ϕ
to Z).

3. Proof of the main theorem. To prove Theorem 1.1, we will use
ideas very similar to those used in [2]; all the notations are the same as in
Section 2.

We will need an additional definition, which was introduced in [2]. If X
is a metric space and i ≥ 1, let

E(X, i) = {f ∈ E(X) : f has a support of cardinality ≤ i}.

We endow E(X, i) with the sup-metric.

Gao and Kechris proved the following result, of which we will give a new,
slightly simpler proof:

Theorem 3.1 (Gao–Kechris). If X is a Polish metric space and i ≥ 1
then E(X, i) is a Polish metric space.

Proof. Notice first that the separability of E(X, i) is easy to prove; we
will prove its completeness by induction on i.

The proof for i = 1 is the same as in [2]; we include it for completeness.

First, let (fn) be a Cauchy sequence in E(X, 1). It has to converge uni-
formly to some Katětov map f , and it is enough to prove that f ∈ E(X, 1).
By definition of E(X, 1), there exists a sequence (yn) such that

(∗) ∀x ∈ X fn(x) = fn(yn) + d(yn, x).

Let then ε > 0, and let M be large enough that m, n ≥ M ⇒ d(fn, fm) ≤ ε.
Then, for m, n ≥ M , one has

2d(yn, ym) = (fn(ym) − fm(ym)) + (fm(yn) − fn(yn)) ≤ 2ε.

This proves that (yn) is Cauchy, hence has a limit y. One easily checks that
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f(y) = lim fn(yn), so that letting n → ∞ in (∗) gives

∀x ∈ X f(x) = f(y) + d(y, x).

That does the trick for i = 1.

Suppose now we have proved the result for 1, . . . , i − 1, and let (fn) be
a Cauchy sequence in E(X, i). By definition, there are yn

1 , . . . , yn
i such that

(∗∗) ∀x ∈ X fn(x) = min
1≤j≤i

{fn(yn
j ) + d(yn

j , x)}.

Once again, (fn) converges uniformly to some Katětov map f , and we want
to prove that f ∈ E(X, i).

By the induction hypothesis, we can assume that there is δ > 0 such
that for all n and all k 6= j ≤ i one has d(yn

j , yn
k ) ≥ 2δ (if not, a subsequence

of (fn) can be approximated by a Cauchy sequence in E(X, i − 1), and the
induction hypothesis applies).

Let dn = min{fn(x) : x ∈ X}. Then (dn) is Cauchy, so it has a limit
d ≥ 0; up to extracting a subspace, and some rearrangement of the sequence,
we can assume that there are p ≥ 1 and δ′ > 0 such that:

• ∀j ≤ p fn(yn
j ) → d,

• ∀j > p ∀n fn(yn
j ) > d + δ′.

Let ε > 0, α = min(δ, δ′, ε) and choose M large enough that n, m ≥ M ⇒
d(fn, fm) < α/4 and |fn(yn

j ) − d| < α/4 for all j ≤ p. Then, for n, m ≥ M
and j ≤ p one has fn(ym

j ) < d + α/2, so there exists k ≤ p such that

fn(ym
j ) = fn(yn

k ) + d(ym
j , yn

k ).

Such a yn
k has to be at a distance strictly smaller than δ from ym

j : there is
at most one yn

k that can work, and there is necessarily one. Thus, one sees,
as in the case i = 1, that d(yn

k , ym
j ) ≤ ε. This means that one can assume,

choosing an appropriate rearrargement, that for k ≤ p each sequence (yn
i )n

is Cauchy, hence has a limit yk.

Define

f̃n(x) = min
1≤k≤p

{fn(yn
i ) + d(x, yn

k )}.

Then f̃n ∈ E(X, p), and one checks easily, since yn
k → yk for all k ≤ p, that

(f̃n) converges uniformly to f̃ , where

f̃(x) = min
1≤k≤p

{f(yk) + d(x, yk)}.

If p = i then we are finished; otherwise, notice that, using again the
induction hypothesis, we may assume that there is η > 0 such that

(∗∗∗) ∀n ∀j > p fn(yn
j ) < f̃n(yn

j ) − η.
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Now define

g̃n(x) = min
j>p

{fn(yn
j ) + d(x, yn

j )}.

Choose M such that n, m≥M ⇒ d(fn, fm) < η/4 and d(f̃n, f̃m) < η/4. Then
(∗∗∗) shows that for, all n, m ≥ M and all j > p,

fm(yn
j ) ≤ fn(yn

j ) + η/4 ≤ f̃n(yn
j ) − 3η/4 ≤ f̃m(yn

j ) − η/2,

so that fm(yn
j ) = fm(ym

k ) + d(yn
j , ym

k ) for some k > p. Consequently, for
m, n ≥ M and j > p, fm(yn

j ) = g̃m(yn
j ); by definition, fm(ym

j ) = g̃m(ym
j ).

This proves that for all n, m ≥ M one has d(g̃n, g̃m) ≤ d(fn, fm), so that
(g̃n) is Cauchy in E(X, i − p), hence has a limit g̃ ∈ E(X, i − p) by the

induction hypothesis. But then (∗∗) shows that f(x) = min(f̃(x), g̃(x)) for
all x ∈ X, and this concludes the proof.

If Y is a nonempty, closed and bounded subset of a metric space X,
define

E(X, Y ) = {f ∈ E(X) : ∃d ∈ R
+ ∀x ∈ X f(x) = d + d(x, Y )}.

Then E(X, Y ) is closed in E(X), and is isometric to R
+.

Proof of Theorem 1.1. Essential to our proof is the fact that for every
Polish group G there exists a Polish space (X, d) such that G is isomorphic
to the group of isometries of X (this result was proved by Gao and Kechris,
see [2]).

So, let G be a Polish group, and X be a metric space such that G
is isomorphic to Iso(X). One can assume that X contains more than two
points, and (X, d) is bounded, of diameter d0 ≤ 1. (If not, define d′(x, y) =
d(x, y)/(1 + d(x, y)). Then (X, d′) is a bounded Polish metric space with the
same topology as X, and the isometries of (X, d′) are exactly those of (X, d).)

Let X0 = X, and define inductively bounded Polish metric spaces Xi, of
diameter di, by

Xi+1 =
{

f ∈ E(Xi, i) ∪
⋃

j<i

E(Xi, Xj) : ∀x ∈ Xi f(x) ≤ 2di

}

(we endow Xi+1 with the sup-metric; since Xi canonically embeds isomet-
rically in Xi+1 via the Kuratowski map, we assume that Xi ⊆ Xi+1).

Note that di → ∞ as i → ∞, and that each Xi is a Polish metric space.
Let Y be the completion of

⋃
i≥0

Xi. The definition of
⋃

Xi makes it easy
to see that it is finitely injective, so that Y is isometric to U.

Also, any isometry g ∈ G extends to an isometry of Xi, and for any i
and g ∈ G there is a unique isometry gi of Xi such that gi(Xj) = Xj for all
j ≤ i and gi|X0

= g (same proof as in [4]).
Observe also that the mappings g 7→ gi, from G to Iso(Xi), are continu-

ous (see [9]).
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All this enables us to assign to each g an isometry g∗ of Y , given by
g∗|Xi

= gi, and this defines a continuous embedding of G into Iso(Y ) (see
again [9] for details).

It is important to remark here that, if f ∈ Xi+1 is defined by f(x) =
d + d(x, Xj) for some d ≥ 0 and some j < i, then g∗(f) = f for all g ∈ G
(this was the aim of the definition of Xi: adding “many” points that are
fixed by the action of G).

Notice that an isometry ϕ of Y is equal to g∗ for some g ∈ G if, and
only if, ϕ(Xn) = Xn for all n. The idea of the construction is then simply to
construct a closed set F such that ϕ(F ) = F if, and only if, ϕ(Xn) = Xn for
all n. To achieve this, we will build F as a set of carefully chosen “witnesses”.

The construction proceeds as follows. First, let (ki)i≥1 be an enumer-
ation of the nonnegative integers where every number appears infinitely
many times. Using the definition of the sets Xi, we choose recursively for
all i ≥ 1 points ai ∈

⋃
n≥1

Xn (the witnesses), nonnegative reals ei, and a

nondecreasing sequence (ji) of integers such that:

• e1 ≥ 4 and ∀i ≥ 1 ei+1 > 4ei.
• ∀i ≥ 1 ji ≥ ki, ai ∈ Xji+1 and ∀x ∈ Xji

d(ai, x) = ei + d(x, Xki−1).
• ∀i ≥ 1 ∀g ∈ G g∗(ai) = ai.

(This is possible, since at step i it is enough to fix ei >max(4ei−1, diam(Xki
)),

then find ji ≥ max(1 + ji−1, ki) such that diam(Xji
) ≥ ei, and define ai ∈

Xji+1 by the equation above; then, by definition of g∗ and of ai, one has
g∗(ai) = ai for all g ∈ G.)

Let now F = X0 ∪ {ai}i≥1; since X0 is complete, and d(ai, X0) = ei

→ ∞, F is closed. We claim that for all ϕ ∈ Iso(Y ), one has

(ϕ(F ) = F ) ⇔ (ϕ ∈ G∗).

The definition of F makes one implication obvious.
To prove the converse, we need a lemma:

Lemma 3.2. If ϕ ∈ Iso(F ), then ϕ(X0) = X0, so that ϕ(ai) = ai for

all i. Moreover , there exists g ∈ G such that ϕ = g∗|F .

Admitting this lemma for a moment, it is now easy to conclude the
proof. Notice that Lemma 3.2 implies that G is isomorphic to the isometry
group of F , and that any isometry of F extends to Y . Thus, to finish the
proof of Theorem 1.1, we only need to show that the extension of a given
isometry of F to Y is unique. As explained before, it is enough to show that,
if ϕ ∈ Iso(Y ) is such that ϕ(F ) = F , then ϕ(Xn) = Xn for all n ≥ 0.

So, let ϕ ∈ Iso(Y ) be such that ϕ(F ) = F . It is enough to prove that
ϕ(Xn) ⊇ Xn for all n ∈ N (since this will also be true for ϕ−1), so assume
that this is not true, i.e. there is some n ∈ N and x 6∈ Xn such that ϕ(x)
∈ Xn. Let δ = d(x, Xn) > 0 (since Xn is complete), and pick y ∈

⋃
Xm such
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that d(x, y) ≤ δ/4. Then y ∈ Xm \ Xn for some m > n; now choose i such
that ki = n + 1 and ji ≥ m. Then we know that

d(ϕ(y), ϕ(ai)) = d(y, ai) = ei + d(y, Xn) ≥ ei + 3δ/4,

d(ai, ϕ(y)) ≤ d(ai, ϕ(x)) + d(x, y) ≤ ei + δ/4,

so that d(ϕ(ai), ai) ≥ δ/2, and this contradicts Lemma 3.2.

It only remains to give

Proof of Lemma 3.2. Since we assumed that X0 has more than two
points and diam(X0) ≤ 1, the definition of F makes it clear that

∀x ∈ F (x ∈ X0) ⇔ (∃y ∈ F : 0 < d(x, y) ≤ 1).

The right part of the equivalence is invariant under isometries of F , so this
proves that ϕ(X0) = X0 for any ϕ ∈ Iso(F ). In turn, this easily implies that
ϕ(ai) = ai for all i ≥ 1.

Thus, if one lets g ∈ G be such that g|X0
= ϕ|X0

, we have shown that
ϕ = g∗|F .
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