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Abstract. We continue the study of topological properties of the group Homeo(X) of
all homeomorphisms of a Cantor set X with respect to the uniform topology τ , which was
started by Bezuglyi, Dooley, Kwiatkowski and Medynets. We prove that the set of periodic
homeomorphisms is τ -dense in Homeo(X) and deduce from this result that the topological
group (Homeo(X), τ) has the Rokhlin property, i.e., there exists a homeomorphism whose
conjugacy class is τ -dense in Homeo(X). We also show that for any homeomorphism T

the topological full group [[T ]] is τ -dense in the full group [T ].

1. Introduction. Many famous problems in ergodic theory involve the
use of topologies on the group Aut(X,B, µ) of all measure-preserving trans-
formations of a standard measure space. The first results on group topolo-
gies of Aut(X,B, µ) appeared in [Hal 1]. Halmos introduced two topologies
du and dw, which were called later the uniform and weak topologies, re-
spectively. He defined the uniform topology du by saying that two auto-
morphisms T and S are “close” to each other if the quantity µ({x ∈ X :
Tx 6= Sx}) is small enough. The weak topology is generated by the sets
of the form N(T ;E; ε) = {S ∈ Aut(X,B, µ) : µ(SE △ TE) < ε}, where
T ∈ Aut(X,B, µ) and E ∈ B. The use of these topologies turned out to
be very fruitful and led to many outstanding results in ergodic theory (for
references, see, for example, [B-K-M] and [C-F-S]). One of the most rele-
vant results in the theory is the Rokhlin lemma [Ro] stating that the set of
periodic automorphisms is du-dense in Aut(X,B, µ).

The idea of investigation of transformation groups by means of intro-
ducing various topologies into these groups was used in [B-D-K 1] and
[B-D-K 2], where the authors considered the groups Aut(X,B) of all au-
tomorphisms of a standard Borel space and the group Homeo(X) of all
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homeomorphisms of a Cantor set X with several topologies analogous to
those in ergodic theory.

Following [B-D-K 2], we continue studying the group Homeo(X) of all
homeomorphisms of a Cantor set X with the topology τ (cf. Definition 1.1),
which is obviously a direct analog of the topology du. We show that the set
of all periodic homeomorphisms is τ -dense in Homeo(X) (Corollary 2.2).
This result can be treated as a topological version of the Rokhlin lemma.
As a corollary, we prove that the set of topologically free homeomorphisms
is τ -dense in Homeo(X) (Theorem 2.8). Recall that a homeomorphism is
called topologically free if the set of aperiodic points is dense.

In [G-K], an interesting class of topological groups was defined: by defini-
tion, a topological group has the Rokhlin property if it has an element whose
conjugacy class is dense. The authors raised the question which groups pos-
sess this property. At the moment, there is an extensive list of such groups,
including the group Homeo(X) with the topology generated by the metric
D(T, S) = supx∈X d(Tx, Sx), where d is a metric on X compatible with
the topology [Gl-W], and the group Aut(X,B, µ) with the weak topology
[Hal 2]. See also the paper [Ke-Ros] for a general approach to the study of
groups with dense conjugacy classes.

Motivated by this, we present a uniform approach allowing us to show
that the topological groups (Aut(X,B), τ) and (Homeo(X), τ) have the
Rokhlin property (Theorem 2.5).

Furthermore, inspired by the remarkable work [G-P-S], where full groups
were indispensable in the study of orbit equivalence of Cantor minimal sys-
tems, we study the full groups [T ] with their dense subsets for arbitrary
homeomorphisms T ∈ Homeo(X).

In this context, we show that for any T ∈ Homeo(X), the topological
full group [[T ]] is τ -dense in the full group [T ] (Theorem 2.1).

In the last section, we give a description of homeomorphisms from the
topological full group [[T ]] for T aperiodic (Theorem 3.3). We consider a
subgroup ΓY of [[T ]], which is an increasing union of permutation groups,
and find a criterion for ΓY to be τ -dense in [[T ]] (Theorem 3.4).

Background. Throughout the paper, X denotes a Cantor set and B
stands for the σ-algebra of Borel subsets of X. A one-to-one Borel map T
of X onto itself is called an automorphism of (X,B). Denote by Aut(X,B)
the group of all automorphisms of (X,B) and by Homeo(X) the group of
all homeomorphisms of X.

Following [B-K], recall the definition of the uniform topology on Aut(X,B).
Let M1(X) denote the set of all Borel probability measures on X. For
T, S ∈ Aut(X,B), define E(T, S) = {x ∈ X : Tx 6= Sx}.
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Definition 1.1. The uniform topology τ on Aut(X,B) is defined by the
base of neighborhoods U = {U(T ;µ1, . . . , µn; ε)}, where

U(T ;µ1, . . . , µn; ε) = {S ∈ Aut(X,B) : µi(E(S, T )) < ε, i = 1, . . . , n}.

Here T ∈ Aut(X,B), µ1, . . . , µn ∈ M1(X), and ε > 0.

As Homeo(X) is a subgroup of Aut(X,B), we also denote by τ the topol-
ogy on Homeo(X) induced from (Aut(X,B), τ).

Observe that Aut(X,B) and Homeo(X) are Hausdorff topological groups
with respect to the uniform topology τ . More results on topological proper-
ties of Aut(X,B) and Homeo(X) with respect to τ can be found in [B-D-K 1,
B-D-K 2, B-D-M, B-K-M, B-M].

Let T ∈ Aut(X,B). A point x ∈ X is called periodic of period n > 0
if Tnx = x and T ix 6= x for i = 1, . . . , n − 1. If Tnx 6= x for n 6= 0, the
point x is called aperiodic. We say that T is aperiodic if it has no periodic
points. Note that for any T ∈ Aut(X,B) the set X can be decomposed into
a disjoint union of Borel sets X = X∞ ∪

⋃

n≥1Xn, where Xn consists of all
points of period n and X∞ is formed by all aperiodic points. Notice that
some Xn’s may be empty. Moreover, for every Xn with n < ∞ there exists
a Borel set X0

n ⊂ Xn such that Xn =
⋃n−1

i=0 T
iX0

n is a disjoint union. We call
{X∞, X1, X2, . . .} the canonical partition of X associated to T .

Recall that a finite family of disjoint Borel sets ξ = {A, TA, . . . , Tn−1A}
is called a T -tower with base B(ξ) = A and height h(ξ) = n. A partition
Ξ = {ξ1, ξ2, . . .} ofX is called a Kakutani–Rokhlin (K-R) partition if every ξi
is a T -tower. For a K-R partition Ξ, we denote

⋃

n≥1B(ξi) by B(Ξ) and call

it the base of the K-R partition. Notice that T−1B(Ξ) =
⋃

ξ∈Ξ T
h(ξ)−1B(ξ).

For T ∈ Aut(X,B), let OrbT (x) = {Tnx : n ∈ Z} denote the T -orbit
of x. To any T ∈ Homeo(X), we can assign two full groups [T ]C and [T ]B,
where

[T ]C = {S ∈ Homeo(X) : OrbS(x) ⊆ OrbT (x), x ∈ X}

[T ]B = {S ∈ Aut(X,B) : OrbS(x) ⊆ OrbT (x), x ∈ X}.

Here the subscripts C and B indicate the Cantor and Borel dynamics, re-
spectively. Clearly, [T ]C is a subgroup of [T ]B. Observe that if S ∈ [T ]B,
then there is a Borel function nS : X → Z such that Sx = TnS(x)x for all
x ∈ X. The subgroup [[T ]] = {S ∈ [T ]C : nS is continuous} is called the
topological full group of T .

One of the main results in the approximation theory of Borel automor-
phisms is a Borel version of the Rokhlin lemma. The following τ -version of
the Rokhlin lemma was proved in [B-D-K 1, Proposition 3.6]. We also refer
the reader to [N, Section 7] and [W, Section 4] for measure-free versions of
the result.
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Theorem 1.2. Let T be an aperiodic automorphism of X. Then there

exists a sequence of periodic automorphisms Pn ∈ Aut(X,B) such that

Pn
τ
→ T as n→ ∞. Moreover , the Pn can be taken from [T ]B.

Denote by Per0 the set of all homeomorphisms P such that Pn = I for
some n ∈ N; and for T ∈ Homeo(X), set Per0(T ) = Per0 ∩ [[T ]].

2. Rokhlin lemma. In this section, we prove a topological version of
the Rokhlin lemma, namely, we show that the set of periodic homeomor-
phisms is τ -dense in Homeo(X). Then we deduce several corollaries of this
result. In particular, we prove that the topological group (Homeo(X), τ) has
the Rokhlin property and the topological full group [[T ]] is τ -dense in [T ]B
for any T ∈ Homeo(X).

Theorem 2.1.

(1) The set Per0 is τ -dense in Homeo(X).
(2) Let T ∈ Homeo(X). Then for any automorphism S ∈ [T ]B and any

τ -neighborhood U = U(S;µ1, . . . , µp; ε) of S there exists a periodic

homeomorphism P ∈ [[T ]] such that P ∈ U .

Proof. Notice that statement (1) is an immediate corollary of (2). By
Theorem 1.2, it is enough to prove (2) for S periodic.

Let us sketch the main stages of the proof:

(i) We find a finite number of disjoint S-towers consisting of closed sets
and “almost” covering the entire space X with respect to the mea-
sures µi such that on each level of these S-towers the automorphism
S coincides with a power of T .

(ii) We extend the S-towers found in (i) to clopen ones constructed by
means of powers of T .

(iii) Using the clopen towers, we define a periodic homeomorphism P
which belongs to U(S;µ1, . . . , µp; ε).

(i) Let Ξ = {X1, X2, . . .} be the canonical Borel partition ofX associated
to S. Without loss of generality, we will assume that the sets Xi are non-
empty for all i ∈ N.

We first find N ∈ N such that

µj(X1 ∪ · · · ∪XN ) > 1 − ε/3 for all j = 1, . . . , p.(2.1)

For n ≥ 1, set Zn = {x ∈ X : Sx = T ix for some −n ≤ i ≤ n}. For i ≥ 1
define

X0
i (n) =

i−1
⋂

j=0

S−j(SjX0
i ∩ Zn),
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where Xi = X0
i ∪ SX0

i ∪ · · · ∪ Si−1X0
i is a disjoint union. Since S ∈ [T ]B,

we have Xi =
⋃

n≥1Xi(n), where Xi(n) =
⋃i−1

j=0 S
jX0

i (n). Then find K ∈ N

such that

µj

(

N
⋃

i=1

(Xi \Xi(K))
)

< ε/3 for all j = 1, . . . , p.(2.2)

Denote by Si the set of all maps from {0, . . . , i−1} to {−K, . . . ,K}. For
σ ∈ Si, set

X0
i (K,σ) =

i−1
⋂

j=0

S−j({x ∈ SjX0
i (K) : Sx = T σ(j)x}).

Thus, we get a finite coverX0
i (K) =

⋃

σ∈Si
X0

i (K,σ). Applying the standard

argument, make the X0
i (K,σ)’s disjoint and denote the resulting sets by

X0
i (K,σ) again. Some of the X0

i (K,σ)’s may be empty, but, without loss
of generality, we will assume they are not. Observe that S restricted to
SjX0

i (K,σ) is equal to T σ(j) for i ≥ 1, j = 0, . . . , i − 1, and σ ∈ Si. This
means that S is a homeomorphism on SjX0

i (K,σ).

For everyXi(K,σ) =
⋃i−1

j=0 S
jX0

i (K,σ), find a closed set A0
i (σ)⊂X

0
i (K,σ)

such that

µj

(

N
⋃

i=1

⋃

σ∈Si

(Xi(K,σ) \Ai(σ))
)

< ε/3 for j = 1, . . . , p,(2.3)

where Ai(σ) =
⋃i−1

j=0 S
jA0

i (σ).

(ii) Summing up the above, we see that {Ai(σ) : 1 ≤ i ≤ N , σ ∈ Si} is a
family of disjoint closed S-towers such that S restricted to SjA0

i (σ) is equal
to T σ(j). Furthermore, it follows from (2.1)–(2.3) that

µj

(

N
⋃

i=1

⋃

σ∈Si

Ai(σ)
)

> 1 − ε.(2.4)

As the closed S-towers Ai(σ) are disjoint, we can find clopen setsA0
i (σ) ⊃

A0
i (σ) so that all the sets A0

i (σ) and T σ(0)+···+σ(j)A0
i (σ) are mutually disjoint

for i = 1, . . . , N , j = 0, . . . , i− 2, and σ ∈ Si.

(iii) Define the periodic homeomorphism P as follows:

Px =



















T σ(0)x if x ∈ A0
i ,

T σ(j+1)x if x ∈ T σ(0)+···+σ(j)A0
i (σ),

T−σ(0)−···−σ(i−2)x if x ∈ T σ(0)+···+σ(i−2)A0
i (σ),

x otherwise.

σ ∈ Si,

0 ≤ j ≤ i− 3,
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Clearly, P is well-defined and belongs to [[T ]]. By the definition of P ,

{x ∈ X : Px = Sx} ⊃
N
⋃

i=1

⋃

σ∈Si

Ai(σ).

Hence, (2.4) shows that P ∈ U(S;µ1, . . . , µp; ε), completing the proof.

Remark. After this work was submitted, B. Miller showed how using
ideas of the proof above one can generalize Theorem 2.1(2) to any countable
group acting by homeomorphisms on a zero-dimensional Polish space [Mil].

Rokhlin property. We give several immediate corollaries of Theorem 2.1,
which have the well-known analogs in ergodic theory.

Corollary 2.2. Let T ∈ Homeo(X). Then, for every τ -neighborhood

U of T , there exists a homeomorphism P ∈ Per0(T ) ∩ U whose associated

canonical partition is clopen.

The next statement generalizes Theorem 4.5 of [B-K] proved originally
for minimal homeomorphisms.

Corollary 2.3. Let T ∈ Homeo(X). The topological full group [[T ]] of

T is τ -dense in [T ]C.

As Homeo(X) is not τ -closed in Aut(X,B), in [B-D-K 2] the authors
brought up the question of describing the closure of [[T ]] in (Aut(X,B), τ).
They answered it for minimal homeomorphisms (see Theorem 2.8 of
[B-D-K 2]) and we generalize it to an arbitrary homeomorphism.

Corollary 2.4. Let T ∈ Homeo(X). Then [[T ]]
τ

= [T ]
τ

C = [T ]B.

Definition. A topological group G has the Rokhlin property if the ac-
tion of G on itself by conjugation is topologically transitive, i.e. there is an
element of G whose conjugacy class is dense.

The following proposition extends the list of topological groups that have
the Rokhlin property. See also [Gl-W] and [Ke-Ros] for other examples.

Theorem 2.5. The topological groups (Aut(X,B), τ) and (Homeo(X), τ)
have the Rokhlin property.

Proof. We prove the theorem for (Homeo(X), τ) only, the other case
being similar.

Take a decomposition X = {x0} ∪
⋃

i≥1Xi such that the Xi’s are non-

empty clopen sets with diam(Xi ∪ {x0}) → 0 as i → ∞. Let S be a
homeomorphism such that Sx0 = x0 and Six = x, Sjx 6= x for any
x ∈ Xi, j = 1, . . . , i− 1. Our goal is to show that we can approximate any
T ∈ Homeo(X)by elements from the conjugacy class of S. By Corollary 2.2,
it suffices to approximate periodic homeomorphisms whose canonical parti-
tions are clopen. So, suppose T has a clopen partition X =

⋃k
i=1 Yi, where
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Yi is the set of all points having T -period ni for some ni ≥ 0. Observe that
there exists a clopen set Y 0

i such that Yi =
⋃ni−1

j=0 T jY 0
i is a disjoint union

(see Lemma 3.2 of [B-D-K 2]). Analogously, there exists a clopen set X0
ni

with Xni
=

⋃ni−1
j=0 SjX0

ni
being a disjoint union.

Let U = U(T ;µ1, . . . , µp; ε) be a τ -neighborhood of T . Take a non-empty
clopen T -invariant set Z with µi(Z) < ε for i = 1, . . . , p. Without loss of
generality, we may assume that Y 0

i \ Z is not empty for i = 1, . . . , k. Let
Ri be any homeomorphism from X0

ni
onto Y 0

i \Z. Define a homeomorphism
R as follows: let R(x) be equal to T jRiS

−j(x) whenever x ∈ SjX0
ni

for
i = 1, . . . , k, j = 0, . . . , ni − 1 and let R map the rest of X onto Z. It is not
hard to check that RSR−1 ∈ U .

In the setting of Borel dynamics, we need to produce a periodic trans-
formation that has uncountably many orbits of any finite length. Then, the
application of the Rokhlin lemma shows that its conjugacy class is dense.

Remark. Let p be the topology on Homeo(X) generated by the metric
D(T, S) = supx∈X d(Tx, Sx), where d is a metric on X compatible with
the topology. In [Gl-W], it is shown that (Homeo(X), p) has the Rokhlin
property. Moreover, the elements whose conjugacy classes are dense form a
residual set with respect to p.

Topologically free homeomorphisms. It is interesting to compare the
topological properties of the set Ap of all aperiodic homeomorphisms with
respect to both topologies τ and p. The following statement is proved in
[B-D-K 2, Theorem 2.1].

Theorem 2.6. The set Ap is dense in (Homeo(X), p).

However, the situation in (Homeo(X), τ) is completely different. The set
Ap is nowhere dense with respect to τ . To see this, one can check that Ap
is τ -closed in Homeo(X). Then an application of Theorem 2.1 implies the
result.

The question we investigate in this section is: “How can we extend the
class of aperiodic homeomorphisms to produce a τ -dense class?”. Appar-
ently, the most natural extension of aperiodic homeomorphisms is the class
of topologically free homeomorphisms.

Definition. A homeomorphism is topologically free if the set of all ape-
riodic points is dense.

In Theorem 2.8, we prove that the set of topologically free homeomor-
phisms is τ -dense. To begin with, we need the following lemma on homeo-
morphism extensions proved in [Kn-R]. We will need the arguments used in
its proof. Thus, we give a sketch of the proof, but without going into the
details.
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Lemma 2.7. Let A and B be closed nowhere dense subsets of Cantor sets

X and Y , respectively. Suppose there is a homeomorphism h : A→ B. Then

h can be extended to a homeomorphism h∗ : X → Y such that h∗|A = h.

Sketch of proof. Find clopen sets Ui and Vj such that X \ A =
⊔

i≥1 Ui,
Y \B =

⊔

j≥1 Vj , and their diameters tend to zero. Find points ai ∈ A such
that dist(Ui, A) = dist(Ui, ai) and bj ∈ B with dist(Vj , B) = dist(Vj , bj).

Set I = J = N. There exist injective functions f : I → J and g : J → I
such that

dist(Ui, ai) > dist(Vf(i), h(ai)) for i ∈ I,

dist(Vj , bj) > dist(Ug(j), h
−1(bj)) for j ∈ J.

Applying the usual Schröder–Bernstein argument to f and g, find disjoint
partitions I = I ′ ⊔ I ′′ and J = J ′ ⊔ J ′′ such that f(I ′) = J ′ and g(J ′′) = I ′′.

Let φ be an arbitrary homeomorphism of U ′ =
⋃

i∈I′ Ui onto V ′ =
⋃

j∈J ′ Vi such that φ(Ui) = Vf(i). Analogously, let ψ be a homeomorphism

of V ′′ =
⋃

j∈J ′′ Vj onto U ′′ =
⋃

i∈I′′ Ui such that ψ(Vj) = Ug(j).

Define

h∗(x) =







φ(x), x ∈ U ′,

ψ−1(x), x ∈ U ′′,

h(x), x ∈ A.

For the verification of continuity of h∗, we refer the reader to [Kn-R].

Theorem 2.8. The set of topologically free homeomorphisms is τ -dense

in Homeo(X).

Proof. By Corollary 2.2, it suffices to approximate the homeomorphisms
from Per0 that have clopen canonical partitions. Assume that R belongs
to Per0 and its canonical partition X = Xn1

∪ · · · ∪ Xnm is clopen. Recall
that Xni

consists of all points with period ni. Consider a τ -neighborhood
U = U(R;µ1, . . . , µk; ε). Since the Xni

’s are R-invariant and clopen, we will
prove the theorem under the assumption that X = Xni

for some i and leave
the generalization to the reader.

Suppose X =
⋃p−1

i=0 R
iF is a clopen partition and Rpx = x for all

x ∈ X. Using the standard Cantor argument, find a closed nowhere dense
set P ⊂ Rp−1F such that µi(P ) > 1−ε for i = 1, . . . , k. Repeating the proof
of Lemma 2.7, we extend the homeomorphism R : P → RP to a homeo-
morphism T : Rp−1F → F so that the homeomorphism T ∗ ∈ Homeo(X)
defined as T ∗|Rp−1F = T |Rp−1F and T ∗ = P elsewhere is topologically free.
To do this, it suffices to choose the functions ψ and φ so that φ(x) 6= Rx and
ψ−1(x) 6= Rx for x ∈ Rp−1F \P . Since E(T ∗, R) = Rp−1F \P , we conclude
that T ∗ ∈ U .
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3. Structure of homeomorphisms from a topological full group.

In this section, we discuss the structure of homeomorphisms from the topo-
logical full group [[T ]] for any aperiodic T ∈ Homeo(X).

Consider a Cantor aperiodic system (X,T ). A Borel set Y ⊂ X is called
wandering if TnY ∩ Y = ∅ for all n ≥ 1.

Definition. We say that a closed wandering set Y is basic if every
clopen neighborhood of Y meets every T -orbit.

Theorem 3.1. Every Cantor aperiodic system has a basic set.

Sketch of proof. Applying the argument developed in [B-D-M, Theo-
rem 2], we can find a decreasing sequence {Un} of clopen sets such that:
Un+1 ⊂ Un; T iUn ∩Un = ∅ for i = 1, . . . , n− 1; and Un meets every T -orbit.
Then Y =

⋂

n Un is a basic set.

Remark. For more results on basic sets and their interaction with Brat-
teli diagrams, see [M].

Fix a triple (X,T, Y ), where (X,T ) is a Cantor aperiodic system and Y
is a basic set. Consider a clopen neighborhood U of Y . It is not hard to
check that for every x ∈ U , there is n = n(x) > 0 such that Tnx ∈ U .
Therefore, it follows from the definition of a basic set that, by applying the
first return function, we can construct a clopen K-R partition Ξ of X with
base B(Ξ) = U .

Take a decreasing sequence {Un} of clopen sets such that Y =
⋂

n Un.
Constructing clopen K-R partitions for the Un’s and refining them, we prove
the following:

Theorem 3.2. Let (X,T, Y ) be a Cantor aperiodic system with a basic

set Y . There exists a sequence {Pn} of clopen K-R partitions of X such

that for all n ≥ 1:

(i) Pn+1 refines Pn;
(ii) hn+1 > hn, where hn is the height of the lowest T -tower in Pn;
(iii) B(Pn) ⊃ B(Pn+1);
(iv) the sequence {Pn} generates the clopen topology of X;
(v)

⋂

nB(Pn) = Y .

We will follow here the method developed in [B-K] for minimal homeo-
morphisms (see also [K-W]). Let P be a clopen K-R partition with towers
P(i), i = 1, . . . , k. We will define two partitions α = α(P) and α′ = α′(P)
of {1, . . . , k}. We say that J is an atom of α if there exists a subset J ′ (then
said to belong to α′) such that

T
(

⋃

i∈J

T h(i)−1Di

)

=
⋃

i′∈J ′

Di′(3.1)
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and for every proper subset J0 of J , the T -image of
⋃

i∈J0
T h(i)−1Di is not

a union of atoms from P. It follows from (3.1) that J ′ is uniquely defined
by J and T .

Let S ∈ [[T ]]. Then there are a finite set K ⊂ Z and a clopen partition
E = {Ek : k ∈ K} of X such that Sx = T kx for x ∈ Ek and k ∈ K. Denote
by E(K) the clopen partition {SkEk : k ∈ K}. By Theorem 3.2, find a K-R
partition P = {P(i) : i = 1, . . . , k} with P(i) = {D0,i, . . . , Dh(i)−1,i} and
Dj+1,i = TDj,i that refines E and E(K) and so that K ⊂ (−h, h), where h
is the height of the lowest T -tower in P.

Let F = {(j, i) : i = 1, . . . , k, j = 0, . . . , h(i)−1}. Observe that for every
pair (j, i) ∈ F there is a unique l = l(j, i) ∈ K such that

S(Dj,i) = T lDj,i.(3.2)

Divide F = F(P) into three disjoint sets Fin,Ftop and Fbot as follows:

(a) (j, i) ∈ Fin if S(Dj,i) ⊂ P(i), i.e. 0 ≤ l + j ≤ h(i) − 1;
(b) (j, i) ∈ Ftop if S(Dj,i) goes through the top of P(i), i.e. l+ j ≥ h(i);
(c) (j, i) ∈ Fbot if S(Dj,i) goes through the bottom of P(i), i.e. l+j < 0;

here l is taken from (3.2).
Let α and α′ be the partitions of {1, . . . , k} defined by T and P. For

J ⊂ {1, . . . , k}, set hJ = min{h(i) : i ∈ J}. For J ∈ α and J ′ ∈ α′, let

F1(r, J) =
⋃

i∈J

Dh(i)−hJ+r,i, F2(r
′, J ′) =

⋃

i′∈J ′

Dr,i′ ,

where r = 0, . . . , hJ − 1 and r′ = 0, . . . , hJ ′ − 1.

Definition. We say that S ∈ [[T ]] belongs to Γ (P) if for each pair
(j, i) ∈ F the following conditions hold:

(a) if (j, i) ∈ Ftop and Dj,i ⊂ El, then F1(hJ − h(i) + j, J) ⊂ El, where
J is the atom of α containing i;

(b) if (j, i) ∈ Fbot and Dj,i ⊂ El, then F2(j, J
′) ⊂ El, where J ′ is the

atom of α′ containing i.

Condition (a) means that whenever the set Dj,i goes through the top
of P(i) under the action of S, then the entire level F1(r, J) containing Dj,i

also goes through the top of P. Similarly, one can explain condition (b) by
taking the Dj,i’s and levels F2(j, J

′) containing them that go through the
bottom of P. Observe that if (j, i) ∈ Fin, then the entire levels F1(r, J) and
F2(j, J

′) containing Dj,i remain “within” P.
Clearly, Γ (P) is a finite set. The following theorem reveals the structure

of homeomorphisms from [[T ]] for an arbitrary aperiodic homeomorphism T .
Notice that this structure was found earlier for minimal homeomorphisms
(see Theorem 2.2 in [B-K]). Since our proof is similar to that in [B-K, The-
orem 2.2], we omit it.
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Theorem 3.3. Let (X,T, Y ) be a Cantor aperiodic system with a basic

set Y and a sequence {Pn} of K-R partitions satisfying the conditions of

Theorem 3.2. Then [[T ]] =
⋃

n Γ (Pn) with Γ (Pn) ⊂ Γ (Pn+1).

The subgroup ΓY . Let (X,T ) be a Cantor aperiodic system with a basic
set Y . Define the subgroup ΓY of [[T ]] as follows: S ∈ ΓY if S ∈ Γ (Pn) (and
hence S ∈ Γ (Pm) for m > n) implies that F(Pn) = Fin. In other words,
S ∈ ΓY if no level from Pn goes over the top or through the bottom under
the action of S. This means that S acts as a permutation on each T -tower
from Pn. Therefore, the group ΓY is an increasing union of permutation
groups.

Our objective is to find a criterion for ΓY to be dense in [T ].

Remark. (1) Denote by [[T ]]Y the subgroup of [[T ]] consisting of the
homeomorphisms that preserve the forward T -orbit of every y ∈ Y , i.e.,
S ∈ [[T ]]Y if S({Tny : n ≥ 0}) = {Tny : n ≥ 0}. Observe that ΓY ⊂ [[T ]]Y .

(2) The subgroup [[T ]]Y is not τ -dense in [T ]. Therefore, so is ΓY . In-
deed, take any z ∈ T−1Y and the Dirac measure δz. Consider S ∈ U :=
U(T ; δz; 1/2). As z /∈ Y and Sz = Tz ∈ Y , S does not preserve the forward
T -orbit of Tz. Therefore, U contains no elements from [[T ]]Y .

The fact that ΓY is not τ -dense in [[T ]] is mainly caused by the presence
of discrete measures. We can partly overcome this obstacle by considering
only continuous measures in the definition of the topology τ . Denote by
τ0 the topology defined by continuous measures as in Definition 1.1. One
can check that τ0 is a Hausdorff group topology on Homeo(X). The next
theorem answers the question when ΓY is τ0-dense in [T ].

Theorem 3.4. Suppose we have a Cantor aperiodic system (X,T ) with

a basic set Y . Then the subgroup ΓY is τ0-dense in [T ] if and only if the

basic set Y is at most countable.

Proof. (1) Assume that Y is uncountable. Take any continuous mea-
sure µ supported by T−1Y . Then for every S ∈ U := U(T ;µ; 1/2) there
is at least one z ∈ T−1Y such that Sz = Tz. This implies that {Tn(Tz) :
n ≥ 0} is not S-invariant. Therefore, by (1) of the remark above we conclude
that ΓY ∩ U = ∅.

(2) Now, assume that Y is countable. Observe that by Corollary 2.3, it
is enough to approximate homeomorphisms from [[T ]] with elements of ΓY .
Consider R ∈ [[T ]] and a τ0-neighborhood U = U(R;µ1, . . . , µp; ε) of R. By
definition of R, the sets Ek = {x ∈ X : Rx = T kx}, k ∈ K, |K| < ∞,
form a clopen partition of X. Let k0 = sup{|k| : k ∈ K}. As Y is countable,
µ(TnY ) = 0 for any continuous measure µ and integer n. Therefore, by
Theorem 3.2 we can find a K-R partition Pn refining {Ek}k∈K such that
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2k0 < hn, where hn is the height of the lowest T -tower in Pn, and

µj

(

k0
⋃

i=−k0

T iB(Pn)
)

< ε for j = 1, . . . , p.(3.3)

Define a homeomorphism S ∈ ΓY ∩ U as follows. Take a T -tower (say λ =
{D, . . . , T h(λ)−1D}) from Pn. Consider an atom T lD of λ. We have two
possibilities:

(i) The R-orbit of the set T lD does not leave the T -tower λ. In this
case, we define S to be equal to R on the R-orbit of T lD.

(ii) The set T lD leaves λ under the action of R. Then there exist integers
q < 0 < d such that Rd+1T lD and Rq−1T lD do not lie in λ entirely,
whereas the sets RjT lD, j = q, . . . , d, are contained in λ. In this case,
we set S = R on RiT lD, i = q, . . . , d−1, and S = R−d+q on RdT lD.

Observe that the choice of Pn guarantees that

RdT lD ⊂
k0
⋃

i=0

T iD ∪

h(λ)−1
⋃

i=h(λ)−1−k0

T iD.

Clearly, the homeomorphism S constructed in (i) and (ii) is periodic, but
it is not yet defined on the entire space. To extend its domain, we consider
an atom TwD of λ on which S is not defined yet, and repeat (i) and (ii)
with TwD.

Repeating this procedure with every atom of λ, we define S on λ. More-
over, λ is S-invariant. By construction, S coincides with P everywhere,

except maybe on the set
⋃k0

i=0 T
iD ∪

⋃h(λ)−1
i=h(λ)−1−k0

T iD.

To finish constructing S, we need to repeat the argument for every T -
tower of Pn.

The definition of S implies that S ∈ ΓY and

{x ∈ X : Sx 6= Rx} ⊂
k0
⋃

i=−k0

T iB(Pn).

Therefore, by (3.3) we conclude that S ∈ U .
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