Finite-to-one continuous s-covering mappings

by

Alexey Ostrovsky (München)

Abstract. The following theorem is proved. Let $f : X \to Y$ be a finite-to-one map such that the restriction $f|f^{-1}(S)$ is an inductively perfect map for every countable compact set $S \subset Y$. Then Y is a countable union of closed subsets Y_i such that every restriction $f|f^{-1}(Y_i)$ is an inductively perfect map.

All spaces in this paper are supposed to be separable and metrizable and all the mappings $f : X \to Y$ to be continuous and “onto”.

We recall the following definitions:

f is inductively perfect if there exists a closed subset $X' \subset X$ such that $f(X') = Y$ and the restriction $f|X'$ is perfect, i.e. $f|X'$ is a closed map with compact fibers $f^{-1}(y)$.

f is s-covering if $f|f^{-1}(S)$ is inductively perfect for every countable and compact set $S \subset Y$ \(^{(1)}\).

The following main theorem is an obvious corollary of Theorem 6 below:

Theorem 1. If $f : X \to Y$ is a finite-to-one s-covering mapping, then Y is a countable union of closed subsets Z_i such that every restriction $f|f^{-1}(Z_i)$ is an inductively perfect mapping. If $Y \subset 2^\omega$, then the Z_i are pairwise disjoint.

Under the assumption that for some integer n all the fibers have at most n points G. Debs and J. Saint Raymond proved that f is inductively perfect, but the finiteness of the fibers does not suffice to ensure the same conclusion [1].

\(^{(1)}\) Since the inverse image of a compact set under a perfect mapping is always compact, a mapping $f : X \to Y$ is s-covering if and only if every countable compact subset $S \subset Y$ is the image of some compact $B \subset X$.

\[2000 \text{ Mathematics Subject Classification: Primary 54C10, 54H05, 54E40.} \]

\[\text{Key words and phrases: inductively perfect, s-covering, finite-to-one.} \]

\[\text{(1)} \] Since the inverse image of a compact set under a perfect mapping is always compact, a mapping $f : X \to Y$ is s-covering if and only if every countable compact subset $S \subset Y$ is the image of some compact $B \subset X$.

[89]
1. Some properties of s-covering mappings. In this section, we use
the following property of s-covering mappings, which was proved by W. Just
and H. Wicke [2], as well as independently by the author [3].

Proposition 2. A mapping f is s-covering if and only if in every fiber
$f^{-1}(y)$ there exists a nonempty family ε_y of nonempty compact subsets such
that every open set containing $K \in \varepsilon_y$ also contains a set $K' \in \varepsilon_{y'}$ for any
point y' from a neighborhood of y.

Throughout the paper, we keep the notation ε_y, $y \in Y$, for the above
families of compact subsets of the fibers $f^{-1}(y)$ of an s-covering map $f : X \to Y$.

Lemma 3. Let $f : X \to Y$ be an s-covering mapping. Set

$$M_y = \bigcap \{ K : K \in \varepsilon_y \}, \quad X_0 = \bigcup_{y \in Y} M_y, \quad Y_0 = f(X_0).$$

Then the restriction $f|X_0$ is a perfect mapping.

Proof. Let $y \in f(X_0)$ and $V \supseteq M_y$ be an open set. We will prove that
$f_0 = f|X_0$ is a closed mapping by applying the following characterization:
$f_0 : X_0 \to Y_0$ is closed if and only if for every $y \in Y_0$ and every open
$V \supseteq f_0^{-1}(y)$ there is an open $O \ni y$ such that $f_0^{-1}(y') \subset V$ for every $y' \in O$.

Since M_y is compact, there are finitely many $K_i \in \varepsilon_y$ such that $\bigcap_i K_i \subset V$.
It follows from the normality of X that there are open sets $V_i \supseteq K_i \setminus V$ such that
$\bigcap_i V_i = \emptyset$.

Since $V_i \cup V \supseteq K_i$ are open sets, for every i there exists an open set
$O_i(y)$ such that for every $y' \in O_i(y)$ there is $B'_i \in \varepsilon_{y'}$ with $B'_i \subset V_i \cup V$.

Let $O(y) = \bigcap_i O_i(y)$. If $y' \in O(y) \cap f(X_0)$, then

$$M_{y'} = \bigcap \{ K : K \in \varepsilon_{y'} \} \subset \bigcap_i B'_i \subset \bigcap_i (V_i \cup V) = \left(\bigcap_i V_i \right) \cup V = V,$$

and hence $f|X_0$ is a closed mapping with compact fibers M_y.

Lemma 4. Let $f : X \to Y$ be an s-covering mapping, let X_0, Y_0 be as in
Lemma 3, and define inductively

$$Y_i = \left\{ y \in Y \setminus \bigcup_{k=0}^{i-1} Y_k : \exists K^1_y, \ldots, K^{i+1}_y \in \varepsilon_y \right.$$

such that $K^1_y \cap \ldots \cap K^{i+1}_y = \emptyset \} \text{ for } i \geq 1.$

Then $Y = \bigcup_{i=0}^{\infty} Y_i$ and Y_i are pairwise disjoint F_σ-sets.

(2) It is easy to see that $|\varepsilon_y| = 1$ for all $y \in Y$ if and only if f is inductively perfect.
Proof. Note that if \(y \in \bigcap_{i=1}^n Y_i \), then there exist \(i \in \{1, \ldots, n\} \) and \(K_y^1, \ldots, K_y^{i+1} \in \mathcal{E}_y \) such that \(K_y^1 \cap \cdots \cap K_y^{i+1} = \emptyset \). By the normality of \(X \), there are open sets \(O_j \supset K_y^j \) (\(j = 1, \ldots, i + 1 \)) such that \(\bigcap_j O_j = \emptyset \), and by the definition of \(\mathcal{E}_y \) (Proposition 2) there is an open set \(O \ni y \) such that for every \(y' \in O \) one has \(K_{y'}^j \subset O_j \) for some \(K_{y'}^j \in \mathcal{E}_{y'} \). Since \(\bigcap_j O_j = \emptyset \), we obtain \(\bigcap_j K_{y'}^j = \emptyset \) and hence \(y' \in \bigcup_{i=1}^n Y_i \) for \(y' \in O \). This implies that \(\bigcup_{i=1}^n Y_i \) is open in \(Y \) and \(Y_n = \bigcup_{i=0}^n Y_i \setminus \bigcup_{i=0}^{n-1} Y_i \) is of type \(F_\sigma \), for each \(n > 0 \).

Suppose \(y \in Y \setminus Y_0 \). Then \(\bigcap \{ K : K \in \mathcal{E}_y \} = \emptyset \). Since the sets \(K \) are compact, there are finitely many \(K^j \in \mathcal{E}_y \) such that \(\bigcap_j K^j = \emptyset \). Hence, \(y \) belongs to some \(Y_i \) and \(Y = \bigcup_{i=0}^\infty Y_i \).

2. \(s \)-covering mappings with finite families \(\mathcal{E}_y \)

Lemma 5. Let \(f : X \to Y \) be an \(s \)-covering mapping with finite families \(\mathcal{E}_y \), and let \(Y_i \) be as in Lemma 4. Then for every \(y \in Y_i \) (\(i = 1, 2, \ldots \)) there is an open subset \(O(y) \) of \(Y \) such that the restriction of \(f \) to \(f^{-1}(O(y) \cap Y_i) \) is an \(s \)-covering map onto \(O(y) \cap Y_i \) with a family \(\mathcal{E}^1_y \subset \mathcal{E}_y \), hence, \(\text{card}(\mathcal{E}^1_y) \leq \text{card}(\mathcal{E}_y) - 1 \).

Proof. As in the proof of Lemma 4 there are open sets \(O_j \supset K_{y}^j \in \mathcal{E}_y \) such that \(\bigcap_{j=1}^{i+1} O_j = \emptyset \) and, hence,

\[
(1) \quad O_1 \cap \bigcap_{j=2}^{i+1} O_j = \emptyset.
\]

Let \(O(y) \) be an open set such that for every \(y' \in O(y) \cap Y_i \) and every \(O_j \) there is \(K_{y'}^j \subset O_j \) for which \(K_{y'}^j \in \mathcal{E}_{y'} \) (\(j = 1, \ldots, i + 1 \)). Since \(y' \in Y_i \), and hence \(y' \not\in Y_{i-1} \), we have

\[
(2) \quad \bigcap_{j=2}^{i+1} K_{y'}^j \neq \emptyset.
\]

Claim. There is \(j > 1 \) such that \(K_{y'}^j \not\subset O_1 \).

Suppose not; then \(K_{y'}^j \subset O_1 \) for all \(j = 2, \ldots, i + 1 \), and hence

\[
(3) \quad \bigcap_{j=2}^{i+1} K_{y'}^j \subset O_1.
\]

Since \(K_{y'}^j \subset O_j \), it follows that

\[
(4) \quad \bigcap_{j=2}^{i+1} K_{y'}^j \subset \bigcap_{j=2}^{i+1} O_j.
\]

The conditions (2), (3), (4) contradict (1).
For every \(y' \in O(y) \cap Y_i \), there is \(j \) such that \(K^j_{y'} \not\subset O_1 \). It follows that the restriction of \(f \) to \(O_1 \cap f^{-1}(O(y) \cap Y_i) \) is an \(s \)-covering map onto \(O(y) \cap Y_i \) with a family \(\varepsilon^1_y \) such that \(\text{card}(\varepsilon^1_y) \leq \text{card}(\varepsilon_y) - 1 \).

Theorem 6. Let \(f : X \to Y \) be an \(s \)-covering mapping with finite families \(\varepsilon_y \). Then \(Y \) is a countable union of closed subsets \(Z_i \) such that every restriction \(f|f^{-1}(Z_i) \) is an inductively perfect mapping.

Indeed, it follows from Lemma 4 that every set \(O(y) \cap Y_i \) is \(F_\sigma \) in \(Y_i \). If \(Y \subset 2^\omega \), it is well known that the open cover \(\{O(y)\}_{y \in Y_i} \) of the zero-dimensional space \(Y_i \) has a refinement consisting of clopen (in \(Y_i \)) pairwise disjoint sets \(F_{i_r} \). Hence, \(Y_i = \bigcup_{i_r} F_{i_r} \) is a countable union of pairwise disjoint subsets closed in \(Y_i \). In the general case (\(Y \not\subset 2^\omega \)), the open cover \(\{O(y)\}_{y \in Y_i} \) of \(Y_i \) has a locally finite open refinement and the sets \(F_{i_r} \) are only closed in \(Y \) and not pairwise disjoint.

Now Theorem 6 results from step-by-step application of Lemma 5 to the sets \(F_{i_r} \), etc.

3. Application to Borel sets

Theorem 7. If \(f : X \to Y \) is an \(s \)-covering finite-to-one mapping of a Borel set \(X \subset 2^\omega \) of additive or multiplicative class \(\alpha \geq 1 \) onto \(Y \subset 2^\omega \), then \(Y \) is a Borel set of the same class.

Proof. If \(X \) is of additive class \(\alpha \), then, by Theorem 1 and by the theorem on preservation of the Borel class under perfect mappings \((3)\), every \(Z_i \) is of additive class \(\alpha \). It is obvious that \(Y \) is of additive class \(\alpha \) because it is the countable union of the \(Z_i \).

Let \(X \) be of multiplicative class \(\alpha \). If \(\alpha = 1 \), then by \([4, \text{Main result}]\), \(Y \) is of multiplicative class 1.

For \(\alpha > 1 \) we consider in \(C = 2^\omega \) according to Theorem 1 the sets \(L_i = [Z_i]_C \setminus Z_i \) of additive class \(\alpha \). Obviously,

\[
Y = \bigcup_i Z_i = \bigcup_i ([Z_i]_C \setminus L_i) = \bigcup_i [Z_i]_C \setminus \bigcup_i L_i,
\]

where \(\bigcup_i [Z_i]_C \) is of multiplicative class 2 and \(\bigcup_i L_i \) is of additive class \(\alpha \). This implies that \(Y \) is of multiplicative class \(\alpha \).

Question. I do not know whether the conclusion of Theorem 6 is still true if the condition that \(f \) is an \(s \)-covering mapping with finite families \(\varepsilon_y \) is replaced by the condition that \(f \) is an \(s \)-covering mapping with compact fibers and each set in any family \(\varepsilon_y \) is finite.

\[(3)\] A. D. Taimanov proved \([6, \text{Theorem 6}]\) that the image of a Borel set of class \(\xi \) under a perfect mappings is of the same class if \(\xi \geq \omega_0 \), and of class \(\xi + 1 \) if \(1 < \xi < \omega_0 \). J. Saint Raymond proved the preservation in the case \(1 < \xi < \omega_0 \) \([5]\).
References

Bundeswehr University Munich
D-85577 Neubiberg, Germany
E-mail: Alexey.Ostrovskiy@UniBw.de

Received 25 April 2006;
in revised form 23 November 2006