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Failure of the Factor Theorem for Borel pre-Hilbert spaces

by

Tadeusz Dobrowolski (Pittsburg, KS) and
Witold Marciszewski (Warszawa)

Abstract. In every infinite-dimensional Fréchet space X, we construct a linear sub-
space E such that E is an Fσδσ-subset of X and contains a retract R so that R × Eω is
not homeomorphic to Eω. This shows that Toruńczyk’s Factor Theorem fails in the Borel
case.

1. Introduction. In [Tor1] and [Tor2] Toruńczyk has proved that for
retracts R of certain metric linear spaces E the product R × E is homeo-
morphic to E, the fact referred to as the Factor Theorem. In particular, he
showed that the Factor Theorem holds for all infinite-dimensional spaces E
that are locally convex and completely metrizable, and for the class of in-
complete spaces E that admit a certain weak product structure. The Factor
Theorem for more general classes of incomplete metric linear spaces E can
be deduced from the results on absorbing sets (e.g., [BM] and [BRZ]; see
also Section 6). The Factor Theorem led to the following natural question
of Toruńczyk (see [Tor1, p. 60], [Ge] and [DM1]).

1.1. Problem. For a retract R of an infinite-dimensional locally convex
metric linear space E, is R× Eω homeomorphic to Eω?

It was shown in [Tor2] that the answer is affirmative if R is completely
metrizable. On the other hand, there are separable Baire pre-Hilbert spaces
E with first category closed linear subspaces R. Then R is a retract of E
but R × Eω is of the first category, while Eω is of the second category,
so Problem 1.1 has a negative solution. Consequently, the assertion of the
Factor Theorem is violated because if R×E were homeomorphic to E then
R×Eω would be homeomorphic to Eω. We learned about that phenomenon
from R. Pol several years ago, and we recall his reasoning in Section 6.
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Another implicit example of that sort can also be found in [MvM]. However,
in that approach E had to be non-Borel, for otherwise it would be complete
by the classical theorem of Banach. This left unanswered the question of
whether the Factor Theorem holds true, or whether Problem 1.1 has an
affirmative solution, for Borel metric linear spaces. These questions were
repeated on several occasions [DM1, Problems: 603, 605, and 606], and in
[We, LS14].

The aim of this paper is to show that Problem 1.1 has a negative answer
for a certain linear subspace E ⊂ `2 that is an Fσδσ-set. This solves the
above-mentioned problems of [DM1, We] and demonstrates that the Factor
Theorem fails for Borel spaces. Our space E has the property that Eω is
not a Zσ-space while E contains a closed topological copy R of an absolute
retract σ, the subspace of [0, 1]ω consisting of all eventually zero sequences.
The set R is a retract of E. Since R is a Zσ-space, so is R × Eω, hence
it cannot be homeomorphic to Eω. Actually, it suffices to take for E the
space L = span(E), where E = {(xn) ∈ `2 : (∀n) [xn ∈ Q]} is the well
known Erdős space. This space L was the first example of a Borel infinite-
dimensional linear space which is not a Zσ-space, given by T. Banakh (see
[BRZ] and [Ba]). Let us mention that spaces of the form span(E), for some
Erdős-like subsets E, were used in the theory of locally convex Baire-like
spaces to construct barrelled normed spaces of the first category (see [Ku,
§5.3], [PCB] or [Va]).

For some technical reasons, we have chosen to work with a slightly dif-
ferent construction, which involves a certain Borel linear subspace EΦ of a
Fréchet space X that is associated with an arbitrary biorthogonal sequence
in X; see Section 2. The Borel complexity of the spaces EΦ is discussed in
Section 3. Here we also give an exact evaluation of the Borel class of the
Banakh example L. In Section 4, we investigate the factorization properties
of our spaces EΦ. Section 5 contains some related comments on Zσ-property
in products. In Section 6, we provide other results and examples related to
the Factor Theorem; among other things, we give an affirmative answer to
Problem 1.1 for σ-compact spaces E.

Acknowledgments. The authors would like to thank the referee for
his insightful report and valuable suggestions. In particular, his suggestions
were incorporated in 4.3, 6.2, 6.3, and 6.6.

2. Linear spaces EΦ associated with biorthogonal systems Φ. Re-
call that by a Fréchet space we mean a completely metrizable locally convex
topological linear space. For the notions from infinite-dimensional topology
that we are using, we refer the reader to [vM]. By N and Q we denote the
set of positive integers and the set of rationals, respectively.
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Quite often we will treat the real line R as a linear space over the field Q.
Having this in mind, for a set A ⊂ R, by dimQ(A) we denote the linear
dimension of the subspace span(A) of the linear space R.

Let X be a Fréchet space, (xn)n∈N a sequence of vectors in X, and
(ϕn)n∈N a sequence of continuous linear functionals on X. Let us recall that
the system Φ = ((ϕn), (xn)) is biorthogonal if ϕn(xk) = 0 for all n 6= k, and
ϕn(xn) = 1 for every n. A slight modification of the standard proof of the
existence of biorthogonal systems in infinite-dimensional Banach spaces (see
[LT, p. 43]) shows the following:

2.1. Proposition. In every infinite-dimensional Fréchet space there ex-
ists a biorthogonal system.

Given a biorthogonal system Φ in a Fréchet space X, we will consider
the following subsets of X:

QΦ = {x ∈ X : ϕn(x) ∈ Q for all n ∈ N},
EΦ = {x ∈ X : dimQ({ϕn(x) : n ∈ N}) <∞}.

Obviously EΦ is a linear subspace of X containing QΦ.
If X is a sequence Fréchet space (e.g., X = `2 or Rω) then the standard

example of a biorthogonal system in X is the system Φ = ((pn), (en)), where
pn is the projection onto the nth axis and en is the nth unit vector in X.

Let E be the Erdős space defined in the Introduction and let L = span(E).
We have E = QΦ and L ⊂ EΦ, where Φ is the standard biorthogonal system
in `2 described above. Below we show that the Banakh example L is different
from our space EΦ. Observe that, for the standard biorthogonal system Φ
in the countable product Rω of real lines, we have EΦ = span(QΦ).

2.2. Proposition. The Banakh example L is a proper subspace of EΦ.

Proof. We use the standard fact that there exist sequences (kn) and (ln)
of natural numbers such that an = kn

√
2 − ln ∈ (0, 1/n). Obviously the

sequence (an) belongs to the space EΦ. We will show that (an) 6∈ L.
Suppose on the contrary that there exist real numbers t1, . . . , tm and

sequences (q1
n), . . . , (qmn ) ∈ `2 of rational numbers such that, for all n ∈ N,

an = t1q
1
n + . . .+ tmq

m
n .

We may assume that the number m above is minimal. Then the sequence
t1, . . . , tm is linearly independent over Q. Indeed, if ti =

∑
j 6=i pjtj for some

pj ∈ Q, then we would have, for every n ∈ N, an =
∑
j 6=i tj(q

j
n + pjq

i
n), a

contradiction with our assumption on m.
Take n1 and n2 such that an1 > an2 and kn1 < kn2 . Let us check that

an1 and an2 are linearly independent over Q. If an1 = qan2 for some q ∈ Q,
then we would have kn1

√
2 − ln1 = qkn2

√
2 − qln2 . Since q > 1 we have
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kn1 < qkn2 . Therefore, the above equation contradicts the fact that
√

2 and
1 are linearly independent over Q.

It follows that
√

2 and 1 are linear combinations with rational coeffi-
cients of an1 and an2 . Consequently, we can find rational numbers p1, . . . , pm,
r1, . . . , rm such that

√
2 = p1t1 + . . .+ pmtm and 1 = r1t1 + . . .+ rmtm. Let

M be a common denominator of all numbers p1, . . . , pm, r1, . . . , rm. Since
an = kn

√
2− ln we obtain

an =
i1n
M

t1 + . . .+
imn
M

tm

for some integers ijn. From the fact that t1, . . . , tm are linearly independent
over Q we infer that qjn = ijn/M for every n ∈ N and j ≤ m. For every n,
there is a jn = j ≤ m such that qjn 6= 0 because an 6= 0. It follows that,
for some j ≤ m and infinitely many n ∈ N, we have |qjn| ≥ 1/M . Hence
(qjn)n 6∈ `2, which is a contradiction.

We do not know if the above spaces L and EΦ are homeomorphic. One
can ask similar questions about homeomorphisms between L, or EΦ, and EΨ ,
where Ψ is the standard biorthogonal system in Rω (cf. [Ba, Question 3]).

Let us finish this section with the following simple fact that we will
frequently use in what follows (cf. [BP, p. 268]).

2.3. Lemma. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a Fréchet
space X. There exists a sequence (sn) of positive reals such that , for ev-
ery sequence (tn) with tn ∈ [−sn, sn], the series

∑
n∈N tnxn is conver-

gent and we have ϕk(
∑
n∈N tnxn) = tk for all k ∈ N. Moreover , the map

(tn) 7→∑
n∈N tnxn is a homeomorphic (affine) embedding of

∏
n∈N[−sn, sn]

into X.

Proof. Let d be a translation-invariant metric on X. For every n ∈ N,
take sn ∈ (0,∞) such that d(0, tnxn) ≤ 2−n for every tn ∈ [−sn, sn]. Then
the series

∑
n∈N tnxn converges. The biorthogonality of the system Φ and

the continuity of ϕk guarantee that ϕk(
∑
n∈N tnxn) = tk. One can easily

verify that the map (tn) 7→∑
n∈N tnxn is continuous and the above equality

shows that this map is injective.

3. Borel complexity of the spaces EΦ

3.1. Proposition. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a
Fréchet space X. Then EΦ is an Fσδσ-subset of X.

Proof. It is clear that a vector x ∈ X belongs to EΦ if and only if there is
an n ∈ N such that, for every k > n, the value ϕk(x) is a linear combination
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over Q of the values ϕ1(x), . . . , ϕn(x). Therefore we have

EΦ =
{
x ∈ X :

(∃n ∈ N)(∀k > n)(∃q1, . . . , qn ∈ Q)
[
ϕk(x) =

n∑

i=1

qiϕi(x)
]}

=
⋃

n∈N

⋂

k>n

⋃

q1,...,qn∈Q

{
x ∈ X : ϕk(x) =

n∑

i=1

qiϕi(x)
}
,

which shows that EΦ is an Fσδσ-set.

3.2. Lemma. For every sequence (sn)∞n=1 of positive reals, there exists
a sequence (Cn)∞n=1 of subsets of R satisfying

(i) Cn ⊂ [0, sn],
(ii) Cn is a topological copy of the Cantor set ,
(iii) Pn = Cn ∩Q is dense in Cn,
(iv) if ti ∈ Ci \ Pi for i ≤ k, then the sequence (t1, . . . , tk) is linearly

independent over Q.

Proof. First observe that it is enough to construct a sequence (Cn)∞n=1
of subsets of [0,∞) satisfying conditions (ii)–(iv). Indeed, if (Cn) is such a
sequence, then we can obtain a sequence satisfying all conditions (i)–(iv) by
replacing every Cn by the set {qnt : t ∈ Cn} where qn is a suitably small
positive rational number.

For every A ⊂ N we put xA =
∑
n∈A 1/n!. The map A 7→ xA is a hom-

eomorphic embedding of 2N into [0,∞) (we treat 2N as a copy of the Cantor
set). The continuity of this map is clear. In order to verify the injectivity we
need to use the following standard estimate for every k ≥ 1:

∞∑

n=k+1

1
n!

=
1

(k + 1)!

(
1 +

1
k + 2

+
1

(k + 2)(k + 3)
+ . . .

)
(1)

<
2

(k + 1)!
≤ 1
k!
.

Now, take two distinct sets A,B ⊂ N. Let n be the smallest element of
(A \ B) ∪ (B \ A); we can assume that n ∈ A \ B. Define C = {k ∈ A :
k < n} = {k ∈ B : k < n}. From (1) we obtain

xA ≥
∑

k∈C

1
k!

+
1
n!
>
∑

k∈C

1
k!

+
∞∑

k=n+1

1
k!
≥ xB.

Let (Nn)∞n=1 be a partition of N into infinite sets. Define Cn = {xA : A ⊂
Nn}. Each Cn, being homeomorphic to 2Nn , is a topological copy of the
Cantor set. Condition (iii) is also easy to verify. Namely, for every finite set



58 T. Dobrowolski and W. Marciszewski

A ⊂ Nn, the number xA is rational, and all these numbers form a dense
subset of Cn. It remains to show that the sequence (Cn) satisfies (iv).

Take ti ∈ Ci \Pi for i ≤ k and let ti = xAi for some Ai ⊂ Ni. Obviously,
every set Ai is infinite since ti is irrational. Suppose that (t1, . . . , tk) is
not linearly independent over Q, i.e., there exist rational qi (at least one
nonzero), i ≤ k, such that

∑
i≤k qiti = 0. We can write this sum in the

following way:

(2)
∑

n∈N

an
n!

= 0,

where each an is equal to one of the numbers qi, i ≤ k, or 0. Let Sj =∑
n≤j an/n! for j ≥ 1. Observe that for infinitely many j, we have Sj 6= 0

since infinitely many an are nonzero. Let qi = pi/ri, with integer pi, ri, and
ri > 0. Put M = max{|qi| : i ≤ k} and R = r1 . . . rk. We take j > 2MR such
that Sj 6= 0. One can easily compute that Sj = l/(j!R), for some integer l.
Therefore |Sj | ≥ 1/(j!R). This together with (2) implies that

∣∣∣∣
∞∑

n=j+1

an
n!

∣∣∣∣ ≥
1
j!R

.

But, on the other hand, using inequality (1) we can compute that
∣∣∣∣
∞∑

n=j+1

an
n!

∣∣∣∣ ≤
∞∑

n=j+1

M

n!
<

(
2M
j + 1

)
1
j!
<

1
j!R

,

which gives a contradiction.

3.3. Proposition. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a
Fréchet space X and let F be a linear subspace of X such that QΦ ⊂ F ⊂
EΦ. Then the space F is not a Gδσδ-set in X.

Proof. Let (sn) be the sequence from Lemma 2.3 and let (Cn) be the cor-
responding sequence of Cantor sets from Lemma 3.2. Denote by S the subset
of the product

∏
n∈N Cn consisting of all points (xn) such that xn ∈ Pn for

all but finitely many n (recall that Pn = Cn ∩Q). From [CDM, Proposition
8.3(a)] it follows that S is not a Gδσδ-set. Let e :

∏
n∈N[−sn, sn] → X be

a homeomorphic embedding from Lemma 2.3, i.e., e((tn)) =
∑
n∈N tnxn.

Then e(
∏
n∈N Cn) is a copy of the compact space

∏
n∈N Cn in X. Using the

fact that F is a linear subspace containing QΦ one can verify that e(S) ⊂ F .
The inclusion F ⊂ EΦ and property (iv) of the Cantor sets Cn from Lemma
3.2 imply that e(

∏
n∈N Cn) ∩ F ⊂ e(S). Therefore e(S) = e(

∏
n∈N Cn) ∩ F

is a closed copy of the space S in F . This shows that F is not a Gδσδ-set.

3.4. Corollary. The spaces EΦ are Fσδσ-sets which are not Gδσδ-sets.
The same is true for the Banakh example L.



Failure of the Factor Theorem 59

Let us note that the upper estimate of the Borel class of L (i.e., the fact
L ∈ Fσδσ) was established by Banakh [Ba, Lemma 3].

3.5. Remark. Banakh [Ba, Lemma 1] observed that L and L2 are hom-
eomorphic. The same is true for the space EΦ, where Φ is the standard
biorthogonal system in `2. By [CDM, Proposition 8.3(a)], the countable
products EωΦ and Lω are Fσδσδ-sets that are not Gδσδσ-sets. It follows that
EΦ is not homeomorphic to EωΦ , and L is not homeomorphic to Lω. This ob-
servation can also be derived from the fact that L is countable-dimensional
[Ba, Lemma 2]. Repeating Banakh’s argument one can show that, for the
standard biorthogonal system in `2, the (bigger) space EΦ is also countable-
dimensional (similar reasoning also works for some other biorthogonal sys-
tems in separable Banach spaces).

4. Failure of the Zσ property and of the Factor Theorem for
the spaces EΦ. We will use the following obvious fact:

4.1. Lemma. Let s1, . . . , sn be a sequence of real numbers linearly inde-
pendent over Q. Then for every real t 6= 0 the sequence (ts1, . . . , tsn) is also
linearly independent over Q.

Proof. Fix t 6= 0 and suppose that q1(ts1) + . . . + qn(tsn) = 0 for some
rationals q1, . . . , qn. Dividing both sides of this equation by t we obtain
q1s1 + . . .+ qnsn = 0, hence by our assumption, q1 = . . . = qn = 0.

4.2. Proposition. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a
Fréchet space X and let F be a linear subspace of X such that QΦ ⊂ F ⊂ EΦ.
Then the space F contains a closed copy of σ.

Proof. Let (sn) be a sequence from Lemma 2.3. Take a sequence (Sn)
which is linearly independent over Q and such that 0 < Sn ≤ sn for every n.
For every (tn) ∈ [0, 1]N define

e((tn)) =
∞∑

n=1

( 2n−1∑

k=2n−1

(tnSk)xk
)
.

By Lemma 2.3, the map e is a homeomorphic embedding of [0, 1]N into X.
Observe that since QΦ ⊂ F , all vectors xn belong to F . Therefore we have
e(σ) ⊂ F . For m ∈ N, Lemma 2.3 implies that ϕk(e((tn))) = tmSk for
k = 2m−1, . . . , 2m − 1. Therefore, from Lemma 4.1, it follows that if tm 6= 0
then dimQ({ϕk(e((tn))) : k ∈ N}) ≥ 2m−1. Hence the inclusion F ⊂ EΦ
implies that e([0, 1]N)∩F = e(σ). This shows that e(σ) is a closed copy of σ
in F .

Modifying the above argument we obtain the following.
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4.3. Proposition. Let Φ = ((ϕn), (xn)) be a biorthogonal system in
a Fréchet space X and let F be a linear subspace of X such that QΦ ⊂
F ⊂ EΦ. Then the space F contains a closed linear subspace V which is
a Zσ-space. Moreover , if the sequence (ϕn) separates points of X, we can
assume that V is spanned by a countable subset.

Proof. Take a sequence (Sn) of reals which is linearly independent
over Q. Put

V = {x ∈ F : ϕk(x) = Skϕ2n(x)

for all n ∈ N and k = 2n + 1, 2n + 2, . . . , 2n+1 − 1},
W = {x ∈ F : ϕn(x) = 0 for all n ∈ N}.

It is clear that both V and W are closed linear subspaces of F and W ⊂ V .
If the sequence (ϕn) separates points of X, then obviously W = {0}. As
above, by Lemma 4.1, the sequence (ϕn(x)) is eventually 0 for every x ∈ V .
Therefore we have V = span(W ∪ {yn : n ∈ ω}), where y0 = x1 and

yn = x2n +
2n+1−1∑

k=2n+1

Skxk for n ≥ 1.

Take Vn = span(W ∪ {yi : i = 0, 1, . . . , n}), the closed linear subspace of V .
It is a standard fact that Vn, being of infinite codimension in V , is a Z-set
in V . Clearly V =

⋃
n∈ω Vn.

4.4. Corollary. The Banakh example L contains a closed infinite-
dimensional linear subspace V spanned by a countable subset. In particular ,
V is a topological copy of σ.

The proof of the next proposition follows closely the idea of Banakh (see
[BRZ, pp. 166 and 210]).

4.5. Proposition. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a
Fréchet space X. Then the subset QΦ is not contained in any Zσ-set in X.

Fix a translation-invariant metric d on X. We denote the closed ball
in (X, d) with center x and radius r by B(x, r). For every t1, . . . , tn ∈ R,
we denote by H(t1, . . . , tn) the hyperplane {x ∈ X : ϕi(x) = ti for i =
1, . . . , n}.

We need the following two lemmas:

4.6. Lemma. The set QΦ is dense in X. Moreover , for every q1, . . . , qn
∈ Q, the set H(q1, . . . , qn) ∩QΦ is dense in H(q1, . . . , qn).

Proof. Fix q1, . . . , qn ∈ Q, x ∈ H(q1, . . . , qn) and ε > 0. Using Lemma 2.3
we can find a sequence (tk)∞k=n+1 of reals such that the series

∑∞
k=n+1 tkxk is

convergent to y ∈ X and d(0, y) < ε. We may also require that ϕk(x)+tk ∈ Q
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for every k ≥ n + 1. Then we have d(x, x + y) < ε and, by Lemma 2.3,
ϕk(x+ y) ∈ Q for all k, hence x+ y ∈ QΦ. The same argument shows that
QΦ is dense in X.

4.7. Lemma. For every q1, . . . , qn ∈ Q, z ∈ H(q1, . . . , qn) and r > 0 the
intersection H(q1, . . . , qn) ∩B(z, r) is not a Z-set in X.

Proof. Let Y = z + span{x1, . . . , xn} and let p : X → Y be the con-
tinuous projection given by p(x) = z +

∑n
i=1 ϕi(x − z)xi. Observe that

H(q1, . . . , qn) = p−1(z). It is a well known consequence of Brouwer’s Fixed
Point Theorem that the identity map of a closed ball B in Rn cannot
be approximated by maps of B into Rn that miss the center c of B. Let
i : B → Y ∩ B(z, r/2) be an embedding such that i(c) = z. Then the
above fact implies that i cannot be approximated by maps f : B → X
missing H(q1, . . . , qn)∩B(z, r), hence H(q1, . . . , qn)∩B(z, r) is not a Z-set
in X. Indeed, if f were such an approximation closer than r/2 to i, then
f(B) ⊂ B(z, r), so f(B) ∩H(q1, . . . , qn) = ∅. Therefore p ◦ f(B) ⊂ Y \ {z}.
It is clear that if f were sufficiently close to i then also p ◦ f would be close
to p ◦ i = i. This contradicts the above property of B.

Proof of Proposition 4.5. Aiming at a contradiction, assume that (An)n∈N
is a sequence of Z-sets in X such that QΦ ⊂

⋃
n∈NAn. By induction we will

construct, for every n ∈ N, a rational qn, a point zn ∈ X, and a real number
rn ∈ (0, 1/n) such that:

(a) zn ∈ H(q1, . . . , qn) ∩QΦ,
(b) B(zn, rn) ∩ An = ∅,
(c) B(zn, rn) ⊂ B(zn−1, rn−1) (for n > 1).

We start the construction by taking q1 = 0. Lemma 4.7 implies that H(q1)
is not a Z-set in X, therefore the set H(q1) \ A1 is nonempty. Since A1 is
closed, Lemma 4.6 implies the existence of z1 ∈ H(q1) ∩QΦ and r1 ∈ (0, 1)
such that B(z1, r1) ∩ A1 = ∅.

Now, suppose that n > 1 and we have chosen qi, zi and ri satisfying con-
ditions (a)–(c), for i < n. We put qn = ϕn(zn−1), so zn−1 ∈ H(q1, . . . , qn).
By Lemma 4.7, the intersection H(q1, . . . , qn)∩B(zn−1, rn−1) is not a Z-set
in X, hence we have (H(q1, . . . , qn)∩B(zn−1, rn−1)) \An 6= ∅. Then, apply-
ing Lemma 4.6, we can find zn ∈ H(q1, . . . , qn)∩QΦ and rn ∈ (0, 1/n) such
that B(zn, rn) ⊂ B(zn−1, rn−1) \An.

The inequality rn < 1/n and condition (c) imply that the intersection⋂
n∈NB(zn, rn) contains a unique element z. Obviously z is the limit of the

sequence (zn). By condition (a) we have ϕn(z) = qn for every n; therefore
z ∈ QΦ. On the other hand, condition (b) implies that z ∈ B(zn, rn) ⊂
X \ An for every n, hence z 6∈ ⋃n∈NAn, which is the required contradic-
tion.
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4.8. Corollary. Let Φ = ((ϕn), (xn)) be a biorthogonal system in a
Fréchet space X. Then the set (QΦ)ω is not contained in any Zσ-subset
of Xω.

Proof. It is enough to observe that (QΦ)ω = QΨ for a suitable biorthog-
onal system Ψ in a Fréchet space Xω. Namely, let {(mk, nk) : k ∈ N} be an
enumeration of N× ω. Put ψk((zi)i) = ϕmk(znk) for (zi)i ∈ Xω and k ∈ N.
Let yk = (yki )i ∈ Xω, where yki = xmk for i = nk, and yki = 0 for i 6= nk.
Then the system Ψ = ((ψk)k, (yk)k) has the required property.

4.9. Corollary. For every biorthogonal system Φ in a Fréchet space
X, the spaces EΦ and (EΦ)ω are not Zσ-spaces. Also the space Lω is not a
Zσ-space.

Now, we are in a position to formulate our main result.

4.10. Theorem. For every Fréchet space X with a biorthogonal system
Φ, the linear subspace EΦ of X is of exact Borel class Fσδσ and contains
a retract R, homeomorphic to σ, such that R × EωΦ is not homeomorphic
to EωΦ . In particular , the spaces R×EΦ and EΦ are not homeomorphic (cf.
Remark 3.5).

4.11. Remark. The Banakh example L is another space that is of exact
Borel class Fσδσ and contains a retract R such that R × Lω is not homeo-
morphic to Lω.

5. Zσ-spaces which are powers of non-Zσ-spaces. It is an obvious
fact that the product of a Zσ-space and any space is a Zσ-space. Examples
show that products of non-Zσ-spaces might be Zσ-spaces. Below, we provide
examples of such spaces that carry some additional structure. However, we
do not know whether, given a normed linear space E which is not a Zσ-
space, its power En (finite or countable) is not a Zσ-space. Therefore, in
the previous section, knowing that EΦ (or L) was not a Zσ-space, we had
to verify the same property for EωΦ (resp., Lω).

5.1. Example. There exists a σ-compact convex subset X of `2 such
that

(1) X is not a Zσ-space, and
(2) X ×X is a Zσ-space.

The space X will be the one described in [CuDM]. Let W be a wild (i.e.,
not a Z-set) Cantor set in the infinite-dimensional compact convex ellipsoid

M =
{

(xi) ∈ `2 :
∞∑

i=1

i2x2
i ≤ 1

}
,
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a topological Hilbert cube. Let Mcore = {(xi) ∈ `2 :
∑∞
i=1 i

2x2
i < 1}, a

topological copy of Σ = {(xi) ∈ [−1, 1]ω : sup |xi| < 1}. Then X = Mcore ∪
W is a σ-compact convex subset of `2, and W is not a Z-set in X. Hence,
X is not a Zσ-space (see [CuDM, Lemma 2.4]).

Now, we will show that X × X is a Zσ-space. Since every compactum
L ⊂ X with L ∩W = ∅ is a Z-set, it is enough to show that A = W ×W
is a Z-set in X ×X. By a result of Kroonenberg [Kr], it is enough to show
that there is a base U of homotopically trivial open sets in X×X such that,
for every U ∈ U , U \ A is homologically trivial, path-connected and simply
connected. Since A is finite-dimensional (actually, 0-dimensional), the ho-
mological triviality and the path-connectedness of U \A easily follow for any
homotopically trivial open subset U of X × X (see [D2]). Let U be of the
form V ×V , where V is a homotopically trivial open subset of X. It suffices
to show that V × V \ A is simply connected. This follows from Corollary 1
in [BT]. For the sake of completeness we decided to include a short proof
that mimics a reasoning from [Li].

Let f : S1 → V ×V \A be a map of the circle S1. Setting f = (g, h), where
g, h : S1 → V are the components of f , we see that g−1(W ) and h−1(W ) are
disjoint compacta in S1. Let {C1, . . . , Cm} be a family of pairwise disjoint
arcs of S1 such that g−1(W ) ⊂ ⋃mj=1 intCj and h−1(W ) ∩ ⋃mj=1 Cj = ∅.
Since V \W is path-connected and V is homotopically trivial, there exists
a homotopy ϕ1 joining g and ϕ1

1 in V relative to S1 \⋃mj=1 intCj such that
im(ϕ1

1) ∩W = ∅. Let ϕ2 be a homotopy in V joining h to a constant map
into V \W , and let ϕ3 be a homotopy in V joining ϕ1

1 to a constant map
into V \W . Then, combining the homotopies Φ1 = (ϕ1, h), Φ2 = (ϕ1

1, ϕ2),
and Φ3 = (ϕ3, ϕ

1
2), we can join f to a constant map into V × V \W ×W .

It is impossible to find a convex space X which is a countable union of
finite-dimensional compacta and satisfies the above conditions (see [D2]).
However, there exists an absolute retract X that is nowhere locally compact
such that X is not a Zσ-space but X×X is a Zσ-space, and X is a countable
union of finite-dimensional compacta. Again the space X was described in
[CuDM]. Namely, X = Mf ∪W , where Mf = {(xi) ∈M : xi = 0 a.e.}, and
M and W are as above. Clearly, X is a countable union of finite-dimensional
compacta. Moreover, the above argument can be repeated to obtain the
claimed property of X.

Below, we present an easier example of an absolute retract X which is
not a Zσ-space, but Xω is a Zσ-space.

5.2. Example. There exists a σ-compact absolute retract X such that

(1) Xn is not a Zσ-space for any n ∈ N, and
(2) Xω is a Zσ-space.
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Define X = (σ × {0}) ∪ ({0} × [0, 1]) as a subset of Q × [0, 1], where
Q = [0, 1]ω, σ = {(xi) ∈ Q : xi = 0 a.e.}, and 0 = (0, 0, . . .) ∈ Q. Represent
the space σ×{0}\{(0, 0)} as a countable union of Z-sets An in σ×{0}, where
each An is compact and contained in {(xi) ∈ σ : xi = 0 for i > n} × {0}.
Then Xω can be represented as the union of

B0 = ({0} × [0, 1])× ({0} × [0, 1])× . . . ⊂ X ×X × . . .
and

Bkn = Xk × An ×X ×X × . . . ⊂ Xk ×X ×X × . . . = Xω

for k, n ∈ ω. Since each An is a Z-set in X, it is easy to see that each Bkn,
k, n = 0, 1, . . . , is a Z-set in X. Moreover, clearly, B0 is a Z-set in X. Hence,
Xω is a Zσ-space.

For any n ∈ N, the compact set ({0} × [0, 1])n ⊂ Xn has a nonempty
interior in Xn, hence Xn is not of the first category in itself. Consequently,
it is not a Zσ-space.

In general, if an absolute retract X contains an open subset that is a
Zσ-space in itself, then Xω is a Zσ-space. However, this provides nontrivial
information only if X is nonhomogeneous, because if X is homogeneous and
satisfies the above condition, then X is a Zσ-space itself (and therefore Xω

is a Zσ-space as well). It would be interesting to find conditions ensuring
that an infinite-dimensional absolute retract X is not a Zσ-space, and this
property carries over to X2, Xn or Xω. Here, the homogeneity of X seems
to be essential; the first case to consider is when X is a pre-Hilbert space.

6. Remarks and comments on the Factor Theorem. Let us start
with the construction of R. Pol mentioned in the Introduction, which we
include with his kind permission.

6.1. Example (R. Pol). There exists a linear subspace E of the Hilbert
space `2 which is a Baire space and contains a closed linear subspace R
homeomorphic to the space σ. The subspace R is a retract of E such that
R × Eω is not homeomorphic to Eω (hence R × E is not homeomorphic
to E).

For technical reasons we will construct our space E in `2×`2, an isometric
copy of `2. Let π1 : `2 × `2 → `2 denote the projection onto the first axis.
Let C be the family of all copies C of the Cantor set in `2 × `2 such that π1

is injective on C and π1(C) is linearly independent (over R). The family C
has the cardinality of the continuum, hence we can enumerate it as {Cα :
α < 2ω}.

Using transfinite induction we can choose vectors xα ∈ Cα, for α < 2ω,
such that xα 6∈ span({xβ : β < α} ∪ {0}× `2). Then we put E = span({xα :
α < 2ω} ∪ {(0, en) : n ∈ N}). The choice of the vectors xα guarantees that



Failure of the Factor Theorem 65

R = E ∩ ({0} × `2) = span{(0, en) : n ∈ N}, and consequently, R is a
closed linear subspace of E homeomorphic to σ. It remains to prove that
E is a Baire space because then Eω is also a Baire space by a theorem of
Oxtoby [Ox]. Since E is homogeneous it is enough to show that E is of the
second category in `2 × `2. If E were of the first category in `2 × `2, then
Proposition 2.1 from [vMP] would imply the existence of a copy of a Cantor
set C ⊂ (`2 × `2) \ E such that C ∈ C. This would contradict the fact that
E intersects every set C in C.

Recent achievements in the theory of absorbing sets allow us to formulate
the following version of the Factor Theorem.

6.2. Proposition. Let E be a separable metric linear Zσ-space. Assume
that E is an AR and E is homeomorphic to its own square E2. Then, for
every retract R of E, the product R× E is homeomorphic to E.

Proof. Apply [BRZ, 4.2.1 and 5.3.17] and [BM, 5.4].

We say that a metrizable space X is σ-complete if X =
⋃
n∈ωXn, where

each Xn is completely metrizable and closed in X. Clearly, every σ-compact
metrizable space is σ-complete. Hence the following fact yields an affirma-
tive answer to Problem 1.1 for the σ-compact case (as indicated in the
Introduction).

6.3. Theorem. Let G be a separable σ-complete topological group that
is an absolute retract. Then, for every retract R of G, the spaces R × Gω
and Gω are homeomorphic.

Proof. Obviously, we have G = {e} if G is compact (by the fixed point
property of compact absolute retracts). Therefore we may assume that G is
noncompact.

If G is completely metrizable then both R×Gω = (R×G)×Gω and Gω,
being countable products of separable completely metrizable noncompact
AR’s, are homeomorphic to Rω (cf. [Tor3]).

In the case when G is not completely metrizable, by Theorem 4.2.8 from
[BRZ], G is a Zσ-space. Since G is an absolute Fσδ-set, Corollary 2.7 from
[DM2] implies that Gω is homeomorphic to σω. Now, by a result of [BM],
for a retract R of σω, the product R× σω is homeomorphic to σω.

It is worthwhile to examine Problem 1.1 in case the assumption that E
is a linear space is dropped, and instead it is imposed that E is an absolute
retract. In such a case, if E is compact, then either E is a singleton, or, by
known results, Eω is homeomorphic to the Hilbert cube. In both instances,
for a retract R of E, we have R × Eω homeomorphic to Eω. If E is com-
pletely metrizable and noncompact, then Eω is known to be homeomorphic
to an infinite-dimensional Hilbert space [Tor3], and again the answer to
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our problem is affirmative. For the case where E is an incomplete absolute
retract, we have the following fact that complements Theorem 6.3; simi-
larly to Proposition 6.2, it can be easily derived from results on absorbing
sets.

6.4. Proposition. Let E be a separable absolute retract space that is a
Zσ-space. Then, for every retract R of E, R×Eω is homeomorphic to Eω.
Actually , it is enough to require that Eω is a Zσ-space.

Proof. This is a consequence of [BM, 2.5] (use also the results of [DM2],
in particular, Lemma 2.2 therein). Namely, those results show that Eω is
an absorbing set for the class of all its closed subsets. Hence, the assertion
follows from [BM, 5.4].

6.5. Question. Is a separable noncomplete normed linear spaceE ∈ Fσδ
necessarily a Zσ-space?

If the answer is affirmative then, by 6.4, Problem 1.1 also has an affir-
mative solution for the Fσδ-case.

The Zσ property is a stronger version of the first category property.
When we try to relax the Zσ property, the Baire spaces with a nice local
structure can serve as examples answering 1.1 in the negative. The following
example shows that the Zσ property cannot be relaxed even if we assume
the convexity of a set and, additionally, even if the set is homogeneous.

6.6. Example. Consider Y = σ×{0}∪Q×(0, 1], a subspace of Q×[0, 1].
The space Y is a Baire space because it contains the Baire space Q×(0, 1] as
a dense subset. It follows that Y ω is also a Baire space. Letting R = σ×{0}
we see that R is a closed subset of Y and, consequently, is a retract of
Y . Since R × Y ω is of the first category, it cannot be homeomorphic to
Y ω. Both Y and R are convex sets. Furthermore, the space E = Y ω is a
so-called Fσδ-coabsorbing set (see the definition in [BRZ, p. 43]); hence, not
only is E topologically homogeneous, but also any homeomorphism between
any two Z-sets (in particular, any two compacta) in E extends to an auto-
homeomorphism of E (see [BRZ, p. 49]). Clearly, the convex set E contains
a closed convex copy of R. Obviously, the product Eω can be identified
with E.
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