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A fixed point conjecture for
Borsuk continuous set-valued mappings

by

Dariusz Miklaszewski (Toruń)

Abstract. The main result of this paper is that for n = 3, 4, 5 and k = n − 2,
every Borsuk continuous set-valued map of the closed ball in the n-dimensional Euclidean
space with values which are one-point sets or sets homeomorphic to the k-sphere has a
fixed point. Our approach fails for (k, n) = (1, 4). A relevant counterexample (for the
homological method, not for the fixed point conjecture) is indicated.

1. Introduction. The Lefschetz fixed point theorem holds for upper-
semicontinuous mappings with acyclic values and for their compositions [8],
[11]. On the other hand, even the Hausdorff continuity does not guaran-
tee an extension of the Brouwer theorem when the values are spheres [23].
Nevertheless, one can expect some fixed point results for mappings with
nonacyclic values provided a stronger kind of continuity is assumed. In 1954
Borsuk defined a distance %c in the hyperspace K(M) of all nonempty com-
pact subsets of a metric space (M,%) and called it the metric of conti-
nuity [1]. Let us recall that %c(X,Y ) = max{dc(X,Y ), dc(Y,X)}, where
dc(X,Y ) = inf{max{%(x, g(x)) : x ∈ X}} and the infimum is taken over
all continuous functions g from X to Y . We call a map into K(M) Borsuk
continuous if it is continuous with respect to %c. Let Bn denote the closed
unit ball in Rn. Górniewicz posed the following conjecture (1):

(G.C.) Every Borsuk continuous map f : Bn → K(Bn) with connected
values has a fixed point x ∈ f(x).
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characteristic class.
(1) Górniewicz published this conjecture in [13, 5.6] as an open problem, long after

communicating it to students and proving its two-dimensional case. It was called the
Górniewicz Conjecture in [21], in honour of Górniewicz’s 60th birthday. The proof for
n = 2 is based on [12] and can be found in [4].
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In this paper we study a special case of G.C.:

Conjecture 1. Every Borsuk continuous map f : Bn → K(Bn) with
values which are one-point sets or sets homeomorphic to the sphere Sk

(k fixed) has a fixed point.

We will denote by ∗ the one-point space. The G.C. is confirmed for
maps f with the rational Čech cohomology group Ȟ?(f(x);Q) isomorphic
to Ȟ?(∗;Q) or to Ȟ?(Sn−1;Q) for x ∈ Bn (see [13]). The latter case clearly
implies Conjecture 1 for k = n−1. The proof is based on the fact that the set
f̃(x) = f(x)∪b(Rn\f(x)) is acyclic, where b(Rn\f(x)) denotes the bounded
component of Rn\f(x). Since Čech homology spheres of codimension greater
than 1 do not separate Rn, it is clear that this approach cannot work for
1 ≤ k ≤ n − 2 (2). Our purpose is to prove Conjecture 1 for k = n − 2
and n = 3, 4, 5. A different proof of the n = 3 case was given in [21]. In
Preliminaries we give a brief exposition of some results from [20], which are
basic for this paper.

2. Preliminaries. Let f : Bn → K(Bn) be an upper-semicontinuous
map. From now on, B = Bn and S = ∂B. For any C ⊂ B we will denote by
ΓC the set {(x, y) ∈ C ×B : y ∈ f(x)}, called the graph of f |C . Let F be a
field.

Definition 1 ([20]). The map f is called an F -Brouwer map if the
homomorphism

Ȟn(ΓB, ΓS ;F )→ Ȟn(B ×B,S ×B;F )

induced by inclusion is a nonzero homomorphism.

Theorem 1 [20, Lemma 1]. Every F -Brouwer map has a fixed point.

Let f satisfy the hypotheses of Conjecture 1 and define U = {x ∈ B :
f(x) ∼= Sk}. By the Chapman–Ferry–Jakobsche results on approximating
homotopy equivalences by homeomorphisms [9, Theorem 3], [2, α-approx-
imation theorem], [16], [17] for k 6= 4 (3), f |U is continuous with respect to
the distance %h which is defined similarly to dc, but the infimum is taken
over all homeomorphisms g from X onto Y . This continuity implies that the
projection p : ΓU → U is a completely regular mapping [6]. Consequently, p
is a locally trivial bundle with fibre Sk (see [6]; cf. also [3, Theorem, p. 131]
and [7, Corollary 1.1, p. 63]).

(2) Though S0 is not connected, Conjecture 1 holds for k = 0. In this case f may be
identified with a continuous mapping into the second symmetric product of its domain.
The fixed point theory of such mappings is developed in [25], [26], [22]. In spite of these
results the G.C. cannot be extended to maps with disconnected values [18].

(3) The author does not know if the α-approximation theorem holds in dimension 4.
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Definition 2. We say that an (n − 1)-dimensional topological mani-
fold N ε-approximates ∂U in U if there exists a compact n-dimensional
topological manifold K with boundary such that K is a subcomplex of a
simplicial decomposition of B, ∂K = N and U ⊃ K ⊃ U \ Oε(∂U), where
Oε(∂U) = {x ∈ U : dist(x, ∂U) < ε}.

We begin with a triangulation of the interior of B with mesh ≤ ε/2.
Then let K ′ be the union of all simplices intersecting U \Oε(∂U) and let K
be a small regular neighbourhood of K ′. It is clear that ∂K ε-approximates
∂U in U . We can now rephrase [20, Theorem 1] as follows:

Theorem 2. Suppose that :

1. f : B → K(B) is a Borsuk continuous map,
2. f is singlevalued on B \ U and takes values homeomorphic to Sk on

U , k 6= 4,
3. U ⊂ IntB (4),
4. For every ε > 0 there exists a manifold N which ε-approximates ∂U

in U and satisfies the inequality

dimHk(ΓM ;Z2) > dimHk(M ;Z2)

for all components M of N .

Then f is a Z2-Brouwer map.

This theorem follows directly from [20, proof of Theorem 1] and gener-
alizations of [15, 3.4.3, 3.4.6] to TOP(Sk)-bundles, where TOP(Sk) denotes
the group of all homeomorphisms Sk → Sk.

3. A conjecture on homology of sphere bundles. It is of interest
to know when assumption 4 of Theorem 2 is satisfied. Since the projection
from ΓU onto U is a locally trivial bundle with fibre Sk, so is p : ΓM →M .
In fact, p may be considered as a bundle with structural group TOP(Sk).
Moreover, the diagram

(])

E M × Rn

M M

p

��

�� //

π1

��
������������������������������

commutes for E = ΓM . In Section 6 we will prove the following

(4) If f is not singlevalued on S, we extend it to 2B taking f̃(x) = (2−‖x‖)f(‖x‖−1x)
for 1 ≤ ‖x‖ ≤ 2. Of course, f̃ is singlevalued on 2S. Moreover, by [20, proof of Statement 6],
if f̃ is a Z2-Brouwer map, so is f . It would be nice to have Theorem 2 without the third
assumption. Unfortunately, the author does not know if the fourth hypothesis for f implies
the same for f̃ .
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Theorem 3. Let M ⊂ Rn be a compact connected (n− 1)-dimensional
topological manifold without boundary , n ≥ 3. Let p : E → M be a bundle
with fibre Sn−2 and structural group O(n − 1) such that the diagram (])
commutes. Then

dimHn−2(E;Z2) > dimHn−2(M ;Z2).

Remark 1. It suffices to assume in Theorem 3 that the structural group
reduces to O(n− 1).

Recall that the structural group G reduces to the subgroup H if every
bundle p : E → M with structural group G is G-equivalent to a bundle p̃ :
Ẽ →M with structural group H (in particular, there is a homeomorphism
h : Ẽ → E with p ◦ h = p̃). Moreover, if the inclusion O(n − 1) ⊂ G is a
homotopy equivalence, then G reduces to O(n− 1) [30, proof of 11.45].

Conjecture 2. Theorem 3 remains true with O(n − 1) replaced by
TOP(Sn−2).

Fact 1. Conjecture 2 holds for n ∈ {3, 4, 5}.
Fact 1 follows from the homotopy equivalences O(2) ' TOP(S1) (see for

instance [20, Fact 2]),O(3) ' TOP(S2) ([19], see also [28]),O(4) ' TOP(S3)
[14, p. 606].

4. A fixed point theorem. This section contains the main result of
this paper. According to Fact 1 and Theorem 1–3, we have the following

Theorem 4. Conjecture 1 is true for (k, n) = (1, 3), (2, 4), (3, 5).

The case (k, n) = (1, 3) (first proved in [21] using K-theory) has a nice
geometric interpretation: the Brouwer fixed point theorem holds for Borsuk
continuous maps whose values are points or knots. One thing that distin-
guishes the case (k, n) = (1, 3) from other cases is the classification of all
1-sphere bundles over 2-manifolds up to weak bundle equivalence [27] (see
also [24], [10]).

5. Preparation for proving Theorem 3

Lemma 1. Let M ⊂ Rn+1 be an n-dimensional compact connected topo-
logical manifold without boundary , n ≥ 2. Then xn = 0 for every x ∈
H1(M ;Z2). Here xn denotes the cup product xn−1 ∪ x.

The situation described in the hypotheses of this lemma is very well
known in the literature. Let us gather some facts before the proof. First,
M ⊂ Rn+1 ∪ {∞} ∼= Sn+1 and Sn+1 \M = U ∪ V (U , V connected). The
closures A = U , B = V are ANR’s [5, VIII.4.8]. By the Alexander duality,
Hn(A;Z2) = Hn(B;Z2) = 0. Let i : M → A and j : M → B be inclusions.
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The Mayer–Vietoris exact sequence shows that ϕ : Hs(A;Z2)⊕Hs(B;Z2)→
Hs(M ;Z2), ϕ(α, β) = i?α+j?β, is an isomorphism for 1 ≤ s < n. Moreover:

(1) Sqn−r y = 0 for every y ∈ Hr(M ;Z2), 1 ≤ r < n [29, III.2.3];
(2) i? Sq1 a∪j?b = i?a∪j? Sq1 b for all a ∈ Hr(A;Z2), b ∈ Hn−1−r(B;Z2)

([29, III.2.4], see also [29, II.4, III.1.4]);
(3) Sqi uk =

(
k
i

)
uk+i if dim(u) = 1 [29, I.2.4].

Proof of Lemma 1. Case 1. Let n 6= 2m − 1 for every natural m. Since
0 = Sqn−r xr =

(
r

n−r
)
xn by (1), (3), it suffices to find r such that

(
r

n−r
)

is odd and 1 ≤ n − r ≤ r < n. If n = 2t then r = t satisfies the above
conditions. If n = 2t− 1 then t 6= 2m−1 for every m. Thus t = 2i−1 + j for
some i ≥ 2 and 1 ≤ j ≤ 2i−1 − 1. It is easy to check that

(2i−1
k

)
is odd (5)

for every k = 0, 1, . . . , 2i − 1 and r = 2i − 1 satisfies 1 < n− r < r < n.
Case 2. Let n = 2m − 1. Then

xn = (i?α+ j?β)n =
n∑

k=0

(
n

k

)
i?αk ∪ j?βn−k =

n−1∑

k=1

i?αk ∪ j?βn−k

=
(n−1)/2∑

p=1

(i?α2p−1 ∪ j?βn−2p+1 + i?α2p ∪ j?βn−2p)

=
(n−1)/2∑

p=1

(
i?α2p−1 ∪ j?

(
n− 2p

1

)
βn−2p+1 + i?

(
2p− 1

1

)
α2p ∪ j?βn−2p

)

=
(n−1)/2∑

p=1

(i?α2p−1 ∪ j? Sq1 βn−2p + i? Sq1 α2p−1 ∪ j?βn−2p) = 0,

by (2), which proves the lemma.

We now recall some properties of Stiefel–Whitney classes. The first fact
generalizes the well known Borsuk–Ulam theorem:

Fact 2. Let E be a compact space, T : E → E a fixed point free in-
volution (or equivalently , the generator of a free Z2-action on E), c ∈
H1(E/T ;Z2) the first Stiefel–Whitney class of the 0-sphere bundle π : E →
E/T and g : E → Rn a continuous function. Suppose that cn 6= 0. Then
there is x ∈ E such that g(x) = g(Tx).

We give no reference here, because Fact 2 is an immediate consequence of
the naturality of Stiefel–Whitney classes. Now, let p : E →M be a k-sphere
bundle with structural group O(k + 1). The antipodal map of Sk induces a

(5) By induction on i, (x + y)q mod 2 = xq + yq for q = 2i, so
(2i
k

)
is even for

k = 1, . . . , 2i − 1.
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fibre preserving fixed point free involution T : E → E, p ◦ T = p. We have
a projection q : E/T →M with q ◦ π = p (π, c are defined in Fact 2).

Fact 3 [15, 16.2.5]. The group H?(E/T ;Z2) is an H?(M ;Z2)-module
freely generated by {1, c, . . . , ck} with the multiplication

H?(M ;Z2)×H?(E/T ;Z2) 3 (α, β) 7→ αβ = q?(α) ∪ β.
Moreover , ck+1 =

∑k+1
j=1 wjc

k+1−j , where wj are the Stiefel–Whitney classes
of the bundle p.

Fact 4 [21, Lemma 1]. Let M be a compact ANR. Then dimHk(E;Z2)
> dimHk(M ;Z2) if and only if wk+1 = 0.

6. Proof of Theorem 3. We begin by extending the diagram (]):

E M × Rn Rn

M M

p

��

�� i //

π1

��

π2 //

������������������������������

Suppose that cn 6= 0. From Fact 2 with g = π2 ◦ i, we obtain points
x and y = T (x) such that π2 ◦ i(x) = π2 ◦ i(y). Since π1 ◦ i(y) = p(y) =
p(x) = π1 ◦ i(x), it follows that i(x) = i(y) and x = y, which contradicts the
fact that T is fixed point free. Thus cn = 0. Fact 3 for k = n − 2 leads to
cn−1 =

∑n−1
j=1 wjc

n−1−j . Hence

0 = cn−1 ∪ c =
n−1∑

j=1

wjc
n−j = w1c

n−1 +
n−1∑

j=2

wjc
n−j

= w1

n−1∑

j=1

wjc
n−1−j +

n−2∑

j=1

wj+1c
n−j−1

= (w1 ∪ wn−1)1 +
n−2∑

j=1

(w1 ∪ wj + wj+1)cn−j−1.

By Fact 3, w1 ∪ wj + wj+1 = 0 for j = 1, . . . , n − 2. This gives wn−1 =
[w1]n−1 = 0, by Lemma 1. Fact 4 completes the proof.

The same proof with Fact 2 applied to g = π2 ◦ i◦h (h : Ẽ → E a bundle
equivalence) yields Remark 1.

5. A counterexample. In this section it is shown that the notion of F -
Brouwer mapping is not suitable for proving Conjecture 1 for (k, n) = (1, 4).
It is worth pointing out that our example does have an obvious fixed point.
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Theorem 5. There is a Borsuk continuous mapping f : B4 → K(B4)
with values homeomorphic to ∗ or S1, which is an F -Brouwer map for no
field F .

Proof. Part 1. Write x =
∑4

i=1 xiei ∈ R4, (ei)4
i=1 the standard basis in

R4, Ri = span{e1, . . . , ei} for i ≤ 4, S3 the unit sphere in R4, Si−1 = S3∩Ri,
Ex = span{x, e3, e4} for x ∈ S1, Sx = S3 ∩ Ex. Define ϕx : S2 → Sx
by ϕx(y) = y1x + y2e3 + y3e4 for x ∈ S1 and ϕ : S1 × S2 → R4 by
ϕ(x, y) = 1

2x+ 1
4ϕx(y). The map ϕ is an embedding of S1 × S2 in R4. Set

K =
{

1
2x+ r · 1

4ϕx(y) : (x, y) ∈ S1 × S2, 0 ≤ r ≤ 1
}
.

Clearly, K ∼= S1 × B3. Let q : S3 → S2 be the Hopf fibration. We define
f : B4 → K(B4) by the formula

{
f
(

1
2x+ r · 1

4ϕx(y)
)

= r(1− r) · q−1(y) on K,
f(z) = 0 on B4 \K.

Part 2. Suppose, contrary to our claim, that there is a field F making f
an F -Brouwer map. Set B = B4, S = ∂B and H?(·) = H?(·;F ). Note that
f |S = 0. The commutative diagram

H4(ΓB, ΓS) H4(B ×B,S ×B)

H4(B,S) H4(B,S)

p?

��

6=0 //

� � � � � � � � � �� � � � � � � � � �

∼= j?

OO

with j(x) = (x, 0) yields p? 6= 0. The diagram

H4(ΓB, ΓS) H3ΓS H3ΓB

H4(B,S) H3S F

p?

��

//

p? ∼=
��

i? //

∼= // � � � � � � � �� � � � � � � �

with the first row exact shows that i? = 0. Let C = B \ Int(K). Consider
the segment of the Mayer–Vietoris exact sequence:

H4B → H3(∂K)→ H3C ⊕H3K → H3B.

Since H3K = H3(S1 × B3) = 0 and H3(∂K) = H3(S1 × S2) = F , we have
H3C = F . Take v ∈ Int(K). Since S is a strong deformation retract of
B \ {v}, the composition

F = H3S
η→H3C→H3(B \ {v})

of homomorphisms induced by inclusions is an isomorphism. Therefore η is
a monomorphism. Now, the equality H3C = F shows that η is an isomor-
phism. Since ΓS = S × 0 and ΓC = C × 0, also η : H3ΓS → H3ΓC is an iso-



76 D. Miklaszewski

morphism. It follows that j1 : H3ΓC → H3ΓB is zero, because 0 = i? = j1◦η.
Summarizing, we have: j1 = 0, H3ΓC = H3C = F , H3Γ∂K = H3(∂K) = F .

Part 3. Our next goal is to determine the group H3ΓK . Note that K =
L ∪N , where

L =
{

1
2x+ r · 1

4ϕx(y) : (x, y) ∈ S1 × S2, 0 ≤ r ≤ 1/2
}
,

N =
{

1
2x+ r · 1

4ϕx(y) : (x, y) ∈ S1 × S2, 1/2 ≤ r ≤ 1
}

and L ∩N = ∂(L). For abbreviation, we let

Ω =
(

1
2x+ r · 1

4ϕx(y), r(1− r)z
)

for z ∈ q−1(y). The homotopy

Gt(Ω) =
(

1
2x+ [t+ (1− t)r] · 1

4ϕx(y), [t+ (1− t)r][1− t− (1− t)r]z
)

shows that Γ∂K is a strong deformation retract of ΓN . Another homotopy

Ht(Ω) =
(

1
2x+ tr · 1

4ϕx(y), tr(1− tr)z
)

with H0(Ω) = ( 1
2x, 0) gives ΓL ' S1. We also have a homeomorphism

h : Γ∂L → S1 × S3 which sends
(

1
2x+ 1

8ϕx(y), 1
4z
)

to (x, z) for z ∈ q−1(y).
Consider the segment of the Mayer–Vietoris exact sequence:

H3Γ∂L
λ→H3ΓL ⊕H3ΓN

ψ→H3ΓK→H2Γ∂L.

Since H2Γ∂L = H2(S1 × S3) = 0, ψ is an epimorphism. Clearly, H3ΓL =
H3S

1 = 0. If λ = 0 then ψ is an isomorphism and H3ΓK ∼= H3ΓN ∼=
H3Γ∂K ∼= H3(∂K) = F . What is left is to show that λ = 0 or equivalently,
that the inclusion ω : Γ∂L → ΓN induces the zero homomorphism on H3-
groups. This is equivalent to 0 = ξ? : H3(S1 × S3) → H3(S1 × S2) for
ξ = ϕ−1 ◦ G1 ◦ ω ◦ h−1 where G1(ΓN ) = Γ∂K = ∂(K) × 0 is identified
with ∂(K) = ϕ(S1 × S2). It is easy to check that ξ(x, z) = (x, q(z)). Thus
ξ = id×q. By the Künneth theorem, the diagram

H3(S1 × S3)
⊕3

i=0 HiS
1 ⊗H3−iS3

H3(S1 × S2)
⊕3

i=0 HiS
1 ⊗H3−iS2

ξ?

��

∼=oo

��∼=oo

commutes. The ith component of the direct sum is nonzero only for i = 0
in the first row and only for i = 1 in the second row of the above diagram.
Hence ξ? = 0.
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Part 4. Consider the segment of the Mayer–Vietoris exact sequence:

H3Γ∂K H3ΓC ⊕H3ΓK H3ΓB

F F 2

�
�
�
�
�

�
�
�
�
�

α //
�
�
�
�
�

�
�
�
�
�

β //

where α(x) = (i1x, i2x) and β(x, y) = j2y− j1x = j2y (see Part 2). Since i2
is a composition

H3Γ∂K
∼=→H3ΓN

ψ→H3ΓK ,

i2 is an isomorphism (see Part 3). Now, dim imα = 1 = dim kerβ. Thus
dim im j2 = dim imβ = 2−dim kerβ = 1. But 0 = β ◦α = j2 ◦ i2. Therefore
j2 = 0, a contradiction.
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