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A fixed point conjecture for
Borsuk continuous set-valued mappings

by

Dariusz Miklaszewski (Torur)

Abstract. The main result of this paper is that for n = 3,4,5 and k = n — 2,
every Borsuk continuous set-valued map of the closed ball in the n-dimensional Euclidean
space with values which are one-point sets or sets homeomorphic to the k-sphere has a
fixed point. Our approach fails for (k,n) = (1,4). A relevant counterexample (for the
homological method, not for the fixed point conjecture) is indicated.

1. Introduction. The Lefschetz fixed point theorem holds for upper-
semicontinuous mappings with acyclic values and for their compositions [8],
[11]. On the other hand, even the Hausdorfl continuity does not guaran-
tee an extension of the Brouwer theorem when the values are spheres [23].
Nevertheless, one can expect some fixed point results for mappings with
nonacyclic values provided a stronger kind of continuity is assumed. In 1954
Borsuk defined a distance g. in the hyperspace K (M) of all nonempty com-
pact subsets of a metric space (M, p) and called it the metric of conti-
nuity [1]. Let us recall that o.(X,Y) = max{d.(X,Y),d.(Y,X)}, where
d.(X,Y) = inf{max{o(x,g(z)) : * € X}} and the infimum is taken over
all continuous functions g from X to Y. We call a map into K (M) Borsuk
continuous if it is continuous with respect to g.. Let B™ denote the closed
unit ball in R™. Gérniewicz posed the following conjecture (1):

(G.C.) Every Borsuk continuous map f : B" — K(B™) with connected
values has a fixed point = € f(z).
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(}) Gérniewicz published this conjecture in [13, 5.6] as an open problem, long after
communicating it to students and proving its two-dimensional case. It was called the
Gérniewicz Conjecture in [21], in honour of Gdérniewicz’s 60th birthday. The proof for
n = 2 is based on [12] and can be found in [4].
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In this paper we study a special case of G.C.:

CONJECTURE 1. FEvery Borsuk continuous map f : B — K(B™) with
values which are one-point sets or sets homeomorphic to the sphere S*

(k fized) has a fized point.

We will denote by * the one-point space. The G.C. is confirmed for
maps f with the rational Cech cohomology group H*(f(z); Q) isomorphic
to H*(x;Q) or to H*(S™ 1, Q) for x € B™ (see [13]). The latter case clearly
implies Conjecture 1 for k = n—1. The proof is based on the fact that the set
f(z) = f(z)Ub(R™\ f(x)) is acyclic, where b(R™\ f(z)) denotes the bounded
component of R™\ f(z). Since Cech homology spheres of codimension greater
than 1 do not separate R™, it is clear that this approach cannot work for
1 <k <n-—2 (). Our purpose is to prove Conjecture 1 for k = n — 2
and n = 3,4,5. A different proof of the n = 3 case was given in [21]. In
Preliminaries we give a brief exposition of some results from [20], which are
basic for this paper.

2. Preliminaries. Let f : B" — K(B™) be an upper-semicontinuous
map. From now on, B = B™ and S = 0B. For any C C B we will denote by
I'c the set {(z,y) € C x B:y € f(z)}, called the graph of f|c. Let F be a
field.

DEFINITION 1 ([20]). The map f is called an F-Brouwer map if the
homomorphism

H,(I'p,T's;F) — H,(B x B,S x B;F)
induced by inclusion is a nonzero homomorphism.
THEOREM 1 [20, Lemma 1]. Every F-Brouwer map has a fized point.

Let f satisfy the hypotheses of Conjecture 1 and define U = {x € B :
f(x) = S*}. By the Chapman-Ferry-Jakobsche results on approximating
homotopy equivalences by homeomorphisms [9, Theorem 3], [2, a-approx-
imation theorem], [16], [17] for k # 4 (3), f|v is continuous with respect to
the distance g, which is defined similarly to d., but the infimum is taken
over all homeomorphisms g from X onto Y. This continuity implies that the
projection p : I'y — U is a completely regular mapping [6]. Consequently, p
is a locally trivial bundle with fibre S* (see [6]; cf. also [3, Theorem, p. 131]
and [7, Corollary 1.1, p. 63)).

(?) Though S° is not connected, Conjecture 1 holds for k& = 0. In this case f may be
identified with a continuous mapping into the second symmetric product of its domain.
The fixed point theory of such mappings is developed in [25], [26], [22]. In spite of these
results the G.C. cannot be extended to maps with disconnected values [18].

(3) The author does not know if the a-approximation theorem holds in dimension 4.
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DEFINITION 2. We say that an (n — 1)-dimensional topological mani-
fold N e-approximates OU in U if there exists a compact n-dimensional
topological manifold K with boundary such that K is a subcomplex of a
simplicial decomposition of B, 0K = N and U D K D U \ O.(9U), where
O:(0U) = {x € U : dist(z,0U) < e}.

We begin with a triangulation of the interior of B with mesh < /2.
Then let K’ be the union of all simplices intersecting U \ O (0U) and let K
be a small regular neighbourhood of K. It is clear that K e-approximates
OU in U. We can now rephrase [20, Theorem 1] as follows:

THEOREM 2. Suppose that:

1. f: B— K(B) is a Borsuk continuous map,

2. f is singlevalued on B\ U and takes values homeomorphic to S on
U, k#4,

3.U CInt B (%),

4. For every € > 0 there exists a manifold N which e-approrimates OU
i U and satisfies the inequality

dlmHk(FM, Zg) > dlmHk<M,ZQ)
for all components M of N.
Then f is a Zo-Brouwer map.

This theorem follows directly from [20, proof of Theorem 1] and gener-
alizations of [15, 3.4.3, 3.4.6] to TOP(S*)-bundles, where TOP(S*) denotes
the group of all homeomorphisms S* — S*.

3. A conjecture on homology of sphere bundles. It is of interest
to know when assumption 4 of Theorem 2 is satisfied. Since the projection
from Iy onto U is a locally trivial bundle with fibre S*, so is p: Iy — M.
In fact, p may be considered as a bundle with structural group TOP(S*).
Moreover, the diagram

EC“—— M xR"

(%) l l

M:M

commutes for £ = I'j;. In Section 6 we will prove the following

(*) If f is not singlevalued on S, we extend it to 2B taking f(z) = (2—||z||) f(||lz|| " =)
for 1 < ||z|| < 2. Of course, f is singlevalued on 25. Moreover, by [20, proof of Statement 6],

if f is a Zo-Brouwer map, so is f. It would be nice to have Theorem 2 without the third
assumption. Unfortunately, the author does not know if the fourth hypothesis for f implies
the same for f.
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THEOREM 3. Let M C R™ be a compact connected (n — 1)-dimensional
topological manifold without boundary, n > 3. Let p : E — M be a bundle
with fibre S"2 and structural group O(n — 1) such that the diagram (f)
commutes. Then

dim Hn_Q(E; ZQ) > dim Hn_Q(M; Zg)

REMARK 1. It suffices to assume in Theorem 3 that the structural group
reduces to O(n — 1).

Recall that the structural group G reduces to the subgroup H if every
bundle p : E — M with structural group G is G-equivalent to a bundle p :
E — M with structural group H (in particular, there is a homeomorphism
h: E — E with po h = p). Moreover, if the inclusion O(n — 1) C G is a
homotopy equivalence, then G reduces to O(n — 1) [30, proof of 11.45].

CONJECTURE 2. Theorem 3 remains true with O(n — 1) replaced by
TOP(S™~2).

Fact 1. Conjecture 2 holds for n € {3,4,5}.

Fact 1 follows from the homotopy equivalences O(2) ~ TOP(S!) (see for
instance [20, Fact 2]), O(3) ~ TOP(S?) ([19], see also [28]), O(4) ~ TOP(S?)
[14, p. 606].

4. A fixed point theorem. This section contains the main result of
this paper. According to Fact 1 and Theorem 1-3, we have the following

THEOREM 4. Congecture 1 is true for (k,n) = (1,3),(2,4), (3,5).

The case (k,n) = (1,3) (first proved in [21] using K-theory) has a nice
geometric interpretation: the Brouwer fixed point theorem holds for Borsuk
continuous maps whose values are points or knots. One thing that distin-
guishes the case (k,n) = (1,3) from other cases is the classification of all
1-sphere bundles over 2-manifolds up to weak bundle equivalence [27] (see
also [24], [10]).

5. Preparation for proving Theorem 3

LEMMA 1. Let M C R"™! be an n-dimensional compact connected topo-
logical manifold without boundary, n > 2. Then x"™ = 0 for every x €
HY(M;Zsy). Here 2™ denotes the cup product x" 1 U x.

The situation described in the hypotheses of this lemma is very well
known in the literature. Let us gather some facts before the proof. First,
M C R*""1 U {oo} =2 8™ and S"*1\ M =U UV (U, V connected). The
closures A = U, B =V are ANR’s [5, VIIL.4.8]. By the Alexander duality,
H"™(A;Zso) = H"(B;Z2) =0. Let i : M — A and j : M — B be inclusions.
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The Mayer—Vietoris exact sequence shows that ¢ : H*(A;Zy) S H*(B;Zs) —
H*(M;Zs), ¢(a, 3) = i*a+7* 3, is an isomorphism for 1 < s < n. Moreover:

(1) Sq" "y =0 for every y € H"(M;Z3), 1 <r < n [29, I11.2.3];

(2) i* Sq* aUj*b = i*aUj* Sq' bforalla € H"(A;Zy),b € H" =" (B; Zy)
([29, I11.2.4], see also [29, I1.4, II1.1.4]);

(3) Sq* uk = (%) if dim(u) = 1 [29, 1.2.4].

Proof of Lemma 1. Case 1. Let n # 2™ — 1 for every natural m. Since
0=Sq" "z" = (,”,)z" by (1), (3), it suffices to find r such that (," )
isoddand 1 < n—r <r < n. If n =2t then r = t satisfies the above
conditions. If n = 2t — 1 then t # 2™~ for every m. Thus ¢ = 2i=1 4 4 for
some i > 2 and 1 < j < 27! — 1. It is easy to check that (21,;1) is odd (°)
forevery k =0,1,...,2 —land r =2" — 1l satisfiles l <n—r <r <n.

Case 2. Let n = 2" — 1. Then

n n—1
xn — (Z*a+j*ﬁ)n — Z (Z)Z*ak Uj*ﬁn_k — Zl*ak Uj*ﬂn_k
k=0 k=1
(n—1)/2
_ Z (i*a2p71 Uj*IanQPJrl + i*a2P Uj*ﬁ"*QP)
p=1
(n—1)/2
— Z <Z-*a2pl U j* (n - 2p> /877,*2]74’1 + Z‘* (2p - 1> a2p U j*/@n2p)
1 1
p=1
(n—1)/2
= Y (#a®7'Uuj*Sq BT 4+ Sqt o T U BT =0,
p=1

by (2), which proves the lemma.

We now recall some properties of Stiefel-Whitney classes. The first fact
generalizes the well known Borsuk—Ulam theorem:

Facrt 2. Let E be a compact space, T : E — E a fized point free in-
volution (or equivalently, the generator of a free Zy-action on E), ¢ €
HY(E/T;Zs) the first Stiefel-Whitney class of the 0-sphere bundle ™ : E —
E/T and g : E — R™ a continuous function. Suppose that ¢ # 0. Then
there is x € E such that g(x) = g(Tx).

We give no reference here, because Fact 2 is an immediate consequence of
the naturality of Stiefel-Whitney classes. Now, let p : E — M be a k-sphere
bundle with structural group O(k + 1). The antipodal map of S* induces a

(°) By induction on i, (z + y)?mod 2 = 29 + y? for ¢ = 2¢, so (215) is even for
k=1,...,2° — 1.
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fibre preserving fixed point free involution 7' : E — E, poT = p. We have
a projection ¢ : E/T — M with qom = p (w, ¢ are defined in Fact 2).

Fact 3 [15, 16.2.5]. The group H*(E/T;Z2) is an H*(M;Zs)-module
freely generated by {1,c,...,c*} with the multiplication

H*(M; Zs) x H*(E/T; Z3) 3 (a, B) — aff = ¢" () U B.

Moreover, c*+1 = Zf;l chk+1_j, where w; are the Stiefel-Whitney classes
of the bundle p.

Fact 4 |21, Lemma 1]. Let M be a compact ANR. Then dim Hy(E; Z2)
> dim Hy, (M Zs) if and only if wi41 = 0.

6. Proof of Theorem 3. We begin by extending the diagram (4):
E > M x R* —2>R"

M——M
Suppose that ¢ # 0. From Fact 2 with ¢ = w9 o i, we obtain points
xz and y = T'(z) such that my o i(x) = mg 0i(y). Since m oi(y) = p(y) =
p(x) = m oi(x), it follows that i(x) = i(y) and = = y, which contradicts the
fact that T is fixed point free. Thus ¢" = 0. Fact 3 for £k = n — 2 leads to
= Z;:ll w;jc" 173, Hence

n—1 n—1
O=c"tuc= E wic" I = w "+ E w;c" ™Y
j=1 Jj=2

n—1 n—2
1 i1
= w E 'LUan I+ E wj+1c” J
j=1 j=1

n—2
= (w1 U wn,1)1 + Z(wl Uw; + wj+1)c"_j_1.
j=1
By Fact 3, w1 Uw;j + w41 = 0 for j = 1,...,n — 2. This gives w,_1 =
[w1]"~! = 0, by Lemma 1. Fact 4 completes the proof.

The same proof with Fact 2 applied to g = ma0ioh (h: E — E a bundle
equivalence) yields Remark 1.

5. A counterexample. In this section it is shown that the notion of F-
Brouwer mapping is not suitable for proving Conjecture 1 for (k,n) = (1,4).
It is worth pointing out that our example does have an obvious fixed point.
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THEOREM 5. There is a Borsuk continuous mapping f : B* — K(B%)
with values homeomorphic to * or S, which is an F-Brouwer map for no

field F.

Proof. Part 1. Write x = Ele zie; € R (e;)7_; the standard basis in
R*, R? = span{ey,...,e;} fori < 4,53 the unit sphere in R*, =1 = S3NR?,
E, = span{w,e3,eq4} for z € S', S, = S3N E,. Define ¢, : S? — S,
by ©.(y) = y1z + yoe3 + yzeq for x € St and ¢ : St x S? — R* by
¢(z,y) = 32 + T¢.(y). The map ¢ is an embedding of S* x 5% in R*. Set

K={iz+r Yo,(y): (z,y) € ST x 52, 0<r <1},
Clearly, K = S' x B3. Let ¢ : S3 — 52 be the Hopf fibration. We define
f: B* — K(B*) by the formula
{ fza+rpea(y) =r(l—=r) ¢ '(y) onkK,
f(z)=0 on B*\ K.
Part 2. Suppose, contrary to our claim, that there is a field F' making f

an F-Brouwer map. Set B = B* S = 9B and H,(-) = H,(-; F). Note that
fls = 0. The commutative diagram

Hy(Ip,I's) 2%~ H,(B x B, S x B)
p*l %Tj*
Hy(B,S)=———=Hy(B,9)
with j(z) = (x,0) yields p, # 0. The diagram

Hy(I's,Ts) Hsl's —*> HsI'p
p*l p*l%
Hy(B,S) = H3S ———==F

with the first row exact shows that i, = 0. Let C' = B \ Int(K). Consider
the segment of the Mayer—Vietoris exact sequence:

H4B — H3(8K) — H30@H3K — HgB

Since H3K = H3(S' x B3) = 0 and H3(0K) = H3(S! x S%) = F, we have
HsC = F. Take v € Int(K). Since S is a strong deformation retract of
B\ {v}, the composition

F = H3S 5 HyC — Hs(B\ {v})

of homomorphisms induced by inclusions is an isomorphism. Therefore 7 is
a monomorphism. Now, the equality H3C' = F' shows that 7 is an isomor-
phism. Since I's = S x 0and I'c = C x 0, also 77 : H3l's — Hsl ¢ is an iso-
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morphism. It follows that j; : H3l ¢ — H3I'p is zero, because 0 = i, = jjo7.
Summarizing, we have: j; =0, HsI'c = HsC = F, H3l 9 = H3(0K) = F.

Part 8. Our next goal is to determine the group H3zl . Note that K =
L U N, where

L= {%x—i—r-igom(y) c(z,y) €8T x S%2,0<r< 1/2},

N = {%aH—r&goz(y) c(z,y) €St x 82, 1/2<r< 1}
and LN N = 9(L). For abbreviation, we let

= (%x +r- i(pz(y),r(l — r)z)
for z € ¢~ !(y). The homotopy
Gi(2) = (3o + [t+ (1= )] Louly), [+ (1 — t)r)[1 — £ — (1 — )r]2)
shows that I'yk is a strong deformation retract of I'y. Another homotopy
Hy(2) = (524 tr- Tpa(y), tr(1 — tr)z)

with Ho(£2) = (3z,0) gives I', ~ S*. We also have a homeomorphism
h: Ty — S' x S* which sends (32 + 592 (y), 12) to (z,2) for z € ¢~ (y).
Consider the segment of the Mayer—Vietoris exact sequence:

H3Tpp > Hsl'y @ HsDy 5 Hal'e — HaT oy

Since Holpy, = Ho(S* x 83) = 0, 1 is an epimorphism. Clearly, H3I; =
H3S' = 0. If A = 0 then % is an isomorphism and H3l'x = Hsly =
H3lpi = H3(0K) = F. What is left is to show that A\ = 0 or equivalently,
that the inclusion w : I'y;, — I’y induces the zero homomorphism on Hjz-
groups. This is equivalent to 0 = &, : H3(S' x %) — H3(S! x S?) for
£ =9 toGiowoh™! where Gi(I'y) = I'sg = O(K) x 0 is identified
with O(K) = (S x 8?). It is easy to check that &(z,2) = (z,¢(2)). Thus
¢ = id xq. By the Kiinneth theorem, the diagram

H3(S" x $3)<— @, H;S* ® Hs_;5°

"*l |

H3(S" x S)<— @, H;S* ® Hs_;5>

commutes. The ith component of the direct sum is nonzero only for ¢ = 0
in the first row and only for ¢ = 1 in the second row of the above diagram.
Hence &, = 0.
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Part 4. Consider the segment of the Mayer—Vietoris exact sequence:

H3F8K—Q>H3FC@H3FKL>H3FB

F F?
where a(z) = (i1, i22) and [(z,y) = j2y — j1x = joy (see Part 2). Since iy
is a composition

HsTyx — Hsly gH:aFK,

io is an isomorphism (see Part 3). Now, dimima = 1 = dimker 8. Thus
dimim jo = dimim 8 = 2 —dimker 5 = 1. But 0 = o« = js 0iy. Therefore
Jj2 = 0, a contradiction.
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