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Abstract. We discuss various conjectures and problems around the issue of when
and whether stable formulas are responsible for forking in simple theories. We prove that
if the simple theory T has strong stable forking then any complete type is a nonforking
extension of a complete type which is axiomatized by instances of stable formulas. We
also give another treatment of the first author’s result which identifies canonical bases in
supersimple theories.

1. Introduction and preliminaries. In the past few years various
conjectures have been made concerning the relationship between simple the-
ories and stable theories. The general thrust is that in a simple theory T
forking should be accounted for by some kind of “stable fragment” of T .
These issues were raised in discussions between Hart, Kim and Pillay in the
Fields Institute in the autumn of 1996, but it is quite likely that others have
also formulated such problems. The purpose of this paper is to clarify some
of these questions and conjectures as well as to prove some relations between
them. The theory of local stability, namely the study of φ(x, y)-types where
φ(x, y) is a stable formula, will play an important role.

The present paper is closely related to the first author’s paper [5], where
some positive results are obtained for supersimple theories and simple 1-
based theories. One of the properties we will consider is “stable forking”;
if a type p(x) ∈ S(M) forks over a subset A of M then this should be
witnessed by an instance of a stable formula. All known simple theories
have this property, and the “stable forking conjecture” says that all simple
theories have this property. We introduce another property, strong stable
forking: if p(x) ∈ S(B) forks over a set A, where A is not necessarily con-
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tained in B, then this is witnessed by an instance of a stable formula in p.
We show that if T has strong stable forking, then up to nonforking, any
complete type is axiomatized by instances of stable formulas (generalizing
a result from [5]). We point out that pseudofinite fields do not have strong
stable forking. In Section 3 we introduce the notions of canonical formulas
and p-stable formulas, and with this notation we give a fast account of one
of the main results from [5].

Thanks to Zoe Chatzidakis for some helpful comments, and to Ludomir
Newelski for pointing out some errors in an earlier draft.

Throughout, T will denote a complete theory in a language L, and M
will be a big saturated model of T in which we shall work. In fact, we will
work in M

eq
and Leq. By x, y, . . . we will denote (finite) tuples of variables,

or equivalently single variables from Leq, unless we say otherwise. Similarly
A,B, . . . will denote (small) subsets of M

eq
unless we say otherwise. In fact

sometimes we will want to talk of hyperimaginary parameters and we will
make this explicit. Forking is defined as usual: a formula φ(x, b) divides over
A if there is an A-indiscernible sequence (bi : i ∈ ω) of realizations of tp(b/A)
such that {φ(x, bi) : i < ω} is inconsistent, and a partial type Σ(x) forks
over A if Σ(x) implies a finite disjunction of formulas each of which divides
over A.

We will be talking at various times about complete types p(x) being
axiomatized by certain partial types Σ(x). By this we mean that Σ(x) and
p(x) have the same set of realizations. If p(x) ∈ S(A), then Σ(x) may or
may not consist of formulas over A (with parameters from A). In [2] we
made sense out of tp(a/e) where e is a hyperimaginary, as a nonuniquely
defined partial type whose set of realizations is precisely the orbit of a under
Aute(M). Again we will say that Σ(x) axiomatizes tp(a/e) if both partial
types have the same set of realizations. The situation when Σ(x) can be
chosen to consist of formulas which are over e (namely, invariant under
Aute(M) or with canonical parameter in M

eq
in dcl(e)) is interesting: for

example, if for every hyperimaginary e and tuple a from M
eq

, tp(a/e) can
be axiomatized by a set of formulas over e, then T has elimination of hy-
perimaginaries.

We assume acquaintance with the basic results and machinery concern-
ing stable theories ([8]) and simple theories ([4], [6] and [2]). In particular,
we assume knowledge of the ranks R(−, φ, ω) (from [9]). However, so as to
fix notation we recall some things. In particular, the treatment of “local
stability” theory comes from Chapter 1 of [8]: we are situated in a saturated
structure M , φ(x, y) is a stable formula, and we are concerned with com-
plete φ-types and their nonforking (or forking) extensions, where forking is
meant in the sense of the ambient structure M .
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Definition 1.1. We call an L-formula φ(x, y) stable if φ(x, y) does not
have the order property in M , namely there do not exist ai, bi for i < ω such
that |= φ(ai, bj) iff i < j.

Definition 1.2. Let φ(x, y) be an L-formula. By an instance of φ we
mean a formula φ(x, b) for some b ∈ M . By a complete φ(x, y)-type over
a set A we mean a maximal consistent set of formulas ψ(x) which have
parameters from A and are equivalent to finite Boolean combinations of
instances of φ(x, y). We let tpφ(a/A) denote the (complete) φ-type of a
over A.

Remark 1.3. Suppose that ψ(x, b) is equivalent to a Boolean combina-
tion of instances of stable formulas φi(x, yi). Then for some χ(z) ∈ tp(b/∅),
the formula ψ(x, z) ∧ χ(z) is stable.

Fact 1.4. Let φ(x, y) be stable and let p(x) be a complete φ-type over a
model M . Then:

(i) p is definable (i.e. there is a formula ψ(y) over M such that for all
b ∈M , |= ψ(b) iff φ(x, b) ∈ p(x)). We call ψ(y) the φ-definition of p.

(ii) Let c be a canonical parameter for the φ-definition of p. Then p(x)
does not fork over c. Moreover , for any model N containing c, p|c has a
unique nonforking extension to a complete φ-type q(x) over N , and the φ-
definition of such a q is the same as the φ-definition of p.

(iii) Let c be as in (ii), and A ⊂ M . Then p does not fork over A iff
c ∈ acl(A).

Remark 1.5. Let p(x), φ(x, y) and c be as in Fact 1.4. We call c the
canonical base of p.

Fact 1.6. Let φ(x, y) be stable. Let p(x) ⊆ q(x) be complete φ-types
over A ⊆ B respectively. Then q does not fork over A iff R(q, φ(x, y), ω) =
R(p, φ(x, y), ω). Moreover , mult(p, φ, ω) = 1 iff p is stationary (for each
C ⊇ A, p has a unique nonforking extension to a complete φ(x, y)-type
over C).

We now review the theory of canonical bases in simple theories. Let us
now assume T to be simple. Let e be a hyperimaginary and p(x) ∈ S(e).
We call p(x) an amalgamation base if whenever p1, p2 are nonforking ex-
tensions of p over hyperimaginaries d, f where e ∈ dcl(d) ∩ dcl(f) and d is
independent of f over e, then p1(x) ∪ p2(x) does not fork over e. Any com-
plete type over a model is an amalgamation base, as well as a complete type
over a bounded-closed set (of hyperimaginaries). For an amalgamation base
p(x) ∈ S(e), the class Pp of complete types over M is defined inductively
by: any nonforking extension of p(x) to a complete type q(x) ∈ S(M) is
in Pp. Suppose q ∈ Pp, q does not fork over b and q|b is an amalgamation
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base. Then any nonforking extension of q|b (to a complete type over M) is
in Pp.

Fact 1.7. Let p(x) ∈ S(e) be an amalgamation base.

(i) There is a hyperimaginary e′ such that any automorphism f of M
fixes e′ iff it fixes Pp setwise. This e′ is called the canonical base of p, Cb(p),
and is unique up to interdefinability.

(ii) Let e′ = Cb(p). Then e′ ∈ dcl(e). For any f ∈ dcl(e), p does not fork
over f if and only if e′ ∈ bdd(f).

We point out the coherence of the two notions of canonical base (simple
theories and local stability).

Remark 1.8. Suppose p(x) ∈ S(e) is an amalgamation base. Let φ(x, y)
be a stable formula. Then all q(x) ∈ Pp have the same φ(x, y)-type. (Namely,
if qi ∈ Pp for i = 1, 2 then q1|φ(x, y) = q2|φ(x, y).) If c is the canonical base
for this complete φ(x, y)-type over M , then c ∈ dcl(Cb(p)).

2. Stable forking and strong stable forking. In this section, T will
be a simple theory. Again, A,B, . . . will be (small) subsets of M

eq
unless

otherwise stated.

Definition 2.1. (i) We say that T has stable forking if whenever q(x) ∈
S(M) is a complete type over a model M , A ⊆ M and q(x) forks over A
then there is some ψ(x, b) ∈ q(x) such that ψ(x, y) ∈ L is stable, and ψ(x, b)
forks over A.

(ii) We say that T has strong stable forking if whenever q(x) ∈ S(B) and
A is arbitrary (not necessarily contained in B) and q(x) forks over A then
there is some ψ(x, b) ∈ q(x) such that ψ(x, y) is stable and ψ(x, b) forks
over A.

Remark 2.2. (i) Every known example of a simple theory has stable
forking. We will see below that any 1-based simple theory has strong stable
forking, but that pseudofinite fields, for example, do not have strong stable
forking.

(ii) T has strong stable forking iff whenever Σ(x) is a partial type over
a set B which forks over a set A then there is a stable formula ψ(x, y) ∈ L
and b ∈ B such that ψ(x, b) is implied by Σ(x) and ψ(x, b) forks over A.

Proof of (ii). Assume T has strong stable forking. Let Σ(x) be our
partial type over B which forks over A. Then every completion of Σ(x)
over B forks over A. By our assumptions and compactness there is a finite
disjunction of formulas ψi(x, bi), implied by Σ(x), where each bi is in B,
ψi(x, yi) is stable, and each ψi(x, bi) forks over A. By Remark 1.3, we get
the desired conclusion.
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Our first (easy) observation is:

Proposition 2.3. The following are equivalent :

(i) T has stable forking.
(ii) Whenever p(x) is an amalgamation base and C is the set of φ-

definitions of Pp as φ(x, y) ranges over stable formulas, then p(x) does
not fork over C.

Proof. (i)⇒(ii). Assume (i). Let p(x) be an amalgamation base. Let
p′(x) be some nonforking extension of p(x) to a model M . Note that Pp =
Pp′ . Let C be as in (ii). It is enough to show that p′(x) does not fork over
C. Suppose otherwise. So by stable forking there is some stable φ(x, y) ∈ L
and b ∈M such that φ(x, b) ∈ p′(x) and φ(x, b) forks over C. In particular,
p′(x)|φ(x, y) forks over C. By 1.4 the φ(x, y)-definition of p′(x) is not over C,
contradicting the definition of C.

(ii)⇒(i). Assume (ii). Let p(x) ∈ S(M) and suppose p(x) forks over
A ⊆ M . Let C be as in (ii) for p(x). By 1.8, C ⊆ dcl(Cb(p)), and by
our assumption and 1.7, Cb(p) ⊆ bdd(C). By 1.7, Cb(p) is not included in
bdd(A), whereby C is not contained in acl(A). Thus for some stable formula
φ(x, y), the φ-definition of p(x) is not over acl(A). By 1.4, p|φ forks over A,
so some formula ψ(x) ∈ p|φ forks over A. By 1.3, ψ(x) is an instance of a
stable formula. We have proved (i).

Remark 2.4. T has stable forking iff for any A ⊆ B and q(x) ∈ S(B),
if q forks over A then q(x) contains an instance ψ(x, b) of a stable formula
such that ψ(x, b) forks over A.

Proof. Suppose q(x) forks over A. Let M be a model containing B and
let q′(x) ∈ S(M) be a nonforking extension of q(x). So q′(x) forks over A.
Assuming stable forking, there is a stable formula φ(x, y) such that q′|φ
forks over A. But then the restriction of q′|φ to B forks over A, and if this
is witnessed by ψ(x), then ψ(x) is as required.

Proposition 2.5. Suppose T has strong stable forking.

(i) Let p(x) be an amalgamation base over B (where B may consist of
hyperimaginaries). Let C be the set of φ-definitions of Pp as φ(x, y) ranges
over stable formulas. Then (p does not fork over C and) p|C is axiomatized
by instances of stable formulas with parameters in C.

(ii) Let p(x) be a complete type over B (where B may consist of hyper-
imaginaries). Then there is A ⊂ M

eq
such that A ⊆ dcl(B) and p|A is

axiomatized by instances of stable formulas with parameters from A.

Proof. (i) For each stable formula φ(x, y), let ψφ(y, eφ) be a φ(x, y)-
definition of Pp. We may assume that eφ is a canonical parameter for
ψφ(y, eφ). Let e be the infinite tuple consisting of all the eφ (so e is an
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enumeration of C). By Proposition 2.3 (as clearly T has stable forking),
p(x) does not fork over e. Write p|e as p0(x, e) for some complete type
p0(x, z). We will show that p0(x, e) is axiomatized by instances of stable for-
mulas over e. Let p1(x, z) be the set of stable L-formulas in p0(x, z) (namely,
p1(x, z) consists of the set of formulas ψ(x, z′) ∈ p0(x, z) such that z′ is a
finite subtuple of z and ψ(x, z′) is stable).

Claim. p1(x, e) axiomatizes p0(x, e).

Proof. Let a realize p1(x, e). We want to prove that a realizes p0(x, e).
Note that tp(a) = p(x)|∅ (as every formula ψ(x) ∈ p(x)|∅ is stable and hence
in p1(x, z)). Thus p0(a, z) is consistent.

Subclaim (a). p0(a, z) does not fork over e.

Proof. Suppose otherwise. Then some restriction q(a, z0) of p0(a, z) to a
finite subtuple z0 of variables forks over e. By strong stable forking, applied
to q(a, z0) and e, there is a formula χ(a, z0) ∈ q(a, z0) which forks over e and
such that χ(x, z0) is stable. Let e0 be the finite subtuple of e corresponding
to z0. So χ(x, e0) ∈ p0(x, e). But χ(x, e0) is an instance of the stable formula
χ(x, z0), hence χ(x, e0) ∈ p1(x, e) and so |= χ(a, e0). Namely, χ(a, z0) is
satisfiable by a tuple from e, contradicting the fact that χ(a, z0) forks over
e. We have proved Subclaim (a).

By Subclaim (a) we can choose e′ realizing p0(a, z) such that tp(e′/a, e)
does not fork over e. By symmetry,

(∗) tp(a/e, e′) does not fork over e.

Note that tp(e′) = tp(e) so we can write e′ = (e′φ : φ(x, y) stable)

Subclaim (b). e′φ = eφ for all stable φ(x, y).

Proof. Fix a stable formula φ(x, y). Note that tpφ(a/e′φ) is the conjugate
of tpφ(a/eφ) (under an automorphism taking eφ to e′φ), so they have the same
R(−, φ, ω)-rank, n say. By (∗) and the choice of eφ, tpφ(a/e, e′) does not fork
over eφ, so by 1.6, has R(−, φ, ω)-rank n as well. By 1.6 again, tpφ(a/e, e′)
does not fork over e′φ. We have shown that tpφ(a/eφ) and tpφ(a/e′φ) have a
common nonforking extension (to a complete φ-type over a model). By Fact
1.4, ψφ(y, eφ) must be equivalent to ψφ(y, e′φ), and thus eφ = e′φ, as required.

From Subclaim (b) we see that (a, e) realizes p0(x, z), namely a real-
izes p0(x, e). This completes the proof of the Claim and so part (i) of the
proposition.

(ii) Let p(x) ∈ S(B). Let B′ = bdd(B), and p′ an extension of p to a
complete type over B′. Let C be as in part (i). Note that C ⊆ acl(B). Let
C0 ⊆M eq

be the set of codes for (finite) sets of B-conjugates of finite tuples
from C. Then C0 ⊆ dcl(B) ∩ acl(A). For each instance ψ(x) of a stable
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formula in p′|C, let ψ′(x) be the disjunction of the finite set of B-conjugates
of ψ. Then ψ′(x) is an instance of a stable formula and ψ′(x) is over C0. Let
p′′ be the set of all such ψ′(x). We claim that p′′ axiomatizes p′|C0 (= p|C0).
Let d realize p′′. For each ψ(x, c) ∈ p′|C there is an elementary permutation
σ of acl(B) over B such that ψ(d, σ(c)) holds. A König’s Lemma argument
shows that we may assume all these σ to be the same, and thus σ−1(d)
realizes p′|C. But C0 is contained in dcl(B) and so tp(d/C0) = p′|C0 = p|C0.
Note that p′ and thus p does not fork over C0. This proves (ii).

Remark 2.6. (i) A theory is stable if and only if every complete type
over any set A of parameters is axiomatized by instances of stable formulas
over A.

(ii) In the light of (i), we can think of the conclusion of Proposition 2.5
as saying that T is stable up to nonforking.

Proof of (i). Suppose the right hand side condition holds. Let φ(x, y) be
an arbitrary L-formula. If φ(x, y) is unstable, we can find an indiscernible
sequence ((ai, bi) : i < ω) such that |= φ(ai, bj) iff i < j. Let p(x, y) =
tp(a0, b1). Now p(x, b1) is by assumption axiomatized by stable formulas
over b1. Thus there is some stable ψ(x, y) ∈ L such that

(a) |= ψ(x, b1)→ φ(x, b1), and
(b) |= ψ(a0, b1).

By indiscernibility and (b), we have |= ψ(ai, bj) whenever i < j.
On the other hand by (a) and the assumptions on ((ai, bi) : i < ω) we

have |= ¬ψ(ai, bj) whenever i ≥ j.
Thus |= ψ(ai, bj) iff i < j, contradicting stability of ψ(x, y).

Remark 2.7. (i) In [5] it was shown that 1-based theories which admit
elimination of hyperimaginaries satisfy the conclusion of Proposition 2.5.

(ii) Does the converse to Proposition 2.5 hold?

Proposition 2.8. Suppose T is 1-based in the following sense: for any
A,B ⊆ M

eq
, A is independent of B over acleq(A) ∩ acleq(B). Then T has

strong stable forking.

Proof. Suppose p(x) ∈ S(B) forks over A (where A need not be a subset
of B). We want to show that there is an instance of a stable formula in p
which forks over A. We may clearly assume B to be algebraically closed. Let
c realise p(x). Let C = acleq(c) ∩ B. So p(x) does not fork over C. On the
other hand, p(x)|C = tp(c/C) is clearly axiomatized by instances (over C)
of stable formulas φ(x, y) which imply y ∈ acl(x). So it is enough to prove:

Claim. p(x)|C forks over A.

Proof. Otherwise there is c′ realizing p(x)|C such that c′ is independent
of C over A. As C ⊆ acl(c′), it follows that C ⊆ acl(A). But then, any
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nonforking extension of p(x) over B ∪ A does not fork over C so does not
fork over A, contradicting our hypothesis.

Note that by 2.3, if T has stable forking, p(x) is an amalgamation base,
and C is the set of φ-definitions for Pp as φ(x, y) ranges over stable for-
mulas, then C ⊆ dcl(Cb(p)) and Cb(p) ⊆ bdd(C). The question is left
open regarding whether dcl(C) = dcl(Cb(p)), even if we assume that Las-
car strong types and strong types coincide over sets in M

eq
. In a similar

vein, if T in addition has strong stable forking, is p|Cb(p) axiomatized by
instances of stable formulas? As pointed out in [5] this is the case for T
1-based.

We finish this section with an example which does not have strong stable
forking.

Remark 2.9. Let T be (any completion of) the theory of pseudofinite
fields. Then T does not satisfy the conclusion of 2.5. In particular, T does
not have strong stable forking.

Sketch proof. Work in a saturated model K of T . We will assume char(K)
6= 2. Let a be (a canonical parameter for) a “generic” plane in K3 (mean-
ing precisely that a is a generic 3-tuple (a1, a2, a3) and the plane we are
considering is defined by z = a1x + a2y + a3 say). Let b be a canonical
parameter for a generic line on a, and let c = (c1, c2, c3) be a generic (over
a, b) point on b. Let p(x, a) = tp(c/a) and q(x, b) = tp(c/b). This choice can
be made so that c1 − a1 is a square. Using properties of pseudofinite fields,
we can construct an indiscernible sequence (ci, ai) in tp(c, a) such that the
planes ci intersect in b and are independent and indiscernible over b, each
ci realizes q(x, b), ci realizes p(x, aj) if i ≤ j and for i > j, c1

i − a1
j is not a

square.
This shows that p(x, a) cannot be axiomatized by instances of stable

formulas. Note that if A ⊂ dcl(a) is such that p(x, a) does not fork over A
then A = dcl(a), so the conclusion of 2.5 does not hold.

3. Canonical formulas and supersimple theories. The previous
conventions remain in place. We introduce another property “T has canoni-
cal formulas”. We show it is a consequence of “stable forking + Lstp = stp”.
We also discuss the connection with “p-stable” formulas. In [5] the first au-
thor showed essentially that supersimple theories have canonical formulas
and we finish the present paper with a fast proof of this.

Definition 3.1. (i) By a canonical type we mean a complete type p(x)
over c such that p(x) is an amalgamation base and c = Cb(p). (So possibly
c is a hyperimaginary.)
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(ii) Let p(x) be an amalgamation base. We call φ(x, c) a canonical for-
mula for p(x) if φ(x, c) is in some q(x) ∈ Pp but whenever φ(x, c′) is a
conjugate of φ(x, c) which is not equivalent to φ(x, c) then φ(x, c′) is in no
q(x) ∈ Pp.

(iii) We say that T has canonical formulas if for every amalgamation
base p(x), Cb(p) is interdefinable with the set of (canonical parameters of)
canonical formulas for p(x).

Remark 3.2. (i) Let p(x) be an amalgamation base, and c = Cb(p). Let
φ(x, d) be any formula. Then φ(x, d) is a canonical formula for p(x) iff [for
all d′ with tp(d′) = tp(d), (p(x)|c)∪{φ(x, d′)} does not fork over c iff φ(x, d′)
is equivalent to φ(x, d)]. Moreover, if φ(x, d) is a canonical formula for p(x)
then φ(x, d) is over c and in p(x)|c.

(ii) Suppose T has canonical formulas. Then any canonical type p(x) is
axiomatized by the set of canonical formulas for p(x). (The converse also
holds.)

Proof. (i) is clear.
(ii) Let p(x) be a canonical type, and let d be the sequence of canonical

parameters for canonical formulas in p. So (by hypothesis) we may assume
that p(x) is over d. Let d′ = (d1, . . . , dn) be a finite tuple from d. Let φi(x, di)
be a canonical formula for p(x) with canonical parameter di. Let ψ(x, d′)
be any formula in p(x)|d′ which implies each φi(x, di) (i = 1, . . . , n). Then
clearly ψ(x, d′) is also a canonical formula for p(x). (If f is an automorphism
of the universe which moves d′ then f moves some di, hence φi(x, f(di))∪p(x)
forks over d, hence ψ(x, f(d′)) ∪ p(x) forks over d.)

Lemma 3.3. Suppose T has stable forking and Lstp = stp over any set
A ⊆M eq

. Then T has canonical formulas.

Proof. Let p(x) be an amalgamation base, without loss of generality over
a saturated model M . Fix a stable L-formula φ(x, y). Let cφ = Cb(p|φ) =
the φ(x, y)-definition of p(x). Let p0 be the restriction of p|φ to cφ. Let n =
R(p|φ, φ(x, y), ω). By 1.6 there is a formula ψ(x)∈p0 withR(ψ(x), φ(x, y), ω)
= n and mult(ψ(x), φ(x, y), ω) = 1. It can be seen that an automorphism
f fixes p(x)|φ iff it fixes ψ(x). Hence ψ(x) is canonical for p(x)|φ so also
for p(x). Moreover, cφ is interdefinable with the canonical parameter for
ψ(x). Let C0 = {cφ : φ(x, y) stable}. By Proposition 2.3, p(x) does not
fork over C0 and by 1.6, C0 ⊆ dcl(Cb(p)). As Lstp = stp over C0, Cb(p)
is interdefinable with the set of all E-classes of a, where a realizes p and
E(x, y) is a C0-definable finite equivalence relation. Let E(x, y, c) be such,
where c is a finite tuple from C0. Let c = (c1, . . . , cr), and by what we saw
above let ψi(x) be a formula over ci which is canonical for p(x). Let d be
a canonical parameter for the E-class of a. Let χ(x, c, d) be the formula
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ψ1(x, c1) ∧ . . . ∧ ψr(x, cr) ∧ “d is the E(x, y, c)-class of x”. It is then clear
that χ(x, c, d) is canonical for p(x) and that moreover (c, d) is a canonical
parameter for χ(x, c, d). As Cb(p) is the set of all such (c, d), we have shown
that T has canonical formulas.

We recall another notion from [5], but we change notation slightly.

Definition 3.4. Let p(x) be an amalgamation base. An L-formula
φ(x, y) is said to be p-stable if all q(x) ∈ Pp have the same complete φ(x, y)-
type.

Remark 3.5. If φ(x, y) is p-stable, then the common φ(x, y)-type of all
q ∈ Pp is definable. If p is already over a model, this is just the φ-definition
of p.

Lemma 3.6. Suppose T has canonical formulas. Then for any amalga-
mation base p(x), Cb(p) is the set of φ(x, y)-definitions of p as φ(x, y)
ranges over p-stable formulas.

Proof. Let φ(x, c) be a canonical formula for p, where c is assumed to
be a canonical parameter for φ(x, c). Let p0 be the restriction of p to its
canonical base. Let r(y) = tp(c). By assumption, if tp(c′) = r(y) and c′ 6= c
then p0(x) ∪ {φ(x, c′)} forks over Cb(p). By compactness, a finite amount
ψ(y) of r(y) is responsible. Let ψ′(x, y) = φ(x, y) ∧ ψ(y). Thus ψ′(x, c) is
the unique instance of ψ′(x, y) which is in some type in Pp. In particular
ψ′(x, y) is p-stable and clearly c is a canonical parameter for the ψ′(x, y)-
definition.

Questions. (1) Suppose that for every amalgamation base p(x), Cb(p)
is the set of φ-definitions of p (φ(x, y) p-stable). Is p|Cb(p) axiomatized by
instances of p-stable formulas?

A stronger version is:

(2) With the same assumptions as (1), does T have canonical formulas?

Finally:

Proposition 3.7. Suppose T is supersimple. Then T has canonical for-
mulas.

Proof. By [1], T has elimination of hyperimaginaries. Let p(x) be a
canonical type. So p(x) is a complete type over a (possibly infinite)
tuple c of imaginaries where c = Cb(p). By supersimplicity, let c0 be a
finite tuple from c such that p does not fork over c0. By 1.7, c ∈ acl(c0). Let
c1 be an arbitrary finite tuple from c which includes c0. We will show that
c1 is a canonical parameter for some canonical formula for p. As a matter of
notation, if c′ is a realization of tp(c), we let c′1 be the finite subtuple of c′

corresponding to c1. Also, we change notation by rewriting p(x) as p(x, c).
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Claim 1. Suppose tp(c′) = tp(c) and c′1 6= c1. Then p(x, c) ∪ p(x, c′)
forks over c.

This is clear from properties of canonical types.
We may apply compactness to Claim 1 to find some L-formula φ(x, y),

some k < ω, some finite tuple c2 from c extending c1 and a formula ψ(x, c2) ∈
p(x, c) satisfying

Claim 2. If tp(c′2) = tp(c2) and c′1 6= c1 then

D(ψ(x, c2) ∧ ψ(x, c′2), φ, k) < n

where n = D(p(x, c), φ, k).

We may clearly assume that D(ψ(x, c2), φ, k) = n.
Note that c2 ∈ acl(c1). Let χ(w, z) be an L-formula such that χ(w, c1)

isolates tp(c2/c1). Let ψ′(x, z) be the formula ∃w(ψ(x,w) ∧ χ(w, z)). So
ψ′(x, c1) is equivalent to a finite disjunction of conjugates of ψ(x, c2). Thus
D(ψ′(x, c1), φ, k) = n and Claim 2 implies

Claim 3. Whenever c′1 6= c1 realizes tp(c1) then

D(ψ′(x, c′1) ∧ ψ′(x, c1), φ, k) < n.

Now ψ′(x, c1) is clearly in p(x) and by Claim 3, it is a canonical for-
mula for p(x) and also c1 is a canonical parameter for ψ′(x, c1). As c1

was an essentially arbitrary finite tuple from c we have proved the proposi-
tion.

Remark 3.8. From 3.7 and 3.2(ii) we see that in a supersimple the-
ory, any canonical type p(x) is axiomatized by canonical formulas for p(x)
(equivalently, by instances of p-stable formulas). By Remark 2.9, these need
not be stable formulas. For example, let p(x, a) be as in the proof of 2.9. As
shown there, the formula φ(x, y): “the point x = (x1, x2, x3) is on the plane
y = (y1, y2, y3), and x1 − y1 is a square”, is in p(x, y) but is unstable. On
the other hand, φ(x, a) is canonical for p.
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