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A Ramsey-style extension of a theorem
of Erd6s and Hajnal
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Abstract. If n, t are natural numbers, p is an infinite cardinal, G is an n-chromatic
graph of cardinality at most pu, then there is a graph X with X — (G),l“ |X| =T, such
that every subgraph of X of cardinality < t¢ is n-colorable.

The Erdos-Hajnal result we would like to generalize states that there
are arbitrarily large chromatic graphs omitting short odd circuits ([1]). We
reformulate this as follows. If u is a cardinal, ¢ is a natural number, then
there exists a graph X with X — (Kg)b such that every subgraph of X on
at most ¢ points is bipartite. Here K> is the one-edge graph and X — (Y)}L
denotes that every vertex coloring of the graph X with p colors admits
a monocolored (but not necessarily induced) copy of Y. If we take into
consideration another result of Erdés and Hajnal (also in [1]), namely, that
if X — (K3)L then X contains every finite bipartite graph, we get the
somewhat stronger statement that if K;; is the complete bipartite graph
with bipartition classes of size ¢, then there exists, for every cardinal p and
every finite ¢, a graph X with X — (Kt,t);ll such that all subgraphs of X on
less than ¢ vertices are bipartite. This is the result we want to generalize;
for any natural number n, we take an arbitrary n-chromatic graph in place
of K;; and we require that all subgraphs on less than ¢ vertices should be
n-chromatic. For the proof, we somewhat modify the original Erdés—Hajnal
construction (no surprise), we use another Specker-style graph.

NoTATION. We use the standard set theory notation. If S is a set and
p a cardinal, then [S]* = {X C S : |X| = p}. We write x = {z1,...,2,}<
to denote that we enumerate the elements of x in increasing order.
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THEOREM. Ifn, t are natural numbers, i is an infinite cardinal, and G
is an n-chromatic graph of cardinality at most p, then there is a graph X
with X — (G)}“ | X| = ut, such that every subgraph of X of cardinality < t
s n-colorable.

Proof. Set a = 2t, b = 2nt + 1. The ground set of the graph X will
be [u1]®, the set of ab-element subsets of u*. We join two elements x =
{z1,.. .,z }< and y = {y1,...,Yap} < if there is some 1 < k < n such that

Tha < That+l < Y1 < Tha+2 < Y2 < ... < ZTab < Y(b—k)a
or the other way round.

Cramm 1. If x={x1,...,xp}< andy = {y1,...,Yap}< are joined and
the interval (o, xat1] of X intersects the interval [yg, yg+1] of y then either
a= L0+ ka, ora=0+ka+ 1, or the other way round.

Proof. Straightforward. m
CLAIM 2. Every subgraph of X with less than t vertices can be n-colored.

Proof. Let H be such a graph. We can assume that H is connected (as
otherwise we can split H into connected components). Then the vertices of
H can be enumerated as {vg,...,v,} (for some s) so that every v; with
i > 0 is joined to some v; with 0 < j < 4. Set v; = {v},...,v},}< and
define ¢ = vgm2+t. For every 0 < i < s let ¢(i) be the largest index for
which vi(z.) < &. Clearly, ¢(0) = 2nt? +t. We claim that there exist numbers
1 <d; <2nt—1 (for 0 <7< s) such that

ad; +t—1i < c(i) < ad; +t+ 1.

In fact, we show by induction on i that there exists such a d; with |d; —nt| <
in. For i = 0, dyg = nt does the job. By induction, if we have the statement
up to and including 4, then using Claim 1, we find that for some 0 < j < ¢,
c(i + 1) assumes the value ¢(j) + ka, or ¢(j) + ka + 1, or ¢(j) — ka, or
c(j) — ka — 1 for some 1 < k < n. Then we can choose d;+1 = d; £ k.

We now show that f(v;) = d; (modn) is a good coloring of H. Assume
that f(v;) = f(v;) and they are joined. Again, by Claim 1, for some 1 <
k <mn, c(i) = c(j) + ka, or ¢(i) = ¢(j) + ka + 1 (or vice versa). From this,
we get |a(d; —dj — k)| <2t —1, so d; = dj + k, and so they do not get the
same color. m

CLamm 3. X — (G),,.

Proof. Assume that we are given a coloring F : [u"]® — p of the ground
set. We are going to show that for some color 7 < p the complete n-partite
graph K, . ., with color classes of cardinality p, is embeddable into the
subgraph of those vertices which get color 7.
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We define the formulas ¢f), ¢7(z1), ..., ¢l (z1,...,2;) for all i < ab as
follows. @7, (1, ..., %q) denotes that 1 < ... < xqp and F(x1,...,Tq) = T.
If 7, is defined, we let ©] (1, ..., ;) stand for

El*y 90;—4-1(331) <oy Tgy y)

where the quantifier 3*y reads “there exist u* elements y such that ...”.
SUBCLAIM. There is a 7 < p such that g holds.

Proof. Assume, for a contradiction, that ¢ is false for every 7 < p.
Spelled out, this means that, for every 7 < u there is a bound «a.; such that
] (x1) is false for x > a,. There is a common bound for all these bounds,
so there is an x; for which every ¢](x;) is false. Fix such an z; and proceed.
We can find an x2 > z1 such that @3 (21, x2) is false for every 7 < p. Fix such
an xo, and continue. Eventually we get a sequence {x1, ..., z4 }< such that
F(x1,...,xq) = 7 is false for every 7 < pu, which is clearly impossible. =

For the rest of the proof fix 7 < i as in the Subclaim. Using induction we

can find an increasing sequence of ordinals 0 = Jp < §1 < ... < 0, (r < w)
such that if i < ab, r <w, 1 < ... <z <6y, and @] (x1,...,x;) holds then
there are p ordinals 6, < y < 6,41 such that ] (21,...,2;,y) is true. That

is, there are p elements x; < 01 for which ¢](x1) holds, for each such z;

there are p elements d; < xg < 07 for which ¢3(x1,x2) holds, and so forth.

(In fact, we could easily continue for u™ steps, but we will not need it.)
For1<i<n, 1<j<0b,1<m<awelet

A;m = [5r75r+1)
where
r=0G+j)(n+1)(a+1)+mn+1)+1,

i.e., the pairwise disjoint sets Aém are ordered by (i+7) first, then according

to the value of m, and finally by . In this order, we select from each of these
sets pu elements: 2™ € A% (a < p) in such a way that

11 ilo e i1 .2 1 ,
Cl—Datm(Ta T > TG 3Ty 53Tl ree T o Ty )
holds. This can be done by the selection of the ¢’s and the way the A;k’s

ijm

were ordered. Finally, put x{, = {zd™:1<j<b, 1 <m<a}.

Now consider 1 <ig < i1 <n, say i1 = i9 + k. The relative order of the
sets in the families {A;Sn :1<j<b 1<m<a}and {A;ﬁn 1 <5<
b, 1 < m < a} will be the following (we replace superscript 9 by a prime
and superscript i; by two primes):

Ay <Al <. < Aj, <Ay < <A

<A <A <A <.,
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i.e., they are in one of the interlacing positions we defined connectivity in
X. From this we conclude that if 1 < i <11 < n, o, 3 < p, then xp? and
xfgl are joined, so the vertices {x}, : 1 < i < mn, o < p} give a K, _,, in
color 7. m
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