Categoricity of theories in $L_{\kappa^{*}, \omega}$, when κ^{*} is a measurable cardinal. Part 2

by
Saharon Shelah (Jerusalem and New Brunswick, NJ)

Abstract

We continue the work of [2] and prove that for λ successor, a λ-categorical theory \mathbf{T} in $L_{\kappa^{*}, \omega}$ is μ-categorical for every $\mu \leq \lambda$ which is above the $\left(2^{\mathrm{LS}(\mathbf{T})}\right)^{+}$-beth cardinal.

0. Introduction. We deal here with the categoricity spectrum of theories \mathbf{T} in the logic $L_{\kappa^{*}, \omega}$ with κ^{*} measurable and more generally, continue the attempts to develop a classification theory of non-elementary classes, in particular non-forking. Makkai and Shelah [3] dealt with the case of κ^{*} a compact cardinal. So κ^{*} measurable is too high compared with the hope of dealing with $\mathbf{T} \subseteq L_{\omega_{1}, \omega}$ (or any $L_{\kappa, \omega}$) but seems quite small compared to the compact cardinal in [3]. Model-theoretically a compact cardinal ensures many cases of amalgamation, whereas a measurable cardinal ensures no maximal model. We continue [13], Makkai and Shelah [3], Kolman and Shelah [2]; try to imitate [3]; a parallel line of research is [16]. Earlier works are [8], [10], [11]; for later works on the upward Łoś conjecture, look at [5] and [4].

On the situation generally see more in [5].
This paper continues the tasks begun in Kolman and Shelah [2]. We use the results obtained therein to advance our knowledge of the categoricity spectrum of theories in $L_{\kappa^{*}, \omega}$ when κ^{*} is a measurable cardinal.

The main theorems are proved in Section 3; Section 1 treats types and Section 2 describes some constructions.

Note that we may expect to be able to develop a better, more informative classification theory, in particular stability theory, for $\mathbf{T} \subseteq L_{\kappa^{*}, \omega}$

[^0]with κ^{*} measurable than without the measurablility assumption, and less informative than in the case of κ^{*} compact.

The notation follows [2], except in two important details: we reserve κ^{*} for a fixed measurable cardinal and \mathbf{T} for a fixed λ-categorical theory in $L_{\kappa^{*}, \omega}$ in a given vocabulary $L ; \kappa$ is any infinite cardinal and T is usually some kind of tree. To recap briefly: \mathbf{T} is a λ-categorical theory in $L_{\kappa^{*}, \omega}$, $\operatorname{LS}(\mathbf{T}):=\kappa^{*}+|\mathbf{T}|, \mathcal{K}=\langle K, \preceq \mathcal{F}\rangle$ is the class of models of \mathbf{T}, where \mathcal{F} is a fragment of $L_{\kappa^{*}, \omega}$ satisfying $\mathbf{T} \subseteq \mathcal{F}$ and $|\mathcal{F}| \leq \kappa^{*}+|\mathbf{T}|$, and for $M, N \in K$, $M \preceq_{\mathcal{F}} N$ means that M is an \mathcal{F}-elementary submodel of N. We take the minimal such \mathcal{F} so \mathbf{T} determines \mathcal{F}.

The principal relevant results from [2] are: $\mathcal{K}_{<\lambda}$ has the amalgamation property (5.5 there), and every member of $K_{<\lambda}$ is nice (5.4 there). But this assumption (\mathbf{T} categorical in λ) or its consequences mentioned above will be mentioned in theorems when used.

Let $\left(M_{1}, M_{0}\right) \preceq_{\mathcal{F}}\left(M_{3}, M_{2}\right)$ mean $M_{1} \preceq_{\mathcal{F}} M_{3}$ and $M_{0} \preceq_{\mathcal{F}} M_{2}$.
$\left(I_{1}, I_{2}\right)$ is a Dedekind cut of a linear order I if

$$
I=I_{1} \cup I_{2}, \quad I_{1} \cap I_{2}=\emptyset, \quad\left(\forall x \in I_{1}\right)\left(\forall y \in I_{2}\right)(x<y) .
$$

The two-sided cofinality of the Dedekind cut $\left(I_{1}, I_{2}\right)$ of $I, \operatorname{cf}\left(I_{1}, I_{2}\right)$, is $\left(\operatorname{cf}\left(I_{1}\right)\right.$, $\left.\operatorname{cf}\left(I_{2}^{*}\right)\right)$, where I_{2}^{*} is the order I_{2} inverted. The two-sided cofinality of I, $\operatorname{cf}(I, I)=\operatorname{dcf}(I)$, is $\left(\operatorname{cf}\left(I^{*}\right), \operatorname{cf}(I)\right)$.

Writing proofs we also consider their possible role in the hopeful classification theory. But we have always been trying to be careful in stating the assumptions.

Note that [2] improves some of the results of [3]; but they do not fully recapture the results on the compact case to the measurable case. E.g. there categoricity in successor λ implies that categoricity starts at the relevant Hanf number of omitting types so in general we deduce categoricity in larger cardinals. For a good understanding of this work, the reader is expected to know well [2]. Now it will be helpful for the reader to beware of some "black boxes" [6] (or [13] for less good source) and to have some knowledge of [5] or [3] but usually proofs are repeated.

We thank Oren Kolman for writing and ordering notes from lectures on the subject from Spring 1990 on which the paper is based (you can see his style in the parts with good language) and Andres Villaveces for corrections.

1. Knowing the right types. The classical notion of type relates to the satisfaction of sets of formulas in a model. We shall define a post-classical type (following [13], [7] which was followed by Makkai and Shelah [3], or see [$5, \S 0]$, but here niceness is involved) and use this to define notions of freeness and non-forking appropriate in the context of a λ-categorical theory in $L_{\kappa^{*}, \omega}$.

The definitions try to locate a notion which under the circumstances behaves as in [14] and, if you accept some inevitable limitations, succeed.

Context 1.1. $\mathbf{T} \subseteq L_{\kappa^{*}, \omega}$ in the vocabulary $L, K=\{M: M$ a model of $\mathbf{T}\}, \preceq_{\mathcal{F}}$ as in the introduction.
$K_{\mu}=\{M \in K:\|M\|=\mu\}, K_{<\kappa}=\bigcup_{\mu<\kappa} K_{\mu}, \mathcal{K}=\left(K, \preceq_{\mathcal{F}}\right)$, and we stipulate $K_{<\kappa^{*}}=\emptyset$, hence, e.g., $K_{<\kappa}=\bigcup\left\{K_{\mu}: \mu<\kappa\right.$ but $\left.\mu \geq \kappa^{*}\right\}$. (Why? Models of cardinality $<\kappa^{*}$ are the parallel of finite ones for first order logic: such models may have no $\prec_{L_{\kappa^{*}, \omega}}$ proper extensions, and using our main tool, ultrapowers, we can say little on them. So instead of excluding them many times, we ignore them always.) We let $\operatorname{LS}(\mathcal{K})=|\mathcal{F}|+\kappa^{*}$.

We assume that if $A \subseteq N \in K,\|N\| \geq \lambda$, and $\mu=|A| \in\left[\kappa^{*}+|\mathbf{T}|, \lambda\right)$, then for some nice $N \in K_{\mu}, A \subseteq M \preceq_{\mathcal{F}} N$. This is reasonable as by [2, 5.4, p. 238] every $M \in K_{<\lambda}$ is nice. The reader may simplify assuming every $M \in K_{<\lambda}$ is nice.

Remember " $M \in K$ is nice" is defined in [2], Definitions 3.2, 1.8; nice implies being an amalgamation base in $K_{<\lambda}$ (see [2, 3.5]). Here for simplicity we mean "amalgamation" to include the JEP (the joint embedding property).

Definition 1.2. Suppose that $M \in K_{<\lambda}$ is a nice model of T. Define a binary relation, $E_{M}=E_{M}^{<\lambda}$, as follows: $\left(\bar{a}_{1}, N_{1}\right) E_{M}\left(\bar{a}_{2}, N_{2}\right)$ if and only if for $l=1,2, N_{l} \in K_{<\lambda}$ is nice and $M \preceq_{\mathcal{F}} N_{l}, \bar{a}_{l} \in N_{l}$ (i.e., \bar{a}_{l} a finite sequence of members of N_{l}), and there exist a model N and embeddings h_{l} such that

$$
M \preceq \mathcal{F} N, \quad h_{l}: N_{l} \underset{\mathcal{F}}{ } N, \quad \operatorname{id}_{M}=h_{1} \upharpoonright M=h_{2} \upharpoonright M,
$$

and $h_{1}\left(\bar{a}_{1}\right)=h_{2}\left(\bar{a}_{2}\right)$.
REmark. This definition, in fact a generalization for amalgamation bases and more general, are important in [13], [5], [4], but here we restrict ourselves to nice models.

FACT 1.3. (1) E_{M} is an equivalence relation.
(2) Let $M \in K_{<\lambda}$ be nice, $M \preceq_{\mathcal{F}} N, \bar{a} \in N$, and for $l=1,2, M \cup \bar{a} \subseteq$ $N_{l} \preceq \mathcal{F} N, N_{l}$ nice and $\left\|N_{l}\right\|<\lambda$. Then $\left(\bar{a}, N_{1}\right) E_{M}\left(\bar{a}, N_{2}\right)$.
(3) E_{M} is preserved by isomorphism.

Proof. (1) Let us look at transitivity. Suppose $\left(\bar{a}_{l}, N_{l}\right) E_{M}\left(\bar{a}_{l+1}, N_{l+1}\right)$, $l=1,2$. Now M, being nice, is an amalgamation base in $K_{<\lambda}$, thus there are models N^{l} and embeddings h_{0}^{l}, h_{1}^{l} of N_{l}, N_{l+1} over M into N^{l}, with $h_{0}^{l}\left(\bar{a}_{l}\right)=h_{1}^{l}\left(\bar{a}_{l+1}\right), l=1,2$. Without loss of generality, $N^{l} \in K_{<\lambda}$ (by the Downward Loewenheim-Skolem Theorem). By assumption N_{2} is nice, hence by $[2,3.5]$ it is an amalgamation base for $\mathcal{K}_{<\lambda}$, i.e., there is an amalgam $N^{*} \in K_{<\lambda}$ and embeddings $g_{l}: N^{l} \xrightarrow{\mathcal{F}} N^{*}$, amalgamating N^{1}, N^{2} over N^{2} with respect to h_{1}^{1}, h_{0}^{2}. In other words, the following diagram commutes:

Now just notice that $N^{*}, g_{1} h_{0}^{1}, g_{2} h_{1}^{2}$ witness that $\left(\bar{a}_{1}, N_{1}\right) E_{M}\left(\bar{a}_{3}, N_{3}\right)$, since

$$
g_{1} h_{0}^{1}\left(\bar{a}_{1}\right)=g_{1}\left(h_{1}^{1}\left(\bar{a}_{2}\right)\right)=g_{2} h_{0}^{2}\left(\bar{a}_{2}\right)=g_{2} h_{1}^{2}\left(\bar{a}_{3}\right)
$$

(2), (3) Left to the reader.

Definition 1.4. Suppose that $M, N \in K_{<\lambda}$ are nice, $a \in N$ and $M \preceq_{\mathcal{F}} N$.
(1) $p:=\operatorname{tp}(a, M, N)$, the type of a over M in N, is the E_{M}-equivalence class of (a, N),

$$
(a, N) / E_{M}=\left\{\left(b, N^{1}\right):(a, N) E_{M}\left(b, N^{1}\right)\right\}
$$

We also say " $a \in N$ realizes p ". If $\|N\| \geq \lambda$ define $\operatorname{tp}(\bar{a}, M, N)$ by $1.3(2)$ (using the hypothesis).
(2) If $M^{\prime} \preceq_{\mathcal{F}} M \in K_{<\lambda}$ and $p \in S(M)$ (see below) is $\left(a^{-}, N\right) / E_{M}$, then $p \upharpoonright M^{\prime}=\left(a^{-}, N\right) / E_{M^{\prime}}$; clearly the representation (a, N) does not matter.
(3) If $\mathrm{LS}(\mathbf{T})<\kappa \leq \mu \leq \lambda$, we call $M \in K_{\mu} \kappa$-saturated if for every nice $N \preceq \mathcal{F} M$ with $\|N\|<\kappa$ and $p \in S(N)$, some $\bar{a} \in M$ realizes p (in M so necessarily M is nice) or at least for some nice N^{\prime} with $N \preceq_{\mathcal{F}} N^{\prime} \preceq_{\mathcal{F}} M$, some $a^{\prime} \in N^{\prime}$ realizes p in N^{\prime}.
(4) $S^{m}(N)=\left\{p: p=\operatorname{tp}\left(\bar{a}, N, N_{1}\right)\right.$ for any nice N_{1} and \bar{a} satisfying $N \preceq \mathcal{F} N_{1}$ and $\left\|N_{1}\right\| \leq\|N\|+\operatorname{LS}(\mathcal{K})$ and $\left.\bar{a} \in{ }^{m}\left(N_{1}\right)\right\}$ and

$$
S(N)=S^{<\omega}(N)=\bigcup_{m<\omega} S^{m}(N)
$$

(5) \mathbf{T} is μ-stable if $N \in K_{\leq \mu} \Rightarrow|S(N)| \leq \mu$.
(6) We say N is μ-universal over M when $M \preceq_{\mathcal{F}} N, N \in K_{\mu}$ and if $M \preceq_{\mathcal{F}} N^{\prime} \in K_{\leq \mu}$ then there is a $\preceq_{\mathcal{F}}$-embedding of N^{\prime} into N over M.
(7) We say N is (μ, κ)-saturated over M if there is a $\preceq \mathcal{F}$-increasing continuous sequence $\left\langle M_{i}: i<\kappa\right\rangle$ such that $M_{0}=M, N=\bigcup_{i<\kappa} M_{i}$, $M_{i} \in K_{\mu}$ and M_{i+1} is μ-universal over M_{i}. We say N is saturated over M if for some $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda)$ and some $\kappa \leq \mu, N$ is (μ, κ)-saturated over M. So (μ, κ)-saturated over M implies universal over M.
(8) We say \mathcal{K} (or \mathbf{T}) is stable in μ if for every $M \in K_{\mu}, M$ is nice and $|S(M)| \leq \mu$.

Definition 1.5. We shall write

$$
\stackrel{M_{3}}{\bigcup_{M}} M_{2}
$$

to mean

$$
M_{0} \preceq_{\mathcal{F}} M_{1} \preceq_{\mathcal{F}} M_{3}, \quad M_{0} \preceq_{\mathcal{F}} M_{2} \preceq_{\mathcal{F}} M_{3}
$$

and there exist a suitable operation (I, D, G) and an embedding

$$
h: M_{3} \xrightarrow{\mathcal{F}} \mathrm{Op}\left(M_{1}, I, D, G\right)
$$

such that $h \upharpoonright M_{1}=\operatorname{id}_{M_{1}}$ and $\operatorname{Rang}\left(h \upharpoonright M_{2}\right) \subseteq \operatorname{Op}\left(M_{0}, I, D, G\right)$ (remember that $\mathrm{Op}(M, I, D, G)$ is the limit ultrapower of M with respect to (I, D, G); see $[2,1.7 .4])$. We say that M_{1}, M_{2} do not fork in M_{3} over M_{0} if

$$
M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2} .
$$

If

$$
M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2}
$$

does not hold, we write

$$
M_{1} \biguplus_{M_{0}}^{M_{3}} M_{2}
$$

and say that M_{1}, M_{2} forks in M_{3} over M_{0}.
Theorem 1.6. (i) Suppose that

$$
M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2} \quad \text { and } \quad M_{2} \biguplus_{M_{0}}^{M_{3}} M_{1}
$$

(failure of \cup-symmetry) and $M_{0} \preceq_{\text {nice }} M_{3}$. Let $\mu=\kappa^{*}+|\mathbf{T}|+\left\|M_{2}\right\|+\left\|M_{1}\right\|$. Then for every linear order $(I,<)$ there exists an Ehrenfeucht-Mostowski model $N=\operatorname{EM}(I, \Phi)$ with μ (individual) constants $\left\{\tau_{i}^{0}: i<\mu\right\}$ and unary function symbols $\left\{\tau_{i}^{1}\left(x_{i}\right): i<\mu\right\},\left\{\tau_{i}^{2}\left(x_{i}\right): i<\mu\right\}$ such that, for $M=$ $(N \upharpoonright L) \upharpoonright\left\{\tau_{i}^{0}: i<\mu\right\}$ (i.e., M is a submodel of N with the same vocabulary as \mathbf{T} and universe $\left\{\tau_{i}^{0}: i<\mu\right\}$, i.e., the set of interpretations of these individual constants) and for every $t \in I, l=1,2$,

$$
M_{t}^{l}=(N \upharpoonright L) \upharpoonright\left\{\tau_{i}^{l}\left(x_{t}\right): i<\mu\right\}
$$

one has $M \preceq_{\mathcal{F}} N, M_{t}^{l} \preceq_{\mathcal{F}} N$ and for $s \neq t \in I, t<s$ iff $M_{t}^{1} \bigcup_{M}^{\bigcup} M_{s}^{2}$.
(2) Assume:
(a) $\mu \geq \mathrm{LS}(\mathbf{T})$ and $M \in K_{\mu}$ is nice,
(b) for $l=1,2, \mathrm{Op}_{l}$ is defined by $\left(I_{l}, D_{l}, G_{l}\right), f_{l, \alpha} \in{ }^{I} M$ for $\alpha<\alpha_{l}$ with $\mathrm{eq}\left(f_{l, \alpha}\right) \in G_{l}$, i.e., such that $\mathrm{eq}\left(f_{l, \alpha)}\right) D \in M_{D}^{I} \mid G$,
(a) for $l=1,2$ we have $M_{0}^{l}=M, M_{1}^{l}=\mathrm{Op}_{l}\left(M_{0}^{l}\right), M_{2}^{l}=\mathrm{Op}_{3-l}\left(M_{1}^{l}\right)$, $a_{\alpha}^{l, 1}=f_{l, \alpha} / D_{1} \in\left(M_{0}^{l}\right)_{D_{l}}^{I_{l}} \mid G_{l}=M_{1}^{l}$ and $a_{\beta}^{l, 2}=f_{3-l, \alpha} / D_{2} \in$ $\left(M_{2}^{l}\right)_{D_{3-l}}^{I_{3-l}} \mid G_{3-l}=M_{2}^{l}$.
Then there are $\Phi, \tau_{i}^{l}\left(l=0, i<\mu\right.$ or $\left.l \in\{1,2\}, i<\alpha_{l}\right)$ such that:
$(\alpha) \Phi$ is a blueprint for E.M. models, $\left|L_{\Phi}\right| \leq \mu$ where L_{Φ} is the vocabulary of Φ so $L \subseteq L_{\Phi}$,
(β) for any linear order $I, \operatorname{EM}(I, \Phi)=\operatorname{EM}_{L}(I, \Phi)$ is the L-reduct of $\mathrm{EM}_{L_{\Phi}}(I, \Phi)$ (an L_{Φ}-model) which is a model of \mathbf{T} of cardinality $\mu+|I|$ and

$$
I \subseteq J \Rightarrow \operatorname{EM}(I, \Phi) \preceq \mathcal{F} \operatorname{EM}(J, \Phi)
$$

$(\gamma) \tau_{i}^{l}$ are unary function symbols in L_{Φ},
($\delta) \operatorname{EM}(\emptyset, \Phi)$ is M,
(ع) for any linear order I and $s<t$ in I we have: the type which
(i) $\left\langle\tau_{\alpha}^{1}\left(x_{s}\right): \alpha<\alpha_{1}\right\rangle^{\wedge}\left\langle\tau_{\beta}^{2}\left(x_{t}\right): \beta<\alpha_{2}\right\rangle$ realizes over M in $\operatorname{EM}(I, \Phi)$ is the same as the type that $\left\langle a_{\alpha}^{1,1}: \alpha<\alpha_{1}\right\rangle^{\wedge}\left\langle a_{\alpha}^{1,2}:\right.$ $\left.\alpha<\alpha_{2}\right\rangle$ realizes over M in M_{2}^{1},
(ii) $\left\langle\tau_{\alpha}^{1}\left(x_{t}\right): \alpha<\alpha_{1}\right\rangle^{\wedge}\left\langle\tau_{\beta}^{2}\left(x_{s}\right): \beta<\alpha_{2}\right\rangle$ realizes over M in $\operatorname{EM}(I, \Phi)$ is the same as the type that $\left\langle a_{\alpha}^{2,2}: \alpha<\alpha_{1}\right\rangle^{\wedge}\left\langle a_{\beta}^{2,1}:\right.$ $\left.\beta<\alpha_{2}\right\rangle$ realizes over M in M_{2}^{2}.

Remark. Note $M_{0} \preceq_{\text {nice }} M_{3}$ is automatic in the interesting case since $M_{0} \in K_{<\lambda}$ and every element of $K_{<\lambda}$ is nice by [2, 5.4]. On the operations see [2].

Proof of Theorem 1.6. (1) Without loss of generality $\left\|M_{3}\right\|=\mu$. Let M_{0}^{+}be an expansion of M_{0} by $\leq \mathrm{LS}(\mathbf{T})$ functions such that M_{0}^{*} has Skolem functions for the formulas in \mathcal{F}. We know that $M_{0} \preceq_{\text {nice }} M_{3}$. So there is M_{3} Op^{1} such that $M_{0} \preceq_{\mathcal{F}} M_{1} \preceq_{\mathcal{F}} \mathrm{Op}^{1}\left(M_{0}\right)$ and as $M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2}$ there is Op^{2} such that $M_{1} \preceq_{\mathcal{F}} M_{3} \preceq_{\mathcal{F}} \mathrm{Op}^{2}\left(M_{1}\right)$ and $M_{2} \preceq_{\mathcal{F}} \mathrm{Op}^{2}\left(M_{0}\right)$. Let $\mathrm{Op}=\mathrm{Op}^{2} \circ \mathrm{Op}^{1}$. For each $t \in I$, let $\mathrm{Op}_{t}=\mathrm{Op}$. Let N be the iterated ultrapower of M_{0} with respect to $\left\langle\mathrm{Op}_{t}: t \in I\right\rangle$. For each $t \in I$, there is a canonical \mathcal{F}-elementary embedding $F_{t}: \mathrm{Op}_{t}\left(M_{0}\right) \xrightarrow{\mathcal{F}} N$. Let $M=M_{0}$ and $M_{t}^{l}=F_{t}\left(M_{l}\right)$ for $l=1,2$, $t \in I$.

For each $t<s$, we can let $M_{s}^{+}=\left\langle\mathrm{Op}_{v}: v<s\right\rangle\left(M_{0}\right)$, so $M_{0} \preceq \mathcal{F}$ $M_{t}^{+} \preceq_{\mathcal{F}} M_{s}^{+} \preceq_{\mathcal{F}} \operatorname{Op}^{1}\left(M_{s}^{+}\right)$and we can extend $F_{t} \upharpoonright M_{1}$ to an embedding of $\mathrm{Op}^{2}\left(M_{1}\right)$ into $\mathrm{Op}_{s}^{2}\left(\mathrm{Op}_{s}^{1}\left(M_{s}^{+}\right)\right)$, so $\left(F_{t} \upharpoonright M_{1}\right) \cup\left(F_{s} \upharpoonright M_{2}\right)$ can be extended to a $\preceq_{\mathcal{F}}$-embedding of M_{3} into N. From the definition of the iterated ultrapower and non-forking it follows that for $s \neq t \in I, t<s$ implies $M_{t}^{1} \bigcup_{M_{0}}^{N} M_{s}^{2}$. On the other hand, similarly, if $s, t \in I$ and $s<t$ then $\left(F_{s} \upharpoonright M_{1}\right) \cup\left(F_{t} \upharpoonright M_{2}\right)$ can be extended to a $\preceq_{\mathcal{F}}$-embedding of M_{3} into N, and hence by assumption $M_{t}^{1} \stackrel{N}{\biguplus_{0}} M_{s}^{2}$.
(2) A similar proof.

Corollary 1.7. Assume \mathbf{T} is categorical in λ or just $I(\lambda, \mathbf{T})<2^{\lambda}$. Then $\bigcup_{\mu^{+}<\lambda} K_{\mu}$ obeys \bigcup-symmetry, i.e., for $M_{0}, M_{1}, M_{2}, M_{3} \in \bigcup_{\mu^{+}<\lambda} K_{\mu}$,

$$
\text { if } \quad M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2} \quad \text { then } \quad M_{2} \underset{M_{0}}{\bigcup_{3}} M_{1}
$$

Proof. If $\mu^{+}<\lambda, M_{1} \bigcup_{M_{0}}^{M_{3}} M_{2}$ and $M_{2} \stackrel{M_{3}}{M_{3}} M_{2}$, then Theorem 1.6 gives the assumptions of the results at the end of Section 3 of [13, III] (or better [6, III, $\S 3]$). These yield a contradiction to the λ-categoricity of \mathbf{T} and even 2^{λ} pairwise non-isomorphic models.

But we give a self-contained proof of the version of 1.7 needed here, i.e. for \mathbf{T} categorical in λ, allowing ourselves to use the rest of this section (which does not rely on 1.7 except 1.24), really use just $1.16,1.18,1.20$ here. Let Φ be as in $1.6(2)$; we can assume it is as used in 1.18, 1.19. Choose an increasing continuous sequence $\left\langle I_{\alpha}: \alpha \leq \mu^{+}+1\right\rangle$ of linear orders each of cardinality $\mu^{+},\left|I_{\alpha+1} \backslash I_{\alpha}\right|=\mu^{+}, t^{*} \in I_{\mu^{+}+1} \backslash I_{\mu^{+}}, s_{\alpha}^{+}, s_{\alpha}^{-} \in I_{\alpha+1} \backslash I_{\alpha}$ for $\alpha<\mu$ such that

$$
\alpha<\beta \Rightarrow s_{\alpha}^{-}<s_{\beta}^{-}<t^{*}<s_{\beta}^{+}<s_{\alpha}^{+}
$$

and $s_{\alpha}^{+}, s_{\alpha}^{-}$realize the same Dedekind cut of I_{α}. Let $M_{\alpha}=\operatorname{EM}\left(I_{\alpha}, \Phi\right)$ for $\alpha \leq \mu^{+}$, so $\left\langle M_{\alpha}: \alpha \leq \mu^{+}+1\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous, $M_{\alpha} \in K_{\mu^{+}}$, $M_{\alpha+1}$ is (μ, μ)-saturated over $M_{\alpha}, \bar{a}_{t}=\left\langle\tau_{i}^{1}\left(x_{t}\right): i\right\rangle, \bar{b}_{t}=\left\langle\tau_{i}^{2}\left(x_{t}\right): i\right\rangle$ for $t \in I_{\mu^{+}+1}$. Clearly $\operatorname{tp}\left(\bar{a}_{s_{\alpha}^{-}}, M_{\alpha}, M_{\mu^{+}+1}\right)=\operatorname{tp}\left(\bar{a}_{s_{\alpha}^{+}}, M_{\alpha}, M_{\mu^{+}+1}\right)$ for $\alpha<\mu$ but

$$
\begin{equation*}
\operatorname{tp}\left(\bar{b}_{t}^{* \wedge} \bar{a}_{s_{\alpha}^{-}}, M_{\alpha}, M_{\mu^{+}+1}\right) \neq \operatorname{tp}\left(\bar{b}_{t}^{*} \bar{a}_{s_{\alpha}^{+}}, M_{\alpha}, M_{\mu^{+}+1}\right) \tag{*}
\end{equation*}
$$

We now choose enough sequences of models; first we define a linear order J with set of elements

$$
\left\{t_{i}: i<\kappa^{*}\right\} \cup\left\{s_{\gamma}: \gamma<\mu^{+} \times\left(\mu^{+}+1\right)\right\}
$$

such that

$$
i<j<\kappa^{*} \& \beta<\gamma<\mu^{+} \times\left(\mu^{+}+1\right) \Rightarrow t_{i}<t_{j}<s_{\beta}<s_{\gamma}
$$

For $\alpha \leq \mu^{+}+1$ let $J_{\alpha}=\left\{t_{i}: i<\kappa^{*}\right\} \cup\left\{t_{\gamma}: \gamma<\mu^{+} \times(1+\alpha)\right\}$ and $J^{*}=J_{\mu^{+}+1} \backslash J_{\mu}$. Let $N_{\alpha}=\operatorname{EM}\left(J_{\alpha}, \Phi\right)$. Again $\left\langle N_{\alpha}: \alpha \leq \mu^{+}+1\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous in $K_{\mu^{+}}$and $N_{\alpha+1}$ is $\left(\mu^{+}, \mu^{+}\right)$-saturated over N_{α}. Hence there is an isomorphism f^{*} from $M_{\mu^{+}+1}$ onto $N_{\mu^{+}+1}$ mapping each M_{α} onto N_{α}. Now, $\bar{b}^{*}=f\left(\bar{b}_{t^{*}}\right)=\left\langle f\left(\tau_{i}^{2}\left(x_{t}\right)\right): i\right\rangle$ is a sequence of $\leq \mu$ members of $\operatorname{EM}\left(J_{\mu^{+}+1}, \Phi\right)$, hence for some $\alpha<\mu^{+}$we have $\bar{b}^{*} \subseteq \operatorname{EM}\left(J^{\prime}, \Phi\right)$ where $J^{\prime}=\left\{t_{i}: i<\kappa^{*}\right\} \cup J^{*} \cup J_{\alpha}$. However by $[2,2.6]$ we have $J_{\mu^{+}} \bigcup_{J_{\alpha}}^{J} J^{\prime}$. Hence $[2,2.5]$

$$
\begin{align*}
& \operatorname{EM}(J, \Phi) \\
& \operatorname{EM}\left(J_{\mu^{+}}, \Phi\right) \quad \cup \quad \operatorname{EM}\left(J^{\prime}, \Phi\right) . \tag{*}\\
& \operatorname{EM}\left(J_{\alpha}, \Phi\right)
\end{align*}
$$

Now clearly there is an automorphism f of $\operatorname{EM}\left(J_{\mu^{+}}, \Phi\right)$ over $\operatorname{EM}\left(J_{\alpha}, \Phi\right)$ which maps $\bar{a}_{s_{\alpha}^{-}}$to $\bar{a}_{s_{\alpha}^{+}}$. The Op which witnesses $(*)$ extends f to an automorphism of $\mathrm{Op}\left(\operatorname{EM}\left(J_{\mu^{+}}, \Phi\right)\right)$ which is the identity over $\operatorname{EM}\left(J^{\prime}, \Phi\right)$, contradicting $(*)$, so we are done.

It may be helpful, though somewhat vague, to add the remark that \cup asymmetry enables one to define order and to build many complicated models; so 1.7 removes a potential obstacle to a categoricity theorem. Note that we could have put 3.11(2) here.

Definition 1.8. Let A be a set. We write
$M_{1} \bigcup_{M_{0}}^{M_{3}} A$
(where $A \subseteq M_{3}, M_{0} \preceq_{\mathcal{F}} M_{1} \preceq_{\mathcal{F}} M_{3}$) to mean that there exist M_{2}, M_{3}^{\prime} such M_{3}^{\prime}
that $A \subseteq\left|M_{2}\right|, M_{3} \preceq \mathcal{F} M_{3}^{\prime}$ and $M_{1} \underset{M_{0}}{\bigcup} M_{2}$. In this situation we say that $A / M_{1}=\operatorname{tp}\left(A, M_{1}, M_{3}\right)$ does not fork over M_{0} in M_{3}.

$$
M_{3} \quad M_{3}
$$

We write $M_{1} \bigcup_{M_{0}} a$ to mean $M_{1} \bigcup_{M_{0}}\{a\}$; we then say $\operatorname{tp}\left(a, M_{1}, M_{3}\right)$ does not fork over M_{0}.

We write $A_{1} \bigcup_{M_{0}}^{\bigcup} A_{2}$ if for some $M_{3}, M_{3} \preceq \mathcal{F} M_{3}^{\prime} \in K_{<\lambda}$, and for some $M_{1}^{\prime}, A_{2} \subseteq M_{1}^{\prime} \preceq \mathcal{F} M_{3}^{\prime}$, and $M_{1}^{\prime} \bigcup_{M_{0}}^{\prime} A_{2}$.

REmARK 1.9. (1) Of particular importance is the case where A is finite. Let us explain the reason. We wish to prove a result of the form:
$(*) \quad$ if $\left\langle M_{i}: i \leq \delta+1\right\rangle$ is a continuous $\prec_{\mathcal{F}}$-chain and $a \in M_{\delta+1}$, then
there is $i<\delta$ such that $M_{\delta} \bigcup^{M} a$.
M_{i}
This says roughly that the type $\operatorname{tp}\left(a, M_{\delta}, M_{\delta+1}\right)$ is definable over a finite set (or at least in some sense has finite character). In general the former relation is not obtained. However its properties are correct. Hence it will be possible to define the rank of a over $M_{0}, \operatorname{rk}\left(a, M_{0}\right)$, as an ordinal, so that M_{3} for large enough M_{3}, if $M_{1} \biguplus_{M_{0}} a$, then $\operatorname{rk}\left(a, M_{1}\right)<\operatorname{rk}\left(a, M_{0}\right)$.
(2) If A is an infinite set, then we cannot prove $(*)$ in general. For example, suppose that $\left\langle M_{i}: i \leq \omega\right\rangle$ is (strictly) increasing continuous, $a_{i} \in$ $M_{i+1} \backslash M_{i}$ and $A=\left\{a_{i}: i<\omega\right\}$. Then for every $i<\omega,\left(\bigcup_{j<\omega} M_{j}\right) \stackrel{M_{\omega}}{\biguplus_{i}} A$ as the operation Op we use in the definition increases M_{i} and increases $\bigcup_{j<\omega} M_{j}$, but $\operatorname{Op}\left(M_{i}\right) \cap \bigcup_{j<\omega} M_{j}=M_{i}$. Still we can restrict ourselves to δ of cofinality $>|A|$.
(3) Notice that quite generally, $N_{1} \bigcup_{N_{0}}^{N_{3}} N_{2}$ implies that $N_{1} \cap N_{2}=N_{0}$ (see above).

Definition 1.10. We define
$\boldsymbol{\kappa}_{\mu}(\mathbf{T})=\boldsymbol{\kappa}_{\mu}(\mathcal{K})=\left\{\kappa: \operatorname{cf}(\kappa)=\kappa \leq \mu\right.$ and there exist a continuous $\prec_{\mathcal{F}}$-chain $\left\langle M_{i}: i \leq \kappa+1\right\rangle \subseteq K_{\leq \mu}$ and $a \in M_{\kappa+1}$ such that for all $i<\kappa, a / M_{\kappa}$ forks over M_{i} in $\left.M_{\kappa+1}\right\}$.
That is, for $\kappa \in \kappa_{\mu}(\mathbf{T})$ there are $\left\langle M_{i} \in K_{\leq \mu}: i \leq \kappa+1\right\rangle$ and $a \in M_{\kappa+1}$ such

$$
M_{\kappa+1}
$$

that $i<\kappa \Rightarrow M_{\kappa} \stackrel{\biguplus}{M_{i}} \quad a$.
Example 1.11. Fix μ and $\alpha \leq \mu$. Let $\left({ }^{\mu} \omega, E_{\beta}\right)_{\beta<\alpha}$ be the structure with universe

$$
{ }^{\mu} \omega=\{\eta: \eta \text { is a function from } \mu \text { to } \omega\}
$$

and $\eta E_{\beta} \nu$ iff $\eta \upharpoonright \beta=\nu \upharpoonright \beta$. Let $\mathbf{T}=\operatorname{Th}\left({ }^{\mu} \omega, E_{\beta}\right)_{\beta<\alpha}$. Then

$$
\boldsymbol{\kappa}_{\mu}(\mathbf{T})=\{\kappa: \operatorname{cf}(\kappa)=\kappa \leq \alpha\} .
$$

Why? If $\operatorname{cf}(\kappa)=\kappa \leq \alpha$, then there are $M_{i}(i \leq \kappa+1), a \in M_{\kappa+1}$ and $a_{i} \in M_{i+1} \backslash M_{i}$ for $i<\kappa$ such that $a_{i} / E_{i+1} \notin M_{i}$ (that is to say, no element of M_{i} is E_{i+1}-equivalent to a_{i}) and $a E_{i+1} a_{i}$.

Definition 1.12. The class $\mathcal{K}=\left\langle K, \preceq_{\mathcal{F}}\right\rangle$ is χ-based if for every pair of continuous $\prec_{\mathcal{F}}$-chains $\left\langle N_{i} \in K_{\leq \chi}: i<\chi^{+}\right\rangle,\left\langle M_{i} \in K_{\leq \chi}: i<\chi^{+}\right\rangle$with $M_{i} \preceq_{\mathcal{F}} N_{i}$, there is a club C of χ^{+}such that

$$
(\forall i \in C)\left(M_{i+1} \bigcup_{M_{i}}^{N_{i+1}} N_{i}\right)
$$

Replacing χ^{+}by regular χ we write $(<\chi)$-based. We say synonymously that \mathbf{T} is χ-based.

Definition 1.13. The class $\mathcal{K}=\langle K, \preceq \mathcal{F}\rangle$ has continuous non-forking in (μ, κ) if
(α) whenever $\left\langle M_{i} \in K_{\leq \mu}: i \leq \delta\right\rangle$ is a continuous $\prec_{\mathcal{F}}$-chain, $|\delta| \leq \mu$, $\operatorname{cf}(\delta)=\kappa$,

$$
M_{0} \preceq_{\mathcal{F}} N_{0} \preceq_{\mathcal{F}} N^{*}, \quad M_{\delta} \preceq_{\mathcal{F}} N^{*} \quad \text { and } \quad(\forall i<\delta)\left(M_{i} \bigcup_{M_{0}}^{N_{0}^{*}} N_{0}\right),
$$

then $M_{\delta}{\underset{M}{M_{0}}}_{N_{0}^{*}} N_{0}$;
(β) whenever $\left\langle M_{i} \in K_{\leq \mu}: i \leq \delta+1\right\rangle,\left\langle N_{i} \in K_{\leq \mu}: i \leq \delta+1\right\rangle$ are continuous $\prec_{\mathcal{F}}$-chains, $M_{i} \preceq_{\mathcal{F}} N_{i},|\delta| \leq \mu, \operatorname{cf}(\delta)=\kappa$ and

$$
(\forall i<\delta)\left(\begin{array}{cc}
M_{\delta+1} & N_{\delta+1} \\
M_{i}
\end{array}\right)
$$

then $M_{\delta+1} \stackrel{N_{\delta+1}}{\bigcup_{M_{\delta}}} N_{\delta}$.
Again we will mean the same thing by saying that \mathbf{T} has continuous non-forking in (μ, κ).

Our next goal is to show that if \mathbf{T} fails to possess these features for some $\mu<\lambda$ such that $\mu \geq \kappa+\operatorname{LS}(\mathcal{K})$, then \mathbf{T} has many models in λ.

Let us recall in this context a further important result from [13, II, 3.10]:
Theorem 1.14. Assume \mathbf{T} is a λ-categorical theory, or just $\mathcal{K}_{<\lambda}$ has amalgamation and every $N \in K_{<\lambda}$ is nice.
(1) Let $\mathrm{LS}(\mathbf{T})<\mu \leq \lambda$ and $M \in K_{\mu}$. Then the following are equivalent:
(A) M is universal-homogeneous: if $N \preceq_{\mathcal{F}} M,\|N\|<\mu$ and $N \preceq_{\mathcal{F}}$ $N^{\prime} \in K_{<\mu}$, then there is an \mathcal{F}-elementary embedding $g: N^{\prime} \xrightarrow{\mathcal{F}}$ M such that $g \upharpoonright N=\operatorname{id}_{N}$.
(B) If $N \preceq_{\mathcal{F}} M,\|N\|<\mu$ and $p \in S(N)$, then p is realized in M, i.e., N is saturated.
(2) M as in (A) or (B) is unique for fixed \mathbf{T}, μ.
(3) Let $\mathrm{LS}(\mathbf{T}) \leq \mu<\lambda$ and $\kappa \leq \mu$. Any two (μ, κ)-saturated models are isomorphic (see 1.4(7)).
(4) Let $\mathrm{LS}(\mathbf{T}) \leq \mu<\lambda$ and $\kappa \leq \mu$. If N_{1}, N_{2} are (μ, κ)-saturated over M then N_{1}, N_{2} are isomorphic over M.

Proof. (1), (2) See [13, II 3.10], or better presented [5, 0.19].
(3) Easy and proofs exist but we shall prove. Assume N_{1}, N_{2} are (μ, κ) saturated, hence for $l=1,2$ there is a $\preceq_{\mathcal{F}}$-increasing continuous sequence $\left\langle M_{l, \alpha}: \alpha<\kappa\right\rangle$ in K_{μ} such that $M_{l, \kappa}=N_{l}$ and $M_{l, \alpha+1}$ is universal over $M_{l, \alpha}$. We now choose by induction on $\alpha \leq \kappa$ a triple $\left(f_{l}, M_{1, \alpha}^{\prime}, M_{2, \alpha}^{\prime}\right)$ such that:
(a) for $l \in\{1,2\}, M_{l, \alpha}^{\prime} \in K_{\mu}$ is $\preceq_{\mathcal{F}}$-increasing continuous with $\alpha<\kappa$,
(b) f_{α} is an isomorphism from $M_{1, \alpha}^{\prime}$ onto $M_{2, \alpha}^{\prime}$ increasing with α,
(c) if α is even then $M_{1, \alpha}^{\prime}=M_{1, \alpha}$ and $M_{2, \alpha}^{\prime} \preceq \mathcal{F} M_{2, \alpha+1}$,
(d) if α is odd then $M_{2, \alpha}^{\prime}=M_{2, \alpha}$ and $M_{1, \alpha}^{\prime} \preceq_{\mathcal{F}} M_{1, \alpha+1}$,
(e) if α is a limit ordinal then $M_{1, \alpha}^{\prime}=M_{1, \alpha}$ and $M_{2, \alpha}^{\prime}=M_{2, \alpha}$.

Using the universality assumptions there is no problem to carry out the induction and f_{κ} is an isomorphism from $N_{1}=M_{1, \kappa}$ onto $N_{2}=N_{2}$.
(4) Similar to (3) (just let $M=M_{1,0}=M_{2,0}, f_{0}=\mathrm{id}_{M}$).

Proposition 1.15. Assume \mathbf{T} is λ-categorical or just $\mathcal{K}_{<\lambda}$ has amalgamation.
(1) If $\mathrm{LS}(\mathbf{T}) \leq \mu<\lambda$ and $N_{0} \preceq_{\mathcal{F}} N_{1}$ are in K_{μ}, then the following are equivalent:
(A) N_{1} is (μ, μ)-saturated over N_{0},
(B) there is $a \preceq_{\mathcal{F}}$-increasing continuous $\left\langle M_{i}: i \leq \mu \times \mu\right\rangle$ such that $M_{\mu \times \mu}=N_{1}, M_{0}=N$ and every $p \in S\left(M_{i}\right)$ is realized in M_{i+1}.
(2) Also the following are equivalent for $\kappa=\operatorname{cf}(\kappa) \leq \mu^{+}$:
$\left(\mathrm{A}_{\kappa}\right) N_{1}$ is (μ, κ)-saturated over N_{0},
$\left(\mathrm{A}_{\kappa}\right)$ there is $a \preceq_{\mathcal{F}}$-increasing continuous $\left\langle M_{i}: i \leq \mu \times \kappa\right\rangle$ with $M_{\mu \times \kappa}=N_{1}, M_{0}=N$ and every $p \in S\left(M_{i}\right)$ is realized in M_{i+1}.
(3) If \mathcal{K} is stable in $\mu, \lambda>\mu \geq \mathrm{LS}(\mathcal{K}), \kappa=\operatorname{cf}(\kappa) \leq \mu^{+}$then there is a (μ, κ)-saturated model (in fact, over any given model in K_{μ}).

Proof. (1) Follows from the proof of 1.14(1).
(2), (3) Straightforward.

Proposition 1.16. [\mathbf{T} categorical in λ]
(1) Any $M \in K_{\lambda}$ is saturated.
(2) Every $N \in K_{<\lambda}$ is nice.
(3) $\mathcal{K}_{<\lambda}$ has $\preceq_{\mathcal{F}}$-amalgamation.
(4) If $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda)$ and $M \in K_{\mu}$, then there is $N \in M_{\mu}$ which is μ-universal over M (see Definition 1.4).
(5) \mathcal{K} is stable in μ for $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda)$.
(6) If $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda), \kappa \leq \mu$ and $M \in K_{\mu}$, then there is $N \in K_{\mu}$ which is (μ, κ)-saturated over M.

Proof. (1) By the proof of $[2,5.4]$ (for λ regular easier).
(2) See $[2,5.4]$.
(3) See $[2,5.5]$.
(4) See $[2,3.7]$.
(5) Follows by the two previous parts.
(6) Follows by $(3)+(5)$ and 1.15 .

Intermediate Corollary 1.17. (1) Suppose that \mathbf{T} is λ-categorical. If $\mu<\lambda, \mu>\mathrm{LS}(\mathbf{T})$ and \mathbf{T} is not μ-categorical, then there is an unsaturated model $M \in K_{\mu}$.
(2) It now follows that if we show that the existence of an unsaturated model in K_{μ} implies that of an unsaturated model in K_{λ}, then λ-categoricity of \mathbf{T} implies μ-categoricity of \mathbf{T}.

Conclusion 1.18. [\mathbf{T} categorical in λ] If I is a linear order, $I=I_{1}+I_{2}$, $|I|<\lambda$ and $J=I_{1}+\omega+I_{2}$ then every $p \in S(\operatorname{EM}(I))$ is realized in $\operatorname{EM}(J)$.

Proof. Clearly $\operatorname{EM}\left(I_{1}+\lambda+I_{2}\right)$ is in K_{λ}, and hence is saturated, and so every $p \in S(\operatorname{EM}(I))$ is realized in it, say by a_{p}; for some finite $w_{p} \subseteq \lambda$ we have $a_{p} \in \operatorname{EM}\left(J_{1}+w_{p}+I_{2}\right)$; now we use indiscernibility.

REMARK 1.19. By changing Φ we can replace " ω " by " 1 ".
Conclusion 1.20. [\mathbf{T} categorical in λ]
(1) If $J=\bigcup_{\alpha<\delta} I_{\alpha}, \delta$ divisible by μ, with $|J|=\mu \in[\operatorname{LS}(\mathbf{T}), \lambda)$ or $|J|=\mu=\lambda \& \operatorname{LS}(\mathbf{T}) \leq \chi=\left|I_{\alpha}\right|<\lambda, I_{\alpha}$ increasing continuous, and if for each α some Dedekind cut of I_{α} is realized by infinitely many members of $I_{\alpha+1} \backslash I_{\alpha}$ then $\operatorname{EM}(J)$ is $(\chi, \operatorname{cf}(\delta))$-saturated over $\operatorname{EM}\left(I_{0}\right)$.
(2) If Φ is "corrected" as in 1.19, $I_{0} \subseteq J,\left|J \backslash I_{0}\right|=|J|=\mu, \mu \in$ $[\operatorname{LS}(\mathbf{T}), \lambda)$, or $|J|=\mu=\lambda \& \operatorname{LS}(\mathbf{T}) \leq\left|I_{0}\right| \&\left|I_{0}\right|^{+}=\lambda$, then $\operatorname{EM}(J)$ is $\left(\operatorname{cf}(\mu),\left|I_{0}\right|\right)$-saturated over $\operatorname{EM}\left(I_{0}\right)$; moreover, for any $\kappa=\operatorname{cf}(\kappa) \leq \mu$ it is ($\left.\left|I_{0}\right|, \kappa\right)$-saturated.
(3) If $\left\langle M_{i}: i \leq \kappa\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous, $\kappa \leq \mu, M_{i} \in K_{\mu}$, and M_{i+1} is universal over M_{i} then M_{κ} is (μ, θ)-saturated over M_{0} for every $\theta \leq \mu$, even $\theta \leq \mu^{+}$, so $N \in K_{\mu}$ which is saturated over $M \in M_{\mu}$ is unique up to isomorphism over M. So if $\mu>\operatorname{LS}(\mathbf{T})$ then M_{κ} is saturated (also for $\left.\kappa=\mu^{+}\right)$.

Proof. (1), (2) by 1.20+1.15(1).
(3) Follows.

Proposition 1.21. (1) Suppose $\left\langle N_{i}^{l}: i \leq \alpha\right\rangle$ is $\preceq_{\text {nice-increasing contin- }}$ uous for $l=1,2, N_{i}^{1} \preceq \mathcal{F} N_{i}^{2} \in K_{<_{\lambda}}$ and

$$
N_{i}^{2} \bigcup_{N_{i}^{1}}^{N_{i+1}^{2}} N_{i+1}^{1} \quad \text { for each } i<\alpha
$$

Then

$$
N_{0}^{2} \bigcup_{N_{0}^{1}}^{N_{\alpha}^{2}} N_{\alpha}^{1}
$$

(2) (Monotonicity properties of \cup) If $M_{1} \bigcup_{\bigcup}^{M_{3}} M_{2}$ and for some operation M_{0}
Op and models $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}$ we have $M_{3} \preceq \mathcal{F} M_{3}^{\prime} \preceq \operatorname{Op}\left(M_{3}\right)$ and $M_{0} \preceq \mathcal{F}$ $M_{1}^{\prime} \preceq_{\mathcal{F}} M_{1}$ and $M_{0} \preceq_{\mathcal{F}} M_{2}^{\prime} \preceq_{\mathcal{F}} M_{2}$, then $M_{1}^{\prime} \bigcup_{M_{0}}^{\prime} M_{2}^{\prime}$.
$\bigcup_{M_{3}}^{M_{3}} A$ and $M_{0} \preceq_{\mathcal{F}} M_{0}^{\prime} \preceq_{\mathcal{F}} M_{1}^{\prime} \preceq_{\mathcal{F}} M_{1} \preceq_{\mathcal{F}} M_{3}^{\prime} \preceq_{\mathcal{F}} M_{3}^{\prime \prime}$ and M_{0}
$M_{3} \preceq_{\mathcal{F}} M_{3}^{\prime \prime} \prec \operatorname{Op}\left(M_{3}\right)$ for some operation Op and $A^{\prime} \subseteq A$, then $M_{1}^{\prime} \bigcup_{M_{0}^{\prime}}^{M_{3}^{\prime}} A^{\prime}$.
(4) Note that by definition if $A_{1} \bigcup_{N_{0}}^{N_{3}} A_{2}$ and $N_{0} \subseteq N_{0}^{\prime} \subseteq A_{1}$, and $N_{0}^{\prime} \preceq \mathcal{F}$ N_{3}, then $A_{1} \bigcup_{N_{0}^{\prime}}^{N_{3}} A_{2}$ (the same operation witnesses this).

Proof. Use [2, 1.11], e.g.:
(1) For each $i<\alpha$ there is Op_{i} such that $N_{i+1}^{1} \preceq_{\mathcal{F}} \mathrm{Op}_{i}\left(N_{i}^{1}\right)$ and $N_{i+1}^{2} \preceq_{\mathcal{F}}$ $\mathrm{Op}_{i}\left(N_{i}^{2}\right)$. We can find Op resulting from the iterated $\left\langle\mathrm{Op}_{i}: i<\alpha\right\rangle$. Let $N_{1}^{*}=\operatorname{Op}\left(N_{0}^{1}\right)$ and $N_{2}^{*}=\operatorname{Op}\left(N_{0}^{2}\right)$, so we can choose by induction on i a $\preceq_{\mathcal{F}}$-embedding f_{i} of N_{i}^{2} into N_{2}^{*} mapping N_{i}^{1} into N_{1}^{*}, increasing continuous with i, such that $f_{i}\left(N_{i}^{2}\right)$ is included in $\left\langle\mathrm{Op}_{i}: i<\alpha\right\rangle\left(N_{0}^{2}\right)$.

Proposition 1.22. [\mathbf{T} is λ-categorical] If $M_{0} \preceq_{\text {nice }} M_{1}, M_{2}$ are in $K_{<\lambda}$ then we can find $M_{4} \in K_{<\lambda}, M_{0} \preceq_{\mathcal{F}} M_{4}$ and $\preceq_{\mathcal{F}}$-embeddings f_{1}, f_{2} of M_{1}, M_{2} respectively into M_{4} such that
$(\alpha) f_{1}\left(M_{1}\right) \stackrel{M_{4}}{\bigcup} f_{2}\left(M_{2}\right)$,
$(\beta) f_{2}\left(M_{2}\right)$
M_{4}
M_{0}

REmark 1.23. Note 1.7 deals only with models in $\bigcup\left\{K_{\mu}: \mu^{+}<\lambda\right\}$, hence (β) is not totally redundant.

Proof of Proposition 1.2.2. If we want to get (α) only, use an operation Op such that $\operatorname{Op}\left(M_{0}\right)$ has cardinality $\geq \lambda$, and choose $N \preceq \mathcal{F} \operatorname{Op}\left(M_{0}\right)$ with $\|N\|=\lambda$. Hence N is saturated and we can find a $\preceq_{\mathcal{F}}$-embedding $f_{2}: M_{2} \rightarrow N$. Let $N_{1}=\operatorname{Op}\left(M_{1}\right)$, so $N \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{0}\right) \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{1}\right)=N_{1}$, and choose $M_{4} \prec N_{1}$ with $M_{4} \in K_{\mu}, \mu<\lambda$, such that $M_{1} \cup \operatorname{Rang} f_{2} \subseteq N$. So we have clause (α) and if $\mu^{+}<\lambda$ we are done by 1.7 ; but as we need the case $\mu^{+}=\lambda$ we have to restart the proof.

Since every $N \in K_{\lambda}$ is saturated, there are an operation Op and $N \in K_{\lambda}$ such that $M_{0} \preceq_{\mathcal{F}} N \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{0}\right)$. Hence there are $M_{0}^{+}, M_{1}^{+}, M_{2}^{+}$in $K_{<\lambda}$ such that:
$(*)_{0} \quad\left(M_{1}^{+}, M_{0}^{+}\right) \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{1}, M_{0}\right),\left(M_{2}^{+}, M_{0}^{+}\right) \preceq_{\mathcal{F}} \mathrm{Op}\left(M_{2}, M_{0}\right)$ and M_{0}^{+} has the form $\operatorname{EM}\left(I_{0}\right), I_{0}$ a linear order with $\left|I_{0}\right|$ Dedekind cuts with cofinality $\left(\kappa^{*}, \kappa^{*}\right)$. [Note that by $1.20(2)$ if $\left|I_{0}\right|=\lambda$ then $\operatorname{EM}\left(I_{0}\right)$ is saturated and N is saturated; clearly there is an I_{0} as required.]

Clearly we can assume that the cardinality of I_{0} is $<\lambda$. Hence we can find I_{1}, I_{2}, I_{3} such that $I_{0}:=I \subseteq I_{1} \subseteq I_{3}, I_{0} \subseteq I_{2} \subseteq I_{3}, I_{1} \cap I_{2}=I$, no $t_{1} \in I_{1} \backslash I_{0}, t_{2} \in I_{2} \backslash I_{0}$ realize the same Dedekind cut of I, and every $t \in I_{3} \backslash I_{0}$ realizes a cut of I with cofinality $\left(\kappa^{*}, \kappa^{*}\right)$ and $\left|I_{1} \backslash I_{0}\right|=\left|I_{2} \backslash I_{0}\right|=\left|I_{0}\right|$. Hence $I_{0} \subseteq_{\text {nice }} I_{l}(l \leq 3)$, moreover $I_{1} \bigcup_{I_{0}} I_{2}$ and $I_{2} \bigcup_{I_{0}} I_{1}$. Hence
$(*)_{1} \quad \operatorname{EM}\left(I_{1}\right) \bigcup_{\operatorname{EM}\left(I_{0}\right)}^{\operatorname{EM}\left(I_{3}\right)} \operatorname{EM}\left(I_{2}\right), \quad \operatorname{EM}\left(I_{2}\right) \bigcup_{\operatorname{EM}\left(I_{0}\right)}^{\operatorname{EM}\left(I_{3}\right)} \operatorname{EM}\left(I_{1}\right)$.

Also by $1.20(2)$, without loss of generality $M_{l}^{+} \preceq_{\mathcal{F}} \operatorname{EM}\left(I_{l}\right)(l=1,2)$. So by 1.21(2),
$(*)_{2}$

$$
M_{1}^{+} \quad \underset{M_{0}^{+}}{\underset{\operatorname{EM}}{(1)}\left(I_{3}\right)} M_{2}^{+}, \quad M_{2}^{+} \quad \underset{M_{0}^{+}}{\bigcup} M_{1}^{\operatorname{EM}\left(I_{3}\right)}
$$

By $(*)_{0}+(*)_{2}$ and $1.21(1)$ (for $\alpha=2$) we get the conclusions.
Proposition 1.24. [\mathbf{T} is λ-categorical]
(1) If $M_{1}^{l} \bigcup_{M_{0}^{l}}^{\bigcup_{3}^{l}} M_{2}^{l}$ for $l=1,2, M_{3}^{l} \in K_{<\lambda},\left\|M_{3}^{l}\right\|^{+}<\lambda$ and f_{k} is an isomorphism from M_{k}^{1} onto M_{k}^{2} for $k=0,1,2$ such that $f_{0} \subseteq f_{1}, f_{0} \subseteq f_{2}$ then there is M with $M_{3}^{2} \preceq \mathcal{F} M \in K_{<\lambda},\|M\|=\left\|M_{3}^{1}\right\|+\left\|M_{3}^{2}\right\|$ and a $\preceq_{\mathcal{F}}$-embedding f of M_{3}^{1} into M_{3}^{2} extending f_{1} and f_{2}.
(2) Assume $M_{1}^{l} \cup_{3}^{l} A_{2}^{l}$ for $l=1,2$ and $A_{2}^{l} \subseteq M_{2}^{l} \preceq M_{3}^{l}$, and $M_{3}^{l} \in K_{<\lambda}$ M_{0}^{l}
with $\left\|M_{3}^{l}\right\|^{+}<\lambda$, and f_{k} is an isomorphism from M_{k}^{1} onto M_{k}^{2} for $k=0,1,2$ such that $f_{0} \subseteq f_{1}$ and $f_{0} \subseteq f_{2}$ and f_{2} maps A_{2}^{1} onto A_{2}^{2}. Then there is M with $M_{2}^{3} \preceq_{\mathcal{F}} M \in K_{<\lambda}$ such that $\|M\|=\left\|M_{3}^{1}\right\|+\left\|M_{3}^{2}\right\|$ and $a \preceq_{\mathcal{F}}$-embedding f of M_{3}^{1} into M_{3}^{2} extending f_{1} and $f_{2} \upharpoonright A_{2}^{1}$.
(3) If for $l=1,2, p_{l} \in S(N)$ does not fork over M (see Definition 1.8), $M \preceq_{\mathcal{F}} N \in K_{\mu}, \mu^{+}<\lambda$ and $p_{1} \upharpoonright M=p_{2} \upharpoonright M$ then $p_{1}=p_{2}$.

REMARK 1.25. (1) This is uniqueness of non-forking amalgamation.
(2) The requirement is $\left\|M_{3}^{l}\right\|^{+}<\lambda$ rather than $\left\|M_{3}^{l}\right\|<\lambda$ only because of the use of symmetry, i.e., 1.7.

Proof of Proposition 1.2.4. (1) We can assume $f_{0}=\mathrm{id}, M_{0}^{1}=M_{0}^{2}$ (call it M_{0}) and $f_{1}=\mathrm{id}_{M_{1}^{1}}, M_{1}^{1}=M_{1}^{2}\left(\right.$ call it $\left.M_{1}\right)$. By assumption for some operation Op_{l} we have $\left(M_{3}^{l}, M_{2}^{l}\right) \preceq \mathcal{F} \mathrm{Op}_{l}\left(M_{1}^{l}, M_{0}^{l}\right)$. Let $\mathrm{Op}=\mathrm{Op}_{1} \circ \mathrm{Op}_{2}$, so without loss of generality $M_{3}^{l} \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{1}\right)$ and $M_{2}^{l} \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{0}\right)$. We can assume $\left\|\operatorname{Op}\left(M_{0}\right)\right\| \geq \lambda$ and $\left\|\operatorname{Op}\left(M_{1}\right)\right\| \geq \lambda$, so there is N_{0} with $\bigcup_{l=1}^{2} M_{2}^{l} \subseteq$ $N_{0} \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{0}\right)$ such that $\left\|N_{0}\right\|=\lambda$. Hence N_{0} is saturated and so there is an automorphism g_{0} of N_{0} such that $g_{0} \upharpoonright M_{2}^{1}=f_{2}$ (thus $g_{0} \upharpoonright M_{0}=\mathrm{id}_{M_{0}}$). So there is N_{2} such that $\bigcup_{l=1}^{2} M_{2}^{l} \subseteq N_{2} \preceq \mathcal{F} N_{0},\left\|N_{2}\right\|^{+}<\lambda$, and N_{2} is closed under g_{0}, g_{0}^{-1}. Now there is N_{3} such that $N_{0} \cup M_{1} \subseteq N_{3} \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{1}\right)$, $N_{3} \in K_{\lambda}$, hence N_{3} is saturated. So $M_{1} \bigcup_{M_{0}}^{N_{3}} N_{2}$ and hence $N_{2} \bigcup_{M_{0}}^{N_{3}} M_{1}$ (by symmetry, i.e., 1.7). Hence for some N_{3}^{\prime} we have $N_{3}^{\prime} \preceq_{\mathcal{F}} N_{3} \in K_{<\lambda}$ and some automorphism g_{1} of N_{3}^{\prime} extends $\left(g_{0} \upharpoonright N_{2}\right) \cup \mathrm{id}_{M_{1}}$. [Why? for some Op^{\prime}, we have $\left(N_{3}, M_{1}\right) \preceq_{\mathcal{F}} \mathrm{Op}^{\prime}\left(N_{1}, M_{0}\right)$ and $\mathrm{Op}^{\prime}\left(N_{1}\right), \mathrm{Op}^{\prime}\left(g_{0} \upharpoonright N_{2}\right)$ are as required except having too large cardinality, but this can be rectified.]

Clearly we are done.
(2), (3) Follow from part (1).
2. Various constructions. In this section we will attempt to describe some constructions of models of \mathbf{T} relating to the situations in 1.12 and 1.13 , i.e., we want to prove there are "many complicated" models of \mathbf{T} when \mathbf{T} is "on the unstable side" of Definition 1.12 or Definition 1.13 ; they will be used in the proofs in $3.2-3.5$. May we suggest that on a first reading the reader be content with the perusal of 2.1 and 2.2 , leaving the heavier work of 2.2.1 until after Section 3 which contains the model-theoretic fruits of the paper. The construction should be meaningful for the classification problem.

What we actually need are $2.2 .1,2.2 .2,2.2 .3$.

Construction 2.1. First try

Data 2.1.1. Suppose that $\left\langle M_{i} \in K_{\leq \mu}: i \leq \kappa+1\right\rangle$ is a continuous $\preceq_{\text {nice }}{ }^{-}$ chain of models of \mathbf{T} with $\mu<\lambda ; T$ is a non-empty subset of (${ }^{\kappa+1 \geq} \mathrm{Ord}$) and
(i) T is closed under initial segments, i.e., if $\eta \in T$ and $\nu \triangleleft \eta$, then $\nu \in T$,
(ii) if $\eta \in T$ and $\lg (\eta)=\kappa$ then $\eta^{\wedge}\langle 0\rangle \in T$ and for all $i, \eta^{\wedge}\langle 1+i\rangle \notin T$.

Let $\lim _{\kappa}(T)=\left\{\eta: \lg (\eta)=\kappa\right.$ and $\left.\bigwedge_{i<\kappa}(\eta \upharpoonright i \in T)\right\}$. Let $\left\{\eta_{i}: i<i^{*}\right\}$ be an enumeration of T such that if $\eta_{i} \triangleleft \eta_{j}\left(\eta_{i}\right.$ is an initial segment of $\left.\eta_{j}\right)$, then $i<j$, and if $\eta_{i}=\nu^{\wedge}\langle\alpha\rangle, \eta_{j}=\nu^{\wedge}\langle\beta\rangle, \alpha<\beta$, then $i<j$. For simplicity i^{*} is a limit ordinal.

First Try 2.1.2. From the data of 2.1.1 we shall build a model N^{*} with Skolem functions, $N^{*} \upharpoonright L \in K$, and for $\eta \in T, M_{\eta}^{*} \subseteq N^{*}, f_{\eta}: M_{\lg (\eta)}^{\stackrel{\text { into }}{\underset{\mathcal{F}}{~}}} M_{\eta}^{*} \upharpoonright L$ such that if $\eta_{i} \triangleleft \eta_{j}$, then $f_{\eta_{i}} \subseteq f_{\eta_{j}}$, and $M_{\eta_{i}}^{*} \preceq_{\mathcal{F}^{\text {sk }}} M_{\eta_{j}}^{*}$, where $\mathcal{F}^{\text {sk }} \supseteq \mathbf{T}^{\text {sk }}$ is a fragment of $\left(L^{\mathrm{sk}}\right)_{\kappa^{*}, \omega}$ (see below).

Let $M_{i}^{*}=\operatorname{Sk}\left(M_{i}\right)$ be a Skolemization of M_{i} for \mathcal{F}, increasing (\subseteq) with i, i.e., for every formula $(\exists y)(\varphi(y, \bar{x}) \in \mathcal{F})$ we choose a function $F_{\varphi(y, \bar{x})}^{M_{i}}$ from M_{i} to M_{i} with $\lg (\bar{x})$-places such that

$$
M_{i} \models(\exists y)\left(\varphi(y, \bar{a}) \rightarrow \varphi\left(F_{\varphi(y, \bar{x})}^{M_{i}}(\bar{a}), \bar{a}\right)\right)
$$

and

$$
j<i \Rightarrow F_{\varphi(y, \bar{y})}^{M_{i}} \upharpoonright M_{j}=F_{\varphi(y, \bar{x})}^{M_{j}} .
$$

Note: we do not require even $M_{i}^{*} \prec M_{i+1}^{*}$.
To achieve this, let us define $N_{i}^{*}, M_{\eta_{i}}^{*}$ and $f_{\eta_{i}}$ by induction on $i<i^{*}$. Without loss of generality $\eta_{0}=\langle \rangle$ and i limit implies $\lg \left(\eta_{i}\right)$ limit. Let $N_{0}^{*}=M_{\eta_{0}}^{*}=\operatorname{Sk}\left(M_{0}\right)$, the Skolemization of M_{0}, and $f_{\langle \rangle}=\mathrm{id}_{M_{0}}$. If i is a limit ordinal, let $N_{i}^{*}=\bigcup_{j<i} N_{j}^{*}$. If i is a successor ordinal and $\lg \left(\eta_{i}\right)=\alpha+1$, then letting $\eta_{j}=\eta_{i} \upharpoonright \alpha$, note that $\eta_{j} \triangleleft \eta_{i}$ so $j<i$ and so $M_{\eta_{j}}^{*}$ and $f_{\eta_{j}}$ are defined. We are assuming $M_{\alpha} \preceq_{\text {nice }} M_{\alpha+1}$, hence there is an operator $\mathrm{Op}=\mathrm{Op}_{\alpha}$ such that $M_{\alpha+1} \preceq_{\text {nice }} \operatorname{Op}\left(M_{\alpha}\right)$. Let $N_{i}^{*}=\operatorname{Op}\left(N_{i-1}^{*}\right), \operatorname{Op}\left(N_{i-1}^{*}, M_{\alpha}, f_{\eta_{j}}\right)=$ $\left(N_{i}^{*}, \operatorname{Op}\left(M_{\alpha}\right), \operatorname{Op}\left(f_{\eta_{j}}\right)\right), f_{\eta_{i}}=\operatorname{Op}\left(f_{\eta_{j}}\right) \upharpoonright M_{\lg \left(\eta_{i}\right)}$ and $M_{\eta_{i}}^{*}$ be the Skolem hull of $\operatorname{Rang}\left(f_{\eta_{i}}\right)$. (We can replace N_{i+1}^{*} by any N^{\prime} such that $N_{i}^{*} \cup M_{\eta_{i}}^{*} \subseteq N^{\prime} \preceq_{\mathcal{F}}$ $\operatorname{Sk}\left(N_{i+1}^{*}\right)$ so preserving $\left|N_{i}^{*}\right| \leq \mu+|i|$.) Finally, let $N^{*}=\bigcup_{i<i^{*}} N_{i}^{*}$. We are left with the case of i a successor ordinal, $\lg \left(\eta_{i}\right)$ a limit ordinal; we then let $N_{i}^{*}=N_{i+1}^{*}, M_{\eta_{i}}^{*}=\bigcup_{\nu \triangleleft \eta_{i}} M_{\nu}^{*}$ and $f_{\eta_{j}}=\bigcup_{\nu \triangleleft \eta_{j}} f_{\nu}$.

Explanation. In order to use this construction to prove non-structure results, we intend to use the property: for $\eta \in \lim _{\kappa} T$, it is possible to extend $f_{\eta}=\bigcup_{\alpha<\kappa} f_{\eta \upharpoonright \alpha}$ to an \mathcal{F}-elementary embedding f^{*} of $M_{\kappa+1}$ into N^{*} iff $\eta \in T$.

Let us remark that if for example χ is a strong limit cardinal of cofinality κ^{*} and $\chi^{<\kappa} \subseteq T \subseteq \chi^{\leq \kappa} \cap\left\{\eta^{\wedge}\langle 0\rangle:(\exists \alpha<\kappa)(\lg (\eta)=\alpha+1)\right\}$, then over $\bigcup_{\eta \in \chi<\kappa} M_{\eta}^{*}$ for χ parameters there are 2^{χ} independent decisions. This is not
only a reasonable result: it has been shown ([9, VIII, §1] for χ as above, $[6$, III, §5] more generally) that this result is sufficient to prove the existence of many models in every cardinality $\lambda>\mu+\operatorname{LS}(\mathbf{T})$.

But to use this construction we have to have some continuity of nonforking, which we have not proved. Hence we shall use another variant of the construction.

Construction 2.2 . We modify the construction of 2.1 to suit our purposes.

Modified Data 2.2.1. Let $\left\langle M_{i} \in K_{\leq_{\mu}}: i \leq \kappa+1\right\rangle$ be a continuous $\preceq_{\text {nice }}{ }^{-}$ chain of models of \mathbf{T} with $\left\|M_{\kappa+1}\right\|=\mu<\lambda$. Let T be a subset of ${ }^{\kappa+1 \geq(\text { Ord }) ~}$ and $<_{\text {lex }}$ be the lexicographic order on T, which is a linear order of T; suppose that T is \varangle-closed, i.e. $(\nu \triangleleft \eta \in T \Rightarrow \nu \in T)$, and if $\eta \in{ }^{\kappa}(\operatorname{Ord}) \cap T$, then $\eta^{\wedge}\langle 0\rangle$ is the unique $<_{\text {lex }}$-successor of η in T. For $S \subseteq T$ let $S^{\text {se }}=$ $\{\eta \in S: \lg (\eta)$ successor $\}$. Let Op_{i+1} witness $M_{i} \preceq_{\text {nice }} M_{i+1}$.

We choose $\mathrm{Op}_{\eta}=\mathrm{Op}_{\lg (\eta)}$ for $\eta \in T^{\mathrm{se}}$. We can iterate the operation Op_{η} with respect to $\left(T^{\text {se }},<_{\text {lex }}\right)$. Also, for each $S \subseteq T$, we can iterate Op_{η} with respect to ($S^{\text {se }},<_{\text {lex }}$). Let us denote the result of this iteration with respect to $\left(S,<_{\text {lex }}\right)$ by $\mathrm{Op}^{S}($ see $[2,1.11])$. Note that for any $M \in K$, if $S_{1} \subseteq S_{2} \subseteq T$, then $M \preceq_{\mathcal{F}} \mathrm{Op}^{S_{1}}(M) \preceq_{\mathcal{F}} \mathrm{Op}^{S_{2}}(M) \preceq_{\mathcal{F}} \mathrm{Op}^{T}(M)$ (by natural embeddings). More formally:

Claim 2.2.2. There exist operations Op^{S} for $S \subseteq T$ such that:
(1) for every $S \subseteq T$ which is \triangleleft-closed $M_{S}=\mathrm{Op}^{S}\left(M_{0}\right)$ is defined, and whenever $S_{1} \subseteq S_{2} \subseteq T$, then $M_{S_{1}} \preceq_{\mathcal{F}} M_{S_{2}}$; let $M_{\eta}=M_{\{\eta \mid \alpha: \alpha \leq \lg (\eta)\}}$;
(2) for $\eta \in T, h_{\eta}$ is a surjective $\prec_{\mathcal{F}}$-elementary embedding from $M_{\lg (\eta)}$ onto $M_{\eta}^{-} \prec_{\mathcal{F}} M_{\eta}$, and $\left\langle h_{\eta}: \eta \in T\right\rangle$ is a \triangleleft-increasing sequence, i.e., $h_{\eta} \subseteq h_{\nu}$ M_{ν}
whenever $\eta \triangleleft \nu$; moreover $\eta \triangleleft \nu \in T \Rightarrow M_{\eta} \bigcup_{\nu}^{U} M_{\nu}^{-}$;

$$
M_{\eta}^{-}
$$

(3) for every $x \in M_{T}$, there exists a \triangleleft-closed $S \subseteq T$ with $|S| \leq \kappa$ such that $x \in M_{S}$; in fact S is the union of finitely many branches, hence $\left(S,<_{\text {lex }}\right)$ is well ordered;
(4) for $\eta \in T$, letting $T[\eta]=\{\nu \in T: \neg(\eta \triangleleft \nu)\}, T \leq[\eta]=\{\nu \in T[\eta]$: $\left.\nu \leq_{\text {lex }} \eta\right\}, T^{\geq}[\eta]=\left\{\nu \in T[\eta]: \eta \leq_{\text {lex }} \nu\right\}$ (so $T[\eta]=T \leq[\eta] \cup T^{\geq}[\eta]$) and $\alpha<\lg (\eta)$ we have $M_{T \leq[\eta \mid \alpha]} \bigcup_{M_{\eta\lceil\alpha}}^{M_{T}} M_{\eta}$ (so we can replace M_{T} by $M_{T \leq[\eta]}$) and $M_{T \leq[\eta]} \bigcup_{M_{\eta\lceil\alpha}}^{M_{T}} M_{T \geq[\eta \upharpoonright \alpha]}$ for $\alpha<\kappa$;
(5) if $\eta \in \lim _{\kappa}(T)$ and $\eta \notin T$, then $M_{T}=\bigcup_{\alpha<\kappa} M_{T[\eta \mid \alpha]}$;
(6) $\left\|M_{S}\right\| \leq|S|+\left\|M_{\kappa+1}\right\| \kappa^{\kappa^{*}}+\sup _{\eta \in S}\left\|M_{\lg (\eta)}\right\|$;
(7) for $\eta \in T \cup \lim _{\kappa}(T),\left\langle M_{T[\eta \upharpoonright \alpha]}: \alpha \leq \lg (\eta)\right\rangle$ is $\preceq \mathcal{F}^{\mathcal{F}}$-increasing continuous. Note: $\left\langle T_{[\eta \upharpoonright \alpha]}: \alpha \leq \lg (\eta)\right\rangle$ is increasing but generally not continuous, however $\left\langle T_{[\eta\lceil\alpha]}^{\mathrm{se}}: \alpha \leq \lg (\eta)\right\rangle$ is.

FACT 2.2.3. (1) By clause (4), if we have the conclusion of 1.7 for models of cardinality $\leq \mu($ and $1.21(1))$ then

$$
\begin{gather*}
\text { if }\left\|M_{\eta \upharpoonright \alpha}\right\| \leq \mu, M_{\eta \upharpoonright \alpha} \prec \mathcal{F} M^{\prime} \prec \mathcal{F} M_{\eta},\left\|M^{\prime}\right\| \leq \mu, M_{\eta \upharpoonright \alpha} \prec_{\mathcal{F}} M^{\prime \prime} \prec \mathcal{F} \tag{*}\\
M_{T[\eta \upharpoonright \alpha]} \text { and }\left\|M^{\prime \prime}\right\| \leq \mu \text {, then } M_{\eta} \bigcup_{T} M_{T[\eta \upharpoonright \alpha]} \text { and hence } M^{\prime} \bigcup_{T} \bigcup_{\eta \upharpoonright \alpha} M^{\prime \prime}
\end{gather*}
$$

$$
M_{\eta}
$$

and $\left(\right.$ recall $\left.M_{\eta \upharpoonright \alpha} \bigcup^{\eta} M_{\eta}^{-}\right)$

$$
M_{\eta \upharpoonright \alpha}^{-}
$$

$(* *) \quad$ if $M_{\eta \upharpoonright \alpha}^{-} \prec_{\mathcal{F}} M^{\prime} \prec_{\mathcal{F}} M_{\eta}^{-}$and $M_{\eta \upharpoonright \alpha}^{-} \prec_{\mathcal{F}} M^{\prime \prime} \prec_{\mathcal{F}} M_{T[\eta \upharpoonright \alpha]}$ and $\left\|M^{\prime \prime}\right\| \leq$ M_{T} μ then $M^{\prime} \bigcup M^{\prime \prime}$.

$$
M_{\eta \upharpoonright \alpha}^{-}
$$

(2) Then in fact one can replace clause (4) above by the weaker condition
(4) ${ }^{-} \mu \geq \kappa$ and for every $S \subseteq T$ closed under initial segments, if $|S| \leq \mu$ and $(\forall \nu \in S)[\eta \upharpoonright(\alpha+1) \unlhd \nu \Rightarrow(\nu \unlhd \eta \vee \eta \unlhd \nu)]$ and $\{\eta \upharpoonright i: i \leq \alpha\} \subseteq S \subseteq T$, then $M_{\eta} \bigcup_{M_{\eta \upharpoonright \alpha}}^{M_{T}} M_{S}$.

Short proof of 2.2.2. As $\left\langle M_{i}: i \leq \kappa+1\right\rangle$ is $\preceq_{\text {nice-increasing continuous, }}$ by renaming there is $\left\langle M_{i}^{*}: i \leq \kappa+1\right\rangle \preceq_{\text {nice-increasing continuous such that }}$ $M_{0}^{*}=M_{0}, M_{i+1}^{*}=\mathrm{Op}_{i+1}\left(M_{i}^{*}\right), M_{i} \preceq_{\mathcal{F}} M_{i}^{*}$ and $M_{i}^{*} \bigcup_{M_{i}}^{M_{i+1}^{*}} M_{i+1}($ for $i \leq \kappa)$. We can assume $\left\|M_{i}^{*}\right\| \leq\left\|M_{i}\right\|^{\kappa^{*}}$. Let $\mathrm{Op}_{\eta}=\left(I_{\eta}, D_{\eta}, G_{\eta}\right)$ be a copy of $\mathrm{Op}_{\lg (\eta)}$ for $\eta \in T^{\text {se }}$ with I_{η} 's pairwise disjoint. Define $I=\prod\left\{I_{\eta}: \eta \in T^{\text {se }}\right\}, D, G$ as in the proof of $[2,1.11]$, so every equivalence relation $e \in G$ has a finite subset $w[e]=\left\{\eta_{0}^{l}<_{\text {lex }} \ldots<_{\text {lex }} \eta_{n(l)-1}^{l}\right\} \subseteq T^{\text {se }}$ and $\mathfrak{e}_{l}[e] \in G_{\eta_{e}^{l}}$ as there. We let $\mathrm{Op}_{T^{\mathrm{se}}}=(I, D, G), M_{T^{\mathrm{se}}}=\mathrm{Op}_{T^{\mathrm{se}}}\left(M_{0}\right)$ and for $S \subseteq T^{\text {se }}$ we let

$$
M_{S}=\left\{x \in M_{T}: w[\mathrm{eq}(x)] \subseteq S\right\}
$$

This defines Op^{S} implicitly. Naturally there are canonical maps f_{η}^{*} from $M_{\lg (\eta)}^{*}$ onto $M_{\{\nu: \nu \triangleleft \eta\}}$ and let $M_{\eta}=f^{\prime \prime}{ }_{\eta}\left(M_{\lg (\eta)}^{*}\right)$ and $h_{\eta}=f_{\eta} \upharpoonright M_{\lg (\eta)}$.

Improvement in cardinality 2.2.1. We can replace $\left\|M_{\kappa+1}\right\|^{\kappa^{*}}$ by $\left\|M_{\kappa+1}\right\|$ $+\mathrm{LS}(\mathbf{T})$ in part (6) of claim 2.2.2. After choosing $\left\langle M_{i}^{*}: i \leq \kappa+1\right\rangle$, let M_{0}^{+}be a Skolemization of $M_{0}=M_{0}^{*}, M_{i+1}^{+}=\operatorname{Op}\left(M_{i}^{+}\right), M_{\delta}^{+}=\bigcup_{i<\delta} M_{i}^{+}$. Of course
$M_{S}^{T}(S \subseteq T$ is \triangleleft-closed $)$ are well defined similarly. Let N_{i} be the Skolem hull of M_{i} in M_{i}^{*}. For $\eta \in T$ let $N_{\eta}=f_{\eta}^{*}\left(N_{\lg (\eta)}\right)$. Now for any \triangleleft-closed $S \subseteq T$ let

$$
N_{S}=\text { Skolem hull in } M_{S}^{+} \text {of } \bigcup\left\{N_{\eta}: \eta \in S\right\}
$$

* * *

There are two different ways to carry on the construction (under Data 2.2.1). We will consider each in its turn.

Construction 2.3. Recall that it is possible to iterate the operation Op with respect to the linear order $\left(T,<_{\text {lex }}\right)$ and this iteration can be defined as the direct limit of finite approximations. We shall use different approximations and take the direct limit to obtain the required operation.

Suppose that $w \subseteq T$ is closed with respect to \triangleleft (i.e., initial segment) and is $<_{\text {lex }}$-well-ordered. For each approximation w of this kind, the iterated ultrapower $\mathrm{Op}^{w}\left(M_{0}\right)$ of M_{0} with respect to w is defined as a limit ultrapower and there are natural elementary embeddings into this limit. The principal difference is that this limit is a little larger than a limit obtained using only finite approximations. For example, if $\left\langle\eta_{n}: n \leq \omega\right\rangle$ is a $<_{\text {lex }}$-increasing sequence, then in $\mathrm{Op}^{\eta_{\omega}}\left(\ldots \mathrm{Op}^{\eta_{n}}\left(\ldots\left(\mathrm{Op}^{\eta_{0}}\left(M_{0}\right)\right)\right)\right)$, the last operation $\mathrm{Op}^{\eta_{\omega}}$ adds elements which are dispersed all over $\mathrm{Op}^{\eta_{n}}\left(\ldots \mathrm{Op}^{\eta_{0}}\left(M_{0}\right)\right)$. (This is of more interest when the sequence has length κ^{*}.) Now it is easy to check the symmetry (for $\eta \in{ }^{\alpha} \lambda, \alpha<\kappa$) between the $<_{\text {lex }}$-successors and $<_{\text {lex }}{ }^{-}$ predecessors of η.

We define the embeddings h_{η} for $\eta \in T$ as follows. For $\eta=\langle \rangle, h_{\eta}=$ $\mathrm{id}\left\lceil M_{0}\right.$. If $\eta=\nu^{\wedge}\langle i\rangle$, then Op^{η} acts on $M_{\nu}=h_{\nu}\left[M_{\lg (\nu)}\right]$ and we use the commuting diagram:

This completes the construction.
Construction 2.4. In this approach, we employ the generalized Ehren-feucht-Mostowski models $\operatorname{EM}(I, \Phi)$ from Chapter VII in [9] or [14]. For this we need to specify the generators of the model and what the types are.

Let M_{0}^{+}be the model obtained from M_{0} by adding Skolem functions and individual constants for each element of M_{0}. We know that there is an operation Op such that $M_{i} \preceq_{\mathcal{F}} M_{i+1} \preceq_{\mathcal{F}} \mathrm{Op}\left(M_{i}\right)$ for $i \leq \kappa$. As in [2, 1.7.4] this means that there are I, D and G such that $\operatorname{Op}(M)=\operatorname{Op}(M, I, D, G)$ where I is a non-empty set, D is an ultrafilter on I, and G is a suitable set of equivalence relations on I, i.e.,
(i) if $e \in G$ and e^{\prime} is an equivalence relation on I coarser than e, then $e^{\prime} \in G$;
(ii) G is closed under finite intersections;
(iii) if $e \in G$, then

$$
D / e=\left\{A \subset I / e: \bigcup_{x \in A} x \in D\right\}
$$

is a κ^{*}-complete ultrafilter on I / e.
For each $b \in M_{i+1} \backslash M_{i}$, let $\left\langle x_{t}^{b}: t \in I\right\rangle / D$ be the image of b in $\operatorname{Op}\left(M_{i}\right)$. We also write $\left\langle x_{t}^{b}: t \in I\right\rangle / D$ for the canonical image $d(b)$ of $b \in M_{i}$ in $\operatorname{Op}\left(M_{i}\right)$.

We define a model M^{+}with $M_{0}^{+} \preceq_{L_{\kappa^{*}, \omega}} M^{+}$as follows. M^{+}is generated by the set $\left\{x_{\eta}^{b}: b \in M_{i+1} \backslash M_{i}, \eta \in T, \lg (\eta)=i+1\right\}$. Note that this set does generate a model since M_{0}^{+}is closed under Skolem functions. Since functions have finite arity, it is enough to specify, for each finite set of the x_{η}^{b}, what quantifier-free type it realizes. Since there is monotonicity, we shall obtain indiscernibility as in [9]. The type of a finite set $\left\langle x_{\eta_{l}}^{b_{l}}: l=1, \ldots, n\right\rangle$ depends on the set $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and the atomic (i.e., quantifier-free) type of $\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle$ in the model $\left\langle T, \triangleleft,<{ }_{\text {lex }}\right.$, " $\eta \upharpoonright i=\nu\lceil i$ " \rangle. Now we can allow a finite sequence \bar{b} instead of b for $\bar{b} \in M_{i+1} \backslash M_{i}$ and thus without loss of generality $\eta_{1}, \ldots, \eta_{n}$ is repetition-free, so we can assume $\eta_{1}<_{\text {lex }} \ldots<_{\text {lex }}$ η_{n}. Necessarily, the lexicographic order $<_{\operatorname{lex}}$ on $\left\{\eta_{l} \upharpoonright \alpha: \alpha \leq \lg \left(\eta_{l}\right)\right.$ and $l=$ $1, \ldots, n\}$ is a well-order and the sequence $\left\langle\nu_{\zeta}: \zeta<\zeta(*)\right\rangle$ is $<_{\text {lex }}$-increasing. We define $N_{0}=M_{0}^{+}, N_{\zeta+1}=\operatorname{Op}\left(N_{\zeta}\right), N_{\zeta}=\bigcup_{\xi<\zeta} N_{\xi}$ (for limit ζ). Next, we define $h_{\nu_{\zeta}}: M_{\lg \left(\nu_{\zeta}\right)} \rightarrow \mathcal{F} N_{\zeta+1}, h_{\nu_{\zeta} \upharpoonright \beta} \subseteq h_{\nu_{\zeta}}$. If $\lg (\nu)$ is a limit ordinal, then $\alpha<\lg (\nu) \Rightarrow h_{\nu \upharpoonright \alpha}$ is defined and we let $h_{\nu}=\bigcup_{\alpha<\lg (\nu)} h_{\nu \upharpoonright \alpha}$. If $\nu_{\zeta}=\nu_{\xi} \wedge\langle\gamma\rangle$, $i=\left\langle u_{\xi}\right)$, then $M_{\zeta+1} \prec_{\mathcal{F}} \operatorname{Op}\left(M_{\zeta}, I, D, G\right)$, identifying elements of M_{ζ} with their images in the ultrapower. Now define

$$
h_{\nu_{\zeta}}(b)= \begin{cases}d\left(H_{\nu_{\zeta}}(b)\right) & \text { if } b \in M_{i}, \\ \left\langle h_{\nu_{\zeta}}\left(x_{t}^{b}\right): t \in I\right\rangle / D & \text { if } b \in M_{i+1} \backslash M_{i},\end{cases}
$$

where $d\left(h_{\nu_{\xi}}(b)\right)$ is the canonical image of $H_{\nu_{\xi}}(b)$ in the ultrapower. The type of $\left\langle x_{\eta_{l}}^{b_{l}}: l=1, \ldots, n\right\rangle$ is defined to be the type of $\left\langle h_{\eta_{l}}\left(b_{l}\right): l=1, \ldots, n\right\rangle$ in N_{ξ}.

Remark 2.4.1. It is possible to split the construction into two steps. For $i \leq j \leq \kappa+1$, there is an operation $\mathrm{Op}^{i, j}$ with $M_{i} \preceq M_{j} \preceq \mathrm{Op}^{i, j}\left(M_{i}\right)$, moving b to $\left\langle{ }^{i, j} a_{t}^{b}: t \in I\right\rangle, b \in M_{j},{ }^{i, j} a_{t}^{b} \in M_{i}$, with the obvious commutativity and continuity properties. Now the construction is done on a finite tree $\left\langle\eta_{l}: l=1, \ldots, n\right\rangle,\left\langle\eta_{l} \cap \eta_{m}: l, m<\omega\right\rangle$. We omit the details of monotonicity.

Notation 2.4.2. Let $M_{T}=M$ be the Skolem closure. If $S \subseteq T$ is closed with respect to initial segments, let $M_{S}=\operatorname{Sk}_{M_{T}}\left(x_{\eta}^{b}: \eta \in S, b \in M_{\lg (\eta)}\right)$ and $M_{\eta}^{*}=M_{\{\eta\lceil\alpha: \alpha \leq \lg (\eta)\}}$. Define $h_{\eta}: M_{\lg (\eta)} \rightarrow M_{\eta}^{*}$ by $h_{\eta}(b)=x_{\eta \upharpoonright \tau(\mathbf{T})}^{b}$ and $N_{\eta}=h_{\eta}\left[M_{\eta}\right]$.

Remark 2.4.3. The construction can be used to get many fairly saturated models. We list the principal properties below.

FACT 2.4.4. Suppose that $S_{l} \subseteq T$ is closed with respect to initial segments, $S_{0}=S_{1} \cap S_{2}$ and

$$
\eta \in S_{1} \& \nu \in S_{2} \backslash S_{1} \Rightarrow \eta<_{\operatorname{lex}} \nu
$$

Then

$$
M_{S_{1}} \bigcup_{M_{S_{0}}}^{M_{T}} M_{S_{2}}
$$

Proof. We can assume S_{l} is closed, $M_{\mathrm{cl}\left(S_{l}\right)}=M_{S_{l}}$. Let $S_{2} \backslash S_{0}=\left\{\nu_{\zeta}\right.$: $\zeta<\zeta(*)\}$ be a list such that $\nu_{\zeta}<\zeta_{\xi} \Rightarrow \zeta<\xi$; let $S_{2}^{\xi}=S_{0} \cup\left\{\nu_{\zeta}: \zeta<\zeta(*)\right\}$. Then:
(1) $\left\langle M_{S_{2}^{\xi}}: \xi \leq \xi(*)\right\rangle$ is continuous increasing;
(2) $\left\langle M_{S_{2}^{\xi} \cap S_{1}}: \xi \leq \xi(*)\right\rangle$ is continuous increasing.

Hence one has
(3) $M_{S_{2}^{\xi} \cup S_{1}} M_{M_{S_{2}^{\xi}}}^{M_{S_{2}}^{\xi+1} \cup S_{1}} M_{S_{2}^{\xi+1}}$.

This is immediate from the definitions, because $M_{S_{2}^{\xi+1} \cup S_{1}}$ is the Skolem closure of $M_{S_{\xi}^{2} \cup S_{1}} \cup N_{\nu_{\xi}}$, and so elements of $N_{\nu_{\xi}}$ can be represented as averages.

3. Categoricity in μ when $\operatorname{LS}(\mathbf{T}) \leq \mu<\lambda$

Hypothesis 3.1. Every $M \in K_{<\lambda}$ is nice hence has a $\prec_{\mathcal{F}}$-extension of cardinality λ which is saturated and $\mathcal{K}_{<\lambda}$ has amalgamation.

This section contains the principal theorems of the paper: if \mathbf{T} is λ categorical and $\mathrm{LS}(\mathbf{T}) \leq \mu<\lambda$, then (by [2, 5.4, 5.5], 3.1 holds and):
(i) $\kappa_{\mu}(\mathbf{T})=\emptyset$ when $\mu \in[\mathrm{LS}(\mathbf{T}), \lambda)$ (see Def. 1.10),
(ii) when $\operatorname{LS}(\mathbf{T}) \leq \chi=\operatorname{cf}(\chi)<\lambda$, \mathbf{T} is χ-based (and \mathcal{K} does not have (μ, κ)-continuous non-forking when $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda), \kappa \leq \mu$) (see Defs. 1.12, 1.13),
(iii) there is a saturated model in $\mathcal{K}_{\mu}=\left\langle K_{\mu}, \preceq \mathcal{F}\right\rangle$,
(iv) \mathbf{T} is categorical in every large enough $\mu<\lambda$.

We first deal with some preliminary results, quoting [6] for "black boxes" which do for us much of the combinatorial work for "there are many nonisomorphic models" extensively.

Theorem 3.2. Assume the conclusion of 1.7 for $\boldsymbol{\kappa}_{\leq \mu}\left(\right.$ e.g., $\left.\mu^{+}<\lambda\right)$ and $\kappa \leq \mu^{+}$. Suppose that the tree T is as in Claim 2.2 .2 and suppose further $\left\langle M_{i} \in K_{\leq \mu}: i \leq \kappa+1\right\rangle$ is a $\preceq_{\text {nice-increasing continuous sequence of members }}$ of $K_{\leq \mu}$ such that $\left\|M_{\kappa+1}\right\|=\left\|M_{\kappa}\right\|$ and
(*) there is no $\preceq_{\mathcal{F}}$-increasing continuous sequence $\left\langle N_{i} \in K_{\leq \mu}: i \leq \kappa\right\rangle$ such that:
(i) $M_{i} \preceq_{\mathcal{F}} N_{i}$,
(ii) $M_{\kappa+1} \preceq_{\mathcal{F}} N_{\kappa}$,

$$
\text { (iii) if } i<j \leq \kappa \text { and }\left\|N_{j}\right\|<\mu^{*} \text {, then } N_{i} \bigcup_{M_{i}}^{N_{j}} M_{j} \text {. }
$$

Assume that $T, M_{T}, M_{\nu}, M_{\nu}^{-}, h_{\nu}($ for $\nu \in T)$ are as in Section 2. Then the following are equivalent for $\eta \in \lim _{\kappa}(T):=\left\{\eta \in{ }^{\kappa}(\right.$ Ord $\left.): \bigwedge_{i<\kappa}(\eta \upharpoonright(i+1) \in T)\right\}$:
(α) There is an \mathcal{F}-elementary embedding h from $M_{\kappa+1}$ into M_{T} such that

$$
\bigcup_{i<\kappa} h_{\eta \upharpoonright i+1} \subseteq h
$$

$(\beta) \eta^{\wedge}\langle 0\rangle \in T$ (equivalently, $\eta \in T$, see 2.2.1).
Proof. For $(\beta) \Rightarrow(\alpha)$, assume $\eta \in T$ and consider the \mathcal{F}-elementary embedding $h_{\eta^{\wedge}\langle 0\rangle}$. Check that $h_{\eta^{\wedge}\langle 0\rangle}$ is as required in (α). The other direction follows by $2.2 .3(1)$ and $(*)$. That is, we assume that h exemplifies clause (α) but $\eta^{\wedge}\langle 0\rangle \notin T$, equivalently $\eta \notin T$ and we shall get a contradiction. We let $\eta_{\alpha}=\eta \upharpoonright \alpha$ for $\alpha \leq \kappa$, and let $T_{\alpha}=T\left[\eta_{\alpha}\right]$ so $T_{\kappa}=T$. Hence $\left\langle M_{T_{\alpha}}: \alpha \leq \kappa\right\rangle$ is $\preceq_{\mathcal{F}}$ - increasing continuous (see 2.2.2(7)). By induction on $\alpha \leq \kappa$, we can choose a model $N_{\alpha} \preceq_{\mathcal{F}} M_{T_{\alpha}}$ such that $\left\|N_{\alpha}\right\| \leq\left\|M_{\alpha}\right\|+\mathrm{LS}(\mathbf{T}) \leq \mu, M_{\eta \upharpoonright \alpha}^{-} \subseteq$ N_{j}
N_{α} and $N=\bigcup_{\alpha<\kappa} N_{\alpha}$ includes $h\left(M_{\kappa+1}\right)$. By 2.2.3 we get $N_{i} \bigcup_{M_{i}^{-}}^{\bigcup} M_{j}^{-}$if
$i<j<\kappa$ as $\left\|M_{j}^{-}\right\| \leq \mu$, hence by 1.21 we may allow $j=\kappa$, so we have contradicted $(*)$.

Proposition 3.3. Suppose the conclusion of 1.7 for μ, and $\kappa \leq \mu^{+}$and an $\preceq_{\mathcal{F}}$-increasing sequence $\bar{M}=\left\langle M_{i}: i \leq \kappa+1\right\rangle$ is given with $M_{i} \in K_{\leq \mu}$ when $i<\kappa, M_{j} \in K_{\leq \mu+\kappa}$ if $j \leq \kappa+1$. Then \bar{M} satisfies (*) of 3.2 if one of the following holds:

$$
M_{\kappa+1}
$$

(α) there is $a \in M_{\kappa+1}$ such that $i<\kappa \Rightarrow M_{\kappa} \biguplus^{\kappa+1} a$, or

$$
M_{i+1}
$$

$(\beta) \kappa=\operatorname{cf}(\kappa)=\mu>\operatorname{LS}(\mathbf{T})$ and $\kappa<\lambda$ and $i<\kappa \Rightarrow\left\|M_{i}\right\|<\kappa$, and there is a continuous $\prec \mathcal{F}$-chain $\left\langle N_{i}: i \leq \kappa\right\rangle$ such that $M_{\kappa+1}=\bigcup_{i \leq \kappa} N_{i}$, N_{κ}
$\bigwedge_{i<\kappa}\left(N_{i} \in K_{<\kappa}\right)$, and $E=\left\{i<\kappa: M_{i+1} \underset{M_{i}}{\biguplus} N_{i}\right\}$ is a stationary subset of κ.
Proof. Straightforward from 3.2, and the monotonicity of U, that is, 1.21(3).

Remark 3.4. Clause (β) can also be proved using niceness as in the proof of 3.8. This works for any $\kappa<\lambda$. Also we can imitate 2.2 .2 but no need arises.

Corollary 3.5. If \mathbf{T} is a λ-categorical theory $\left({ }^{1}\right)$, then
(1) \mathbf{T} is χ-based if $\chi^{+}<\lambda$ and $\chi \geq \mathrm{LS}(\mathbf{T})$; also it is $(<\mu)$-based if $\mu=\operatorname{cf}(\mu), \operatorname{LS}(\mathbf{T})<\mu, \mu<\lambda$;
(2) $\boldsymbol{\kappa}_{\mu}(\mathbf{T})=\emptyset$ for every μ such that $\mu^{+}<\lambda$ and $\mu \geq \mathrm{LS}(\mathbf{T})$.

Proof. (1), (2) We use $3.2,3.3$ to contradict λ-categoricity. In the first phrase of (1) let $\mu=\chi, \kappa=\chi^{+}$, in the second let us repeat the proofs (i.e., prove the appropriate variants of $3.2,3.3$); in the proof of part (2) let $\kappa \leq \mu$ be regular, $\kappa \in \kappa_{\mu}(\mathbf{T})$; so $\kappa=\operatorname{cf}(\kappa)$ and $\kappa^{+}<\lambda$.

CASE 1: $\lambda^{\mu}=\lambda$. By [13, III, 5.1] $=[6$, IV, 2.1], using 3.2.
Case 2: λ is regular. We can find a stationary $W^{*} \in I[\lambda]$ with $W^{*} \subseteq$ $\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$ (by [15, §1]). Hence, possibly replacing W^{*} by its intersection with some club of λ, there is W^{+}with $W^{*} \subseteq W^{+}$and $\left\langle a_{\alpha}\right.$: $\left.\alpha \in W^{+}\right\rangle$such that $a_{\alpha} \subseteq \alpha, \alpha \in a_{\beta}\left(\right.$ so $\beta \in W^{+}$) implies $\alpha \in W^{+}$, $a_{\alpha}=a_{\beta} \cap a_{\alpha}$ and $\operatorname{otp}\left(a_{\alpha}\right) \leq \kappa$ and

$$
\alpha=\sup a_{\alpha} \Leftrightarrow \operatorname{cf}(\alpha)=\kappa \Leftrightarrow \alpha \in W^{*} .
$$

Now let η_{α} enumerate a_{α} in increasing order (for $\alpha \in W^{+}$), and for any $W \subseteq W^{*}$ let

$$
T_{W}=\left\{\eta_{\alpha}: \alpha \in W^{+} \text {but } \alpha \notin W^{*} \backslash W\right\} \cup\left\{\eta_{\alpha} \wedge\langle 0\rangle: \alpha \in W\right\}
$$

$\left({ }^{1}\right)$ Or just has $<2^{\lambda}$ non-isomorphic models in λ.

Now if $W_{1}, W_{2} \subseteq W$ and $W_{1} \backslash W_{2}$ is stationary, then $M_{T_{W_{1}}}$ cannot be

Case 3: λ singular. Choose λ^{\prime} with $\lambda>\lambda^{\prime}=\operatorname{cf}\left(\lambda^{\prime}\right)>\mu^{+}$and act as in case 2 using λ^{\prime} instead of λ except that we add to T_{W} the set $\{\langle i\rangle: i<\lambda\}$ (to get 2^{λ} we need more, see in [6, IV, VI] on pairwise non-isomorphic models). -

Hypothesis 3.6. The conclusion of 3.5 (in addition to 3.1 of course).
Conclusion 3.7. Suppose $\mu \geq \mathrm{LS}(\mathbf{T}), \mu^{+}<\lambda$, and $M \in K_{\mu}$.
(1) If $p \in S(M)$ then p is determined by

$$
\{p \upharpoonright N: N \preceq \mathcal{F} M \text { and }\|N\|=\operatorname{LS}(\mathbf{T})\} .
$$

(2) Assume further
$(*)_{\left\{N_{t}: t \in I\right\}}^{M} \quad$ (a) I is a directed partial order,
(b) $N_{t} \preceq \mathcal{F} M$,
(c) $I \models t \leq s$ implies $N_{t} \subseteq N_{s}$ (hence $N_{t} \preceq_{\mathcal{F}} N_{s}$ by (b)),
(d) $\bigcup_{t \in I} N_{t}=M$.

Then:
(α) every $p \in S(M)$ is determined by $\left\{p \upharpoonright N_{t}: t \in I\right\}$, which means just that if $q \in S(M)$ and for every $t \in I$ we have $p \upharpoonright N_{t}=q \upharpoonright N_{t}$ then $p=q$,
(β) for some $t \in I, p$ does not fork over N_{t}.
Proof. (1) Follows from part (2): We can find $\bar{N}=\left\langle N_{t}: t \in I\right\rangle$ such that $(*)_{\left\{N_{t}: t \in I\right\}}^{M}$ holds, $\left\|N_{t}\right\| \leq \mathrm{LS}(\mathbf{T})$ and on it use part (2). Why does \bar{N} exist? E.g., as in the proof of part (2) with $I=\{\emptyset\}, N_{\emptyset}=M$ and use $\left\langle N_{u}^{*}: u \in I^{*}\right\rangle$ for $I^{*}=\left([M]^{<\aleph_{0}}, \subseteq\right)$. Now apply part (2).
(2) Clearly (and as in $[12, \S 1]$),
$(\otimes) \quad$ by induction on $n<\omega$ for every $u \in[M]^{n}$ we can choose $t[u] \in I$ and N_{u}^{*} such that $u \subseteq N_{u}^{*}, N_{u}^{*} \preceq_{\mathcal{F}} N_{t[u]},\left\|N_{u}^{*}\right\| \leq \mathrm{LS}(\mathbf{T})$ and

$$
u \subseteq v \in[|M|]^{<\aleph_{0}} \quad \text { implies } \quad N_{u}^{*} \prec N_{v}^{*} \text { and } t[u] \leq_{I} t[v]
$$

For $U \subseteq|M|$ let $N_{U}^{*}:=\bigcup\left\{N_{u}^{*}: u \subseteq U\right.$ is finite $\}$ (the definitions are compatible). Clearly $U_{1} \subseteq U_{2} \subseteq|M| \Rightarrow N_{U_{1}}^{*} \preceq_{\mathcal{F}} N_{U_{2}}^{*} \preceq_{\mathcal{F}} M$. Now we prove by induction on $\theta \leq\|M\|$ that:
$(* *) \quad$ if $U \subseteq\|M\|,|U|=\theta$ and $p \in S\left(N_{U}^{*}\right)$ then for some $u \in[U]^{<\aleph_{0}}, p$ does not fork over N_{u}^{*}.
This is enough for clause (β), as by monotonicity p also does not fork over $N_{t[u]}$. For θ finite this is trivial, and for θ infinite $\operatorname{cf}(\mu) \notin \kappa_{\theta+\mathrm{LS}(\mathbf{T})}(\mathbf{T})$ (by $3.5(2))$ so $(* *)$ holds. So we have proved clause (β) and clause (α) follows by $1.24(3)$, and we are done.

Theorem 3.8. Suppose that $\operatorname{cf}(\kappa)=\kappa \leq \mu<\lambda$ and $\mathrm{LS}(\mathbf{T})<\mu$. Then:
(1) The (μ, κ)-saturated model M is saturated (i.e., $N \preceq_{\mathcal{F}} M,\|N\|<$ $\|M\|, p \in S(N) \Rightarrow p$ realized in M, and hence unique). Hence there is a saturated model in K_{μ}.
(2) The union of a continuous $\preceq_{\mathcal{F}}$-chain of length κ of saturated models from K_{μ} is saturated.
(3) In part (1) we can replace saturated by (μ, μ)-saturated if $\mu=\mathrm{LS}(\mathbf{T})$. In part (2) we can replace saturated by μ-saturated if $\mu>\mathrm{LS}(\mathbf{T})$.

Proof. (1), (2) Suppose that $M=M_{\kappa}$ and $\left\langle M_{i}: i \leq \kappa\right\rangle$ is a continuous $\preceq_{\mathcal{F}}$-chain of members of K_{μ} such that for the proof of (1), M_{i+1} is a universal extension of M_{i}, and for the proof of (2), M_{i+1} is saturated. Let $i \leq j \leq \kappa$. Then $M_{i} \preceq_{\text {nice }} M_{j}$ (by [2, 5.4], or more exactly by Hypothesis 3.1). So there is an operation $\mathrm{Op}_{i, j}$ such that $M_{i} \preceq_{\mathcal{F}} M_{j} \preceq_{\mathcal{F}} \mathrm{Op}_{i, j}\left(M_{i}\right)$. It follows that there is an expansion $M_{i, j}^{+}$of M_{j} by at most $\mathrm{LS}(\mathbf{T})$ Skolem functions such that if N is a submodel of $M_{i, j}^{+}$, then

$$
M_{i} \stackrel{M_{j}}{\bigcup} \underset{\left(N \cap M_{j} \upharpoonright M_{i}\right)}{U} N \upharpoonright M_{j} .
$$

[Why? as we use operations coming from equivalence relations with $\leq \kappa^{*}$ classes and $\mathrm{LS}(\mathbf{T}) \geq \kappa^{*}$ by its definition. More fully, letting $\mathrm{Op}_{i, j}(N)=$ N_{D}^{I} / G, every element $b \in M_{j}$ being in $\mathrm{Op}_{i, j}\left(M_{i}\right)$ has a representation as the equivalence class of $\left\langle x_{t}^{b}: t \in I\right\rangle / D$ under $\mathrm{Op}_{i, j}$, with $x_{t}^{b} \in M_{i}$ and $\left|\left\{x_{t}^{b}: t \in I\right\}\right| \leq \kappa^{*}$. The functions of $M_{i, j}^{+}$are the Skolem functions of M_{j} and M_{i} and functions $F_{\zeta}\left(\zeta<\kappa^{*}\right)$ such that $\left\{F_{\zeta}(b): \zeta<\kappa^{*}\right\} \supseteq\left\{x_{t}^{b}: t \in I\right\}$.]

If $\kappa=\mu$, the theorem is immediate as κ is regular and $\mu>\operatorname{LS}(\mathbf{T})$. So we will suppose that $\kappa<\mu$. Suppose $N \preceq M=M_{\kappa},\|N\|<\mu$ and $p \in S(N)$. Let $\chi:=\|N\|+\kappa+\mathrm{LS}(\mathbf{T})$ so $\chi<\mu$ hence $\chi^{+}<\lambda$. Without loss of generality there is no N_{1} with $N \preceq_{\mathcal{F}} N_{1} \prec M_{\kappa},\left\|N_{1}\right\| \leq \chi$ and p_{1} with $p \subseteq p_{1} \in S\left(N_{1}\right)$ such that p_{1} forks over N (by 3.3 but not used). If there is $i<\kappa$ such that $N \subseteq M_{i}$, then p is realized in M_{i+1}. By the choice of the models $M_{i, j}^{+}$, it is easy to find N^{\prime} such that $N \preceq N^{\prime} \preceq M_{\kappa},\left\|N^{\prime}\right\|=\chi:=\|N\|+\kappa+\operatorname{LS}(\mathbf{T})$ and, for every $i \leq \kappa$,

$$
M_{i} \stackrel{M}{\kappa}_{M_{i}}^{M_{i}} N^{\prime} .
$$

Now let $N_{i}=N^{\prime} \cap M_{i}$ and note that $N_{\kappa}=N^{\prime}$. The sequence $\left\langle N_{i}: i \leq \kappa\right\rangle$ is continuous increasing and there is an extension p^{\prime} of p in $S\left(N_{\kappa}\right)=S\left(N^{\prime}\right)$. Hence there exists $i<\kappa$ such that $(i \leq j<\kappa) \Rightarrow\left(p^{\prime}\right.$ does not fork over $\left.N_{j}\right)$. If we are proving part (2), then M_{i+1} is saturated but $\left\|M_{i}\right\|=\mu>\kappa=$ $\left\|N_{i+1}\right\|$ and hence there is $a \in M_{i+1}$ realizing $p^{\prime} \upharpoonright N_{i+1}$. But by the non-
forking relation above, $\operatorname{tp}\left(a, N^{\prime}, M_{\kappa}\right)$ does not fork over N_{i+1}, hence is p^{\prime} as $\chi^{+}<\lambda$, by $1.24(3)$, so a is as required. If we are proving part (1), M_{i+1} is universal over M_{i} hence we can find a saturated model $N^{*} \preceq_{\mathcal{F}} M_{i+1}$ which contains $M_{i} \cap N^{\prime}$. Hence we can find $\left\langle N_{\varepsilon}^{*}: \varepsilon<\chi^{+}\right\rangle$which is $\preceq_{\mathcal{F}}$-increasing continuous such that $N_{i} \preceq_{\mathcal{F}} N_{\varepsilon}^{*} \preceq_{\mathcal{F}} M_{i+1}, N_{\varepsilon+1}^{*}$ is a χ-universal extension of N_{ε}^{*} and $N_{0}^{*}=M_{i} \cap N^{\prime}$, and let $a_{\varepsilon} \in N_{\varepsilon+1}^{*}$ be such that $\operatorname{tp}\left(a_{\varepsilon}, N_{\varepsilon}^{*}, N_{\varepsilon+1}^{*}\right)$ does not fork over $M_{i} \cap N^{\prime}$ and extends $p^{\prime} \upharpoonright\left(M_{i} \cap N^{\prime}\right)$. By 3.5(1), for some $\varepsilon<\chi^{+}$there is N_{ε}^{\prime} such that $N^{\prime} \cup N_{\varepsilon}^{*} \subseteq N_{\varepsilon}^{\prime}$ and $N_{\varepsilon}^{*} \stackrel{N^{\prime} \cap M_{i}}{N_{\varepsilon}^{\prime}} N^{\prime}$, so a_{ε} realizes p^{\prime}. (Recall symmetry and uniqueness of extensions.)
(3) Similar proof for the second sentence. For the first sentence, note that by 3.7 we can find a template Φ such that if $I \subset J$ are linear orders of cardinality $<\lambda$, then $\operatorname{EM}(I, \Phi) \prec_{\mathcal{F}} \operatorname{EM}(J, \Phi) \in K_{<\lambda}$, and every $p \in S(\operatorname{EM}(I, \Phi))$ is realized in $\operatorname{EM}(J, \Phi)$. Now, if $\left\langle M_{i}: i \leq \kappa\right\rangle$ is as above, then we can prove that M_{κ} is isomorphic to $\operatorname{EM}\left(I_{\kappa}, \Phi\right)$ when $\left\langle I_{i}: i \leq \kappa\right\rangle$ is an increasing continuous sequence of linear orders each of cardinality μ with $\left|I_{i+1} \backslash I_{i}\right|=\mu$. Hence the isomorphism type of $\operatorname{EM}\left(I_{\kappa}, \Phi\right)$ does not depend on I_{κ} as long as $\left|I_{\kappa}\right|=\mu$, so it does not depend on κ. Note that we can even do it over M_{0} (i.e., expand by adding individual constants for each member of M_{0}).

REmark. Using categoricity we can prove 3.8 also by 1.20 (2) (and uniqueness).

Conclusion 3.9. Assume $\operatorname{LS}(\mathbf{T}) \leq \kappa<\mu<\lambda$ and $M \in K_{\mu}$ is not κ^{+}-saturated; let $\left\langle N_{u}^{*}: u \in[|M|]^{\left.<\aleph_{0}\right\rangle}\right.$ and $N_{U}^{*}($ for $U \subseteq|M|)$ be as in the proof of $3.7(2)\left(\right.$ for $\left.I=\{\emptyset\}, N_{\emptyset}=M\right)$. Then there is $U \subseteq|M|,|U| \leq \kappa$ and $p \in S\left(N_{U}^{*}\right)$, i.e., there are N^{+}with $N_{U}^{*} \preceq_{\mathcal{F}} N^{+} \in K_{\kappa}$ and $a^{+} \in N^{+}$ satisfying $\left(a^{+}, N^{+}\right) / E_{N_{U}^{*}}=p$, such that for no $a \in M$ do we have

$$
u \in[U]^{<\aleph_{0}} \Rightarrow \operatorname{tp}\left(a, N_{u}^{*}, M\right)=\operatorname{tp}\left(a^{+}, N_{u}^{*}, N^{+}\right)
$$

Equivalently: without loss of generality $N^{+} \cap M=N_{U}^{*}$ and we can define N_{u}^{+} for $u \in\left[\left|N^{+}\right|\right] \widehat{\aleph}_{0}$ such that $\left\langle N_{u}^{+}: u \in\left[\left|N^{+}\right|\right]^{<\aleph_{0}}\right\rangle$ is as in the proof of 3.7(2), and $u \in[U]^{<\aleph_{0}} \Rightarrow N_{u}^{+}=N_{u}^{*}$ and for no $u_{0} \in[|M|]^{<\aleph_{0}}$, $v_{0} \in\left[\left|N^{+}\right|\right]^{<\aleph_{0}}$, $a^{+} \in N_{v_{0}}^{*}$, and $a \in N_{u_{0}}^{*}$ do we have

$$
\bigwedge_{u \in[U]<\aleph_{0}} \operatorname{tp}\left(a, N_{u}^{*}, N_{u \cup u_{0}}^{*}\right)=\operatorname{tp}\left(a^{+}, N_{u}^{+}, N_{u \cup v_{0}}^{+}\right) .
$$

Proof. By 3.7.

Corollary 3.10. (1) If \mathbf{T} is λ-categorical and $\operatorname{LS}(\mathbf{T})<\mu<\lambda$, $\operatorname{LS}(\mathbf{T})$ $\leq \chi, \delta(*)=\left(2^{\mathrm{LS}(\mathbf{T})}\right)^{+}$and $\beth_{\delta(*)}(\chi) \leq \mu$ then every $M \in K_{\mu}$ is χ^{+}-saturated. In fact for some $\delta<\delta(*)$ we can replace $\delta(*)$ by δ.
(2) If $\mu=\beth_{\left(2^{\chi}\right)+\times \delta}, \delta$ a limit ordinal then \mathbf{T} is μ-categorical.

Proof. By 3.9 (and $1.17(2)$, that is, $1.17(1)+1.14(1))$ this problem is translated to an omitting type argument + cardinality of a predicate which holds (see [14, VIII, $\S 4]$, [14, VII, §5] for a parallel result for first order logic, pseudo elementary classes, done independently in 1968 by G. Chudnovskii, J. Keisler and S. Shelah). See more on this in [12] and better [16]. The translated problem is: for $\left(\kappa, \lambda_{1}, \lambda_{2}\right)$ consider the statement:
$Q\left(\kappa, \lambda_{1}, \lambda_{2}\right) \quad$ For a vocabulary L^{*} of cardinality $\leq \kappa$ and set Γ of 1-types (or $<\omega$-types, it does not matter), and a unary predicate P, the existence of an L-model M_{1} omitting every $p \in \Gamma$ satisfying $\left\|M_{1}\right\|=\lambda_{1}>\left|P_{1}^{M}\right| \geq \kappa$ implies the existence of an L-model M_{2} omitting every $p \in \Gamma$ and satisfying $\left\|M_{2}\right\|=$ $\lambda_{2}>\left|P_{2}^{M}\right| \geq \kappa$.
So by 3.9 we see that $Q\left(\operatorname{LS}(\mathbf{T}), \lambda_{1}, \lambda_{2}\right)$, \mathbf{T} categorical in $\lambda=\lambda_{1}>\operatorname{LS}(\mathbf{T})$ and $\lambda_{2}<\lambda_{1}$ implies \mathbf{T} is categorical in λ_{2} (the need for $\lambda_{2}<\lambda_{1}$ is as only over models in $K_{<\lambda}$ do we somewhat understand types).

Proposition 3.11. [\mathbf{T} categorical in λ]
(1) If $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous, $M_{i} \in K_{<\lambda}, p \in S\left(M_{\delta}\right)$ then for some $i<\delta, p$ does not fork over M_{i}.
(2) If $N \in K_{<\lambda}$ and $p, q \in S(N)$ does not fork over $M, M \preceq \mathcal{F} N \in K_{<\lambda}$ then $p=q \Leftrightarrow p \upharpoonright M=q \upharpoonright M$. Moreover, if $M \preceq_{\mathcal{F}} N \preceq_{\mathcal{F}} N^{+}$and $a \in N^{+}$ then

$$
N \bigcup_{M}^{N^{+}} a \Leftrightarrow a \bigcup_{M}^{N^{+}} N
$$

(3) If $M \preceq_{\mathcal{F}} N \in K_{<\lambda}$ and $p \in S(M)$ then there is $q \in S(N)$ extending p not forking over M.
(4) If $M_{0} \preceq_{\mathcal{F}} M_{1} \preceq_{\mathcal{F}} M_{2} \in K_{<\lambda}, p \in S\left(M_{2}\right)$, and $p \upharpoonright M_{l+1}$ does not fork over M_{l} for $l=0,1$ then p does not fork over M_{0}.
(5) If $\mu, \delta<\lambda, M_{i} \in K_{\leq \mu}$ for $i<\delta$ is $\preceq \mathcal{F}^{\mathcal{F}}$-increasing continuous, $p_{i} \in$ $S\left(M_{i}\right),\left[j<i \Rightarrow p_{j} \subseteq p_{i}\right]$, then there is $p \in S\left(M_{\delta}\right)$ such that $i<\delta \Rightarrow p_{i} \subseteq p_{\delta}$.

Proof. (1) Otherwise we can find N with $M_{\delta} \preceq_{\mathcal{F}} N \preceq_{\mathcal{F}} \operatorname{Op}\left(M_{\delta}\right), N \in$ K_{λ} such that $N \preceq_{\mathcal{F}} N^{*}:=\bigcup_{i<\delta} \operatorname{Op}\left(M_{i}\right)$. As $N \in K_{\lambda}$, e.g. by $1.16(1), N$ is saturated so let $a \in N$ realize p; so for some $i, a \in \operatorname{Op}\left(M_{i}\right)$ and let $N_{i}^{\prime} \preceq_{\mathcal{F}}$ $\operatorname{Op}\left(M_{i}\right)$ be such that $M_{i} \cup\{a\} \subseteq N_{i}^{\prime}$; clearly $M_{\delta}{\underset{M}{i}}_{N_{i}^{*}}^{N_{i}^{\prime}}$. Hence $M_{\delta} \bigcup_{M_{i}}^{N^{*}} a$, and hence, by part $(2), \operatorname{tp}\left(a, M_{\delta}, N^{*}\right)$ does not fork over M_{i}, so it is $\neq p$.
(2) The first sentence follows from the second as in the proof of 1.16(3). If the second fails then we can contradict stability in $\|N\|$ (holds by 1.16(5)), by a proof just as in 1.6(2).
(3) We can find an operation Op with $\|\mathrm{Op}(M)\| \geq \lambda$, so by $1.16(2)$ in $\operatorname{Op}(M)$ some \bar{a} realizes p so $q=\operatorname{tp}(\bar{a}, N, \operatorname{Op}(N))$ is as required (actually done e.g. in 1.22).
(4) By part (3) there is $q \in S\left(M_{2}\right)$ such that $q \upharpoonright M_{0}=p \upharpoonright M_{0}$ and q does not fork over M_{0}. Now by $1.21(3)$ usually and part (2) of the present proposition in general the type $q \upharpoonright M_{1}$ does not fork over M_{0}; hence by $1.24(3)$, $q \upharpoonright M_{1}=p \upharpoonright M_{1}$, and hence by the same argument $q=p$.
(5) Case $1: \operatorname{cf}(\delta)>\aleph_{0}$. For every limit $\alpha<\delta$ for some $i<\alpha, p_{\alpha}$ does not fork over M_{i}. By Fodor's lemma, for some $i<\delta$ and stationary $S \subseteq \delta$ we have

$$
j \in S \Rightarrow p_{j} \text { does not fork over } M_{i} .
$$

So the stationarization of p_{i} in $S\left(M_{\delta}\right)$ (which exists by 1.22 or use part (3)) is as required.

CASE 2: $\operatorname{cf}(\delta)=\aleph_{0}$. So we can assume $\delta=\omega$. Here chasing arrows (using amalgamation) suffices.

Lemma 3.12. In $K_{<\lambda}$ we can define $\operatorname{rk}(\operatorname{tp}(a, M, N))$ with the right properties. That is:
(A) If $M \prec_{\mathcal{F}} N \in K_{<\lambda}, \bar{a} \subseteq N, M \in \bigcup_{\mu^{+}<\lambda} K_{\mu}, p=\operatorname{tp}(\bar{a}, M, N)$ then $\operatorname{rk}(p) \geq \alpha \quad$ iff \quad for every $\beta<\alpha$ there are p^{\prime}, M^{\prime} such that $M \prec_{\mathcal{F}} M^{\prime} \in$ $\bigcup_{\mu^{+}<\lambda} K_{\mu}, p^{\prime} \in S\left(M^{\prime}\right), p^{\prime} \uparrow M=p, \operatorname{rk}\left(p^{\prime}\right) \geq \beta$ and p^{\prime} forks over M.
(B) For all M, N, \bar{a}, p as above, $\operatorname{rk}(p)$ is an ordinal.
(C) If $M_{1} \prec_{\mathcal{F}} M_{2} \in \bigcup_{\mu^{+}<\lambda} K_{\mu}$ and $p_{2} \in S\left(M_{2}\right)$, then $\operatorname{rk}\left(p_{2} \upharpoonright M_{1}\right) \geq$ $\operatorname{rk}\left(p_{2}\right)$ and equality holds iff p_{2} does not fork over M_{1} and then $p_{2} \upharpoonright M_{1}$ (and M_{2}) determines p_{2}.
(D) If $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous, $M_{i} \in \bigcup_{\mu^{+}<\lambda} K_{\mu}$ and $p_{\delta} \in S\left(M_{\delta}\right)$ then for some $i<\delta$ we have

$$
j \in[i, \delta] \Rightarrow \operatorname{rk}\left(p_{\delta}\right)=\operatorname{rk}\left(p_{\delta} \upharpoonright M_{j}\right) .
$$

Proof. Straightforward; in fact by 3.11 we can use $K_{<\lambda}$ instead of $\bigcup_{\mu^{+}<\lambda} K_{\mu}$. -

Lemma 3.13. Assume $\mu \geq \mathrm{LS}(\mathbf{T})$ and $\mu^{+}<\lambda$. If $M \in K_{\mu}$ is saturated (for $\mu=\operatorname{LS}(\mathbf{T})$ means (μ, μ)-saturated) and $p \in S(M)$ then there are N and a such that $N \in K_{\mu}$ is saturated, $a \in N, \operatorname{tp}(a, M, N)=p$ and N is isolated over $M \cup\{a\}$ (where we say that N is isolated over $M \cup\{a\}$ when $M \preceq_{\mathcal{F}} N, a \in N \in K_{<\lambda}$ and: if $N \preceq_{\mathcal{F}} N^{+} \in K_{<\lambda}$ and $M \preceq_{\mathcal{F}} M^{*} \preceq_{\mathcal{F}} N^{+}$, N^{+} and $\operatorname{tp}\left(a, M, N^{+}\right)$does not fork over M then $\left.M^{*}{\underset{M}{\bigcup}}_{\bigcup} N\right)$.

Remark. As in [7, Ch. V] (or Makkai and Shelah [3, 4.22]) because we have 3.5(1) (by 3.6).

Proof of Lemma 3.13. We can find $\left\langle M_{n}^{\prime}: n<\omega\right\rangle$ such that $M_{n}^{\prime} \in K_{\mu}$ is saturated, M_{n+1} is saturated over M_{n}^{\prime}, hence by definition $\bigcup_{n<\omega} M_{n}^{\prime}$ is (μ, \aleph_{0})-saturated over M_{n}^{\prime} and so is saturated; therefore by 3.8 we can assume it is M, so by $3.11(1), p$ does not fork over M_{n}^{\prime} for some n, by renaming p does not fork over M_{0}^{\prime}; note also that by $3.8, M$ is saturated over M_{0}^{\prime}. We try to choose, by induction on $\alpha<\mu^{+},\left(M_{\alpha}, N_{\alpha}\right)$ such that
(a) $M_{\alpha} \in K_{\mu}$ is $\preceq_{\mathcal{F}}$-increasing continuous,
(b) $N_{\alpha} \in K_{\mu}$ is $\preceq \mathcal{F}^{\text {-increasing continuous, }}$
(c) M_{α}, N_{α} are saturated, $M_{\alpha} \preceq_{\mathcal{F}} N_{\alpha}$,
(d) $M_{0}=M, a \in N_{0}, \operatorname{tp}\left(a, M_{0}, N_{0}\right)$ is p,
(e) if $\alpha=\beta+1$ with β successor, then $M_{\beta+1}$ is $\left(\lambda, \aleph_{0}\right)$-saturated over M_{β},
(f) if $\alpha=\beta+1$ with β successor, then $N_{\beta+1}$ is $\left(\lambda, \aleph_{0}\right)$-saturated over N_{β},
(g) $\operatorname{tp}\left(a, M_{\alpha}, N_{\alpha}\right)$ does not fork over M_{0},
$N_{\alpha+1}$
(h) $M_{\alpha+1} \stackrel{N_{\alpha}}{ }$ if α is a limit ordinal.

$$
M_{\alpha}
$$

For $\alpha=0$ just choose (M_{0}, N_{0}) to satisfy (c) for $\alpha=0$ and (d); and let, e.g., $\left(M_{1}, N_{1}\right)=\left(M_{0}, N_{0}\right)$. For $\alpha=\beta+2$ just satisfy (e) $+(\mathrm{f})$ (and $M_{\alpha} \preceq \mathcal{F} N_{\alpha}$ in K_{μ}), possible by $1.22+1.16(6)$. For α limit take unions (the results are saturated by definition, and (g) holds by $3.5(2)$). Lastly for $\alpha=\beta+1$ with β limit, if there are no such M_{α}, N_{α} then N_{β} is isolated over $M_{\beta} \cup\{a\}$.

Now both M_{β} and $M=M_{0}=\bigcup_{n<\omega} M_{n}^{\prime}$ are saturated over M_{0}^{\prime}, and hence there is an isomorphism f from M_{β} onto M which is the identity over M_{0}^{\prime}. By uniqueness of non-forking extensions, $f \operatorname{maps} \operatorname{tp}\left(a, M_{\beta}, N_{\beta}\right)$ to p. Renaming we find that f is the identity and letting $N=N_{\beta}$ we get the desired conclusion. But if we succeed in carrying out the induction we get a contradiction to 3.6 ; so we are done.

Note that for a limit ordinal β, the model M_{β} is $(\mu, \operatorname{cf}(\mu))$-saturated over M_{γ} for any $\gamma<\beta$ and N_{β} is $(\mu, \operatorname{cf}(\mu))$-saturated over N_{γ} for any $\gamma<\beta$.■

Proposition 3.14. If $M \preceq_{\mathcal{F}} N$ are in $K_{\mu}, \mu \geq \mathrm{LS}(\mathbf{T}), \mu^{+}<\lambda$, and $a \in N \backslash M$, then we can find saturated $M^{\prime}, N^{\prime} \in K_{\mu}$ such that $M \preceq_{\mathcal{F}} M^{\prime}$ $\preceq_{\mathcal{F}} N^{\prime}, N \preceq_{\mathcal{F}} N^{\prime}, \operatorname{tp}\left(a, M^{\prime}, N^{\prime}\right)$ does not fork over M^{\prime}; and N^{\prime} is isolated over $M^{\prime} \cup\{a\}, M^{\prime}$ is saturated over M, and N^{\prime} is saturated over N.

Proof. Contained in the proof of 3.13 .
Proposition 3.15. If $\mu \in[\operatorname{LS}(\mathbf{T}), \lambda), M \in K_{\mu}$ is saturated and $p \in$ $S(M)$ then for some saturated $N \in K_{\mu}, M \preceq_{\mathcal{F}} N$, and $a \in N$, we have $\operatorname{tp}(\bar{a}, M, N))=p$ and N is locally isolated over $M \cup\{a\}$, which means:
(『) $\quad M \preceq_{\mathcal{F}} N \in K_{<\lambda}, a \in N$ and if $N \preceq_{\mathcal{F}} N^{+} \in K_{\lambda}, M \preceq_{\mathcal{F}} M^{*} \preceq_{\mathcal{F}}$ $N^{+}, M^{*} \in K_{<\lambda}$ and $\operatorname{tp}\left(a, M^{*}, N^{+}\right)$does not fork over $M\left(\preceq_{\mathcal{F}} M^{*}\right)$

$$
N^{+}
$$

and $A \subseteq M^{*}$ is finite, then $A \bigcup_{M} N$.
Proof. Usually we can use 3.14. A problem arises only if $\mu^{+}=\lambda$. We can find $\left\langle M_{i}^{\prime}: i \leq \mu\right\rangle$ which is $\preceq_{\mathcal{F}}$-increasing continuous, $\left\|M_{i}^{\prime}\right\|=|i|+\operatorname{LS}(\mathbf{T})$, $M_{\mu}^{\prime}=M, M_{i}^{\prime}$ is saturated, M_{i+1}^{\prime} is universal over M_{i}^{\prime} and p does not fork over M_{0} (recall 3.11(1)).

Now choose, by induction on $i \leq \mu,\left(M_{i}, N_{i}, a\right)$ such that:
(a) $M_{0}=M_{0}^{\prime}$,
(b) $\left\|M_{i}\right\|=\left\|N_{i}\right\|=|i|+\operatorname{LS}(\mathbf{T})$,
(c) for i non-limit, $\left(M_{i}, N_{i}, a\right)$ is as in 3.13 (with $|i|+\operatorname{LS}(\mathbf{T})$ instead of μ), that is, N_{i} is isolated over $M_{i} \cup\{a\}$,
(d) $\operatorname{tp}\left(a, M_{0}, N_{0}\right)=p \upharpoonright M_{0}^{\prime}$,
(e) $\left\langle M_{i}: i \leq \mu\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous,
(f) $\left\langle N_{i}: i \leq \mu\right\rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous,
(g) $\operatorname{tp}\left(a, M_{i+1}, N_{i+1}\right)$ does not fork over M_{i} (hence is the stationarization of $\operatorname{tp}\left(a, M_{0}, N_{0}\right)=p \upharpoonright M_{0}^{\prime}$, that is, does not fork over $\left.M_{0}^{\prime}=M_{0}\right)$,
(h) M_{i+1} is saturated over M_{i} and N_{i+1} is saturated over N_{i},
(i) $M_{i} \preceq_{\mathcal{F}} N_{i}$.

There is no problem, so as M_{μ} is saturated and in $K_{\mu}, M_{0}=M_{0}^{\prime}$ has cardinality $<\mu$ and uniqueness of non-forking extensions (3.11), we can assume $M_{\mu}=M$ and let $N_{\mu}=N$. For any candidates N^{+}, A, M^{*}, as in the definition of " N is locally isolated over $M \cup\{a\}$ " assume toward contradiction that N^{+}
$N \biguplus A$; as A is finite, by $3.11(1)$, for some $i<\mu$, the type $\operatorname{tp}\left(A, M, N^{+}\right)$ M
does not fork over M_{i}, and for some $j<\mu$ the type $\operatorname{tp}\left(A, N, N^{+}\right)$does not fork over N_{j}. We can assume $i=j$ is a successor ordinal and $\operatorname{tp}(A \cup\{a\}, M)$ N^{+}
does not fork over M_{i-1}. So as $N \biguplus A$, necessarily $\operatorname{tp}\left(A, N_{i}, N^{+}\right)$forks over M N^{+}
M_{i}, hence (by clause (c) above), $a \biguplus_{M_{i}} A$. But by construction M and M_{i} are saturated over M_{i-1}, and hence there is an isomorphism f from M_{i} onto M which is the identity over M_{i-1}. So by using uniqueness of non-forking extensions, it maps $\operatorname{tp}\left(A \cup\{a\}, M_{i}, N^{+}\right)$to $\operatorname{tp}\left(A \cup\{a\}, M, N^{+}\right)$and hence N^{+} M^{*} $a \biguplus A$ (by 1.21(4)). Thus we get $a \underset{M}{\biguplus} M^{*}$, contradiction to the choice of N^{+}, A, M^{*}.

Alternatively repeat the proof of 3.13 using $3.11(2)$'s second sentence. -
Theorem 3.16. Assume λ is a successor cardinal, i.e., $\lambda=\lambda_{0}^{+}$. Then \mathbf{T} is categorical in every $\mu \in\left[\beth_{\left(2^{\mathrm{LS}(\mathbf{T}))^{+}}\right.}, \lambda\right.$) (really for some $\mu_{0}<\beth_{\left(2^{\mathrm{LS}(\mathbf{T})}\right)^{+}}$, $\mu \in\left[\mu_{0}, \lambda\right)$ suffices $)$.

Proof. As in [3]. By 3.10, for some $\mu_{1}<\beth_{\left(2^{\mathrm{LS}(\mathbf{T})}\right)+}$ every $M \in K_{\left[\mu_{1}, \lambda\right]}$ is $\mathrm{LS}(\mathbf{T})^{+}$-saturated. Let $\mu \in\left[\mu_{1}, \lambda\right)$, and assume $M \in K_{\mu}$ is not saturated, so for some $\kappa \in(\mathrm{LS}(\mathbf{T}), \mu)$ the model M is κ-saturated but not κ^{+}-saturated. Let $p,\left\langle N_{u}^{*}: u \in[|M|]^{<\aleph_{0}}\right\rangle, U, N^{+},\left\langle N_{u}^{+}: u \in\left[\left|N^{+}\right|\right]^{\aleph_{0}}\right\rangle$ be as in 3.9. Let $U_{0}=U$. We can assume $N_{U_{0}}^{*}$ is saturated, p does not fork over $N_{u^{*}}^{*}$ with $u^{*} \in[U]^{<\aleph_{0}}$ finite, and $\operatorname{rk}(p)$ is minimal under the circumstances. Now let $b \in M \backslash N_{U_{0}}^{*}$, so there are M^{+}satisfying $M \prec_{\mathcal{F}} M^{+} \in K_{\mu}$ and $N_{1} \preceq_{\mathcal{F}} M^{+}$ which is μ-isolated over $N_{U_{0}}^{*} \cup\{b\}$. By defining more N_{u}^{*} we can assume $N_{1}=N_{U_{1}}^{*}$. So $\operatorname{tp}\left(b, N_{U_{0}}^{*}, M\right)$ and p are orthogonal (see [7, Ch. V]). Now we deal with orthogonal types and we continue as in [3]: define a $\prec \mathcal{F}^{\mathcal{F}}$-chain $M_{i}^{*}(i<\lambda)$ of saturated models of cardinality λ_{0} all omitting some fixed $p \in S\left(M_{0}^{*}\right)$.

Discussion 3.17. (1) Below $\beth_{\left(2^{\mathrm{LS}(\mathbf{T}))^{+}}\right.}$: The problem is what occurs in $\left[\mathrm{LS}(\mathbf{T}), \beth_{\left(2^{\mathrm{LS}(\mathbf{T}))^{+}}\right.}\right)$. As \mathbf{T} is not necessarily complete, for any ψ and \mathbf{T} we can consider $\mathbf{T}^{\prime}:=\{\psi \rightarrow \varphi: \varphi \in \mathbf{T}\}$ if $\neg \psi$ has a model in μ iff $\mu<\mu^{*}$, we get such examples where categoricity can start "late". So we may consider \mathbf{T} complete in $L_{\kappa^{*}, \omega}$. Hart and Shelah [1] bound our possible improvement but we may want larger gaps, a worthwhile direction.

If $|\mathbf{T}|<\kappa^{*}$ we may look at what occurs in large enough $\mu<\kappa^{*}$.
(2) Below λ : If λ is a limit cardinal we get only 3.11 ; this is a more serious issue. The problem is that we can get a μ-saturated but not saturated model in $K_{\mu^{+}}$, so we get, for $M \in K_{\mu}$ saturated, two orthogonal types $p, q \in S(M)$ (not realized in M). We want to build a prime model over $M \cup$ (a large indiscernible set for p). Clearly $\mathcal{P}^{-}(n)$-diagrams are called for.
(3) Above λ : In some sense we know every model is saturated: if $M \in K_{>\lambda}, N \preceq_{\mathcal{F}} M,\|N\|<\lambda, p \in S(N)$ then $\operatorname{dim}(p, N, M)=\|M\|$, i.e., if $N \preceq_{\mathcal{F}} N^{+} \preceq_{\mathcal{F}} M$ and $\left\|N^{+}\right\|<\|M\|$ when λ is successor, or $\beth_{\left(2^{\mathrm{LS}(\mathbf{T})}\right)^{+}}\left(\left\|N^{+}\right\|\right)$when λ is a limit cardinal.

Another way to say it: the stationarization of p over N^{+}is realized. But is every $q \in S\left(N^{+}\right)$a stationarization of some $p \in S\left(N^{\prime}\right), N^{\prime} \preceq_{\mathcal{F}}$ $N^{+},\left\|N^{\prime}\right\| \leq \mathrm{LS}(\mathbf{T})$? We can find $N_{0} \preceq \mathcal{F} N^{+}$with $\left\|N_{0}\right\| \subseteq|\mathbf{T}|$ such that $\left[N_{0} \preceq_{\mathcal{F}} N_{1} \leq N^{+} \&\left\|N_{1}\right\| \leq \mathrm{LS}(\mathbf{T}) \Rightarrow q \upharpoonright N_{1}\right.$ does not fork over $\left.N_{0}\right]$, we can get it for $\left\|N_{1}\right\|<\mu$, but does it hold for $N_{1}=N^{+}$? A central point is
(*) Does K satisfy amalgamation?
Again it seems that $\mathcal{P}^{-}(n)$-systems are called for. See more in [5], [4].
(4) If $|\mathbf{T}|<\kappa^{*}$ we can do better, as $\operatorname{Op}(\operatorname{EM}(I, \Phi))=\operatorname{EM}(\operatorname{Op}(I), \Phi)$; will be discussed elsewhere.

References

[1] B. Hart and S. Shelah, Categoricity over P for first order T or categoricity for $\phi \in \mathscr{L}_{\omega_{1} \omega}$ can stop at \aleph_{k} while holding for $\aleph_{0}, \ldots, \aleph_{k-1}$, Israel J. Math. 70 (1990), 219-235; math.LO/9201240 (${ }^{2}$).
[2] O. Kolman and S. Shelah, Categoricity of theories in $L_{\kappa, \omega}$, when κ is a measurable cardinal, Part 1, Fund. Math. 151 (1996), 209-240; math.LO/9602216.
[3] M. Makkai and S. Shelah, Categoricity of theories in $L_{\kappa \omega}$, with κ a compact cardinal, Ann. Pure Appl. Logic 47 (1990), 41-97.
[4] S. Shelah, Categoricity in abstract elementary classes: going up inductive step, preprint, math.LO/0011215.
[5] -, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math., accepted; math.LO/9805146.
[6] -, Non-Structure Theory, Oxford Univ. Press, to appear.
[7] -, Universal Classes, volume in preparation.
[8] -, Categoricity in \aleph_{1} of sentences in $L_{\omega_{1}, \omega}(Q)$, Israel J. Math. 20 (1975), 127-148.
[9] -, Classification Theory and the Number of Non-Isomorphic Models, Stud. Logic Found Math. 92, North-Holland, 1978.
[10] -, Classification theory for non-elementary classes I. The number of uncountable models of $\psi \in L_{\omega_{1}, \omega}$. Part A, Israel J. Math. 46 (1983), 212-240.
[11] -, Classification theory for nonelementary classes I. The number of uncountable models of $\psi \in L_{\omega_{1}, \omega}$. Part B, ibid., 241-273.
[12] -, Classification of non-elementary classes. II. Abstract elementary classes, in: Classification Theory (Chicago, IL, 1985), J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, Berlin, 1987, 419-497.
[13] -, Universal classes, ibid., 264-418.
[14] -, Classification Theory and the Number of Non-Isomorphic Models, 2nd ed. of [9], 1990.
[15] -, Advances in Cardinal Arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer, 1993, 355-383.
[16] —, Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98 (1999), 261-294; math.LO/9809197.

Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, U.S.A.
E-mail: shelah@math.huji.ac.il

Received 25 April 1996;
in revised form 6 November 2000

[^1]
[^0]: 2000 Mathematics Subject Classification: 03C25, 03C75, 03C20.
 Key words and phrases: model theory, infinitary logics, classification theory, categoricity, Łoś theorem, measurable cardinal, limit ultrapower.

 Research supported by the United States-Israel Binational Science Foundation. Publication number 472.

[^1]: $\left(^{2}\right)$ References of the form math.XX/... refer to the xxx.lanl.gov archive.

