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Haar null and non-dominating sets

by

Sławomir Solecki (Bloomington, IN)

Abstract. We study the σ-ideal of Haar null sets on Polish groups. It is shown that
on a non-locally compact Polish group with an invariant metric this σ-ideal is closely
related, in a precise sense, to the σ-ideal of non-dominating subsets of ωω . Among other
consequences, this result implies that the family of closed Haar null sets on a Polish group
with an invariant metric is Borel in the Effros Borel structure if, and only if, the group
is locally compact. This answers a question of Kechris. We also obtain results connecting
Haar null sets on countable products of locally compact Polish groups with amenability
of the factor groups.

1. Introduction. A subset A of a Polish group G is called Haar null
if it is contained in a universally measurable set B for which there exists a
Borel probability measure µ on G such that µ(gBh) = 0 for all g, h ∈ G.
This family of sets is closed under translations (simultaneously from left
and right), taking subsets, and countable unions. The notion of Haar null
sets is a natural extension of the notion of sets of Haar measure zero: if G
happens to be locally compact, then Haar null sets are precisely the sets
of Haar measure zero. Since the publication of Christensen’s paper [C1]
which introduced this new notion, Haar null sets have found many appli-
cations. For example, they were used to find a generalization to Banach
spaces of Rademacher’s differentiability theorem [C2], and implicitly [Ma,
Theorem 4.5]. Most recently some very interesting connections have been
found between reflexivity of separable Banach spaces and Haar nullness of
closed, convex, nowhere dense sets [MS, M1, M2, M3] with the final re-
sult in [M3]. Also a lot of effort has been put into determining whether
or not certain concrete sets are Haar null (see for example [D, DM, Hu,
HSY, ST]).

The class of groups we will consider in the first part of the paper is the
class of Polish groups with an invariant metric, that is, Polish groups G
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which admit a metric d such that d(gxh, gyh)=d(x, y) for any g, h, x, y∈G.
All Polish abelian groups admit invariant metrics and there exist non-
abelian groups with invariant metrics. The results in this paper are new
also for abelian groups and, in fact, even for separable Banach spaces.

The present paper is concerned with a circle of problems and results,
initiated in [C1], which have to do with comparing properties of the σ-ideal
of Haar null sets on non-locally compact groups with the properties of Haar
null sets on locally compact groups, that is, with properties of Haar mea-
sure zero sets. There were indications that the locally compact case and
the non-locally compact case are rather different. For example, if G is not
locally compact and has an invariant metric, then each compact subset of
G is Haar null (see [C1] for abelian groups and [D] in general) and the
σ-ideal of Haar null sets does not have the countable chain condition (that
is, there exists an uncountable family of pairwise disjoint Borel sets each of
which is not Haar null (cf. [D] for a large subclass of Polish abelian groups,
[S] in general). Classical theorems state that negations of these statements
hold for Polish locally compact groups. There was one aspect of this com-
parison, first pointed out by Kechris, that remained unresolved: he asked
whether the family of closed Haar null subsets of a Polish group is Borel
in the Effros Borel structure. It is so in the case when G is locally com-
pact and it was not known to be non-Borel on any non-locally compact
group.

We prove a theorem which tries to explain these dissimilarities and an-
swers Kechris’ question. We show that the σ-ideal of non-dominating subsets
of ωω can be “reduced” to the σ-ideal of Haar null sets on a non-locally com-
pact Polish group with an invariant metric. This is rather unexpected since
the σ-ideal of non-dominating sets is very much unlike the σ-ideal of mea-
sure zero sets with respect to a Borel σ-finite measure. Actually, if this new
notion of reduction is naturally generalized to compare arbitrary ideals on
Polish spaces, then one easily shows that the σ-ideal of non-dominating sets
is never reducible to the σ-ideal of measure zero sets with respect to any
σ-finite Borel measure. The notion of “reduction” used here is reminiscent
of the notion of the Rudin–Keisler or even Rudin–Blass reduction used to
compare ideals of subsets of ω and can be considered to be its continuous
analogue. As a consequence of our reduction result we deduce that the fam-
ily of closed Haar null sets can be non-Borel. In fact, we show that Borelness
of the family of closed Haar null sets characterizes local compactness among
Polish groups with invariant metric. Furthermore, it is straightforward to
deduce from this result Haar nullness of compact sets and the failure of the
countable chain condition mentioned above and proved earlier in [C1], [D],
and [S]. We also deduce some estimates on the additivity and cofinality of
the Haar null σ-ideal.
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It is also interesting, when comparing properties of Haar null sets on
locally compact and non-locally compact groups, to consider groups which,
though not locally compact, are obtained from locally compact ones by a
simple operation; for example, countable products of locally compact groups.
We study to what extent the Haar null σ-ideal on those product groups is
determined by Haar measures on the factor groups. Surprisingly, the notion
of amenability seems to be relevant here. It turns out that a subset of a
countable product of locally compact amenable groups is Haar null precisely
when its Haar nullness is witnessed by a measure which is the product
of probability measures on the factor groups with each of these measures
equivalent to the appropriate Haar measure.

2. Haar null sets and non-dominating sets. We think of ωω, the
space of all functions from the set of all natural numbers to itself, as equipped
with a partial order defined as follows. For x, y ∈ ωω, put x ≤∗ y if
x(n) ≤ y(n) for all but finitely many n ∈ ω. Recall that a subset A of
ωω is dominating if for any x ∈ ωω there exists a y ∈ A such that x ≤∗ y.
So, a subset is non-dominating if for some x for each y ∈ A, y(n) < x(n)
holds for infinitely many n’s. Note that non-dominating sets constitute a
σ-ideal.

Given two Polish spaces X and Y with σ-ideals I and J on X and Y ,
respectively, we would consider J to be simpler than I if it can be reduced
to I in the following natural way: for some Borel set B ⊆ X and some Borel
function f : B → Y , we have A ∈ J ⇔ f−1(A) ∈ I. This notion of reduction
can be thought of as a generalization of the Rudin–Keisler reduction which
is used to compare ideals, or dually filters, of subsets of ω. This new notion
has some nice properties; for example, it is transitive. It is also meaningful,
that is, there exist σ-ideals I and J such that J is not reducible to I.
A particularly important, from the point of view of the problems of this
paper, example of this is obtained by taking I to be the σ-ideal of measure
zero sets with respect to some σ-finite Borel measure defined on a Polish
space X and letting J be the σ-ideal of non-dominating subsets of ωω. That
J cannot be reduced to I can be seen by remarking that there exist Aα ⊆ ωω,
α ∈ 2ω, Borel pairwise disjoint sets none of which is in J , and then noticing
that if f were a reduction, then f−1(Aα) would be a family of Borel pairwise
disjoint subsets of X of positive measure, and such families do not exist. In
contrast to this fact, we show below that the σ-ideal of non-dominating
sets is reducible to the σ-ideal of Haar null sets on a non-locally compact
Polish group with an invariant metric. In fact, we will be able to do much
better: the function f can be taken to be a continuous open surjection and
its domain can be taken to be closed and large in a suitable sense. (Actually,
one can even get f to be such that preimages of compact sets are compact.
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So this reduction resembles more the stronger than Rudin–Keisler notion of
reduction between ideals of subsets of ω called the Rudin–Blass reduction;
see [LZ].)

Theorem 2.1. Let G be a Polish non-locally compact group with an in-
variant metric. There exist a closed set F ⊆ G and f : F → ωω such that

(i) for any compact K ⊆ G, gK ⊆ F for some g ∈ G, and f is a
continuous, open surjection;

(ii) for A ⊆ ωω, A is non-dominating if and only if f−1(A) is Haar null.

We will give a proof of this theorem first and then establish several of
its corollaries. For s ∈ ω<ω let |s| be the unique n ∈ ω with s ∈ ωn. Fix an
invariant metric d on G. Each such metric is complete. For A,B ⊆ G define

dist(A,B) = inf{d(g, h) : g ∈ A, h ∈ B}.
We write r � s, for two nonnegative real numbers s and r, if the ball B(1, s)
cannot be covered by finitely many balls of radius r. Note that r � s implies
r ≤ s. Let δ and ε be two positive numbers. Define a setA to be (δ, ε)-discrete
if for any x, y ∈ A either d(x, y) < ε or d(x, y) > δ. The name (δ, ε)-discrete
is justified by the fact that this definition will be applied in situations in
which ε is much smaller than δ.

The following lemma generalizes the result proved by Dougherty [D,
Proposition 12] that each compact subset of a Polish group with an invariant
metric is Haar null. To see that this is indeed a generalization of this result
note that since each ball of radius ε/2 > 0 is (δ, ε)-discrete for any δ > 0,
each compact set is a union of finitely many (δ, ε)-discrete sets for arbitrary
δ, ε > 0.

Lemma 2.2. Let G be as in Theorem 2.1. Let (An) be a sequence of
subsets of G such that each An is a finite union of (δn, εn)-discrete sets. If

∑

i>n

δi < 2εn � δn/4,

then
⋂
m

⋃
n≥mAn is Haar null.

Proof. Let An =
⋃
k<kn

Bnk with each Bnk (δn, εn)-discrete. Find Dn ⊆
B(0, δn/4) so that |Dn| = 2nkn and any two distinct elements of Dn are at
distance not smaller than 2εn. This can be done since 2εn � δn/4. Consider
the compact metric space

∏
iDi equipped with a Borel probability measure

µ which is the product measure of the measures µi where µi assigns the same
weight 1/|Di| to each point in Di. Let φ :

∏
iDi → G be defined by letting

φ(x) =
∏
i xi if x = (x0, x1, . . .). The invariance of d and the condition∑

i δi < ∞ guarantee that φ is well defined and continuous. Let ν be the
Borel probability measure on G given by ν(A) = µ(φ−1(A)) for any Borel
subset A of G. We show that ν witnesses Haar nullness of

⋂
m

⋃
n≥mAn.
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For σ ∈ ∏i<nDk let Nσ stand for the clopen subset of
∏
iDi of all x

with σ = (x0, . . . , xn−1).

Claim. Let σ ∈ ∏i<nDi and let g, h ∈ G. If x, y ∈ φ−1[gBnkh] ∩Nσ,
then xn = yn.

Proof. Assume that xn 6= yn. Then
∏
i xi,

∏
i yi ∈ gBnkh and, by in-

variance of d, d(
∏
i xi,

∏
i yi) = d(xn

∏
i>n xi, yn

∏
i>n yi). Thus, again by

invariance of d,

d
(∏

i

xi,
∏

i

yi

)
≤ d(xn, yn) + d

(∏

i>n

xi, 1
)

+ d
(∏

i>n

yi, 1
)

≤ δn/2 + 2
∑

i>n

δi/4 < δn

and

d
(∏

i

xi,
∏

i

yi

)
≥ d(xn, yn)− d

(∏

i>n

xi, 1
)
− d
(∏

i>n

yi, 1
)

≤ 2εn − 2
∑

i>n

δi/4 > εn.

These two inequalities show that gBnkh is not (δn, εn)-discrete, which, by in-
variance of d, contradicts (δn, εn)-discreteness of Bnk . This proves the claim.

Let ν∗ and µ∗ stand for the outer measures associated with ν and µ,
respectively. From the Claim we deduce that for any g, h ∈ G,

ν∗(gBnkh) = µ∗(φ−1[gBnkh]) =
∑

σ∈∏i<nDi
µ∗(φ−1[gBnkh] ∩Nσ)

≤
∑

σ∈∏i<nDi

1
|Dn|

µ(Nσ) =
1

2nkn
.

Thus,

ν∗(gAnh) ≤
∑

k<kn

ν∗(gBnkh) ≤ kn
2nkn

= 2−n.

This implies that µ(g
⋂
m

⋃
n≥mAnh) = 0 for g, h ∈ G.

Lemma 2.3. Let G be as in Theorem 2.1. Each open non-empty subset
of G contains a closed set which is Haar null and homeomorphic to ωω.

Proof. Let U be a ball, say of radius ε/2 > 0, whose closure is included in
the open set in question. Fix two sequences (δn) and (εn) of positive numbers
in such a way that for each n,

∑
i>n δi < 2εn � δn/4 and δn+ εn � εn−1/4

with ε−1 = ε. Let d be an invariant metric on G. By invariance and since
δn+εn � εn−1/4, each ball of radius εn−1/4 contains infinitely many points
which are at least δn + εn apart. Thus, since additionally εn−1/4 > εn/2,
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each ball B of radius εn−1/2 contains closures of infinitely many balls Bk,
k ∈ ω, of radius εn/2 and such that dist(Bk, Bl) > δn if k 6= l. Thus

⋃
k Bk

is contained in B and is (δn, εn)-discrete. Using this observation, construct
balls Bs, s ∈ ω<ω, so that

(1) B∅ = U ;
(2) Bs is of radius ε|s|−1/2;
(3) dist(Bsk, Bsl) ≥ δ|s| if k 6= l, k, l ∈ ω;

(4) Bt ⊆ Bs if t ⊆ s.

Note that (3) and (4) and the fact that (δn) is a decreasing sequence
ensure that dist(Bs, Bt) ≥ δn if s, t ∈ ωn+1 and s 6= t. Thus

⋃
s∈ωn+1 Bs

is closed and, by also (2) and (3), (δn, εn)-discrete. It follows that H =⋂
n

⋃
s∈ωn+1 Bs is closed and by Lemma 2.2 Haar null. It is routine to check

that the function g : ωω → H defined by letting g(x) be the unique point in⋂
nBx|n is a homeomorphism.

Proof of Theorem 2.1. Let (Qk) be a sequence of finite subsets of G such
that 1 ∈ Q0, Qk ⊆ Qk+1, and

⋃
kQk dense in G. Fix now three sequences

(εn), (δn) and (rn) of positive numbers in such a way that for each n,

rn � 5δn, δn/4� 8εn, and εn >
∑

k>n

rk.

Since the group is not locally compact, for any positive number a there
exists b > 0 such that a� b. Thus, the choice of rn, δn and εn is possible.

Now for each n fix a sequence (gnk )k so that

gnk ∈ B(1, rn) and dist
(
gnkQk,

⋃

i<k

gni Qi

)
≥ 5δn.

It requires finding for each k a gnk ∈ B(1, rn) such that

dist
(
gnk ,

⋃

i<k

gni QiQ
−1
k

)
≥ 5δn

and this can be done since 5δn � rn.
Let V nk = B(1, εn)Qk and Unk = B(0, 2εn)Qk. We will need the following

two claims.

Claim 1. If s, t ∈ ωn+1 and s 6= t, then each point in

g0
s(0)U

0
s(0) ∩ g0

s(0)g
1
s(1)U

1
s(1) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n)

is at distance greater than 2δn from any point of

g0
t(0)U

0
t(0) ∩ g0

t(0)g
1
t(1)U

1
t(1) ∩ . . . ∩ g0

t(0)g
1
t(1) . . . g

n
t(n)U

n
t(n).
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Proof. Let n0 ≤ n be the smallest natural number such that s(n0) 6=
t(n0). In particular, s|n0 = t|n0. It will suffice to show that

dist(g0
s(0) . . . g

n0−1
s(n0−1)g

n0
s(n0)U

n0
s(n0), g

0
s(0) . . . g

n0−1
s(n0−1)g

n0
t(n0)U

n0
t(n0)) > 2δn,

which by invariance of the metric amounts to noticing that

dist(gn0
s(n0)U

n0
s(n0), g

n0
t(n0)U

n0
t(n0)) > 2δn.

This is true by invariance of the metric and the facts that dist(gn0
s(n0)Qs(n0),

gn0
t(n0)Qt(n0)) ≥ 5δn, Un0

s(n0) = B(1, 2εn)Qs(n0) and Un0
t(n0) = B(1, 2εn)Qt(n0),

and 2εn ≤ δn. Thus, the claim is established.

Claim 2. For each n, k and any choice of (ki) ∈ ωω,
∏
i>n g

i
ki
V nk

⊆ Unk .

Proof. By invariance of d,

d
(

1,
∏

i>n

giki

)
≤
∑

i>n

d(1, giki) ≤
∑

i>n

ri < εn.

This implies that for any q ∈ Qk,
∏
i>n g

i
ki
B(1, εn)q ⊆ B(1, 2εn)q. This

leads directly to the conclusion of the claim.

Define

F1 =
⋂

n

⋃

s∈ωn+1

g0
s(0)U

0
s(0) ∩ g0

s(0)g
1
s(1)U

1
s(1) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n).

The following two properties of F1 will be needed later:

(1) F1 is closed;
(2) F1 is nowhere dense.

We show (1) first. Note that

g0
s(0)U

0
s(0) ∩ g0

s(0)g
1
s(1)U

1
s(1) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n)

is closed for any s ∈ ωn+1. By Claim 1,
⋃

s∈ωn+1

g0
s(0)U

0
s(0) ∩ g0

s(0)g
1
s(1)U

1
s(1) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n)

is closed as well, whence F1 is closed being the intersection of closed sets.
Having proved that F1 is closed, proving (2) requires only checking that

F1 has empty interior. If not, then for some δn a ball of radius δn is contained
in F1. By the definition of F1, this ball would be included in

⋃

s∈ωn+1

g0
s(0)U

0
s(0) ∩ g0

s(0)g
1
s(1)U

1
s(1) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n).

By Claim 1, this implies that the ball is included in

g0
s(0)g

1
s(1) . . . g

n
s(n)U

n
s(n)
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for some s ∈ ωn+1. But this is not possible since this set can be covered by
finitely many balls of radius ≤ 2εn and this cannot be done with a ball of
radius δn as 2εn � δn. So (2) is established as well.

Define, for x ∈ ωω,

Kx =
⋂

n

g0
x(0) . . . g

n
x(n)U

n
x(n).

We register now three properties of the family of all Kx’s for future use:

(3) for each x ∈ ωω,
∏
n g

n
x(n) ∈

⋂
n g

0
x(0) . . . g

n
x(n)U

n
x(n);

(4) if x 6= y, then Kx ∩Ky = ∅;
(5) F1 =

⋃
x∈ωω Kx.

To prove (3) note that by Claim 2,
∏

n

gnx(n) = g0
x(0) . . . g

m
x(m)

∏

n>m

gnx(n) ∈ g0
x(0) . . . g

m
x(m)U

m
x(m).

Since this happens for each m,
∏
n g

n
x(n) ∈

⋂
n g

0
x(0) . . . g

m
x(m)U

m
x(m).

To see (4), fix x, y ∈ ωω with x 6= y. Let n0 be the smallest natural
number with x(n0) 6= y(n0). Then

Kx ⊆ g0
x(0)U

0
x(0) ∩ . . . ∩ g0

x(0) . . . g
n0−1
x(n0−1)g

n0
x(n0)U

n0
x(n0),

Ky ⊆ g0
y(0)U

0
y(0) ∩ . . . ∩ g0

y(0) . . . g
n0−1
y(n0−1)g

n0
y(n0)U

n0
y(n0),

and disjointness of Kx and Ky follows from Claim 1.
Now an argument for (5). For any x, Kx ⊆ F1 is completely clear, so⋃

x∈ωω Kx ⊆ F1. Let z ∈ F1. Then, by Claim 1, for each n there is a unique
sn ∈ ωn+1 such that

z ∈ g0
sn(0)U

0
sn(0) ∩ . . . ∩ g0

sn(0) . . . g
n
sn(n)U

n
sn(n).

It follows that sn ⊆ sn+1. Then for x =
⋃
n sn, we obviously have z ∈ Kx.

Now fix sets Hs
i , s ∈ ω<ω, i ≤ is for some finite is, so that

(6) Hs
i ⊆ (g0

s(0)U
0
s(0) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n)) \ F1;

(7) Hs
i closed and homeomorphic to ωω;

(8) Hs
i Haar null;

(9) the diameter of Hs
i is less than 1/(|s|+ 1);

(10) each point in g0
s(0)U

0
s(0) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n) is at distance

not greater than 5εn from Hs
i ;

(11) Hs
i ∩Ht

j = ∅ if i 6= j or s 6= t.

Here is why such a choice of is and Hs
i , i ≤ is, is possible. Let (sn)

be an enumeration of ω<ω. Assume isk and Hsk
i for i ≤ isk have been

defined for k < n. Let sn = s. Note first that the set g0
s(0)U

0
s(0) ∩ . . . ∩

g0
s(0)g

1
s(1) . . . g

n
s(n)U

n
s(n) is included in g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n), which is the
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union of finitely many, say is many, sets of diameter not larger than 4εn.
Thus, we can pick is points in it so that each point of it is at distance not
more than 4εn from one of the finitely many points picked. The set

(g0
s(0)U

0
s(0) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n)) \

(
F1 ∪

⋃

k<n

⋃

i≤isk

Hsk
i

)

is open and non-empty since, by (4),

g0
s(0)U

0
s(0) ∩ . . . ∩ g0

s(0)g
1
s(1) . . . g

n
s(n)U

n
s(n) 6= ∅

and, by (1) and (2), F1 is closed and nowhere dense, as are the sets Hsk
i

since, by our inductive assumption, they are closed and Haar null. Now, it
follows from Lemma 2.3 that in any neighborhood of the ith point out of
the is points chosen we can find a closed copy of ωω which is Haar null. This
allows us to define Hs

i for i ≤ is so that (6)–(11) are satisfied.
Define now

F = F1 ∪
⋃

s∈ω<ω

⋃

i≤is
Hs
i .

We show that F is closed. Since F1 is closed and all the Hs
i ’s are closed as

well, it will suffice to show that any convergent sequence (xn) contained in⋃
s∈ω<ω

⋃
i≤is H

s
i which has only finitely many points in each Hs

i converges
to a point in F1. Using Claim 1, property (6) of sets Hs

i , and is < ∞, we
see that we can pass to a subsequence of the sequence (xn), which we again
call (xn), for which there exist sn ∈ ωn+1, n ∈ ω, with sn ⊆ sn+1 and for
for each n and m ≥ n,

xm ∈ g0
sn(0)U

0
sn(0) ∩ . . . ∩ g0

sn(0) . . . g
n
sn(n)U

n
sn(n).

Since the sets g0
sn(0)U

0
sn(0) ∩ . . . ∩ g0

sn(0) . . . g
n
sn(n)U

n
sn(n) are closed, limn xn

belongs to all of them, so also to their intersection, which is Kz, for z =⋃
n sn, and this set is included in F1 by (5).

Fix now homeomorphisms φsi : Hs
i → ωω. Finally define f : F → ωω as

follows. If z ∈ F1, let f(z) be the unique x ∈ ωω with z ∈ Kx. If z ∈ Hs
i let

f(z) = sφsi (z). The function f is well defined by (3) and (5).
We will now check (i) from the conclusion of the theorem. We first show

that for any compact set K there exists a g ∈ G with gK ⊆ F . Actually, we
will have gK ⊆ F1. For each i,

⋃
k V

i
k = G since

⋃
kQk is dense in G. This

and compactness of K allow us to pick a sequence (ki) so that K ⊆ V iki . By
Claim 2, for each n,

(∏

i

giki

)
K ⊆

(∏

i≤n
giki

)(∏

i>n

giki

)
V nkn ⊆

(∏

i≤n
giki

)
Unkn .

Thus, (
∏
i g
i
ki

)K ⊆ K(ki) ⊆ F1.
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The very definition of f insures that it is a surjection. Now we show
that f is continuous and open. First continuity. Fix a converging sequence
(xn) ∈ F with limit x. Eliminating the obvious possibilities and passing to
a subsequence, we can assume that x ∈ F1 and we have two cases.

Case 1: (xn) included in
⋃
s∈ω<ω

⋃
i≤is H

s
i . Again, as in the proof that

F is closed, by passing to a subsequence, we can produce a sequence sn ∈
ωn+1 with sn ⊆ sn+1 and for m ≥ n,

xm ∈ g0
sn(0)U

0
sn(0) ∩ . . . ∩ g0

sn(0) . . . g
n
sn(n)U

n
sn(n).

Set z =
⋃
n sn. By the definition of f , limn f(xn) = z. On the other hand,

x ∈ Kz, so f(x) = z.

Case 2: (xn) included in F1. The proof is similar to that in Case 1.

We now check that f is open. Let U be an open subset of G and let x0 ∈
F ∩U . We need to find an open set V ⊆ ωω such that f(x0) ∈ V ⊆ f [F ∩U ].
For s ∈ ω<ω, let Ns = {z ∈ ωω : z||s| = s}. If x0 ∈ Hs

i for some s ∈ ω<ω
and i ≤ is, there exists a t ∈ ω<ω such that x0 ∈ (φsi )

−1(Nt) ⊆ U ∩F . Thus
f(x0) ∈ Nst and Nst ⊆ f [U ∩ F ]. Assume now x0 ∈ F1. By (5) we can find
some y ∈ ωω with x0 ∈ Ky. Then, by (9) and (10), taking into account the
definition of Ky and the fact that εn tends to 0, for some s ⊆ y we have
U ∩ F ⊇ Hs

i . It follows that f [U ∩ F ] ⊇ Ns and f(x0) = y ∈ Ns.
Now we check that (ii) is satisfied. We first show that if H ⊆ ωω is

dominating, then A = f−1(H) is not Haar null. Fix a Borel probability
measure µ on G. By regularity of µ, we can find a compact set K such
that µ(K) > 0. By subtracting from K all relatively open (in K) sets of µ-
measure zero, we can assume that for all ∅ 6= U ⊆ K open in K, µ(U) > 0.
Moreover, without loss of generality, we can assume that 1 ∈ K. Pick a
sequence (kn) ∈ ωω so that for each n, K ⊆ V nkn . Find y ∈ H so that for
some n0, kn ≤ y(n) for all n ≥ n0. Note that for n ≥ n0, K ⊆ V nkn ⊆ V ny(n).
Therefore, for n ≥ n0, by Claim 2,

∏

i

giy(i)K ⊆
∏

i

giy(i)V
n
y(n) =

∏

i≤n
giy(i)

∏

n<i

giy(i)V
n
y(n) ⊆

∏

i≤n
giy(i)U

n
y(n).

It follows from this and the definition of Ky that
(∏

i

giy(i)K
)
∩Ky

⊇
(∏

i

giy(i)K
)
∩
⋂

n≥n0

∏

i≤n
giy(i)U

n
y(n) ∩

⋂

n<n0

∏

i≤n
giy(i)U

n
y(n)

=
(∏

i

giy(i)K
)
∩
⋂

n<n0

∏

i

giy(i)U
n
y(n).
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This last set is non-empty since
∏
i g
i
y(i) belongs to the two sets which are

being intersected by (3) and the fact that 1 ∈ K. It is also relatively open in∏
i g
i
y(i)K. It follows that µ((

∏
i g
i
y(i))

−1Ky) > 0, so µ∗((
∏
i g
i
y(i))

−1f−1(H))
> 0 where µ∗ stands for the inner measure associated with µ.

Now let H ⊆ ωω be non-dominating. Fix x ∈ ωω with the property that
for each y ∈ H, y(n) ≤ x(n) for infinitely many n’s. For s ∈ ωn, let

Bs =
⋂

l<n

(g0
s(0) . . . g

l
s(l)U

l
s(l)) ∩

⋃

m≤x(n)

(g0
s(0) . . . g

n−1
s(n−1)g

n
mU

n
m).

Now Bs is covered by
⋃
m≤x(n) g

0
s(0) . . . g

n−1
s(n−1)g

n
mU

n
m and each set Unm is

the union of |Qm| many sets of diameter ≤ 4εn. So Bs can be covered by∑
m≤x(n) |Qm| many sets of diameter ≤ 4εn. For n ≥ 1, if s1, s2 ∈ ωn and

s1 6= s2, then by Claim 1, dist(Bs1 , Bs2) ≥ 2δn−1 > δn. Thus,
⋃
s∈ωn Bs is

the union of finitely many (namely
∑
m≤x(n) |Qm|) (δn, 4εn)-discrete sets.

Since
∑
k>n δk < 8εn (actually,

∑
k>n δk ≤

∑
k>n rk < εn) and 8εn � δn/4,

it follows by Lemma 2.2 that
⋂
m

⋃
n≥m(

⋃
s∈ωn Bs) is Haar null. If, for some

n, y(n) ≤ x(n), then
Ky ⊆ By|n ⊆

⋃

s∈ωn
Bs.

Now by the choice of x, for any y ∈ H, Ky ⊆
⋃
s∈ωn Bs for infinitely many

n’s, whence
Ky ⊆

⋂

m

⋃

n≥m

( ⋃

s∈ωn
Bs

)
.

Since y is an arbitrary member of H, it follows that

f−1(H) ⊆
⋂

m

⋃

n≥m

( ⋃

s∈ωn
Bs

)
∪
⋃

s∈ω<ω

⋃

i≤is
Hs
i .

Since a countable union of Haar null sets is Haar null, the set on the right
hand side of the inclusion is Haar null. Hence f−1(H) is Haar null being a
subset of a Haar null set.

Remark. As we will see the properties of F and f as stated in The-
orem 2.1 are sufficient for applications that arose so far. We would like,
however, to point out some further properties of F and f as well as state
more refined versions of the properties from Theorem 2.1 in case they be-
come useful in some future applications. We will need a couple definitions.

Recall that a continuous function is perfect if preimages of compact sets
are compact. Call a subset A of a Polish group G openly Haar null if there
exists a probability Borel measure µ on G such that for any ε > 0 we can
find an open set U ⊆ G with A ⊆ U and µ(gUh) < ε for any g, h ∈ G.
Clearly, each openly Haar null set is Haar null. Also, the method of proving
that Haar null sets constitute a σ-ideal can be easily adapted to show that
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openly Haar null sets form a σ-ideal. I do not know, however, if each Haar
null set is openly Haar null. Note that each openly Haar null set is contained
in a Gδ set which is Haar null. The only known similar property of Haar null
sets is that each analytic Haar null set is contained in a Borel Haar null set
[S]. But no estimate on the complexity of the Borel set has been established.
On the other hand, methods of Matouškova’s paper [M2, Lemma 1.2 and
Theorem 1.3] show that if G is a separable Banach space and A ⊆ G is
weakly compact, then A is Haar null iff A is openly Haar null.

Now, I will list the additional properties of f and F from Theorem 2.1.
I will leave their proofs to the reader as these proofs are only minor mod-
ifications of arguments in Theorem 2.1. Let me only mention that point 2
follows from the fact that the sets in Lemma 2.1 are openly Haar null.

1. f is perfect.

Since perfect mappings between metric spaces are closed (see [E]), open-
ness, continuity, and perfectness of f give that preimages and images of
closed, open, and compact sets are closed, open and compact, respectively.

2. If H ⊆ ωω is non-dominating, then f−1(H) is openly Haar null.
3. If K ⊆ G is compact, then gK ⊆ f−1(x) for some x ∈ ωω and some

g ∈ G.
4. For x, y ∈ ωω, if x ≤∗ y, then for some countable D ⊆ G, f−1(x) ⊆

Df−1(y).
5. If H ⊆ ωω is dominating and K ⊆ G is compact, then for some

gn ∈ G and compact Kn ⊆ K with K =
⋃
nKn, n ∈ ω, we have

⋃
n gnKn ⊆

f−1(H).

3. Complexity of closed Haar null sets and other applications.
For a Polish space X let F(X) be the family of all closed subsets of X. Let
F(X) be equipped with Fell’s topology whose subbasis is constituted by two
kinds of subsets of F(X): first, all closed subsets of X disjoint from a given
compact subset of X, second, all closed subsets of X intersecting a given
open subset of X. As is easy to see, the Borel sets of this topology coincide
with the Borel structure generated by sets of the form {F ∈ F(X) : F ∩ U
6= ∅} for some open set U ⊆ X. This Borel structure is standard, that is, is
isomorphic to the Borel structure of a Polish space and is called the Effros
Borel structure (see [K, 12.6]).

By CD we denote the family of all closed dominating subsets of ωω and
by CND the family of all closed non-dominating subsets of ωω. We equip
F(G) and F(ωω) with Fell’s topology.

Lemma 3.1. Let G be a Polish, non-locally compact group with an in-
variant metric. There exists a continuous function Φ : F(ωω)→ F(G) such
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that for H ∈ F(ωω),

H ∈ CND iff Φ(H) is Haar null.

Proof. Let F and f : F → ωω be as in Theorem 2.1. Define Φ : F(ωω)→
F(G) by

Φ(H) = f−1(H).

Since f is continuous, f−1(H) is closed if H is, so Φ is well defined. Now,
H is not dominating if and only if Φ(H) is Haar null by Theorem 2.1.

It remains to see that Φ is continuous, which amounts to showing that
for any open V ⊆ G and compact L ⊆ G the preimages of the sets

{H ∈ F(G) : H ∩ V 6= ∅} and {H ∈ F(G) : H ∩ L = ∅}
are open. A short calculation shows that the preimages are, respectively,

{H ∈ F(ωω) : H ∩ f [V ] 6= ∅} and {H ∈ F(ωω) : H ∩ f [L] = ∅}.
These sets are open in F(ωω) since f is open and continuous.

A pair of subsets (A,B) of a Polish space X will be called Π1
1-hard if for

any Π1
1 subset C of a Polish space Y there exists a Borel function f : Y → X

such that f(x) ∈ A for x ∈ C and f(x) ∈ B for x ∈ Y \ C. A subset A of
a Polish space X is called Π1

1-hard if the pair (A,X \ A) is Π1
1-hard. The

following lemma contains a bit more than we will need in applications.

Lemma 3.2. (i) The pair ({H ∈ F : H is countable},CD) is Π1
1-hard.

(ii) CND is Π1
1-hard , so in particular , it is not Σ1

1 hence not Borel.

Proof. By PTr we denote the family of all pruned trees on ω, that is,
T ∈ PTr precisely when

∀s ∈ T ∀n < |s| s|n ∈ T and ∀s ∈ T ∃n ∈ ω sn ∈ T.
Thus PTr is a Gδ subset of the metric compact space 2ω

<ω

. The mapping
T 7→ [T ] = {x ∈ ωω : ∀n x|n ∈ T} establishes a 1-to-1 correspondence
between PTr and F(ωω). It is not difficult to check that this mapping is
a Borel isomorphism between PTr with its family of Borel sets and F(ωω)
with the Effros Borel structure. So it suffices to show that the pair ({T ∈
PTr : [T ] countable}, {T ∈ PTr : [T ] dominating}) is Π1

1-hard. The mapping
φ : 2ω → PTr given by

φ(α) = {s ∈ ω<ω : ∀n > 0 (n < |s| and α(n) = 0⇒ s(n− 1) = s(n))}
is easily checked to be continuous. (Clearly, φ(α) is a pruned tree on ω, so
φ is well defined.) Let Q ⊆ 2ω consist of all sequences α ∈ 2ω which are
eventually 0. We claim that

α ∈ Q ⇒ [φ(α)] is countable and α 6∈ Q ⇒ [φ(α)] is dominating.
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Let α ∈ Q, say α(n) = 0 for n > n0. Then for all x ∈ [φ(α)], x(n) = x(n0)
for all n > n0. Thus, [φ(α)] is countable. Let now α 6∈ Q. Put {n0 < n1

< . . .} = {n : α(n) = 1}. Fix x ∈ ωω and define y ∈ ωω by letting

y(k) =
{

0 if k < n0,
1 + max{x(i) : i < nj+1} if nj ≤ k < nj+1.

Then it is easy to check that x ≤∗ y and y ∈ [φ(α)]. Since x was arbitrary,
this shows that [φ(α)] is dominating.

Now we will use a trick from [KLW] to finish off the proof. By K(2ω) we
denote the space of all compact subsets of 2ω topologized using the Hausdorff
metric. Define Φ : K(2ω)→ PTr by

Φ(K) =
⋃
{φ(α) : α ∈ K}.

Note that the union of pruned trees is a pruned tree, so Φ is well defined.
Moreover, for s ∈ ω<ω, s ∈ Φ(K) iff ∃α ∈ K s ∈ φ(α), which is a closed
condition on K. Thus, Φ is Borel. A short calculation shows that if K is
compact, then [

⋃{φ(α) : α ∈ K}] =
⋃{[φ(α)] : α ∈ K}. Hence if K ⊆ Q,

then [Φ(K)] is countable. If, on the other hand, K 6⊆ Q, then we can fix
α0 ∈ K \Q, and [Φ(K)] is dominating as it contains a dominating set φ(α0).
As {K ∈ K(2ω) : K ⊆ Q} is Π1

1-hard by Mazurkiewicz’s theorem (see [K]),
we are done with (i); (ii) follows immediately from (i).

Remark. Greg Hjorth [H] showed recently that CND is Σ1
1-hard, as

well. On the other hand, it follows from the work of Brendle, Hjorth and
Spinas [BHS] that CND is ∆1

2. Let me sketch an argument for this last
estimate. As H ⊆ ωω is non-dominating precisely when ∃x ∈ ωω ∀y ∈ F
y(n) ≤ x(n) for infinitely many n’s, CND is Σ1

2. To see that it is also Π1
2

recall from [BHS] the definition of nice sets. Consider first the family S of
all sequences ((wσ, sσ) : σ ∈ ω<ω) with the following properties: wσ ⊆ ω is
finite, dom(s∅) ⊆ ω is finite and s∅ : dom(s∅) → ω, sσ : wσ|(|σ|−1) → ω for
σ 6= ∅, sσ(i) > σ(|σ|−1) for i ∈ wσ|(|σ|−1), and for all x ∈ ωω, ω = dom(s∅)∪⋃
n wx|n. Clearly, S is a subset of the Polish space ([ω]<ω × ω[ω]<ω)ω

<ω

and
a quick examination of its definition shows that it is Π1

1. Call a set C ⊆ ωω
nice if for some ((wσ, sσ) : σ ∈ ω<ω) ∈ S,

C = {y ∈ ωω : s∅ ⊆ y and ∃x ∈ ωω ∀n ∈ ω (y|wx|n = sx|n+1)}.
Now [BHS, Theorem 1.1] implies that a closed set is dominating precisely
when it contains a nice set. Therefore,

H ∈ CND iff ∀((wσ, sσ) : σ ∈ ω<ω) ∈ S ∃y ∈ ωω
(y 6∈ H and s∅ ⊆ y and ∃x ∈ ωω ∀n y|wx|n = sx|n+1).

Counting quantifiers, we see that this definition is Π1
2.
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Corollary 3.3. Let G be a Polish group with an invariant metric. The
family of all closed Haar null sets is Borel iff G is locally compact.

Proof. The mapping Φ from Lemma 3.1 is a Borel mapping if F(G)
and F(ωω) are equipped with the Effros Borel structure since this is the
Borel structure generated by Fell’s topology. So the corollary follows from
Lemma 3.2. (The implication ⇐ is standard.)

Remark. The obvious estimation on the complexity of the set of closed
Haar null subsets of a Polish group G is that it is Σ1

2. Here is a calculation
showing it. Let P (G) be the set of all Borel probability measures on G.
Then P (G) with an appropriate topology forms a Polish space (see [K,
17.23]). The condition µ(gHh) = 0 is Borel in the Polish space of quadruples
(H,µ, g, h) ∈ F(G)×P (G)×G×G (this follows from [K, 17.25]). Thus the
condition

H ∈ F(G) is Haar null iff ∃µ ∈ P (G) ∀g, h ∈ G µ(gHh) = 0

is Σ1
2. An argument as in Corollary 3.3, using Lemma 3.2 and the result of

Hjorth quoted in the remark following Lemma 3.2, shows that the family of
closed Haar null subsets of a Polish group, at least when this group admits
an invariant metric, is Π1

1- and Σ1
1-hard.

For two partially ordered sets P,Q let P ≤T Q (P is Tukey below Q)
if there is a mapping f : P → Q, called a Tukey reduction, such that
for any q ∈ Q, {p ∈ P : f(p) ≤ q} is bounded from above in P . In [F]
Fremlin studied relations with respect to the Tukey order between partially
ordered sets of the form (I,⊆) where I is an ideal and ⊆ is the partial
ordering of inclusion between sets in I. He also noticed that P ≤T Q implies
inequalities between certain cardinal coefficients associated with partially
ordered sets, namely: add(Q) ≤ add(P ) and cf(P ) ≤ cf(Q) where add(P )
is the smallest cardinality of an unbounded subset of Q and cf(Q) is the
smallest cardinality of a cofinal subset of Q, and similarly for P . Note that
these cardinal coefficients are generalizations of additivity and cofinality of
an ideal of sets. Fremlin showed in [F] that Tukey inequality was behind the
inequalities between appropriate cardinal coefficients of the ideal of Lebesgue
measure zero sets and the ideal of meager sets on the real line which had
been discovered earlier. Our function constructed in Theorem 2.1 gives a
Tukey reduction between the ideals of Haar null sets and of non-dominating
sets. We will need some notation. By HN (G) we denote the ideal of Haar
null subsets of a Polish group G. When it is considered as a partial order
it is understood that the order is inclusion. Similarly, if ωω is viewed as a
partial order, the order is ≤∗. Recall also that b is the smallest cardinality
of an unbounded set in ωω and d is the smallest cardinality of a dominating,
that is, cofinal, subset of ωω.
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Corollary 3.4. Let G be a Polish non-locally compact group with an
invariant metric.

(i) ωω ≤T HN (G).
(ii) add(HN (G)) ≤ b and d ≤ cf(HN (G)).

Proof. Let f and F be as in Theorem 2.1. Let φ : ωω → HN (G) be
defined by

φ(x) = f−1({y ∈ ωω : y(n) ≤ x(n) for infinitely many n}).
It follows easily from Theorem 2.1(ii) that φ is a Tukey reduction. Thus, (i) is
established. We get (ii) above as a consequence of (i) by [F, Theorem 1J(a)]
since b = add(ωω) and d = cf(ωω). (Point (ii) is easy to check directly from
Theorem 2.1(ii) as well.)

The next corollary is to show that the known dissimilarities between Haar
null sets on locally compact and non-locally compact groups can be easily
deduced from Theorem 2.1. Point (i) below has been proved by Dougherty
[D] and earlier by Christensen for abelian groups (implicit in [C1, Theo-
rem 2]). Point (ii) is due to Solecki [S]. Earlier Dougherty [D] proved it for
a large subclass of abelian groups.

Corollary 3.5. Let G be a Polish non-locally compact group with an
invariant metric.

(i) Each compact subset of G is Haar null.
(ii) There exists a family of cardinality continuum of disjoint closed sub-

sets of G which are not Haar null.

Proof. Let F and f be as in Theorem 2.1.
(i) Let K ⊆ G be compact. By Theorem 2.1, gK ⊆ F for some g ∈ G.

Then f [gK] is a compact subset of ωω, so it is not dominating. Thus, by
Theorem 2.1, f−1(f [gK]) ⊇ gK is Haar null.

(ii) Let Xn, n ∈ ω, be disjoint infinite subsets of ω whose union is ω. For
α ∈ 2ω, let

Aα = {x ∈ ωω : x(k) is even iff k ∈ Xn with α(n) = 1}.
Then it is easy to see that the Aα’s are closed, dominating and pairwise
disjoint. By Theorem 2.1, f−1(Aα), α ∈ 2ω, are pairwise disjoint, closed,
non-Haar null subsets of G.

Remarks. 1. In a recent paper Shi and Thompson [ST] show that for
the group of all homeomorphisms of the unit interval, which is an important
example of a Polish group not admitting an invariant metric, the conclusion
of Corollary 3.5(ii) holds.

2. Corollary 3.5(ii) implies that the σ-complete Boolean algebra of Borel
subsets of G modulo the σ-ideal of Borel Haar null subsets of G does not
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have the countable chain condition. Actually, the function B 7→ f−1(B)
induces an embedding, which preserves countable suprema, into this algebra
of the σ-complete Boolean algebra of Borel subsets of ωω modulo Borel non-
dominating sets.

4. Haar null sets in product groups. By Haar measures I mean left
invariant Haar measures. The theorem in this section concerns Haar null
sets in the product group

∏
nGn with each factor Gn locally compact and

points in the direction opposite to Theorem 2.1. It shows that when all but
finitely many of the Gn’s are amenable, then the σ-ideal of Haar null sets in∏
nGn is closely connected to the Haar measures on the Gn’s. In fact, Haar

null sets in
∏
nGn are determined by measures defined on the factor groups

and which are equivalent to Haar measures. (Recall that two Borel measures
on a Polish space are equivalent if they have the same measure zero sets.
Haar measures on a locally compact group are mutually equivalent.) This
generalizes the theorem that Haar null sets on a locally compact group G
are precisely sets of Haar measure zero; simply take G0 = G and Gn = {1}
for n > 0.

Recall that a locally compact group G is called amenable if it admits a
left invariant mean on the space L∞(G) of all essentially bounded complex
functions measurable with respect to the Haar measure, that is, there exists
a linear functional m : L∞(G) → R such that ess inf f ≤ m(f) ≤ ess sup f
for real f ∈ L∞(G) and for any g ∈ G and f ∈ L∞(G), m(gf) = m(f)
where gf(h) = f(g−1h). Let me mention here that this important class of
groups contains all abelian and even exponentially bounded locally compact
groups. To get a sense of the size of the class of amenable groups see [P,
Chapter 3].

Theorem 4.1. Let Gn, n ∈ ω, be a sequence of locally compact Polish
groups. If all but finitely many Gn’s are amenable, then for each n there is
a sequence (µnk)k of probability Borel measures on Gn such that

(i) each µnk is equivalent to some (or , equivalently , all) Haar measures
on Gn;

(ii) A ⊆ ∏nGn is Haar null iff for some sequence (kn) and all g, h ∈∏
nGn, (∏

n

µnkn

)
(gAh) = 0.

Proof. We will need some notation. For g ∈ ∏nGn and n0 ∈ ω, let gn0 ,
g|n0, and g|[n0,∞) be the projections of g onto Gn0 ,

∏
n<n0

Gn,
∏
n≥n0

Gn,
respectively. For a set B ⊆ ∏nGn and h ∈∏n<n0

Gn let Bh = {g|[n0,∞) :
g ∈ B and g|n0 = h}.



214 S. Solecki

Assume all Gn with n ≥ p0 are amenable. Let λn be a left invariant
Haar measure on Gn. If n < p0, for each k let µnk be some fixed Borel
probability measure equivalent to λn. For n ≥ p0, Gn is amenable, so by
[P, Proposition 16.10], there exists a sequence (An,k)k of compact subsets of
Gn with positive Haar measure such that the following Følner condition is
satisfied: given a compact set L ⊆ Gn and ε > 0, for all but finitely many
k ∈ ω, λn(gAn,k 4 An,k)/λn(An,k) < ε for each g ∈ L. Here and below
B14B2 stands for the symmetric difference (B1 \B2)∪ (B2 \B1). Now let
µn be a Borel probability measure on Gn equivalent to λn. Let

λnk =
1− 1/k
λn(An,k)

(λn|An,k)

and define

µnk = λnk +
1
k
µn.

Obviously, each µnk is a probability Borel measure equivalent to λn, so (i) is
satisfied.

In (ii) only the direction from left to right needs proving. First we need
the following claim.

Claim 1. Let n ≥ p0. For a given L ⊆ Gn compact and ε > 0, for all
but finitely many k’s, λnk (gAn,k) ≥ 1− ε for any g ∈ L.

Proof. Let k be so large that 1/k < ε/2 and An,k satisfies the Følner
condition for L and ε/2. Then

λnk (gAn,k) = (1− 1/k)
λn(gAn,kh ∩An,k)

λn(An,k)

≥ (1− ε/2)
λn(An,k)− λn(gAn,k 4An,k)

λn(An,k)

≥ (1− ε/2)(1− ε/2) ≥ 1− ε.

Let now A ⊆∏nGn be universally measurable and Haar null. Let µ be
a probability Borel measure such that µ(gAh) = 0 for all g, h ∈ G. Fix a
compact set K ⊆ ∏nGn with µ(K) > 0. Now using Claim 1, we can find
a sequence (kn) so that

∑
n 1/kn < ∞ and for each n ≥ p0 and each gn in

the projection of K onto Gn, we have

(1) λnkn(gnAn,kn) ≥ 1− 2−n and λnkn(An,kn) ≥ 1− 2−n.

Let ν =
∏
n µ

n
kn

. We claim that ν works. Assume towards contradiction that
it does not; this implies that we can find g, h ∈ ∏nGn such that

(2) ν(gAh) ≥ ε
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for some ε > 0. Let C = gAh. Let

νn =
∏

m<n

µmkm and νn =
∏

m≥n
µmkm ,

so ν = νn × νn. Pick n0 so large that n0 ≥ max(p0, 1),
∏
n≥n0

(1 − 2n)
≥ 1− ε/8 and

∑
n≥n0

1/kn ≤ ε/4. By Fubini’s theorem, from (2) we have

νn0

({
h ∈

∏

n<n0

Gn : νn0(Ch) ≥ 3
4
ε

})
> 0.

Since νn0 is equivalent to the Haar measure on
∏
n<n0

Gn, translates of
νn0-positive sets are νn0-positive. Hence, from the above inequality, we get

(3) νn0

(
h′
{
h ∈

∏

n<n0

Gn : νn0(Ch) ≥ 3
4
ε

})
> 0 for any h′ ∈

∏

n<n0

Gn.

Claim 2. For every g ∈ K−1 and every universally measurable D ⊆∏
n≥n0

Gn, if νn0(D) ≥ (3/4)ε, then νn0((g|[n0,∞))D) ≥ ε/4.

Proof. Note first that by (1),
( ∏

n≥n0

λnkn

)(
(g|[n0,∞))−1

∏

n≥n0

An,kn

)
=
∏

n≥n0

λnkn(g−1
n An,kn)(4)

≥
∏

n≥n0

(1− 2−n) ≥ 1− ε/8,

and similarly, again by (1),

(5)
( ∏

n≥n0

λnkn

)( ∏

n≥n0

An,kn

)
≥
∏

m≥n0

(1− 2−n) ≥ 1− ε/8.

Using (4) and (5), we have

νn0(D) ≤
( ∏

n≥n0

λnkn

)
(D) +

∑

n≥n0

1/kn(6)

≤
( ∏

n≥n0

λnkn

)(
D ∩ (g|[n0,∞))−1

∏

n≥n0

An,kn ∩
∏

n≥n0

An,kn

)

+ ε/8 + ε/8 + ε/4.

If we now let B = D ∩ (g|[n0,∞))−1∏
n≥n0

An,kn ∩
∏
n≥n0

An,kn , we see
that both B and (g|[n0,∞))B are included in

∏
n≥n0

An,kn , hence by the
invariance of the Haar measure,

( ∏

n≥n0

λnkn

)
(B) =

( ∏

n≥n0

λnkn

)
((g|[n0,∞))B).
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Thus continuing with (6), we get

νn0(D) ≤
( ∏

n≥n0

λnkn

)(
(g|[n0,∞))D

∩
∏

n≥n0

An,kn ∩ (g|[n0,∞))
∏

n≥n0

An,kn

)
+ ε/2

≤ νn0((g|[n0,∞))D) + ε/2.

From this last estimate the claim follows immediately.

Now, using Claim 2, we estimate ν(g−1C) for g ∈ K (the last inequality,
> 0, follows from (3)):

ν(g−1C) =
�

∏
n<n0

Gn

νn0((g−1C)h) dνn0(h)

=
�

∏
n<n0

Gn

νn0((g|[n0,∞))−1(C)(g|n0)h) dνn0(h)

≥
�

{h∈∏n<n0
Gn:νn0 (C(g|n0)h)≥3ε/4}

ε

4
dνn0(h)

=
ε

4
νn0

(
(g|n0)−1

{
h ∈

∏

n<n0

Gn : νn0(Ch) ≥ 3ε/4
})

> 0.

This means that
µ({g : ν(g−1gAh) > 0}) > 0.

Now applying Fubini’s theorem to the universally measurable set {(g, h) ∈∏
nGn ×

∏
nGn : gh ∈ gAh} with the g-coordinate equipped with the

measure µ and the h-coordinate with ν, we get ν({h : µ(gAhh−1) > 0}) > 0,
whence µ(gAhh−1) > 0 for some h, contradiction.
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