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Continuum many tent map inverse limits with

homeomorphic postcritical ω-limit sets

by

Chris Good (Birmingham) and Brian E. Raines (Waco, TX)

Abstract. We demonstrate that the set of topologically distinct inverse limit spaces
of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the con-
tinuum. The set of folding points (i.e. points at which the space is not homeomorphic to
the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor
set.

1. Introduction. The topological structure of inverse limits generated
by unimodal maps has been studied extensively (cf. [2], [3], [9], [12], [14],
[15] & [16]), and one of the motivating conjectures is the following, due to
W. T. Ingram: If f and g are tent map cores with f 6= g then lim←−{[0, 1], f} is
not homeomorphic to lim←−{[0, 1], g}. Barge and Martin showed that if the crit-
ical point c of a unimodal map, f , is periodic or recurrent then lim←−{[0, 1], f}
will have endpoints [4]. Moreover, they showed that for f a tent map core, if
c is periodic of period n then lim←−{[0, 1], f} has exactly n endpoints. It follows
that every other point has a neighborhood that is the product of a Cantor
set and an arc. Recently Kailhofer has taken an important first step in prov-
ing Ingram’s conjecture by showing that lim←−{[0, 1], f} and lim←−{[0, 1], g} are
not homeomorphic when they have a periodic postcritical orbit and f 6= g
([16] & [17]).

At the other extreme is the set of tent maps with a dense postcritical
orbit. Barge, Brucks and Diamond consider this case in [1]. Such a tent
map f generates a truly bizarre inverse limit space: lim←−{[0, 1], f} has the
property that every point is an endpoint and every neighborhood contains
a homeomorph of every inverse limit obtainable by a tent map core. The
set of parameters for which this occurs is large in both the topological and
metric sense (cf. [8] & [6]).
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A generalization of the notion of endpoint in a continuum is that of a
folding point. We show in [19] & [18] that if X is an indecomposable inverse
limit of a map f of an interval then every point in X is either a folding point
or it has a neighborhood homeomorphic to the product of a Cantor set and
an arc. The collection of folding points of X, denoted by Fd(X), is preserved
by any homeomorphism, so understanding the topological structure of this
set and how it depends upon the dynamics of f is a necessary step towards a
proof of Ingram’s conjecture. In [11] we use techniques from descriptive set
theory to construct uncountably many (actually ω1) tent map cores (fγ)γ<ω1

with critical point cγ and with topologically distinct inverse limit spaces each
with ω(cγ) countable and Fd(lim←−{[0, 1], fγ}) countable. These spaces are not
homeomorphic because the sets of folding points are topologically distinct.

In this paper we examine the case that f is a tent map core with non-
recurrent critical point c and both ω(c) and Fd(lim←−{[0, 1], f}) are Cantor
sets. There is a dense set of parameters with cardinality of the continuum, c,
in (
√

2, 2] that generate such tent maps. Despite the fact that the collections
of folding points are topologically identical and, in the subcase we consider,
every proper subcontinuum is an arc, we show that there are continuum
many non-homeomorphic inverse limit spaces generated by this type of tent
map core.

2. Preliminaries. For completeness we include all of the relevant defi-
nitions. We encourage the reader unfamiliar with techniques from the theory
of inverse limit spaces to consult [13] or [15].

By a continuum we mean a compact, connected metric space. We let |A|
stand for the cardinality of the set A. By cardinality of the continuum or
size c we mean the cardinality of the set R, which is the same as P(N), the
set of all subsets of N. Occasionally we use the phrase “the continuum” to
stand for the cardinal number c = |R|.

If A is a set then we say that W is a word in A provided W is an ordered
list of elements of A with repetition allowed. We denote the concatenation
of words W1 and W2 by simply W1W2, and by Wn

1 we mean the word W1

concatenated with itself n times.
Let X be a compact topological space. Call a finite open cover, U =

{U1, . . . , Un}, of X a chaining of X or a chain provided U i ∩ U j 6= ∅ if,
and only if, |i − j| < 2. We will call the elements of such a chain links.
If mesh(U) < ε then we call U an ε-chain. If for every ε > 0 there is
an ε-chaining of X then we say that X is chainable. If X is a chainable
continuum and x ∈ X then we say that x is an endpoint of X provided for
every A, B ⊆ X that are continua we have either A ⊆ B or B ⊆ A.

Let X be a chainable continuum. The following definition is due to
Bruin [9]. Let U be a chaining of X. Let L = {L1, . . . , Lp} be a chain that
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refines U . Let L be a link of U . We say that L turns in L provided there is a
link, M , in U , adjacent to L, and integers a and b with 1 ≤ a < b−1 < b ≤ p
such that

(1) La, Lb ⊆M ,
(2) Lj ⊆ L \M for some a < j < b,

(3)
⋃b

i=a Li ⊆ L ∪M .

We call L a turnlink. If it is true that every ε-chaining that refines U has a
turnlink in L then we call L an essential turnlink.

Let X be a continuum and x ∈ X. Call x a folding point of X if for every
ε > 0 there is an ε-chaining, C, of X that contains x in an essential turnlink.
Denote the set of folding points for a space X by Fd(X).

Given a unimodal map, h : [0, 1]→ [0, 1], with critical point ch we denote
lim←−{[0, 1], h} by Xh and the standard metric on Xh (induced by | · | on [0, 1])

by d̂h, and we call the set

orb(ch) = {hi(ch)}∞i=0

the postcritical orbit of h. We say a map, f , is locally eventually onto, or
l.e.o., provided for every ε > 0 and for all x ∈ [0, 1] there is an integer N so
that fN [(x− ε, x + ε)] = [0, 1]. We have shown in [18] & [19] that if x̂ ∈ Xh

then either x̂ has a neighborhood homeomorphic to a product of a Cantor
set and an arc or it is a folding point. Moreover, we showed that if h is l.e.o.
then the collection Fd(Xh) consists of the points in Xh that always project
into the ω-limit set of ch,

ω(ch) =
⋂

n∈N

{hm(ch) : m ≥ n}.

Given q ∈ [1, 2], we define the tent map Tq by

Tq(x) =

{
qx if x ≤ 1/2,

q(1− x) if x ≥ 1/2.

We will restrict this map to its core, i.e. the interval [T 2
q (1/2), Tq(1/2)],

which is the only interval that contributes in a significant way to the inverse
limit space, and we will rescale this restricted map, Tq|[T 2

q (1/2),Tq(1/2)], to the
entire interval. We call this rescaled map the tent map core and we denote it
by fq : [0, 1]→ [0, 1]. Notice that the critical point for fq is not 1/2, rather
it is the point c = 1−1/q. In order to ensure that fq is l.e.o. we also assume
that q ∈ [

√
2, 2]. Due to renormalization of tent maps when q ∈ [1,

√
2] this

is not a restriction on the topology of the inverse limit space.

Lemma 2.1. Let h be the core of a tent map with critical point ch and

ω(ch) a Cantor set. Then Fd(Xh) is also a Cantor set.
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Proof. A point x̂ is in Fd(Xh) if and only if πn(x̂) is an element of ω(ch)
for every n ∈ N. Let x̂ ∈ Fd(Xh). Let ε > 0 and choose δ > 0 and N ∈ N so
that if ẑ ∈ Xh and πN (ẑ) is within δ of πN (x̂) then d[ẑ, x̂] < ε. Since ω(ch)
is a Cantor set there is a point zN ∈ ω(ch) such that |zN −πN (x̂)| < δ. Since
h[ω(ch)] = ω(ch) it is easy to see that we can construct a point ẑ ∈ Fd(Xh)
with πN (ẑ) = zN . Hence x̂ is not isolated in Fd(Xh) and Fd(Xh) is a Cantor
set.

Let ih : [0, 1]→ {0, 1, ∗} be defined by

ih(x) =






0 if x < ch,

1 if x > ch,

∗ if x = ch.

For each point x ∈ [0, 1] define the itinerary of x by

Ih(x) = (ih(x), ih ◦ h(x), ih ◦ h2(x), . . . )

and, given an integer M , let the cylinder of diameter M centered on x be
given by

Ih(x)|M = (ih(x), ih ◦ h(x), ih ◦ h2(x), . . . , ih ◦ hM (x)).

The kneading sequence for h is defined to be Kh = Ih[h(ch)].

The following results are well known and easy to prove [10]. Let Ph ⊆
[0, 1] be the collection of precritical points for h, i.e. the collection of points
that have a ∗ in their itinerary. The following lemmas demonstrate that
convergence in [0, 1]− Ph can be described completely using the itineraries.

Lemma 2.2. Let h : [0, 1]→ [0, 1] be unimodal and l.e.o. and ε > 0. Then

there is an integer N such that if x, y ∈ [0, 1] \ Ph and Ih(x)|N = Ih(y)|N
then |x− y| < ε.

Lemma 2.3. Let h : [0, 1] → [0, 1] be unimodal and l.e.o. and choose

N ∈ N. Then there is an ε > 0 such that if x, y ∈ [0, 1] \ Ph and |x− y| < ε
then Ih(x)|N = Ih(y)|N .

As a result of these lemmas we see that we can identify points in the
ω-limit set of a point y by simply analyzing the itinerary of y.

Theorem 2.4. Let x, y ∈ [0, 1]. Then x ∈ ω(y) if and only if , for every

N ∈ N, Ih(x)|N occurs infinitely often in Ih(y).

For each point x̂ = (x0, x1, . . . ) in Xh define the full itinerary for x̂ by

Fih(x̂) = (. . . , ih(x3), ih(x2), ih(x1) . ih(x0), ih ◦ h(x0), ih ◦ h2(x0), . . . ).

Notice that if h is l.e.o. then Fih is a one-to-one map. Given a bi-infinite
sequence Z = (. . . , ζ−2, ζ−1 . ζ0, ζ1, ζ2, . . . ) define the shift map by σ̂(Z) =
(. . . , ζ ′−2, ζ

′
−1 . ζ ′0, ζ

′
1, ζ

′
2, . . . ) where ζ ′i = ζi+1. Define the backwards itinerary
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for x̂ by

Fi−h (x̂) = (. . . , ih(x3), ih(x2), ih(x1)).

Let X be a topological space and let x ∈ X. Then K ⊆ X is called
the composant containing x provided y ∈ K if and only if there is a proper
subcontinuum of X containing both x and y. Brucks and Diamond [7] have
shown that if ch is either periodic or non-recurrent then x̂ and ŷ are on the
same composant of Xh if, and only if, the backwards itinerary of x̂ eventually
agrees with the backwards itinerary of ŷ. Define ≃ on backwards itineraries
by Fi−h (x̂) ≃ Fi−h (ŷ) if there is an integer n so that

(. . . , ih(xn+1), ih(xn)) = (. . . , ih(yn+1), ih(yn))

Then Brucks and Diamond’s result becomes: x̂ and ŷ are on the same com-
posant if, and only if,

Fi−h (x̂) ≃ Fi−h (ŷ).

The maps we construct will have the property that ch is non-recurrent.
Hence we can apply Brucks and Diamond’s characterization of composants.

Given a point x̂ ∈ Xh and an integer M call the string

Fih(x̂)|−M,M = (ih(xM ), . . . , ih(x1) . ih(x0), ih ◦ h(x0), . . . , ih ◦ hM (x0))

the cylinder of diameter M of Fih(x̂).
The following lemmas are analogues of Lemmas 2.2 & 2.3 in the inverse

limit space.

Lemma 2.5. Let h : [0, 1] → [0, 1] be l.e.o. and unimodal. Let ε > 0.
Then there is a positive integer M with the property that if x̂, ŷ ∈ Xh with

Fih(x̂)|−M,M = Fih(ŷ)|−M,M and neither of Fih(x̂) and Fih(ŷ) contains ∗
then d̂h[x̂, ŷ] < ε.

Proof. Let δ < ε/4. Since h is l.e.o., there is an M ′ such that for any
x, y ∈ [0, 1] \Ph whenever m ≥M ′ and Ih(x)|M = Ih(y)|M then |x− y| < δ.
Such an M ′ can be chosen by Lemma 2.2. Let M ≥M ′ be such that 1/2M <
ε/2. Then suppose that x̂, ŷ ∈ Xh with Fi(x̂)|−M,M = Fi(ŷ)|−M,M . This
implies that |xj − yj | < δ for all j ≤M . Hence we have the following simple
calculation:

d̂h[x̂, ŷ] =
M∑

i=0

|xi − yi|
2i

+
∑

i>M

|xi − yi|
2i

< 2δ +
1

2M
< ε.

Lemma 2.6. Let h : [0, 1] → [0, 1] be l.e.o. and unimodal. Let M ∈ N.

Then there is an ε > 0 so that if x̂, ŷ ∈ Xh with d̂h[x̂, ŷ] < ε and neither

Fih(x̂) nor Fih(ŷ) contains ∗, then Fih(x̂)|−M,M = Fih(ŷ)|−M,M .

Proof. Choose ε′ > 0 so that if x, y ∈ [0, 1] \ Ph and |x − y| < ε′ then
Ih(x)|M = Ih(y)|M (Lemma 2.3). Let ε = ε′/2M , and let x̂, ŷ ∈ Xh with
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d̂h(x̂, ŷ) < ε. Clearly |xM − yM |/2M < ε; hence |xM − yM | < 2Mε = ε′.
Thus Fih(x̂)|−M,M = Fih(ŷ)|−M,M .

Let N2 be the set of all functions from N to {0, 1} and given γ ∈ N2 de-
note the sequence (γ(0), γ(1), γ(2), . . . ) by 〈γ〉 and the backwards sequence
(. . . , γ(2), γ(1)) by 〈γ〉−. Let n2 be the set of all functions from the set
{0, 1, . . . , n− 1} to {0, 1} and let <N2 be

⋃
n∈N

n2. If γ, δ ∈ N2 and there is
an N ∈ N such that

(. . . , γ(N + 2), γ(N + 1), γ(N)) = (. . . , δ(N + 2), δ(N + 1), δ(N))

then 〈γ〉− ≃ 〈δ〉−.

A sequence, M , in symbols 0 and 1 is primary provided it is not a ∗-
product, i.e. there is no finite word W and sequence (ui)i∈N of symbols from
{0, 1} with M = Wu1Wu2Wu3 . . . , i.e. M is not the word W followed by the
symbol u1, then W followed by u2, then W followed by u3, etc. The shift

map, σ, on sequences is defined by σ[(t0, t1, . . . )] = (t1, t2, . . . ). We order
sequences using the parity-lexicographic ordering, ≺. To define this order
we first define 0 < ∗ < 1. Let t = (t0, t1, t2, . . . ) and s = (s0, s1, s2, . . . ) be
sequences of zeroes and ones. Let n be the least j such that tj 6= sj . Let m be
the number of occurrences of the symbol 1 in the string (t0, t1, . . . , tn−1) =
(s0, s1, . . . , sn−1). If m is even then define t ≺ s if, and only if, tm < sm. If
m is odd then define t ≺ s if, and only if, tm > sm. It is easy to show that
if x < y then If (x) ≺ If (y). A sequence, K, is shift-maximal provided that
for all j ∈ N, σj(K) ≺ K or σj(K) = K.

The following theorem allows us to construct an infinite sequence of 0s
and 1s that is the kneading sequence for a tent map core.

Theorem 2.7 ([10, Lemma III.1.6]). Let K be a infinite sequence of 0s
and 1s that is shift-maximal , primary and has 101∞ � K. Then there is

a parameter , q, in [
√

2, 2] generating a tent map core, fq, with kneading

sequence K.

3. Inverse limit spaces with a Cantor set of folding points. We
now construct uncountably many tent map cores which have non-homeomor-
phic inverse limit spaces with homeomorphic postcritical ω-limit sets and
homeomorphic collections of folding points in the inverse limit space. In fact
the collection we construct has cardinality of the continuum c. We achieve
this by constructing a distinct tent map inverse limit for each subset J of N

(in fact, for technical reasons, for each subset J of N−{1, 2, 3}). Given J ⊆ N

we build a map gJ with critical point cJ such that ω(cJ) and Fd(XgJ
) are

both Cantor sets with Fd(XgJ
) contained in uncountably many composants

of XgJ
. Moreover, XgJ

has the property that for each j ∈ N there is a
composant K of XgJ

with j isolated points in K ∩ Fd(XgJ
) if, and only
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if, j ∈ J . This implies that if J, J ′ ⊆ N with J 6= J ′ then XgJ′
is not

homeomorphic to XgJ
.

Let A = 1001, B0 = 1011101 and B1 = 1010101. For each γ ∈ <N2 let
B〈γ〉 = Bγ(0)Bγ(1) . . . Bγ(m−1) and B〈γ〉− = Bγ(m−1) . . . Bγ(2)Bγ(1) where m

is the length of γ. For γ ∈ N2 we define B〈γ〉 and B〈γ〉− analogously. Since
<N2 is countable, let (γi)i∈N = <N2 be some enumeration of <N2. Define

W = B〈γ1〉B〈γ2〉B〈γ1〉B〈γ2〉B〈γ3〉 . . .

where the subscripts of the γ’s follow the pattern

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .

Then W is an infinite word containing every B〈γ〉 infinitely often for every

γ ∈ <N2. Let s = AAW ; then it is easy to see that s is shift-maximal,
primary and 101∞ � s. Hence by Theorem 2.7 there is a tent map core with
kneading sequence equal to s. Let us fix this map f and denote its kneading
sequence by Kf and its critical point by cf .

Notice that cf is not recurrent under f , so we can apply Brucks and
Diamond’s characterization of composants [7]. It is also easy to see that
ω(cf ) is a Cantor set (by Theorem 2.4, it is uncountable and it is not dense
since the itinerary of any point in ω(cf ) is a (shift of a) sequence of B0s and
B1s, so Fd(Xf ) is a Cantor set. Notice that for all γ, δ ∈ N2 and n ∈ N,
there is a point ẑ ∈ Fd(Xf ) such that Fif (ẑ) = σn[B〈γ〉− . B〈δ〉]. Thus we
see that the set K = {K : K is a composant of Xf and K ∩ Fd(Xf )} is
uncountable, because each such composant corresponds to some γ ∈ N2,
which is an uncountable collection.

Let J ⊆ N be such that if j ∈ J then j ≥ 4. Let (ẑj)j∈J ⊆ Fd(Xf ) be a
sequence of points on distinct composants of Xf such that

Fif (ẑj) = B〈ζj〉− . B〈ζj〉

for some sequence (ζj)j∈N ⊂ N2, with

B〈ζj〉 = Bj
1B

N1

0 Bj
1B

N2

0 . . .

where {Ni}i∈N is an increasing sequence of integers.

Define Z−
j,N and Z+

j,N such that

Fif (ẑj)|−7N,7N = Z−
j,N . Z+

j,N = B〈ζj〉− . B〈ζj〉|−7N,7N .

Then each word Z−
j,N is a terminal segment of B〈ζj〉− of length 7N . Since

our “building blocks”, the words B0 and B1, have length 7, this guarantees
that Z−

j,N begins with a word B0 or B1 and Z+
j,N ends with a word B0

or B1 rather than a fragment of such a word. Similarly, we denote Fif (ẑj)
by simply Z−

j . Z+
j .
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We will use the following lemma later in the paper to demonstrate that
certain folding points are on different composants of our inverse limit space.

Lemma 3.1. Let j, k ∈ J with j 6= k. Then Z−
j 6≃ Z−

k . Moreover , if V is

a non-empty word in {0, 1} and j ∈ J then Z−
j V 6≃ Z−

j .

Proof. Let j, k ∈ J with j 6= k. Notice that in Z−
j there are then infinitely

many strings of the form B0B
j
1B0, but in Z−

k there are no such strings. Hence
there is no shift of these words after which they are equal. So Z−

j 6≃ Z−
k .

Notice that since {Ni}i∈N is an increasing sequence of integers, Z−
j is not

backwards periodic or pre-periodic. So if V is a non-empty word in {0, 1},
then Z−

j V will not have a tail that equals a tail of Z−
j . Thus Z−

j V 6≃ Z−
j .

Let Kj ∈ K be the composant of ẑj . Let K′ = K \ {Kj : j ∈ J}.
Since J is countable and K is uncountable, K′ is also uncountable. Let Σ =
{γ ∈ N2 : there is a composant K ∈ K′ such that x̂ ∈ K if and only if
Fi−f (x̂) ≃ B〈γ〉−}. Let Σn be the set of all ξ ∈ n2 such that there is an

element γ in Σ with ξ(i) = γ(i) for all 0 ≤ i ≤ n − 1. We say that ξ is an
initial segment of γ. Let Σ<N =

⋃
n∈N

Σn.

For each j ∈ J and 0 ≤ k ≤ j − 1 let

Wj,k = 12j−k−101k.

Let φ : N− {1} → J × N× N×Σ<N be a one-to-one function that satisfies
the following conditions:

(1) if φ(r) = (j, k, N, γ) then 0 ≤ k ≤ j − 1 and j ≤ N ;
(2) if φ(r) = (j, k, N, γ) then the length of 〈γ〉 is greater than or equal

to N ;
(3) for each j ∈ J and 0 ≤ k ≤ j − 1 if φ(r) = (j, k, Nr, γr) and

φ(s) = (j, k, Ns, γs) and r < s then Nr < Ns and the length of 〈γr〉
is less than the length of 〈γs〉;

(4) for each j ∈ J , 0 ≤ k ≤ j − 1 and N ≥ j the set {γ ∈ Σ<N : there is
some r ∈ N with φ(r) = (j, k, N, γ)} is dense in ΣN.

Let r ∈ N− {1} and suppose that φ(r) = (j, k, N, ζ). Let

Z±
r = Z±

j,N , Wr = WN
j,k, Br = B〈ζ〉, B−

r = B〈ζ〉− .

Now recall that Kf = AAB〈γ1〉B〈γ2〉B〈γ1〉B〈γ2〉B〈γ3〉 . . . . We can induc-
tively re-label Kf so that Kf = AAS2B2S3B3 . . . in such a way that Sm is
long enough to contain every finite string from S2B2S3 . . . Sm−1Bm−1 that
occurs infinitely often and Bm = B〈ζ〉, where φ(m) = (j, k, N, ζ). We omit
the case of B1 here because we have already defined B1 and B0 as our ba-
sic building words, where we use Bm as a label for some string B〈ζ〉 where
φ(m) = (j, k, N, ζ).
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Let
t = AAS1B

−
2 Z−

2 W2Z
+
2 B2S3B

−
3 Z−

3 W3Z
+
3 B3S4 . . . .

Notice that t is primary, shift-maximal and 101∞ � t. Hence by Theorem 2.7
there is a tent map core g with Kg = t. Let cg be the critical point for g.
Notice also that each Br, Z±

r and Sr is a finite sequence of B0s and B1s and
contains no more than three consecutive 1s. Moreover each Wr equals WN

j,k
for some 4 ≤ j ≤ N and k ≤ j, and contains at least four consecutive 1s. It
is also true that t contains an occurrence of 00.

In order to fully describe the points in the set of folding points of Xg we
need to first describe the points in ω(cg). The next two lemmas begin that
description.

Lemma 3.2. There is an embedding Φ : ω(cf ) → ω(cg) induced by the

itinerary maps If and Ig.

Proof. Let z ∈ ω(cf ). By the choice of Si there is a point z′ ∈ ω(cg)
with If (z) = Ig(z

′), so define Φ(z) = z′. Since ω(c) contains no pre-critical
points, by Lemmas 2.2 & 2.3 convergence in ω(c) is determined by initial
segments of itineraries of points, so Φ is an embedding.

Lemma 3.3. If z ∈ ω(cg), then Ig(z) ends either in an infinite sequence

of complete B0s, B1s, or Wj,ks or it ends in 1∞.

Proof. By Theorem 2.4, every initial segment of Ig(z) occurs infinitely
often in Kg. Therefore there are two possibilities for the tail of Ig(z). Either
Ig(z) ends in an infinite sequence of complete B0s, B1s, or Wj,ks (the building
blocks of Br, Z±

r , Sr and Wr in Kg), or it ends in some sequence of 0s
and 1s whose initial segments arise from the internal structure of the B0s,
B1s, or Wj,ks. Since B0 and B1 are of fixed length and the length of Wr

increases with r, the second possibility can only arise from the Wrs. But
now, since Wr = WN

j,k for some j, k and N , this second possibility can only

occur because initial segments of (the tail of) Ig(z) occur in WN
j,k for some

increasing sequence of j, which implies that Ig(z) ends in 1∞.

Now we completely describe every point in ω(cg) in terms of its itinerary.
In light of Lemmas 2.2 & 2.3 this gives us a complete picture of the set ω(cg).

Lemma 3.4. If z ∈ ω(cg) then, for some 0 ≤ l ≤ 7, σl[Ig(z)] is precisely

one of the following :

(1) B〈γ〉 for some γ ∈ N2;
(2) 1∞;
(3) 1m01∞ for some m ∈ N;
(4) BN

1 1∞ for some N ∈ N;
(5) W∞

j,k for some j ∈ J and 0 ≤ k ≤ j − 1;

(6) Z−
j,NW∞

j,k for some j ∈ J , 0 ≤ k ≤ j − 1 and N ∈ N;
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(7) WN
j,kZ

+
j for some j ∈ J , k ≤ j − 1, and N ∈ N;

(8) 1kZ+
j for some j ∈ J and k ≤ j − 1;

(9) 1m01kZ+
j for some j ∈ J , m < 2j − k − 1, and k ≤ j − 1;

(10) 1kB∞
1 for some k ∈ N;

(11) 1m01kB∞
1 for some k, m ∈ N;

(12) 1kZ+
j,NB〈γ〉 for some j ∈ J , k ≤ j − 1, j ≤ N and γ ∈ Σ;

(13) 1m01kZ+
j,NB〈γ〉 for some j ∈ J , m < 2j − k − 1, k ≤ j − 1, j ≤ N

and γ ∈ Σ;
(14) Wm

j,kZ
+
j,NB〈γ〉 for some j ∈ J , k ≤ j − 1, 0 ≤ m ≤ N , j ≤ N and

γ ∈ Σ;
(15) Z−

j,mWN
j,kZ

+
j,NB〈γ〉 for some j ∈ J , 0 ≤ k ≤ j − 1, j ≤ N , m ≤ N

and γ ∈ Σ;
(16) B〈ξ〉−Z−

j,NWN
j,kZ

+
j,NB〈γ〉 for some j ∈ J , 0 ≤ k ≤ j − 1, j ≤ N ,

ξ ∈ Σ<N and γ ∈ Σ with ξ an initial segment of γ.

Proof. Recall first of all that B0 and B1 are sequences of length 7.

We begin by showing that each of these possible itineraries is realized in
ω(cg). Since Si was chosen to contain every word in S1S2 . . . Si−1 that occurs
infinitely often in Kf , we see that if z′ ∈ ω(cf ) then there will be a point
z ∈ ω(cg) with Ig(z) = If (z′). Thus for every γ ∈ N2 there is a z ∈ ω(cg)
with Ig(z) = B〈γ〉.

Notice that for each positive integer k, the word Wk,k−1 = 12k−t01k−1

occurs infinitely often in Kg. This implies that for each positive integer m,
there is a point z ∈ ω(cg) with Ig(z) = 1m01∞. Since ω(cg) is shift-invariant,
there is another point z ∈ ω(cg) such that Ig(z) = 1∞. Also, Wj,k is always
preceded by Z−

j,N with N increasing at each occurrence. But recall that Zj,N

always starts with Bj
1, so as j → ∞ we see that there is a point z ∈ ω(cg)

with itinerary BN
1 1∞.

Clearly there is a point in ω(cg) with itinerary W∞
j,k for all j ∈ J and

k ≤ j − 1. Each occurrence of WN
j,k in Kg is preceded by Z−

j,N . So for j ∈ J ,

k ≤ j − 1 and N ∈ N there is a point in ω(cg) with itinerary Z−
j,NW∞

j,k.

Also, each occurrence of WN
j,k is followed by Z+

j,N where j ∈ J , k ≤ j − 1

and N ≥ j. Fix N ∈ N, and notice that for all M ≥ N the string WN
j,kZ

+
j,M

occurs infinitely often in Kg as a tail of WM
j,kZ+

j,M . Thus there is a point in

ω(cg) with itinerary WN
j,kZ

+
j for j ∈ J , k ≤ j − 1 and N ∈ N. Since ω(cg) is

σ-invariant we also see that there are points in ω(cg) with itineraries of the
form 1kZ+

j and 1m01kZ+
j for j ∈ J , m < 2j − k − 1 and k < j.

Recall that the words Z+
j all begin with Bj

1, and notice that regardless of

the choice of j, k and N , each WN
j,k ends with a string of no more than k 1s.
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So letting j get arbitrarily large we see that the string 1mB∞
1 occurs as an

itinerary in ω(cg). Notice that WN
j,k ends with 1m01k with m ≤ 2j − k − 1

and k ≤ j − 1. Again letting j get arbitrarily large we see that there is a
point in ω(cg) with itinerary 1m01kB∞

1 for any m, k ∈ N.

Similarly, each WN
j,k is followed by Z+

j,NBr where φ(r) = γ, Br = B〈γ〉 for

some γ ∈ Σ<N, and the length of 〈γ〉 is greater than N . By property (4) of φ
for a fixed j ∈ J , k ≤ j and N ≥ j, the collection of all possible γ ∈ Σ<N

associated with j, k, N equals Σ<N. So for each γ ∈ Σ there is a sequence
(γn)n∈N ⊆ Σ<N of initial segments of γ such that the string WN

j,kZ
+
j,NB〈γn〉

occurs in Kg. Thus there is a point z ∈ ω(cg) with itinerary WN
j,kZ

+
j,NB〈γ〉

for all γ ∈ Σ. Because ω(cg) is shift-invariant and because WN
j,k ends with

a string of adjacent 1s we see that each of 1mZ+
j,NB〈γ〉, 1m01kZ+

j,NB〈γ〉 and

Wm
j,kZ

+
j,NB〈γ〉 occurs as itinerary of a point in ω(cg).

Fix j ∈ J and k ≤ j. Then for each N ≥ j, the string Z−
j,NWN

j,kZ
+
j,N

occurs infinitely often in Kg. Since Z−
j,M has Z−

j,N as a terminal segment

for N ≤ M , we can see that (fixing N ≥ j) for all M ∈ N the string
Z−

j,NWM
j,kZ+

j,M occurs infinitely often in Kg. But as M → ∞, the length of

WM
j,k also goes to infinity. This demonstrates that there is a point z ∈ ω(cg)

with itinerary Ig(z) = Z−
j,NW∞

j,k, and also there is another point z ∈ ω(cg)

with itinerary Ig(z) = W∞
j,k. However, since the string Z−

j,NWN
j,kZ

+
j,N occurs

infinitely often in Kg, by the choice of the map φ, for each γ ∈ Σ<N, the

string B〈γ〉−Z−
j,NWN

j,kZ
+
j,NB〈γ〉 occurs infinitely often in Kg. This implies

there are points z ∈ ω(cg) with itineraries of the form Z−
j,mWN

j,kZ
+
j,NB〈γ〉 for

m ≤ N and γ ∈ Σ and of the form B〈ξ〉−Z−
j,NWN

j,kZ
+
j,NB〈γ〉 for ξ ∈ Σ<N,

γ ∈ Σ and ξ an initial segment of γ. Hence each of the itineraries listed in
the statement of the lemma is realized as a point in ω(cg).

We now show that each z ∈ ω(cg) has an itinerary of this sort. Either
Ig(z) contains a string of more than three adjacent 1s or it does not. If not
then Ig(z) must be a shift of a word made up entirely of B0 and B1 words.
So suppose that Ig(z) does contain more than three adjacent 1s.

By Lemma 3.3, either Ig(z) ends in 1∞ or it does not.

Case 1. Suppose first that

Ig(z) = V 1∞

where V is a word in {0, 1}. Let k be the length of the word V . Since z ∈
ω(cg), Ig(z)|k+N occurs infinitely often in Kg for all N ∈ N. Since Ig(z)|k+N

ends with a string of N 1s, it must “overlap” some word Wj,k = 12j−k−101k

infinitely often with j ≥ N or k ≥ N .

Subcase 1A. V is the null string and Ig(z) = 1∞.
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Subcase 1B. Suppose that V contains a string of more than three ad-
jacent 1s. Then V is not a word simply in B0 and B1. This implies that as
we increase N the cylinder Ig(z)|k+N must overlap Wj,k with increasing k,
and V is eventually a terminal segment of 12j−k−10. Thus, by considering
N ≥ k we see that there is an integer m such that V = 1m0, and

Ig(z) = 1m01∞.

Subcase 1C. Suppose that V has length at least 1 but does not contain
a string of more than three adjacent 1s. Then V is the terminal segment of
a word in B0 and B1. Recall that in Kg, WM

j,k is always preceded by Z−
j,M

with M ≥ j, and recall that Z+
j always starts with Bj

1. So as j → ∞, V

is a terminal segment of an infinite collection of Z−
j,M . But each Z−

j,M =

B〈ζj〉−|−7M , which all end with Bj
1. So there is an integer N and 0 ≤ l ≤ 7

such that
σl[Ig(z)] = BN

1 1∞.

Case 2. Suppose that
Ig(z) 6= V 1∞

for any word V in {0, 1}. Then either Ig(z) ends with W∞
j,k for some j ∈ J

and k ≤ j or it does not.

Subcase 2A. Suppose that for some fixed j ∈ J and k ≤ j,

Ig(z) = V W∞
j,k

for some word V in {0, 1}. If V is the empty word then

Ig(z) = W∞
j,k.

Similarly if the length of V is less than or equal to seven then

σl[Ig(z)] = W∞
j,k

where l is the length of V .
So suppose that V is non-empty and has length greater than seven.

Then let r be the length of V and notice that for each M ≥ max{r, j},
Ig(z)|r+2jM = V WM

j,k, which must occur infinitely often in Kg. But each

occurrence of WM
j,k in Kg is preceded by Z−

j,M . Since M was chosen to be

larger than r, we see that V must be the terminal segment of Z−
j,M for all

M ≥ r. Recall that Z−
j,M = B〈ζj〉−|7M for some fixed ζj ∈ N2, so as M

increases the terminal segment of Z−
j,M is constant. Since V starts with a

fragment of B0 or B1, there is an integer 0 ≤ l ≤ 7 such that

σl[Ig(z)] = Z−
j,NW∞

j,k.

Subcase 2B. Suppose that

Ig(z) 6= V W∞
j,k
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for any j ∈ J , k ≤ j and word V in {0, 1}. By Lemma 3.3, Ig(z) ends with
a word of the form B〈γ〉 for some γ ∈ N2. So

Ig(z) = V B〈γ〉

with V a word in {0, 1} containing more than three adjacent 1s. Now either
V contains a 0 or it does not.

Subcase 2B(i). Suppose that there is no 0 in V . Then for some 3 ≤
m ∈ N, Ig(z) = 1mB〈γ〉. If m ≤ 7, then σm[Ig(z)] = B〈γ〉 and we are done.
So suppose that m > 7. Then for every N ≥ m, the string Ig(z)|m+N =
1mB〈γ〉|m+N must occur infinitely often in Kg. But the only places in Kg

that have a long string of 1s followed by words B0 and B1 are of the form
WN

j,kZ
+
j,NB〈δ〉 for some j ∈ J , k ≤ j ≤ N and δ ∈ Σ≤N. The only word with

more than seven adjacent 1s in this expression is WN
j,k. Thus either

Ig(z) = 1mZ+
j,NB〈δ〉

for j ∈ J , m ≤ j ≤ N and δ ∈ Σ, or

Ig(z) = 1mZ+
j

for m ∈ N and j ∈ J , or

Ig(z) = 1mB∞
1

for m ∈ N.

Subcase 2B(ii). Suppose that V contains a 0. Then, since V contains
more than three adjacent 1s, cylinders of Ig(z) must overlap some word Wj,k

in Kg. But since Ig(z) ends with B〈γ〉, it must be the case that there is a
sequence of integers (bi)i∈N such that cylinders of Ig(z) are contained in

Sbi
B−

bi
Z−

bi
Wbi

Z+
bi

B+
bi

Sbi+1
.

Let k be the length of the last string of 1s in V that has length greater
than 3. Let m be the length of the string of 1s in V that precedes the string
of length k. Then either we have a word Wm,k contained in Ig(z) or

Ig(z) =






1m01kZ+
j where j ∈ J , m < 2j − k − 1,

and 0 ≤ k ≤ j − 1,

1m01kB∞
1 where m, k ∈ N,

1m01kZ+
j,NB〈γ〉 for some j ∈ J , m < 2j − k − 1,

0 ≤ k ≤ j − 1 and γ ∈ Σ.

and we are done.
So suppose there is a word Wm,k contained in Ig(z). Let N be such

that WN
m,k occurs in Ig(z). So V is a terminal segment of Sbi

B−
bi

Z−
bi

Wbi
with

φ(bi) = (m, k, N, γi) for some (γi)i∈N ⊆ Σ<N with N ≥ M . By property
(5) of φ we see that as i increases the length of each γi also increases. This
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implies that V is indeed a terminal segment of B−
〈γi〉

Z−
m,NWN

m,k. Similarly,

B〈γ〉|M is an initial segment of some Z+
m,NB〈γi〉. Together this means that

there is an integer l ≤ 7 such that

σlIg[z] =






WN
j,kZ

+
j for some j ∈ J , 0 ≤ k ≤ j − 1

and N ∈ N ,

Wm
j,kZ

+
j,NB〈γ〉 for some j ∈ J , k ≤ j − 1, 0 ≤m≤N ,

j ≤ N and γ ∈ Σ,

Z−
j,mWN

j,kZ
+
j,NB〈γ〉 for some j ∈ J , 0 ≤ k ≤ j − 1,

j ≤ N , m ≤ N , and γ ∈ Σ,

B〈ξ〉−Z−
j,NWN

j,kZ
+
j,NB〈γ〉 for some j ∈ J , 0≤ k ≤ j − 1, j ≤N ,

ξ ∈ Σ<N and γ ∈ Σ with ξ an initial

segment of γ,

and we are done.

As an immediate application of the previous lemma we have:

Lemma 3.5. ω(cg) is a Cantor set.

Proof. Since it is clear that ω(cg) contains no intervals, it is enough to
show that ω(cg) contains no isolated points. Let R be any finite word that
occurs infinitely often in Kg, and let UR = {x ∈ ω(cg) : R is an initial
segment of Ig(x)}. We will show that ω(cg) is a Cantor set by showing that
UR is not a singleton. If R occurs in Si (the words in the re-labeling of Kf )
for infinitely many i, then R occurs infinitely often in Kf . Since ω(cf ) is a
Cantor set and since Φ is an embedding induced by If there are no isolated
points in UR.

Suppose instead that R does not occur infinitely often in
⋃

i∈N
Si. Then

R must contain more than three adjacent 1s since these are the only words
which did not already occur in Kf . Suppose first that R = 1m or that
R = 1m01k. Then for each γ ∈ Σ there is a point in UR with itinerary
1m01kZ+

j,nB〈γ〉. Thus UR is not a singleton.

Similarly, if R = 1kZ+
j,N or R = 1m01kZ+

j,N then for every γ ∈ Σ there
is a point in UR with itinerary RB〈γ〉. Hence UR is not a singleton.

Otherwise, R contains a segment of the form WN
j,k for some j ∈ J , 0 ≤

k ≤ j − 1 and N ∈ N. In Kg such a segment is always followed by Z+
j,M

for some integer M ≥ N . For a given j ∈ J , 0 ≤ k ≤ j − 1 and M ∈ N,
B〈γ〉 follows WN

j,kZ
+
j,M for all γ ∈ Σ<N with length longer than or equal to M

by property (4) in the definition of φ. This implies that UR = {x ∈ ω(cg) :
R is an initial segment of Ig(x)} is not a singleton.

The final case to consider is R = BN
1 1p. Then R is an initial segment

of a shift of Z−
j,NWm

j,k for large enough j ∈ J . By the argument given in
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the previous paragraph we see that UR is not a singleton. Hence ω(cg) is a
Cantor set.

Hence ω(cf ) is homeomorphic to ω(cg), by Lemma 2.1, Fd(Xf ) is home-
omorphic to Fd(Xg) and all four sets are Cantor sets. But in order to arrive
at the desired result we must know more about the possible full itineraries of
all of the folding points. This will allow us later to use Brucks & Diamond’s
characterization [7] to distinguish between the composants the various fold-
ing points are contained in.

Lemma 3.6. Let ŷ ∈ Fd(Xg). Then for some integer l ∈ Z, σl[Fig(ŷ)] is

precisely one of the following :

(1) B〈ζ〉− . B〈γ〉 for some ζ, γ ∈ N2;
(2) 1−∞ . 1∞;
(3) 1−∞0.1∞;
(4) B−∞

1 . 1∞;
(5) W−∞

j,k . W∞
j,k for some j ∈ J and 0 ≤ k ≤ j − 1;

(6) Z−
j . W∞

j,k for some j ∈ J and 0 ≤ k ≤ j − 1;

(7) W−∞
j,k . Z+

j for some j ∈ J and k ≤ j − 1;

(8) 1−∞ . B∞
1 ;

(9) 1−∞01k . B∞
1 for some k ∈ N;

(10) B〈γ〉−Z−
j,NWN

j,kZ
+
j,N . B〈γ〉 for some j ∈ J , 0 ≤ k ≤ j − 1, j ≤ N ,

γ ∈ Σ.

Proof. This lemma follows from the fact that if ŷ ∈ Fd(Xg) then πm(ŷ) ∈
ω(cg) for every m ∈ N, and from the characterization of itineraries of points
in ω(cg) (Lemma 3.4). It is clear that if ŷ ∈ lim←−{[0, 1], g} with Fig(ŷ) one
of the bi-infinite words listed above then for each n ∈ N, πn(ŷ) ∈ ω(cg). So
ŷ ∈ Fd(Xg).

Let ŷ ∈ Fd(Xg). We will show that the full itinerary of ŷ must be one
of the bi-infinite words listed above. Every point in ω(cg) has an itinerary
that ends with one of:

(1) 1∞;
(2) W∞

j,k for some j ∈ J and k ≤ j − 1;

(3) Z+
j for some j ∈ J ;

(4) B∞
1 ;

(5) B〈γ〉 for some γ ∈ Σ, or

(6) B〈γ〉 for some γ ∈ N2 with γ 6∈ Σ ∪ {1∞}.
Since this lemma addresses the structure of full itineraries up to a forward
or backward shift we lose no generality in assuming that the itinerary of
π1(ŷ) is one of the above six cases.
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Suppose that π1(ŷ) has itinerary 1∞. Then either there is an integer
m > 1 such that πm(ŷ) has itinerary 01∞ or there is no such m. If there is
no such integer m then

Fig(ŷ) = 1−∞ . 1∞.

So suppose there is such an integer m. If for all r > m, the itinerary Ig[πr(ŷ)]
equals 1k−m−101∞, then

σm−1[Fig(ŷ)] = 1−∞0 . 1∞.

If that is not the case, then by Lemma 3.4 for each r > m the itinerary
Ig[π7r(ŷ)] is BK

1 1∞. Thus

σm−1[Fig(ŷ)] = B∞
1 . 1∞.

According to Lemma 3.4 these are the only possibilities that end in 1∞.
Next, suppose that Ig[π1(ŷ)] = W∞

j,k. If for every m > 1, π7m(ŷ) has
itinerary W∞

j,k then

Fig(ŷ) = W−∞
j,k . W∞

j,k.

The other possibility is that there is some integer m > 1 such that π7m(ŷ)
has itinerary Z−

j,NW∞
j,k with N ≥ j. Clearly then there is some l ∈ Z such

that

σl[Fig(ŷ)] = Z−
j . W∞

j,k.

Suppose now that the itinerary of π1(ŷ) is Z+
j for some j ∈ J . It is

certainly possible that

Fig(ŷ) = Z−
j . Z+

j

but since the Zj words were chosen from N2, this is a subcase of

Fig(ŷ) = B〈ζ〉− . B〈γ〉.

According to Lemma 3.4 the other possibility is that there is an integer
M > 1 such that π7m(ŷ) has itinerary WN

j,kZ
+
j for some k ≤ j − 1 and

N ∈ N, for all m ≥M . Thus

σl[Fig(ŷ)] = W−∞
j,k . Z+

j

for some l ∈ Z.
The next case to consider is Ig[π1(ŷ)] = B∞

1 . If for each m > 1 there is
a ξm ∈ <N2 such that Ig[πm(ŷ)] = B〈ξm〉−B∞

1 then

Fig(ŷ) = B〈ξ〉−B1∞

for some ξ ∈ N2 and, since 1∞ ∈ N2, this possibility is covered. If this is not
the case then there is an integer M such that Ig[πM (ŷ)] = 1kB∞

1 for some
k ∈ N. Now either for all m ≥M , Ig[πm(ŷ)] = 1rB∞

1 for some r ∈ N, or not.
If so, then we have

σl[Fig(ŷ)] = 1−∞ . B∞
1
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for some integer l. If not, then according to Lemma 3.4, the only other
possibility is that there is a P ∈ N such that for all p ≥ P there is an integer
mp ∈ N such that Ig[πp(ŷ)] = 1mp01kB∞

1 for some fixed k ∈ N. Then for
some l ∈ Z,

σl[Fig(ŷ)] = 1−∞01k . B∞
1

Finally, suppose that the itinerary of π1(ŷ) is B〈γ〉 for some γ ∈ Σ. Since

Σ ⊆ N2 it could be the case that

Fig(ŷ) = B〈ζ〉−.B〈γ〉

for some ζ ∈ N2. If this is not the case then there is an integer m > 1 such
that the itinerary of π7m(ŷ) has WN

j,k as an initial segment for some j ∈ J ,
k ≤ j − 1 and j ≤ N . According to Lemma 3.4 there is an integer M such
that if m ≥ M then the itinerary of π7m(ŷ) is B〈ξm〉−Z−

j,NWN
j,kZ

+
j,NB〈γ〉 for

some j ∈ J , k ≤ j − 1, j ≤ N , ξm ∈ Σ<N and γ ∈ Σ, with ξm an initial
segment of γ. Thus

σl[Fig(ŷ)] = B〈γ〉−Z−
j,NWN

j,kZ
+
j,N . B〈γ〉

for some l ∈ Z.

Now we examine the various composants containing folding points by
using Brucks and Diamond’s characterization [7].

Lemma 3.7. Let Kγ be a composant of Xg such that Kγ contains v̂ ∈
Fd(Xg) where Fig(v̂) = B〈γ〉− . V for some γ ∈ Σ − {1∞} and V a word in

{0, 1}. Then Kγ ∩ Fd(Xg) is a Cantor set.

Proof. Let d̂ be a point in Fd(Xg) ∩ Kγ . Then there is a word ζ ∈ Σ

such that B〈ζ〉− ≃ B〈γ〉− and Fig(d̂) = B〈ζ〉−V0 . V1 for some words V0 and

V1 in {0, 1} (so that π1(d̂) = V1). Since σ is a homeomorphism on Xg, we
lose no generality in only considering the case that V0 is empty. Then either
V1 = B〈ξ〉 for some ξ ∈ N2 (in which case d̂ is clearly not isolated in Kγ) or

V1 = Z−
j,NWN

j,kZ
+
j,NB〈ζ〉

for some j ∈ J , 0 ≤ k ≤ j − 1, j ≤ N and ζ ∈ Σ. Let ζm ∈ Σ be such
that the first m symbols of ζm agree with ζ but σm(ζm) = σm(γ). Then

〈ζm〉− ≃ 〈γ〉−, and ζm → ζ as m→∞. Let d̂m ∈ Fd(Xg) be such that

Fig(d̂m) = B〈ζm〉− . Z−
j,NWN

j,kZ
+
j,NB〈ζm〉.

Clearly d̂m ∈ Kγ and d̂m → d̂. Thus Kγ ∩ Fd(Xg) is a Cantor set.

Lemma 3.8. Let KB∞

1
be the composant of Xg such that KB∞

1
contains

the point r̂ where Fig(r̂) = B−∞
1 . 1∞. Then KB∞

1
∩ Fd(Xg) is a Cantor set

with a countable set of isolated points which have one limit point that is in

the Cantor set.
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Proof. Clearly there is a Cantor set in KB∞

1
∩Fd(Xg) of points with full

itinerary B∞
1 Bδ . Bγ . B−∞

1 . B∞
1 for some δ ∈ N2 and γ ∈ N2. Suppose that

d̂ ∈ KB∞

1
∩ Fd(Xg) does not have this form. Then there is an integer l such

that σl[Fig(d̂)] = B−∞
1 . 1∞, in which case d̂ is isolated in KB∞

1
∩ Fd(Xg).

Notice that the point ê with Fig(ê) = B−∞
1 . B∞

1 is a limit of points with
full itinerary B−∞

1 . BK
1 1∞ for K ∈ N.

Lemma 3.9. Let K1∞ be the composant of Xg such that K1∞ contains

the point ŵ with Fig(ŵ) = 1−∞.1∞. Then K1∞ ∩ Fd(Xg) is a countable set.

Proof. Let d̂ ∈ K1∞ ∩ Fd(Xg). Either d̂ has full itinerary 1−∞ . 1∞ or
there is an integer l such that

σl[Fig(d̂ )] =






1−∞0 . 1∞,

1−∞ . B∞
1 ,

1−∞01k . B∞
1 for some k ∈ N.

Clearly there are only countably many possibilities.

Lemma 3.10. Let j ∈ J and 0 ≤ k ≤ j − 1. Let Kj,k be the composant

of Xg such that Kj,k contains the point x̂j,k with Fig(x̂j,k) = W−∞
j,k . W∞

j,k.

Then Kj,k ∩ Fd(Xg) is a countable set of isolated points with a single limit

point.

Proof. Let d̂ ∈ Kj,k ∩Fd(Xg). Then either Fig(d̂ ) = W−∞
j,k .W∞

j,k or there

is an integer l such that σl[Fig(d̂ )] = W−∞
j,k .Z+

j . Clearly this is a countable

set and all of the points in the second case are isolated in Kj,k ∩ Fd(Xg)
while the first point is a limit of such points.

Lemma 3.11. Let j ∈ J . Let Kj be the composant of Xg containing the

point ẑj with Fig(ẑj) = Z−
j . Z+

j . Then Kj ∩Fd(Xg) is a Cantor set together

with precisely j isolated points.

Proof. First notice that by the choice of Z−
j , if d̂ ∈ Fd(Xg) with Fig(d̂ ) =

Z−
j V0 . V1 and V0 6= ∅, then d̂ 6∈ Kj as Z−

j 6≃ Z−
j V0 (Lemma 3.1).

Similarly, if there is a negative integer l such that σl[Fig(d̂ )] = Z−
j . W1

then d̂ 6∈ Kj . Also if k ∈ J with k 6= j and d̂ ∈ Fd(Xg) with σl[Fig(d̂ )] =

Z−
k . W1 for some word W1 in {0, 1}, then d̂ 6∈ Kj . Thus the only points

d̂ ∈ Fd(Xg) that are also in Kj have full itinerary

(1) Z−
j . Z+

j ,

(2) Z−
j . W∞

j,k,

(3) B〈γ〉− . B〈ζ〉 where γ, ζ ∈ N2 and B〈γ〉− ≃ Z−
j .

Clearly cases (1) and (3) form a Cantor set of folding points in Kj . For
each 0 ≤ k ≤ j − 1 let ŷj,k be in Kj ∩ Fd(Xg) with Fig(ŷj,k) = Z−

j .W∞
j,k.
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Notice there are precisely j such points. We will show that each of these
points is isolated in Kj ∩ Fd(Xf ).

Let (ŵn)n∈N be a sequence of points in Fd(Xg) converging to ŷj,k. We
will show that there is an integer N such that ŵn 6∈ Kj for n ≥ N . The result
then follows. Fix M ∈ N with M ≥ j2. Suppose that ŵn is close enough to
ŷj,k so that the cylinder of Fig(wn) of diameter M agrees with the cylinder
of Fig(yj,k) of diameter M , Z−

j,M . WM
j,k. Since ŵn 6= ŷj,k there is a largest

integer M ′ such that the M ′-cylinder of Fig(ŵn) ends with the word WM ′

j,k .
By Lemma 3.6 it must be the case that the cylinder of Fig(ŵn) of diameter

M ′ has the form Z−
j,M ′ . WM ′

j,k . In fact there must be some γ ∈ Σ with

Fig(ŵn) = B〈γ〉−Z−
j,M ′ . W

M ′

j,k Z+
j,M ′B〈γ〉.

By the definition of Σ, B〈γ〉− 6≃ Z−
j . Hence ŵn is not in Kj .

Theorem 3.12. Let K be the collection of composants of Xg. Then K
can be partitioned into K∅, Kc,

⋃
j∈J Kj , and L such that

(1) if K ∈ K∅ then K ∩ Fd(Xg) = ∅;
(2) if K ∈ Kc then K ∩ Fd(Xg) is precisely a Cantor set ;
(3) if K ∈ L then K ∩ Fd(Xg) is a countable set ;
(4) for j ∈ J , Kj is countable and if K ∈ Kj then K∩Fd(Xg) is precisely

a Cantor set together with j isolated points.

Proof. Let K∅ be the collection of composants of Xg which contain no
folding points, and let Kc be the collection of composants described in
Lemma 3.7. Let L be the collection of all composants described in Lem-
mas 3.8–3.10 together with all of their images under the homeomorphism σ.

Let j ∈ J and let Kj,0 be the composant Kj described in Lemma 3.11.
From what was said before we see that Kj,0∩Fd(Xg) is a Cantor set together
with precisely j isolated points. For each m ∈ Z let Kj,m = σ̂m[Kj,0]. Since
σ̂ is a homeomorphism and Fd(Xg) is preserved by homeomorphisms,
Kj,m ∩ Fd(Xg) is also a Cantor set together with j isolated points. Define
Kj = {Kj,m : m ∈ Z}.

Corollary 3.13. There is a family F of tent map cores such that

(1) F has cardinality of the continuum, c,
(2) if f ∈ F with critical point cf then ω(cf ) and Fd(Xf ) are Cantor

sets,
(3) if f ∈ F then every non-degenerate proper subcontinuum of Xf is

an arc,
(4) if f, g ∈ F with f 6= g then Xf is not homeomorphic to Xg.

Proof. For each J ⊆ N we can build a map gJ as described above from
the starting map f . This map gJ will have the property that ω(cgJ

) and
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Fd(XgJ
) is a Cantor set but for each j ∈ J there is a countable collection⋃

j∈J Kj of composants of XgJ
with the property that if K ∈ Kj then K ∩

Fd(XgJ
) contains j isolated points. For every other composant, K, that

meets Fd(XgJ
) either K ∩ Fd(XgJ

) is a countable set or it is a Cantor set.
So if J, L ⊆ N with J 6= L then XgJ

is not homeomorphic to XgL
. By our

construction the critical point cg is not recurrent so Xg has only arcs as its
proper subcontinua (cf. [5]).

For J ⊆ N let PJ be the set of parameters r ∈ (
√

2, 2] of tent map cores
for which ω(cfr

) and Fd(Xfr
) are both Cantor sets and for which there is a

composant K such that K ∩Fd(Xfr
) contains j isolated points iff j ∈ J . By

modifying our initial choice of f in the above construction it is clear that
for any J ⊆ N, PJ is dense in (

√
2, 2] and has cardinality c. Also each map

with parameter in PJ will have a non-recurrent critical point. This implies
that every proper subcontinuum of its inverse limit will be an arc, and also
the set of folding points in its inverse limit will be a Cantor set. So in order
to distinguish between these inverse limit spaces some new idea is needed.
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