
FUNDAMENTA

MATHEMATICAE

199 (2008)

Embedded surfaces in the 3-torus

by

Allan L. Edmonds (Bloomington, IN)

Abstract. Those maps of a closed surface to the three-dimensional torus that are ho-
motopic to embeddings are characterized. Particular attention is paid to the more involved
case when the surface is nonorientable.

1. Introduction. What maps of a closed, oriented surface Fg of genus g
to the 3-torus T 3 are homotopic to embeddings? While it is obvious that any
orientable surface embeds, it is somewhat less clear how to characterize the
maps homotopic to embeddings. Here we provide a simple, but not entirely
trivial, answer to the question, as follows.

Theorem 1.1. A map f : Fg → T 3 is homotopic to an embedding if and
only if one of the following conditions holds:

(1) the homology class f∗[Fg] in H2(T 3) is trivial ; or
(2) the homology class f∗[Fg] in H2(T 3) is primitive and f∗(H1(Fg)) has

rank 2 in H1(T 3).

Here [Fg] ∈ H2(Fg) denotes the fundamental class of the oriented sur-
face Fg. A nontrivial element in a torsion free abelian group G is said to be
primitive if it is not a nontrivial multiple of another element of the group.
Note also that since T 3 is aspherical, with abelian fundamental group, the
set of homotopy classes of maps X → T 3 is in one-to-one correspondence
with the set of homomorphisms H1(X)→ H1(T 3) for any CW complex X.

We also address the case of a map of a nonorientable surface Uh (the
connected sum of h copies of the projective plane). Naturally the answer is
a little trickier, and in many ways more interesting. The question of which
nonorientable surfaces embed (with no consideration of the map) was an-
swered by G. Bredon and J. Wood [2], who showed that Uh embeds if and
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only if h is even and h > 2. We give a complete determination of the maps
homotopic to embeddings in the following.

Theorem 1.2. A map f : Uh → T 3 is homotopic to an embedding if
and only if the following five conditions all hold :

(1) the nonorientable genus h is even;
(2) w1(Uh) ∈ f∗H1(T 3; Z2) ;
(3) the mod 2 homology class f∗[Uh]2 in H2(T 3; Z2) is nonzero;
(4) the induced homomorphism f∗ : H1(Uh)→ H1(T 3) is surjective; and
(5) the induced integral intersection pairing on

K = [ker f∗ : H1(Uh)→ H1(T 3)]/torsion

is unimodular.

Actually, condition (2) implies (1), but not conversely. The various con-
ditions are explained in more detail in subsequent sections. Conditions (4)
and (5) are independent of each other. Condition (2) is necessary for the
very definition of the intersection pairing in (5). But condition (3) is actu-
ally a consequence of the others, including (5). These latter relationships
will be explained in the final section of the paper. Condition (5) may be
viewed as a consequence of the fact that “the orientable part” of Uh must
also be embedded. The pairing in question is defined up to a global change
of sign. The integral pairing on the kernel K will be explained in more detail
in Subsection 3.5.

The proofs will give a simple constructive picture of an embedded surface
in each appropriate homotopy class. For an orientable surface it will be either
a trivial 2-sphere with tubes attached or a standard subtorus with trivial
handles attached. For any even nonorientable genus at least 4, it will be
a standard nonseparating orientable surface (the second case in Theorem
1.1), with a single nonorientable handle attached running from one side of
the orientable surface to the other.

G. Bredon and J. Wood [2] treated the question of which nonorientable
surfaces Uh embed in 3-manifolds of the form M2×S1, where M2 is a closed
orientable surface, and which homology classes in H2(M2×S1; Z2) are rep-
resented by embeddings of Uh. In particular, conditions (1)–(4) are apparent
from their work. But they did not address the question of deforming a given
map to an embedding.

W. Jaco [7] also studied incompressible surfaces in 3-manifolds of the
form M2 × S1, where M2 is a closed orientable surface, and in particular
concluded, in the case at hand, that up to isotopy the only incompressible
surfaces, orientable or not, in T 3 are standard sub-2-tori.

Alternative proofs and extensions of some of the results of Bredon and
Wood have also been given by W. End [5].
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Organization of the rest of the paper. The case of orientable surfaces is
handled in Section 2 and the case of nonorientable surfaces in Section 3. The
necessity of the primitivity condition in Theorem 1.1 is proved in Proposi-
tion 2.1, and the necessity of the rank 2 condition is proved in Proposition
2.3. Sufficiency in Theorem 1.1 is proved in Theorem 2.4. The necessity
of conditions (1), (2), and (3) in Theorem 1.2 is proved in Corollary 3.5,
Proposition 3.1, and Proposition 3.2, respectively. Condition (4) is given in
Corollary 3.9. Condition (5) is explained in Proposition 3.10. Sufficiency in
Theorem 1.2 is completed in Subsection 3.6. We conclude in Subsection 3.7
with examples showing the independence of conditions (4) and (5) from the
other conditions in Theorem 1.2, and a proof that condition (3) follows from
the other conditions.

Acknowledgements. The author thanks the referee for a careful read-
ing of the manuscript, including pointing out an error in one proof, sug-
gesting the alternative proof of Proposition 3.11 presented here, and recom-
mending various improvements in exposition.

2. Embeddings of orientable surfaces

2.1. Primitivity of codimension one embeddings. The necessity of the
primitivity condition is a well-known property of codimension one embed-
dings in general.

Proposition 2.1. Suppose thatNnis a closed , oriented n-manifold embed-
ded in the closed , orientable (n+1)-manifoldMn+1. If the homology class [Nn]
in Hn(Mn+1) is nontrivial , then it is primitive, and H1(Mn+1)/i∗H1(Nn)
is infinite.

Proof. If [Nn] 6= 0, then Nn must be nonseparating, and therefore taking
intersection numbers with Nn defines a homomorphism ϕ : H1(Mn+1)→ Z.
Since Nn must be nonseparating, there is an oriented simple closed curve
C ⊂ Mn+1 meeting Nn transversely exactly once, so that C · Nn = 1. In
particular, the homomorphism ϕ is surjective. On the other hand, because
Nn is orientable, it has a trivial normal bundle. From this we see that the
image of H1(Nn) lies in the kernel of ϕ. The result follows.

2.2. Surgery on a map: the orientable case. Here we show how any map
of an orientable surface to the 3-torus is built up starting with a map of a
torus or a 2-sphere. An analogous result for nonorientable surfaces will be
given in Subsection 3.3.

Proposition 2.2. If Fg is a closed orientable surface of genus g > 1
and f : Fg → T 3, then there is a nonseparating (two-sided) simple closed
curve C on Fg such that the restriction f |C is nullhomotopic.
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Proof. Under the present hypotheses, the homomorphism f∗ : H1(Fg)→
H1(T 3) has a nontrivial kernel that is also primitive, just for reasons of
rank. Standard facts about surfaces then imply that a primitive element in
ker f∗ can be represented by the desired simple closed curve. See [1], [3], [8],
and [9].

Given a simple closed curve, as in the preceding proposition, one may
cut open the surface Fg along C to create a surface with two boundary com-
ponents C1 and C2 corresponding to C. One may then cap off the resulting
boundary components with disks D1 and D2 to form a closed orientable
surface F ′ of genus g − 1 and a map f ′ : F ′ → T 3 representing the same
homology class. In addition one may recover the original map f up to ho-
motopy if one records the homotopy class of a loop that the cut open handle
goes around. One may do this explicitly by attaching to F ′ an embedded
arc A with both end points at the centers of the disks D1 and D2 with f ′

extended over the arc A as dictated by the original map f . Clearly, one can
recover f from the extended f ′ by running a tube along the path f ′(A).

One may also iterate this process, eventually reducing to a torus with
g− 1 arcs attached. Either the map of the torus is injective on homology or
one can surger one more time to obtain a 2-sphere.

2.3. Embedded surgery: the orientable case. Here we prove the necessity
of the rank condition on the image of H1.

Proposition 2.3. Let f : Fg → T 3 be an embedding of a closed , ori-
entable surface of genus g that represents a primitive homology class f∗[Fg]
in H2(T 3). Then the image f∗H1(Fg) in H1(T 3) is isomorphic to Z⊕Z and
is a summand of H1(T 3).

Proof. By Proposition 2.1 the rank of the image cannot be 3. If the
rank were 0 then the embedding f lifts to an embedding in the universal
covering R3, which would imply that f∗[Fg] = 0. Similarly, if the rank of the
image f∗H1(Fg) were 1, then f would lift to a covering homeomorphic to
S1×R, again implying that f∗ is trivial on H2 and contradicting our standing
assumption here. Finally, if f∗H1(Fg) has rank 2 but is not a summand, then
f would lift to a covering of the form T 2×R for which the projection to T 3

maps H1(T 2 × R) to a nonprimitive subgroup of H1(T 3). But such a map
takes H2(T 2 × R) to a nonprimitive subgroup of H2(T 3), contradicting the
assumed primitivity of f∗H2(Fg).

2.4. Embedding theorem: orientable case. Here we present the main em-
bedding theorem in the case of a map of a general closed, orientable surface.

Theorem 2.4. Let f : Fg → T 3 be a map of a genus g surface (g ≥ 1)
to the torus T 3, such that the homology class f∗[Fg] in H2(T 3) vanishes or
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the homology class f∗[Fg] in H2(T 3) is primitive and f∗H1(Fg) in H1(T 3)
has rank two (not more). Then f is homotopic to an embedding.

Proof. In the first case the surgery-on-a-map process of Subsection 2.2
reduces f to a map f ′ : S2 ∪g Ai → T 3, of a 2-sphere union a collection
of g arcs. The 2-sphere is nullhomotopic and so f ′|S2 may be assumed to
be an embedding onto a standard 2-sphere bounding a 3-ball. By general
position it may further be assumed that f ′ embeds all the arcs and indeed
that f ′ is an embedding overall. Finally, one can add tubes to S2 along these
embedded arcs to produce the desired embedding homotopic to f .

In the second case the surgery-on-a-map process reduces the given map f
to a map f ′ : T 2 ∪g−1 Ai → T 3, of a 2-torus union a collection of g− 1 arcs.
The map f ′ on the torus is homologically nontrivial and primitive, and
by Proposition 2.3 it may be assumed that f ′|T 2 is an embedding onto a
standard subtorus T 2 of T 3. Moreover, f ′ is homotopic to a map taking the
arcs Ai into T 2 as well, by the condition on the rank of f∗H1(Fg). By a
further homotopy one can assume the arcs are embedded in T 2. Finally, one
can perturb the map on these arcs so that they are small, trivially embedded
arcs on one side of T 2.

Now one can add small tubes along the arcs Ai, extending the map f ′

appropriately to produce the desired embedding.

3. Embeddings of nonorientable surfaces

3.1. General nonorientability issues. It is, of course, not true that a
codimension-one submanifold of an orientable manifold must be orientable,
as one knows from the simple example of RP 2 ⊂ RP 3.

The Stiefel–Whitney class. We think of the first Stiefel–Whitney class
as a homomorphism w1 : H1(Nn) → Z2 = {0, 1}, where w1(λ) = 1 if and
only if a local orientation of Nn, when transported once around a loop rep-
resenting λ, is reversed. We also view w1(Nn) as an element of H1(Nn; Z2).
More properly, this is w1(TNn). We may similarly speak of w1(ξ) for any
vector bundle over Nn.

Proposition 3.1. Suppose that Nn is a closed n-manifold embedded in
the orientable (n+1)-manifold Wn+1 with normal bundle ν. Then w1(Nn) =
w1(ν) = ϕ|Nn for some ϕ ∈ H1(Wn+1; Z2).

Proof. Define ϕ ∈ H1(Wn+1; Z2) = Hom(H1(Wn+1),Z2) by mod 2 in-
tersection numbers of 1-cycles with the submanifold Nn. The result fol-
lows since a loop in Nn is orientation-reversing in Nn, if and only if it is
orientation-reversing in ν, if and only if it has mod 2 intersection number 1
with Nn.
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See also Milnor–Stasheff [10, pp. 39 and 119], for example. In particular,
this implies the well-known fact that a closed nonorientable surface cannot
embed in R3.

Proposition 3.2. Suppose that Nn is a closed nonorientable n-manifold
embedded in the closed , orientable (n + 1)-manifold Mn+1. Then [Nn]2 is
nontrivial in Hn(Mn+1; Z2).

Proof. If [Nn]2 = 0, then Nn separates Mn+1. But that shows that
Nn has a trivial normal bundle. And that in turn would imply that Nn is
orientable.

The Poincaré dual Dw1(Nn) lies in Hn−1(Nn; Z2) and can be repre-
sented by an embedded (n− 1)-dimensional submanifold, in general, as the
transverse pre-image of RP k−1 under a map f : Nn → RP k representing
w1(Nn), where RP∞ ' K(Z2, 1).

If F = Uh, the connected sum of h copies of the projective plane, then
we can identify Dw1(F ) concretely as being represented by the disjoint
union of the corresponding h copies of RP 1. It has the defining property
that its complement in F is orientable and the complement of no proper
subcollection is orientable. With proper orientations on these circles, twice
the integral class represented by the union is 0 in H1(F ).

On the other hand, one can calculate directly that H1(Uh) ≈ Zh−1⊕Z2.
It follows that the unique element of order 2 represents the Poincaré dual
of w1 as an element of H1(Uh).

Although Dw1(Nn) is represented by an integral homology class, w1(Nn)
itself is not always represented by an integral cohomology class.

Lemma 3.3. The first Stiefel–Whitney class w1(Uh) is the mod 2 reduc-
tion of an integral cohomology class if and only if h is even.

Proof. The cohomology class w1 when viewed as a homomorphism ϕ :
H1(Uh) → Z2 is characterized by ϕ(x) = x · x mod 2. Such a homomor-
phism is the mod 2 reduction of a homomorphism H1(Uh) → Z if and
only if ϕ(Dw1(Uh)) = 0, if and only if the element of order 2 in H1(Uh) is
orientation-preserving, if and only if h is even.

3.2. Consequences for nonorientable surfaces in the 3-torus. Because all
mod 2 cohomology classes of the torus are reductions of integral classes, we
have the following consequence of Proposition 3.1.

Corollary 3.4. If a closed surface F embeds in T 3 then w1(F ) is the
mod 2 reduction of an integral cohomology class.

Since the first Stiefel–Whitney class of a surface of odd genus h is not the
reduction of an integral cohomology class, the following result is immediate.
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Corollary 3.5. If a closed nonorientable surface Uh embeds in the
3-torus then it has even genus h.

Working a little harder with cohomology rings we can deduce the follow-
ing, known, result.

Proposition 3.6 (Bredon and Wood [2, (4.7)], Jaco [7, Cor. 5.3]).
A Klein bottle does not embed in T 3.

Proof. We offer a proof valid for any 3-manifold with the integral co-
homology of T 3. Suppose a Klein bottle K2 ⊂ T 3. By Proposition 3.2,
H2(K2; Z2) → H2(T 3; Z2) is nontrivial. Dually the cohomology mod 2 fun-
damental class must lie in the image of H2(T 3; Z2).

Now the integral and mod 2 cohomology rings of T 3 are generated by
three elements of degree 1 with their squares equal to 0. Mod 2 all squares
vanish.

As for the Klein bottle, its mod 2 cohomology ring is generated by two
elements of degree 1 with nonvanishing squares, whose product is trivial, as
one can see by viewing K2 as the connected sum of two projective planes.

Now, the mod 2 cohomology generators of the torus are reductions of in-
tegral classes. But only one of the three nonzero elements of the mod 2
cohomology of the Klein bottle is integral. It follows that the image of
H1(T 3; Z2)→ H1(K2; Z2) has rank at most one, and hence that H2(T 3; Z2)
→ H2(K2; Z2) vanishes. This contradicts the fact that H2(K2; Z2) →
H2(T 3; Z2) is nontrivial and therefore implies that K2 does not embed in T 3

after all.

Remark 1. Here is yet another argument for the preceding result, this
time, taking more advantage of the structure of the standard torus. If f :
U2 → T 3 is an embedding, then the image subgroup f∗(π1(U2)) ⊂ π1(T 3)
must be cyclic, as one sees by abelianizing. Thus such a map f lifts to an
embedding in a covering space of T 3 of the form S1×R2. The latter embeds
in R3. But it is standard that closed, nonorientable surfaces do not embed
in R3.

Remark 2. It is crucial that the 3-manifold in the previous result have
the cohomology ring structure of the torus. The manifold M3 = S1 × S2 #
S1 × S2 # S1 × S2 has the integral homology groups of T 3. But the Klein
bottle embeds in S1 × S2, hence in M3, as one can see by adding a handle
to a standard S2 that goes once around in the S1 direction.

3.3. Surgery on a map. There is a simple statement about surgery on
a map of a nonorientable surface when the nonorientable genus is even. We
give a formulation that applies to most nonorientable surfaces of odd genus
as well.
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Proposition 3.7. If Uh is a closed nonorientable surface, h 6= 1, 3, and
f : Uh → T 3, then there is a nonseparating , two-sided simple closed curve C
on Uh such that f |C is nullhomotopic.

Proof. If h is odd we may write Uh = Fg #U1, where h = 2g+ 1. If h is
even, then we may write Uh = Fg #U2, where h = 2g+ 2. Assuming h ≥ 4,
we get g ≥ 2. It follows as in the orientable case that the desired simple
closed curve exists, lying in an orientable part of Uh.

If h is even, including the case when h = 2, let C ⊂ Uh be a simple closed
curve that represents the element of order 2 in H1(Uh) ≈ Zh−1 ⊕ Z2. Since
h is even, C is 2-sided. Since π1(T 3) = H1(T 3) is torsion-free, it follows that
f |C is nullhomotopic as required.

3.4. Embedded surgery. It is well known that a one-sided incompressible
surface need not be π1-injective in general. But the conditions of incom-
pressibility and π1-injectivity turn out to be equivalent for surfaces in T 3

and other 3-manifolds that are products with a circle, by results of Jaco [7].

Proposition 3.8 (see [7, Theorem 5.2]). Let Uh ⊂ T 3 be an embedded ,
closed , nonorientable surface of even genus h. Then Uh is compressible;
that is, there is a homotopically nontrivial , two-sided , simple closed curve
C ⊂ Uh such that C bounds an embedded disk D ⊂ T 3 such that D∩Uh = C.

Proof discussion. For the convenience of the reader we sketch the proof
with some attention to the orientability issues and the fact that the con-
taining manifold is a torus. The proof shows that up to isotopy the only
incompressible surfaces in T 3 are standard 2-tori.

Consider an arbitrary connected, closed surface M2 ⊂ T 3. Choose any
standard 2-torus T 2 ⊂ T 3. Isotope M2 so that it intersects T 2 transversely
with the minimum possible number of components of intersection.

If the intersection M2 ∩ T 2 were empty, then M2 would embed in T 3 −
T 2 ∼= T 2 × R, which embeds in R3, which means M2 would be orientable.
Moreover, it would be compressible, unless M2 were a π1-injective torus, in
T 2 ×R. See Hempel [6, Lemma 6.1], for example. And in this case it would
be parallel to the standard T 2.

Therefore we may assume that the intersection consists of a nonempty
collection of pairwise disjoint simple closed curves. Among these there can-
not be any curves nullhomotopic in both T 2 and M2. Indeed, an innermost
such curve on the torus T 2 bounds a disk on the torus and also bounds
a disk on M2. The 2-sphere comprised of these two disks bounds a 3-ball
in T 3, so that one could eliminate at least one curve of intersection by an
isotopy, contradicting minimality.

If among these curves there are ones that are nullhomotopic in T 2, but
not in M2, then choosing such a curve that is innermost in T 2, we obtain
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the desired compressing disk. Otherwise, M2 ∩ T 2 must consist of a finite
number of parallel, homotopically nontrivial, simple closed curves on the
torus. We will see that in this case M2 must also be a torus.

Cutting open T 3 and M2 along this T 2 we obtain an incompressible
surface M2

1 in T 2 × I, with nonempty boundary contained in T 2 × {0, 1},
with the additional property that the curves of ∂M2

1 in T 2×{0} and T 2×{1}
have the same slope.

One may argue that up to isotopy such a surface must consist of a family
of parallel vertical annuli. Compare Waldhausen [11, 3.1], and Jaco [7, 5.1].
(The case of a boundary-parallel surface does not occur, since otherwise it
could be used to reduce the number of components of the intersection of M2

with T 2.) For us these references are slightly inadequate, since Jaco at the
crucial point refers the reader to Waldhausen, and Waldhausen explicitly
considers only orientable surfaces. We therefore offer a few more details.

One may assume, after composing with a diffeomorphism of T 2, that the
components of M2

1 ∩ T 2 × {0, 1} are all of the form S1 × {x} × {ε}, x ∈ S1

and ε ∈ {0, 1}. One may then choose an annulus A = S1 ×{y}× I with ∂A
disjoint from M2

1 .
Make M2

1 transverse to A, meeting A in a minimal number of simple
closed curves. In particular, we may assume that M2

1 ∩A contains no simple
closed curves that are trivial on A or on M1, and so that all components of
the intersection are parallel on A. Then cut T 2 × I and M2

1 open along A,
obtaining a solid torus S1×I2 containing an incompressible surface M2

2 . This
incompressible surface has the property that its boundary curves consist of
parallel longitudes on S1 × I2.

This surface M2
2 must consist of boundary-parallel annuli. To see this

consider how M2
2 intersects a meridian disk D2 ⊂ S1 × I2. The intersection

may be assumed to be transverse. Since M2
2 is incompressible, one may elimi-

nate any circles of intersection. Thus we have a system of properly embedded
arcs in D2. Now consider an outermost arc of intersection of M2

2 ∩ D2. A
boundary compression, using the disk spanned by this outermost arc and the
corresponding arc on the boundary of D2, produces an incompressible sur-
face with a boundary component that is a trivial simple closed curve in the
boundary of the solid torus. Incompressibility implies that this simple closed
curve is the boundary of a disk in the boundary compressed surface. Such
a disk is boundary-parallel in S1 × I2. We conclude that the corresponding
component of M2

2 is a boundary-parallel annulus.
Gluing things back together to form T 2 × I and then gluing the ends

of T 2 × I back together displays M2 as a union of annuli identified along
their boundary curves. We already know that M2 cannot be a Klein bottle.
We conclude that M2 must in fact be a torus. In fact, it is displayed as a
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covering of a standard subtorus. Primitivity of embeddings then shows that
M2 maps by degree 1 to this subtorus and is thus isotopic to the standard
subtorus. In particular, at this point in the argument M2 must be orientable.

Thus, when M2 is nonorientable, we will always find a compressing disk
in T 2 with boundary an innermost nullhomotopic curve of intersection.

Corollary 3.9. Let Uh ⊂ T 3 be an embedded , closed , nonorientable
surface of genus h. Then the inclusion-induced homomorphism H1(Uh) →
H1(T 3) is surjective.

Proof. Let C ⊂ Uh be a nontrivial simple closed curve that bounds an
embedded disk D such that D∩Uh = C, and let the closed surface obtained
by surgering Uh along C be denoted by F .

If F is nonorientable (F might have two components in this case), then
an inductive argument implies that H1F → H1T

3 is onto. It follows that
H1(Uh)→ H1(T 3) is onto, as required.

Now suppose that F is orientable. Then C represents Dw1(Uh), and,
since F must be homologically nontrivial as Uh is mod 2 homologically non-
trivial, the previous analysis of the orientable case implies that the image
of H1(F ) in H1(T 3) is a rank 2 summand. Then Uh is obtained from F
by running a tube along an embedded path that runs exactly once from
one side of F to the other. It follows that the image of H1(Uh) is all
of H1(T 3).

Remark 3. The preceding corollary is also a consequence of the funda-
mental group calculations of Bredon and Wood [2, (4.4)].

3.5. The induced pairing on the kernel. The full intersection pairing on
the integral first homology of a nonorientable surface is only well-defined
mod 2. However, if A and B are oriented, orientation-preserving closed
curves in a nonorientable surface M2, they have a well-defined integral in-
tersection number up to sign. We assume the curves are regularly immersed
and intersect transversely. The normal bundle of A, say, can be oriented.
Then each point of intersection of B with A can be given a sign and these
signs may be added up. Of course, reversing the orientation of the normal
bundle or reversing the orientation of one of the two curves will reverse the
signs. Changing A or B by a homology preserves the absolute value of the
net algebraic intersection number.

If all curves in question lie in an open, connected, orientable subset
V ⊂ M2, then we may orient V and use that orientation to orient the
normal bundles of all immersed curves in V . Thus an orientation on V gives
a well-defined skew-symmetric integer-valued pairing on H1(V ), providing
a definite sign to the intersection number A ·B described above.
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Now suppose that f : Uh → T 3 is any map that induces a surjection on
integral homology and such that w1(Uh) ∈ f∗H1(T 3; Z2). Set

K = [ker f∗ : H1(Uh)→ H1(T 3)]/torsion.

According to the preceding results and earlier results about the first Stiefel–
Whitney class, we know that K is a free abelian group of even rank h − 4
on which the first Stiefel–Whitney class, viewed as a homomorphism on
the first homology group, vanishes. Moreover, the preceding remarks can be
used to show that K admits an integer-valued intersection pairing that is
well-defined up to a global change of sign, by finding an orientable subsurface
carrying all of K at once, as we now explain.

The mod 2 reduction of the unique element of order 2 in H1(Uh) is
the Poincaré dual Dw1(Uh) and is represented by a two-sided simple closed
curve C ⊂ Uh. Let F0 denote the result Uh − intN(C) of cutting Uh open
along C and F ′0 denote the result of capping off the resulting two boundary
components with disks. Let f0 : F0 → T 3 denote the restriction of f to F0.
We can extend f0 to a map f ′0 : F ′0 → T 3 since the boundary curves of
F0 represent the same class as C itself, which maps nullhomotopically to
T 3, because C has order 2 in homology while H1(T 3) is torsion free. The
extension is unique up to homotopy since π2(T 3) = 0. Both F0 and F ′0 are
orientable and connected, and we choose compatible orientations for both.

Let
K0 = [ker f0∗ : H1(F0)→ H1(T 3)]/boundary classes,

K ′0 = [ker f ′0∗ : H1(F ′0)→ H1(T 3)].

If a class γ ∈ ker f∗, then γ · C = 0 (not just mod 2), since γ and
C are both orientation-preserving, but C represents a torsion element in
homology. Thus such a γ ∈ ker f∗ can be represented by an element of
H1(F0) (say by surgering pairs of intersections with C of opposite sign, of a
curve representing γ).

It follows that inclusion induces isomorphisms

K0 → K and K0 → K ′0.

The desired pairing, then, is given by the restriction of the nonsingular,
skew-symmetric intersection pairing on the closed oriented surface F ′0.

We will say that the kernel K, together with its intersection pairing, is
carried by the orientable subsurface F0 ⊂ Uh, as well as by the capped-off
surface F ′0. The determinant of this skew-symmetric bilinear form space, a
nonnegative integer, is an invariant of the embedding. We will say that the
kernel K is unimodular if this determinant is 1.

The preceding discussion shows that the isomorphism type of the inter-
section pairing on the kernel (mod torsion) K, and in particular its deter-
minant, are well-defined, depending only on the original map f and not the
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choice of the simple closed curve C representing the element of order 2 in
homology.

Proposition 3.10. If f : Uh → T 3 is an embedding , then the intersec-
tion pairing on K = [ker f∗ : H1(Uh)→ H1(T 3)]/torsion is unimodular.

Proof. Note that the rank of K is (h − 1) − 3 = h − 4, which is even.
As above, let C ⊂ Uh be a nontrivial two-sided simple closed curve that
bounds an embedded disk D such that D ∩ Uh = C, and let the surface F
be obtained by surgering Uh along C.

First suppose that F is orientable. Then F must be homologically non-
trivial as Uh is mod 2 homologically nontrivial. The previous analysis of ho-
mologically nontrivial orientable surfaces implies that the image of H1(F ) in
H1(T 3) is a rank 2 summand, which F maps to by degree ±1. Then we see
that K = [ker f∗ : H1(Uh) → H1(T 3)]/torsion = ker f∗ : H1(F ) → H1(T 2).
The latter is unimodular as a consequence of the ordinary Poincaré dual-
ity, as in the Wall surgery theory, as required. More geometrically, we can
view f ′ as a degree 1 map F → T 2. So by results of Edmonds (see [4]), f ′ is
homotopic to a pinch. The pinched portion represents K as the homology
of a closed orientable surface, hence admitting a unimodular intersection
pairing.

Now suppose that F is nonorientable. First suppose F is also con-
nected. Then an inductive argument implies that K ′ = [ker f ′∗ : H1(F ) →
H1(T 3)]/torsion is unimodular of rank (h − 2) − 4 = h − 6. Moreover,
f ′∗ : H1(F ) → H1(T 3) is surjective. It follows that the surgery curve C
contributes to the kernel as does a suitable dual class killed by the surgery
(since its image also comes from F ). This adds a unimodular rank 2 sum-
mand to K ′, showing that K also is unimodular. The addition is not neces-
sarily quite orthogonal: 

0 ∗

K ′
...

...
0 ∗

0 . . . 0 0 1
∗ . . . ∗ −1 0


But simultaneous row and column operations, adding multiples of C to basis
elements of K ′, convert the sum into an orthogonal sum, of kernels, from
which it is clear that the result is unimodular.

It remains to consider the case when F is nonorientable and consists of
two components. It is impossible that both components are nonorientable,
as we show in Proposition 3.11 below.
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Therefore we may suppose that F consists of one component F ′ that is
nonorientable and one component F ′′ that is orientable. We apply induction
to the nonorientable component to conclude that K ′ = [ker f ′∗ : H1(F ′) →
H1(T 3)]/torsion is unimodular. Again f ′∗ : H1(F ′) → H1(T 3) is surjective.
We need to argue that the homology of the orientable component F ′′ adds
an appropriate unimodular summand, showing that K also is unimodular.
This time the sum is clearly an orthogonal sum. What we need to see is that
the entire homology of the orientable part F ′′ contributes to the kernel. Be-
cause F ′′ is nullhomologous by Proposition 3.11, elementary considerations
of duality show that half a symplectic basis for H1(F ′′) lies in the kernel.
Because f ′∗ : H1(F ′) → H1(T 3) is surjective we may alter the other half of
a symplectic basis for F ′′ by adding appropriate elements from the H1(F ′).
This makes K ′′ = H1(F ′′), but now the direct sum K ′ ⊕K ′′ is not entirely
orthogonal. Finally, we may alter basis elements of K ′ by adding multiples
of the first half of the symplectic basis for K ′′ to make the sum orthogonal.
The result follows.

Proposition 3.11. Let N1 and N2 be disjoint , closed , connected , n-
dimensional submanifolds in a closed , connected , orientable (n+1)-manifold
M , with π1(M) abelian. Then at least one of the submanifolds is orientable.
If only one is orientable, then it represents a trivial homology class in
Hn(M). If both are orientable and nontrivial in Hn(M), then they repre-
sent the same homology class up to sign.

Proof. Given a pair of submanifolds N1 and N2 in M , define a homo-
morphism

ϕ : π1(M,x0)→ Z2 ∗ Z2

as follows. Represent an element of π1(M,x0) by a loop α : (I, {0, 1}) →
(M,x0), perturbed to meet the submanifolds transversely in isolated points.
Starting at the base point read off a word in two symbols, x1 correspond-
ing to N1 and x2 corresponding to N2, as one intersects the surfaces, in
succession, around the loop. Then view the two symbols as the canonical
generators of the two factors of Z2 ∗Z2, and map the homotopy class of the
loop to the corresponding word in these two generators. This is easily seen
to describe a well-defined homomorphism.

If both submanifolds are nonorientable, hence nonseparating, then it is
clear that this homomorphism ϕ is surjective, contradicting the assumption
that π1(M,x0) is abelian. More generally, the same contradiction arises for
any pair of codimension-one submanifolds N1 and N2 such that M−N1∪N2

is connected. From this the second and third conclusions also follow.

3.6. Embedding theorem. Finally, we extend the orientable embedding
theorem to the case of a map of a general closed, nonorientable surface Uh

of nonorientable genus h.
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Theorem 3.12. Let f : Uh → T 3 be a map of a nonorientable surface
of genus h to the torus T 3 such that the following conditions all hold :

(1) the nonorientable genus h is even;
(2) w1(Uh) ∈ f∗H1(T 3; Z2);
(3) the mod 2 homology class f∗[Uh]2 in H2(T 3; Z2) is nonzero;
(4) the induced homomorphism f∗ : H1(Uh)→ H1(T 3) is surjective;
(5) the induced integral intersection pairing on

K = [ker f∗ : H1(Uh → H1(T 3)]/torsion
is unimodular.

Then f is homotopic to an embedding.

Proof. We will proceed by induction on the even number h. The base
case is h = 4, which we will address after some preliminary work applicable
to both the base case and the inductive case.

We may choose a product structure on T 3 = T 2×S1 such that the hom-
dual ζ of z = [(x0, y0)× S1] pulls back to represent w1(Uh) after reduction
mod 2. Let π : T 3 → S1 denote the projection on the last factor. It follows
that the composition πf : Uh → S1 is surjective on π1. By transversality and
primitivity we may assume that (πf)−1(point) is a single two-sided simple
closed curve C, which necessarily represents Dw1(Uh).

Surgery on the map f along this two-sided simple closed curve C yields
a map f ′ : Fg → T 3, where Fg is a connected, orientable surface of genus g,
where 2g + 2 = h, and where f ′(Fg) lies in T 2 ⊂ T 3 up to homotopy. It
follows that f ′∗[Fg] 6= 0 in T 2 and T 3 since this homology class mod 2 agrees
with f∗[Uh]2.

It is clear that f ′∗(H1(Fg)) is a rank 2 summand, since it is of rank at
most 2 and adding a single generator yields all of H1(T 3). If we could be
sure that f ′∗[Fg] is a primitive homology class, then by Theorem 2.4, f ′ ' h′,
where h′ : Fg → T 3 is an embedding onto a nonseparating surface. But it
appears that we need to work a little harder for this in general.

Now consider the base case of our induction, when h = 4. Then g = 1. In
this case it does follow that f ′∗[F1] is a primitive homology class, because for
maps of the torus the primitivity and rank 2 summand conditions coincide.
(In this case the unimodularity condition is automatically satisfied.) Thus
f ′ ' h′, where h′ : F1 → T 3 is an embedding onto a subtorus. Now f is
obtained from the embedding h′ by running a tube along an arc from one
side of h′(F1) to the opposite side, since Uh itself is nonorientable.

The condition that f∗ is onto implies that this arc goes just once around
up to homotopy. Therefore one can homotope the arc so that it is embedded
and meets h′(F ′) only in its end points. It follows that the result of tubing
along the arc produces the desired embedded nonorientable surface.

Now henceforth inductively assume that h ≥ 6 and is even.
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Given that the kernel K is unimodular, there is a pair of orientation
preserving homology classes {α, β} in the kernel such that α · β = 1. One
can then represent such a hyperbolic plane in K by a pair of two-sided simple
closed curves {A,B} meeting transversely in a single point in the capped-off
orientable surface containing a subsurface of Uh carrying K. (Compare the
proof of Proposition 4.2 in Edmonds [3] or Proposition 3.13 below, which
we include for the reader’s convenience.) Then one simultaneously surgers
away the pair {A,B}, by removing a neighborhood of the union A∪B, which
is a punctured torus, and replacing it with a disk. The result is a surface
Uh−2 and a map f ′′ : Uh−2 → T 3 that inherits all hypothesized properties
of f : Uh → T 3. By induction f ′′ is homotopic to an embedding. One then
recreates the original surface and an embedding homotopic to the original
map f by adding a small trivial handle.

Finally, we include, for the convenience of the reader, a proof of the
realizability of homology classes of intersection number 1, as used in the
preceding theorem.

Proposition 3.13. Let α, β be two homology classes in H1(F ) where F
is a closed orientable surface, with intersection number α · β = ±1. Then α
and β are represented by simple closed curves A and B meeting transversely
in a single point.

Proof. The intersection number condition implies that α and β are prim-
itive classes. By [1], [8], or [9] there are simple closed curves A and B1

representing α and β and meeting transversely in isolated points. By surg-
ering B1 at adjacent points of intersection on A where B1 crosses A in
opposite directions, we convert B1 to a disjoint union B2 of simple closed
curves representing β but meeting A in just one point. Since A does not
separate F we may tube together the components of B2 in a way compat-
ible with orientations on the components using paths in the complement
of A. The result is a closed, but not necessarily embedded, curve B3 rep-
resenting β and meeting A in just one point. We may assume by a small
perturbation if necessary that the self-intersections of B3 are transverse.
Slide the points of self-intersection along B3 until they are near the point
where B3 meets A, together on the same side of A. These points of inter-
section can be eliminated by replacing small arcs of B3 with arcs that go
around the other side of A. The result is a simple closed curve B4 meeting A
transversely in a single point and representing a homology class of the form
β+kα for some integer k. For applications this suffices. But with more care
we can change k to 0. Introduce |k| small kinks into B4 of the appropriate
sign, without changing the homology class of B4. Then eliminate these in-
tersections by the same process, sliding arcs over A. The final result is the
desired simple closed curve B.
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A more algebraic proof would argue that the pair α, β can be moved to
a standard symplectic pair a, b (having the desired representation by simple
closed curves) by a symplectic automorphism of H1(F ) which can be realized
by a homeomorphism.

3.7. Examples. Here we give examples showing that each of the neces-
sary conditions (4) and (5) in the Embedding Theorem 3.12 is independent
of the other and of the other conditions for maps to T 3. It does not make
sense to treat condition (2) as being independent, since it is required for for-
mulating condition (5). We will also prove that condition (3) follows from
the other conditions, including the unimodularity condition.

Example 1. Here we give an example of an immersion of a nonori-
entable surface into T 3 that satisfies conditions (1)–(4) of the Embedding
Theorem 3.12, but for which the intersection pairing on the kernel K is not
unimodular.

A minimal example will be of the form U6 → T 3. Start with the stan-
dard embedding T 2 → T 3 onto the subtorus corresponding to the first two
coordinates. Extend this to an immersion of U4 = T 2 # U2 by adding a
nonorientable handle as the boundary of a neighborhood of an arc that runs
three times around the third factor ∗×∗×S1 of T 3. By going an odd number
of times around we ensure that w1(Uh) ∈ f∗H1(T 3; Z2).

Then add an orientable handle as the boundary of a neighborhood of an
arc that runs twice around the third factor ∗ × ∗ × S1 of T 3. By going an
even number of times around we ensure that still w1(Uh) ∈ f∗H1(T 3; Z2).
By going a number of times around that is relatively prime to the number
used for the nonorientable handle, we guarantee that the corresponding
immersion U6 = T 2 # U2 # T 2 → T 3 is surjective on homology.

Let H1(U6) have standard generators a1, b1, u, v, a2, b2, with respect to
the above connected sum decomposition, where u is orientation-reversing
and v has order 2. Let H1(T 3) have a standard basis x, y, z correspond-
ing to the expression as a product of circles. The induced homomorphism
H1(U6)/torsion→ H1(T 3) is then given, with respect to the bases a1, b1, u,
a2, b2 and x, y, z, by the matrix

1 0 0 0 0

0 1 0 0 0

0 0 3 0 2

 .
The kernel has a basis consisting of a2 and 2u − 3b2. The matrix of inter-
sections is
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0 −3
3 0

]
.

We conclude that this map is not homotopic to an embedding.

Example 2. Next we give an example of an immersion of a nonori-
entable surface into T 3 satisfying conditions (1)–(3) and (5) but not (4) of
the Embedding Theorem 3.12, so that it does not induce a surjection on
first homology. Let f : Uh → T 3 be an embedding and let p : T 3 → T 3 be
a nontrivial covering of odd degree. Then the composition pf : Uh → T 3

satisfies the requirements.

Proposition 3.14. A map of a nonorientable surface into T 3 satisfying
conditions (1)–(2) and (4)–(5) of the Embedding Theorem 3.12 must also
satisfy condition (3), i.e. that the mod 2 homology class has f∗[Uh]2 6= 0.

Proof. As in the proof of the Embedding Theorem one may surger away
the kernel/torsion of a map f : Uh → T 3 satisfying the hypotheses (1)–(2)
and (4)–(5). The result is necessarily a map f ′ : U4 → T 3, satisfying the
same hypotheses, but where the kernel/torsion is now 0. Next one may
surger the map along a simple closed curve representing a homology class
of order 2, Poincaré dual to the first Stiefel–Whitney class. The result is
a map f ′′ : T 2 → T 3. The image of this map on H1 must be a rank 2
summand, since adding a single generator to the image yields a surjection.
It follows that f ′′ is homotopic to an embedding onto a standard subtorus.
In particular, f ′′, and hence f , has the property that the image of the mod 2
fundamental class of the surface is nontrivial, as required.
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