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The dynamics of two-circle and three-circle inversion

by

Daniel M. Look (Indiana, PA)

Abstract. We study the dynamics of a map generated via geometric circle inversion.
In particular, we define multiple circle inversion and investigate the dynamics of such
maps and their corresponding Julia sets.

0. Introduction. The goal of this work is to extend the notion of geo-
metric circle inversion to multiple circles and examine the dynamics of the
resulting maps under iteration. We will use the notation fn(z) for f◦· · ·◦f(z)
where the composition occurs n times. We are particularly interested in the
structure of the Fatou and Julia sets of the circle inversion maps. The Julia
set for a rational map R(z), denoted J(R), is the set of points where the
iterates of R(z) do not form a normal family in the sense of Montel (see [3]
for more details). For rational maps of degree greater than or equal to 2
the Julia set coincides with the closure of the set of repelling cycles of R(z).
The Fatou set is the complement of the Julia set, so C∞ − J(R) where
C∞ = C ∪ {∞}. The Julia set is where the iterates behave chaotically,
while the Fatou set consists of points where the function iterates behave
calmly.

We will begin with the standard definition of geometric circle inversion.
Here the inversion of a point α about a circle centered at O with radius r is
the point α′ on the ray

−→
Oα such that

‖
−→
Oα‖
r

=
r

‖
−−→
Oα′‖

,

where ‖
−→
Oα‖ is the distance between O and α. Let us say that we have n

circles, which we will refer to as the generating circles, C1, . . . , Cn. We will
define n-circle inversion as sending the point α to the point β that is the
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arithmetic mean of α1, . . . , αn where αi is the inversion of α about circle Ci
(see Figure 1).
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Fig. 1. β is the inversion of α about the three circles C1, C2, C3

In this work we will examine the special case that arises when the circles
are centered on the nth roots of unity and all have the same radius r. This
is in an effort to decrease the number of parameters; the case with differing
radii will be investigated in a later work. In particular, we will work with
n = 2, 3. When we examine the dynamics of these maps we will see that,
like the classic quadratic case Qc(z) = z2 + c, there are only two forms of
hyperbolic Julia sets possible: Cantor sets or connected sets. Unlike the Ju-
lia sets for Qc the dynamics on the connected Julia sets arising from n-circle
inversion (for a given n = 2, 3) are all conjugate. Another important differ-
ence is that our map’s only parameter, the common radius r, will be real
and positive.

When n = 2 the circle inversion map has a Cantor set Julia set when
r < 1. As the radius grows through the value 1 there is a geometric bi-
furcation that occurs as our generating circles become tangent and then
intersect. Simultaneously there is a functional bifurcation that occurs as
the map undergoes a saddle-node bifurcation. As this occurs the Julia set
closes and becomes the entire extended real axis. When n = 3 we see a
slightly different occurrence. The Julia set for this map is also a Cantor set
when r is small, in this case when r < r0 = 31/22−1/3 ≈ 1.37473. A func-
tional bifurcation occurs as r passes through r0 with the map undergoing a
saddle-node bifurcation in which the Julia set changes from a Cantor set to
a connected set. Unlike the n = 2 case the functional bifurcation does not
coincide with the geometric bifurcation occurring when the circles become
tangent (r =

√
3/2 ≈ 0.866).

I would like to thank the referee for providing me with a number of
extremely helpful comments on the original version of this paper.
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1. Two circles

1.1. Preliminaries for two circles. We will examine the case of two gen-
erating circles, each with radius r, centered at ±1. Our map is then

z 7→ r2z

z2 − 1
.

Since we want to have access to the tools of holomorphic dynamics we will
define our map to be

Fr(z) =
r2z

z2 − 1
.

This map agrees on every second iterate with, and therefore will have the
same Julia and Fatou sets as, the “true” circle inversion map (Theorem 4.2
of [3]). (The dynamical similarities between Fr and the true circle inversion
map resemble the similarities between z 7→ z2 and z 7→ 1/z2.) The graph of
Fr(z) restricted to the real axis (along with the identity I(x) = x) is shown
in Figure 2.

Fig. 2. Fr with r = 0.5

For any r we have poles at ±1, the centers of the generating circles, and
fixed points at 0 and ±

√
1 + r2. Let p =

√
1 + r2. An easy calculation shows

that the fixed point at 0 is attracting if 0 < r < 1 and repelling if r > 1
while the fixed points ±p are always repelling. It is worth noting that a
topological bifurcation occurs at r = 1 as the generating circles are disjoint
if r < 1, tangent if r = 1 and intersecting if r > 1. The critical points of
Fr are always ±i. Since −Fr(i) = Fr(−i) we have, essentially, only one free
critical orbit. Throughout this work we will denote the set R∪{∞} by R∞.

Theorem 1.1. J(Fr) ⊆ R∞ for all r > 0.

Proof. For all r > 0 the set R∞ is forward and backward invariant
under Fr. Further, ±p ∈ R∞ are repelling fixed points and are therefore
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in J(Fr). The iterated pre-images of any point in the Julia set are dense
in the Julia set (Theorem 4.10 of [3]), implying that J(Fr) ⊆ R∞ since the
iterated pre-images of ±p are contained in R∞.

To avoid confusion we will refer to the map as Fr(x) when we wish to
consider our map on the real axis only.

1.2. Two non-intersecting generating circles. In this section we will fo-
cus on the case 0 < r < 1. Recall that for these r-values the fixed point at
the origin is attracting.

Theorem 1.2. For 0 < r < 1 the imaginary axis, iR, is contained in
the immediate basin of attraction for 0.

Proof. Since

Fr(iz) =
r2z

−1− z2
i

the imaginary axis is invariant under Fr and, on the imaginary axis, our
map is

y 7→ −r2y
1 + y2

where y ∈ R. A simple calculation shows that whenever y2 > r2−1 we have∣∣∣∣ −r2y1 + y2

∣∣∣∣ < |y|,
implying that all points on the imaginary axis are sent closer to the origin.
Since we are looking at the case r < 1 we know that for all real y, y2 will
be greater than r2− 1. Hence, the entire imaginary axis is in the immediate
basin of attraction for 0.

The critical points for this map are ±i and therefore we have:

Corollary 1.3. For 0 < r < 1, all of the critical points for the map Fr
are in the immediate basin of attraction of 0.

Therefore Fr is a degree two map whose critical points are all in the
immediate basin of attraction of one attracting fixed point, implying that
J(Fr) is a Cantor set (see Theorem 9.8.1 in [1]).

We can also use symbolic dynamics to obtain this result and gain further
insight into the dynamics of Fr on J(Fr). For the remainder of this section,
we will restrict our attention to the real axis.

Lemma 1.4. For 0 < r < 1 there exist disjoint intervals A0 and A1 in R
such that the following holds: each Ai maps in a one-to-one fashion over
both A0 and A1 and the Julia set of Fr is contained in A0 ∪A1.

Proof. Since 0 is an attracting fixed point for Fr(x) for all 0 < r < 1 we
know that there exists a point ω ∈ (0, 1) such that ω is in the immediate
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basin of attraction for 0. Using the fact that Fr(x) is odd we see that the
interval [−ω, ω] is in the immediate basin of attraction for 0. Let Λ denote
the complement of [−ω, ω] in R∞.

The interval (0, 1) is mapped in one-to-one fashion over the interval
(−∞, 0), implying that there exists a pre-image of −ω in (0, 1). Call this
pre-image α−. Further, (1,∞) is mapped in one-to-one fashion over the in-
terval (0,∞), implying that there exists a pre-image of ω in (1,∞). We
will call this pre-image α+. Let A1 = (α−, α+) and A0 = −A1 (see Fig-
ure 3). Note that neither α− nor α+ are in [−ω, ω] since all points in [−ω, ω]
move closer to 0 upon iteration while α− is mapped to −ω and α+ is
mapped to ω. Since neither α− nor α+ are in [−ω, ω] and the interval A1

does not contain 0 we know that A1 ∩ [−ω, ω] = ∅, implying that A1 ⊂ Λ.
Hence, since −Λ = Λ, Ai ⊂ Λ for i = 0, 1. By construction the endpoints
of Ai (for i = 0, 1) are mapped to the endpoints of [−ω, ω] and each Ai
contains a pole, implying that the interval Ai is mapped over Λ for i = 0, 1.
Since F ′r(x) is bounded away from 0 on A1 we know that this mapping is
one-to-one.

Fig. 3. The region A1 (shaded)

The complement of Fr(Ai) = Λ for i = 1, 2 is the interval [−ω, ω], which
is contained in the immediate basin of 0. Hence J(Fr) ⊂ A0 ∪A1 and J(Fr)
is precisely the set of points whose orbits remain in A0∪A1 for all time (and
are hence not attracted to 0).

Theorem 1.5. For 0 < r < 1 the Julia set of Fr(x) is a Cantor set and
Fr|J(Fr) is conjugate to the one-sided shift on two symbols.

Proof. To each point z ∈ J(Fr) we can assign a sequence s(z) = s1s2s3 . . .
using the rule F ir(z) ∈ Asi . We need to show that each sequence corresponds
to a point in the Julia set and that no sequence corresponds to multiple
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points. Since Fr maps each Ai over both of the Ai’s we know that each
sequence will correspond to at least one point in the Julia set.

Since the critical points are bounded away from the real line (and hence
from the Julia set) we know that Fr is dynamically hyperbolic on its Julia
set. This expansion guarantees that no sequence can correspond to multiple
points.

The map that takes the sequence s0s1s2 . . . to the corresponding point
in J(Fr) defines a homeomorphism between the space of one-sided sequences
of 0’s and 1’s and the Julia set, J(Fr). Hence, J(Fr) is a Cantor set and
standard arguments (see [2], for example) show that Fr|J(Fr) is conjugate
to the one-sided shift on two symbols.

We have therefore shown:

Theorem 1.6. The Julia set for the two-circle inversion map for non-
intersecting circles is a Cantor set on the line through the centers of both
circles on which the map is conjugate to a one-sided shift on two symbols.

1.3. Two intersecting generating circles. When r > 1 our generating cir-
cles intersect. The topological bifurcation that occurs as r increases through
1 and our circles begin to intersect corresponds to a dynamical bifurcation
as the fixed point at the origin ceases to be attracting. There is a two-cycle
given by ±

√
1− r2. When r < 1, this cycle is real and repelling. The two-

cycle coalesces with the origin when r = 1 and emerges on the imaginary
axis when r > 1. Note that

|F ′r(
√

1− r2)F ′r(−
√

1− r2)| =
∣∣∣∣(r2 − 2)2

r4

∣∣∣∣ =
(r2 − 2)2

r4
.

When r > 1, −4r2 + 4 < 0, implying that r4 − 4r2 + 4 < r4. Therefore,
(r2 − 2)2

r4
=
r4 − 4r2 + 4

r4
< 1

and hence the two-cycle given by ±
√

1− r2 is attracting for all r > 1.

Theorem 1.7. For all r > 1, both critical points are attracted to the
two-cycle ±

√
1− r2 and all components of the Fatou set are pre-images of

the basin of attraction for this two-cycle.

Proof. Since the attracting cycle ±
√

1− r2 must attract a critical point
we know that one of the critical points must be in the basin of attraction for
this two-cycle. The critical points are ±i and Fr(−z) = −Fr(z). Hence, one
of the critical points being in the basin of attraction for ±

√
1− r2 implies

both are in that basin. Therefore, both of our critical points are attracted
to the two-cycle ±

√
1− r2. Hence, the Fatou set for this map is the union

of all of the backwards images of the immediate basin of attraction for the
two-cycle ±

√
1− r2.
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Theorem 1.8. J(Fr) = R∞ for r > 1.

Proof. By Theorem 1.1 we know that J(Fr) ⊆ R∞. It will suffice to show
that the intersection of the Fatou set and R∞ is empty. Since the Fatou set
consists only of the pre-images of the immediate basin of attraction for the
attracting two-cycle on the imaginary axis and R∞ is fully invariant we know
that no points of R∞ are attracted to this two-cycle. Hence, the intersection
of the Fatou set and R∞ is empty.

This implies that the Fatou set for Fr has only two components: the
upper half-plane {z : Im(z) > 0} and the lower half-plane {z : Im(z) < 0},
which correspond to the two components in the basin of attraction for the
two-cycle ±

√
1− r2.

Since J(Fr) = R∞ we will restrict our attention to Fr(x) = Fr(z)|R.
Let I0 = R− ∪ {0} ∪ {∞} and I1 = R+ ∪ {0} ∪ {∞}. The map Fr takes
Ii (i = 0, 1) in one-to-one fashion onto R∞. To each point x ∈ J(Fr) we
can assign a sequence s(x) = s1s2s3 . . . using the rule F ir(x) ∈ Isi . Since
I0 ∩ I1 = {0,∞} the points 0 and ∞ (along with their pre-images) will
be associated with multiple sequences. Hence, we will be able to show that
Fr|J(Fr) is conjugate to a quotient of a one-sided shift on two symbols.

Theorem 1.9. When r > 1 there is a conjugacy between Fr(z)|J(Fr)
and a quotient of the one-sided shift map on two symbols.

Proof. We need to show that each sequence corresponds to a point in the
Julia set and that no sequence corresponds to multiple points. Since Fr maps
each Ii over both of the Ii’s we know that each sequence will correspond to
at least one point in the Julia set.

Since the Julia set is R∞ and the critical points are bounded away from R
we know that Fr is dynamically hyperbolic on its Julia set. This expansion
guarantees that no sequence can correspond to multiple points.

Note that the sequences 10 and 01 both correspond to 0. The pre-image
of 0 is ∞, which is represented by the sequences 001 and 110. Finally, any
point whose orbit includes the poles ±1 will also have two sequences asso-
ciated with it: α001 and α110. If we identify these points in shift space we
have a conjugacy between this quotient of the one-sided shift on two symbols
and our map restricted to its Julia set.

We have therefore shown:

Theorem 1.10. The Julia set for the two-circle inversion map for inter-
secting circles is the entire line through the centers of both circles on which
the map is conjugate to a quotient of the one-sided shift on two symbols.

The symbolic dynamics for Fr|J(Fr) for r > 1 are identical to those
arising on the Julia set for the map h(z) = 1/z2. The Julia set for h(z)
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is the unit circle on which we can place symbolic dynamics by letting I0
be the closed upper semicircle while I1 is the closed lower semicircle. The
symbolic dynamics generated are identical to those of Fr on its Julia set
when r > 1. Under h(z) the point 1, being in I0 ∩ I1, is associated with two
sequences: 01 and 10. The point −1 is also in I0 ∩ I1 and is represented by
the sequences 001 and 110. Further, just as there are only two components
of the Fatou set for Fr with r > 1, there are exactly two components of the
Fatou set for h(z): the interior and exterior of the unit circle, which are the
two components of the basin of attraction for the two-cycle {0,∞}.

2. Three generating circles

2.1. Construction of the map. We now shift our attention to the case
of three generating circles. As in the case of two generating circles, we will
assume that all three generating circles have the same radius r and are posi-
tioned symmetrically. Without loss of generality, assume that the generating
circles are each centered at a cube root of unity. Our map is then

z 7→ r2z2

z3 − 1
.

As in the preceding section we wish our map to be holomorphic. Hence,
we will define our map as

Gr(z) =
r2z2

z3 − 1
.

As in the two-circle case, this map agrees on every second iterate with,
and therefore will have the same Julia and Fatou sets as, the “true” circle
inversion map (Theorem 4.2 of [3]).

2.2. Preliminaries for three generating circles. Throughout the remain-
der of this work we will consider ω such that ω3 = 1 and ω 6= 1. The map
Gr has 3-fold symmetry in the sense that Gr(ωz) = ω2Gr(z). Hence, we
know that if z0 is attracted to a periodic cycle, then ωz0 and ω2z0 are also
attracted to periodic cycles, although they could be different cycles (and
even of different periods). Further, R∞ is forward invariant under Gr and
Gr maps the line ωR∞ to ω2R∞ and vice versa. Hence, ωR∞∪ω2R∞ is also
a forward invariant set. We will call ωR∞ and ω2R∞ the symmetric axes.
As a final symmetry, note that Gr(z) = Gr(z).

The family Gr always has a superattracting fixed point at the origin.
Since Gr is of degree three there are four critical points. One of these critical
points is always in the negative real axis; we will denote this critical point
by c. The four critical points are then 0, c, ωc and ω2c. Since 0 is fixed, we will
call the three symmetric critical points c, ωc, and ω2c the free critical points.
By our symmetries we know that Gr(ωc) = ω2Gr(c) and Gr(ω2c) = ωGr(c).
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This implies that Gr has (essentially) only one free critical orbit in the sense
that if one of the free critical points is in the basin of attraction for 0 then
all of them are. Similarly, if one of the free critical points has bounded orbit
then so do all of them. Further, for all values of r, Gr has poles at the cube
roots of unity.

2.3. Structure of J(Gr) for r small. Let r0 = 31/22−1/3 ≈ 1.37473. The
map Gr undergoes a saddle-node bifurcation as r passes through r0. Figure 4
shows the graph of Gr restricted to the real axis for r < r0 and r > r0.

Fig. 4. The bifurcation as r passes through r0

Theorem 2.1. For r < r0 the negative real axis is in the immediate
basin of attraction for 0.

Proof. We will prove this by showing that for r < r0 we have |Gr(x)|
< |x| for all x ∈ R−. The minimum value of x2 − 1/x on R− is 3 · 2−2/3.
Since r0 = 31/22−1/3, r < r0 implies that r2 < 3 · 2−2/3 ≤ x2 − 1/x for
x ∈ R−. Hence, for x ∈ R− and r < r0, we have r2 < x2 − 1/x, implying
that r2x2 < x4 − x = x(x3 − 1). Since x ∈ R− we know that x3 − 1 < 0,
implying

r2x2

x3 − 1
> x.

This yields ∣∣∣∣ r2x2

x3 − 1

∣∣∣∣ < |x|
since Gr(x) < 0 when x < 0. Ergo |Gr(x)| < |x| for x ∈ R− and r < r0,
implying that R− is in the immediate basin of attraction for 0.

Since c ∈ R− we know c is in the immediate basin of attraction for 0.
Our 3-fold symmetry guarantees that ωc and ω2c are also in the immediate
basin of 0. Therefore Gr is a degree three map whose critical points are all
attracted to a superattracting fixed point, implying that J(Gr) is a Cantor
set (see Theorem 9.8.1 in [1]). As before, we can also use symbolic dynamics
to achieve this result and obtain further insight into the map’s behavior.



236 D. M. Look

Let D be a simply connected open set containing the origin such that
D is mapped two-to-one into itself. We know that such a set exists since 0
is a superattracting fixed point of order 2. Further, we will choose D such
that the boundary of D, which we will denote δ, is a simple closed curve
containing no critical points or critical values. Now, Gr(δ) is a simple closed
curve contained within D and bounding Gr(D). We note that Gr(D) has
two pre-images, D (mapped two-to-one over Gr(D)) and another simply
connected (on C∞) open set (mapped one-to-one over Gr(D)) that con-
tains ∞. We will denote this second pre-image by D∞. Let δ∞ denote the
boundary of D∞. Hence, Gr(D) = Gr(D∞) and this set is in the basin of
attraction for 0. Therefore, the Julia set for Gr must be contained within the
closed annular region between δ and δ∞. We will denote this region by A.
Note that, by continuity, we know that the inner and outer boundaries of A
are both mapped onto Gr(δ) ⊂ D. The minimum modulus principle can be
used to show that Gr(A) = C∞ −Gr(D).

Let P1 be the closure of the set of points z ∈ A such that −π/3 ≤
arg z ≤ π/3 (see Figure 5). Let % = ∂P1 ∩ ω2R−, γ = ∂P1 ∩ δ, and
γ∞ = ∂P1 ∩ δ∞. Notice that the boundary of P1 is given by % ∪ % ∪ γ ∪ γ∞
(see Figure 5).

Note that γ is mapped onto the points of ∂Gr(δ) with argument between
π/3 and 5π/3 while γ∞ is mapped onto the points of ∂Gr(δ) with argument
between −π/3 and π/3.

P1

%

%

γ γ∞

Fig. 5. The region P1 and its boundary components

So γ ∪ γ∞ is mapped over ∂Gr(δ) in one-to-one fashion except that
Gr(γ ∩ %) =Gr(γ∞ ∩ %) and Gr(γ ∩ %) =Gr(γ∞∩%). Further, % is mapped
two-to-one (except at the critical value) over the portion of % between
% ∩ ∂Gr(δ) and the critical value on %. Hence, by symmetry, we know that
% is mapped two-to-one (except at the critical value) over the portion of %
between % ∩ ∂Gr(δ) and the critical value on %.



The dynamics of two-circle and three-circle inversion 237

By the maximum modulus principle we know that ∂[Gr(P1)] is given by
Gr(∂P1). There are no zeros in P1 (0 and∞ are the only zeros) so the interior
of P1 must be mapped over the entire unbounded complement of Gr(∂P1).
Hence, P1 itself is mapped over C∞−Gr(D) in essentially one-to-one fashion
(the map is one-to-one except along the rays % and %). Therefore, all of A is
contained in Gr(P1). By symmetry we can define P2 = ωP1 and P3 = ωP1

and it will be the case that A is contained in Gr(Pi) for i = 1, 2, 3.
Now recall that all of R− is in the immediate basin of attraction for 0.

By symmetry, the symmetric axes ωR− and ω2R− are also in the immediate
basin of 0. Since the connected closed set W = {0}∪R−∪ωR−∪ω2R− is in
the basin of attraction for 0 we can find an open connected set U containing
W such that U is in the basin of attraction for 0. (We will view U as a
“fattened up” W .) Now, A − (A ∩ U) consists of three pairwise disjoint
closed sets R1, R2, and R3 each of which contains a pole (see Figure 6)
with Ri ⊂ Pi for i = 1, 2, 3. Further, the Ri can be chosen such that Gr(Ri)
covers R1, R2, and R3 for any i = 1, 2, 3. This arises from Pi ⊂ Gr(Pj) for all
i, j = 1, 2, 3 and the fact that the portions of the Pi where the map Gr is not
one-to-one occur on the boundary of Pi, which is not included in Ri. Hence,
J(Gr) consists of all points in R1 ∪R2 ∪R3 that remain in R1 ∪R2 ∪R3 for
all iterations.

R3

R2

R1
U

δ

δ∞

Fig. 6. The regions R1, R2, and R3, the set U , and the curves δ and δ∞

Theorem 2.2. For r < r0, J(Gr) is a Cantor set and Gr|J(Gr) is
conjugate to the one-sided shift on three symbols.

Proof. We need to show that each sequence corresponds to a point in
the Julia set and that no sequence corresponds to multiple points. Since Gr
maps each Ri over all of the Ri’s we know that each sequence will correspond
to at least one point in the Julia set.

Since the critical points are bounded away from the Julia set we know
that Gr is dynamically hyperbolic on its Julia set. This expansion guarantees
that no sequence can correspond to multiple points.
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2.4. Structure of J(Gr) for r large. For r < r0 there is a complex-
conjugate two-cycle with negative real part. This two-cycle is repelling for all
r < r0. However, our map undergoes a saddle-node bifurcation as r passes
through r0 (see Figure 4) during which the repelling complex conjugate
two-cycle coalesces into an indifferent fixed point on the negative real axis
and then splits into two real fixed points on the negative real axis. We will
denote these by p and q, where |q| < |p|. For all r > r0, q is repelling and p is
attracting (superattracting if r = 31/22−1/6). There is also a repelling fixed
point on the positive real axis which we will denote by m (see Figure 7).

p
�

q
�

c
�

m
�

Fig. 7. The graph of Gr for r > r0

Since Gr(ωz) = ω2Gr(z) we know that there are actually three simulta-
neous bifurcations that occur as r passes through r0: one on each of R−, ωR−,
and ω2R−. In the case of two generating circles, the bifurcation occurs when
the radius of the generating circles is 1; in other words, when they are
tangent. However, with three generating circles we should note that this
bifurcation occurs when r = r0 = 31/22−1/3. The three generating circles
become mutually tangent at r = 31/22−1. Hence the generating circles are
actually overlapping when the bifurcation occurs (see Figure 8).

Fig. 8. The topological relation of the three generating circles pre- and post-bifurcation
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Note that the existence of an attracting fixed point on the negative
real axis, namely p, implies the existence of an attracting two-cycle on
the symmetric axes, namely the cycle consisting of the points ωp and ω2p.
Let Ap denote the immediate basin of attraction for p and let O denote
the immediate basin of attraction for 0. Therefore, ωAp and ω2Ap form the
immediate basin of attraction for the two-cycle formed by ωp and ω2p.

Theorem 2.3. The Fatou set is the union of O, Ap, ωAp, ω2Ap and all
of their pre-images.

Proof. Since p is an attracting fixed point there must be a critical point
in Ap. Since R∞ is forward and backward invariant this critical point must
be either c or 0. Since 0 is fixed, we know c ∈ Ap. Hence, by the symmetries
of Gr, we know that ωc and ω2c are in ωAp∪ω2Ap. Therefore we have all of
the critical points for Gr accounted for and there can be no other attracting
cycles. This implies that all components of the Fatou set eventually iterate
to one of O, Ap, ωAp or ω2Ap. This yields the desired result.

Since all of the critical points for Gr are in basins of attraction we know
Gr is dynamically hyperbolic and that the immediate basins of attraction are
simply connected. Therefore, all of their pre-images are simply connected,
implying that every component of the Fatou set is simply connected. The-
orem 5.1.6 in [1] then implies that the Julia set of Gr(z) for r > r0 is
connected. It is known that if the Julia set of a dynamically hyperbolic map
is connected then it is locally connected (see Theorem 19.2 in [3]). There-
fore, J(Gr) is locally connected as well as connected. The Julia sets for two
of these maps are shown in Figure 9.

Fig. 9. The Julia sets for Gr with r = 1.5 and r = 2
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Since Gr(z) = Gr(z) we know that Ap = Ap, O = O, ωAp = ω2Ap,
and ω2Ap = ωAp. Note Ap cannot meet either of the symmetry axes, ωR
and ω2R, because all points of Ap are attracted to p ∈ R− while the union
of the symmetry axes is forward invariant.

We will now show that the boundaries of Ap andO, denoted ∂Ap and ∂O,
respectively, are simple closed curves.

Theorem 2.4. The boundary of Ap is a simple closed curve.

Proof. Since Ap is simply connected we know by Theorem 4.4.4 in [4]
that the boundary ∂Ap is a closed curve. Further, since our Julia set is
locally connected we know that ∂Ap is locally connected and Carathéodory
theory tells us that φ, the inverse of the Riemann map mapping Ap to the
unit disk D, extends continuously to φ : D→ Ap. We will call the images in
Ap of straight rays from 0 to ∂D internal rays. Since φ extends continuously
to φ we know that all of these rays land at a point on ∂Ap. To show that
∂Ap is a simple closed curve we need only show that no two internal rays
land at the same point in ∂Ap. Let us assume that two rays land at a point
w ∈ ∂Ap. Now, let γ be the Jordan curve consisting of these two rays along
with the landing point w and let Γ denote the bounded complement of the
curve γ (see Figure 10). There must be other points of ∂A in Γ , else we
would have an entire sector of rays all landing at w, which is not possible.

w

Ap

Γ

�

�

Fig. 10. The region Γ

Since Γ is bounded by γ we know by the maximum modulus theorem
that Gr(Γ ) is bounded by Gr(γ). (Note that Gr(γ) is a simple closed curve.)
Because γ lies inside Ap, the basin of attraction for p (with the exception
of the point w which lies on the boundary of this basin), we know that
Gr(γ − {w}) lies inside Ap. Therefore, the boundary of Gr(Γ ) (with the
exception of one point) lies inside Ap. Hence, Gr(Γ ) is either mapped to
the unbounded complement of Gr(γ) or to the bounded complement. It is
known that any neighborhood of the Julia set for a rational map of de-
gree d ≥ 2 is eventually mapped by iterates of the map onto the entire
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Riemann sphere minus at most two points (see Theorems 4.1.2 and 4.2.5
in [1]). Since Γ ∩ J(Gr) 6= ∅ it cannot be the case that Gr(Γ ) is mapped
to the bounded complement of Gr(γ). However, if Gr(Γ ) is mapped to the
unbounded complement then Γ must contain a pole. The poles lie on R+

and on the symmetric rays te2π/3 and te4π/3 with t > 0. Since p ∈ R− we
know that Ap does not intersect R+ or the symmetric rays. Hence, the pole
must lie on the boundary of Ap, which is not possible. Note that if a pole
did lie on the boundary of Ap we could connect p to the pole with a simple
curve µ such that µ lies entirely within Ap. The image of µ would then
be a simple curve connecting ∞ to p contained entirely within Ap. This is
not possible because there exist neighborhoods of ∞ consisting entirely of
points in the basin of attraction for 0. This contradiction establishes the
result.

The same proof, with minor modifications, allows us to show that ∂O is
also a simple closed curve. Symmetry allows us to extend this result to ωAp
and ω2Ap. Since all of our critical points tend to attracting cycles, we can
generalize this result to all pre-images of attracting basins and hence to any
component of the Fatou set. We have therefore shown:

Theorem 2.5. If C is the boundary of a Fatou component then C is a
simple closed curve.

There are also restrictions placed on the number of intersection points
occurring between boundaries of pairwise disjoint complementary regions of
the Julia set. Before continuing we will need the following lemma:

Lemma 2.6. The only point that remains in R+ for all iterations is the
repelling fixed point m ∈ R+.

Proof. It is easy to show that Gr maps the interval (0, 1) onto R−.
The pre-image of R+ under Gr(x) is the interval (1,∞). Further, (1,∞)
is mapped one-to-one over R+. Let d be the unique pre-image of 1 in
(1,∞). Since the interval (0, 1) is mapped onto R− and the interval (1,m)
is mapped over (m,∞) (with m > 1) we know that the point d will always
be in the interval (m,∞). The interval (d,∞) gets mapped over (0, 1) and
hence is mapped to R− under the second iteration. Therefore, all points in
(0, 1) ∪ (d,∞) are mapped to R− within two iterations of Gr. Finally, we
look at the interval (1, d). Since m ∈ (1, d) we will look at the two intervals
(1,m) and (m, d). (We know that m remains in R+ for all iterations and
hence we only need to show that (1,m)∪(m, d) is mapped into R−.) Switch-
ing to the second iterate G2

r , it becomes a simple matter to show that (1,m)
is mapped (by G2

r) onto (0,m) and G2
r(x) < x for all x ∈ (1,m). Hence, all

points in (1,m) eventually iterate to (0, 1) and hence to R−. The interval
(m, d) is mapped (by G2

r) onto (m,∞) and G2
r(x) > x for all x ∈ (m, d).
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Hence, all of the points in (m, d) eventually end up in (d,∞) and are then
mapped into R−. Therefore all of the points in R+ − {m} are eventually
mapped into R−.

We are now able to prove:

Theorem 2.7. If ∂(ωiAp) meets ∂(ωjAp) with i, j = 0, 1, 2 and i 6= j,
then it does so at exactly one point.

Proof. Note that Ap is trapped in the region S = {z : Re(z) < 0, 2π/3 <
Arg(z) < 4π/3}. To see this note that Ap cannot meet either of the symmet-
ric axes since the symmetric axes are forward invariant and hence points on
these axes cannot lie in the basin of attraction of a real non-zero fixed point.
An analogous statement is true for the symmetric basins ωAp and ω2Ap. We
know that ωAp must be trapped in ωS and ω2Ap must be trapped in ω2S.
Without loss of generality we will show that if ∂(ωAp) meets ∂(ω2Ap) then it
does so at exactly one point. Since ωAp is trapped in ωS and ω2Ap is trapped
in ω2S we know that ∂(ωAp) ∩ ∂(ω2Ap) must lie in ∂(ωS) ∩ ∂(ω2S) = R+.
Since ωAp is mapped onto ω2Ap and vice versa, it follows that ∂(ωAp) ∩
∂(ω2Ap) ⊂ R+ is mapped into R+. Hence, the set ∂(ωAp)∩∂(ω2Ap) remains
in R+ for all iterations.

By Lemma 2.7 we know that the only point in R+ that remains in R+

for all iterations is m. Hence, ∂(ωAp)∩ ∂(ω2Ap) is either empty or contains
only the positive repelling fixed point, m. Symmetry yields the result.

Let S1 = {z : |z| = 1} and h(z) = zk. We will now make use of the
following theorem which appears as Theorem 4.4.13 in [4]:

Theorem 2.8. Assume that the Fatou set of a hyperbolic rational func-
tion f contains a simply connected invariant component D on which the
local degree of f is k. Then there is a continuous map φ from S1 onto ∂D
such that

φ(h(z)) = f(φ(z)).

Moreover , h is injective on φ−1(ζ) for all ζ ∈ ∂D.

Using this theorem we will show:

Theorem 2.9. ∂(ωiAp) ∩ ∂(ωjAp) 6= ∅ for i 6= j and i, j = 0, 1, 2.

Proof. Gr is a hyperbolic rational map that maps Ap onto Ap in two-to-
one fashion. Hence, by Theorem 2.8, there exists a continuous map φ such
that φ : S1 → ∂Ap and

φ(z2) = Gr(φ(z)).

Therefore, φ(e4πi/3) and φ(e2πi/3) form a two-cycle on ∂Ap.
Since Gr is of degree 3 we know that there are at most three distinct

two-cycles. Since q is a repelling fixed point on the boundary of Ap we know



The dynamics of two-circle and three-circle inversion 243

that ωq and ω2q form a repelling two-cycle with ωq ∈ ω(∂Ap) = ∂(ωAp)
and ω2q ∈ ω2(∂Ap) = ∂(ω2Ap). Hence, the attracting two-cycle {ωp, ω2p}
and the repelling two-cycle {ωq, ω2q} both have positive real components.
However, ∂Ap is entirely contained in the left half-plane {z : Re(z) < 0}.
Therefore the two-cycle on ∂Ap must be distinct from the previous two-
cycles, giving us our three two-cycles.

Recall that we denote the repelling fixed point on the positive real axis
by m. Therefore, ωm and ω2m form a two-cycle with negative real com-
ponent. Since we have all three of our two-cycles accounted for, it must be
that {ωm,ω2m} corresponds to the two-cycle in ∂Ap. We have ωm ∈ ∂Ap
and therefore, by the symmetries, we know that ω2m ∈ ω(∂Ap) = ∂(ωAp).
However, ω2m is also in ∂Ap. Hence, ω2m ∈ ∂Ap∩ω(∂Ap) = ∂Ap∩∂(ωAp).
This implies that ωm ∈ ∂Ap ∩ ω2(∂Ap) = ∂Ap ∩ ∂(ω2Ap) and, finally, that
m ∈ ω(∂Ap)∩ω2(∂Ap) = ∂(ωAp)∩∂(ω2Ap). Hence, ∂(ωiAp)∩∂(ωjAp) 6= ∅
for i 6= j.

Combining Theorems 2.7 and 2.9 we obtain:

Corollary 2.10. ∂(ωiAp) meets ∂(ωjAp) at exactly one point for i, j =
0, 1, 2 and i 6= j.

We will now show that a similar result holds for O. Recall that q is the
repelling fixed point on R−.

Lemma 2.11. For all r > r0 we have q ∈ ∂Ap ∩ ∂O.
Proof. The fixed point q is given by

q = qr =
(−3i+

√
3)r2 + (−2)1/331/6(−9 +

√
81− 12r6)2/3

22/335/6(−9 +
√

81− 12r6)1/3
,

while the fixed point p is given by

p = pr = −2 · 31/3r2 + 21/3(−9 +
√

81− 12r6)2/3

62/3(−9 +
√

81− 12r6)2/3
.

A simple calculation shows that p and q are complex for r < r0. When r = r0
we have p = q < 0, and when r > r0 we have p < q < 0.

When q < x< 0 we have x3−r2x−1< 0. This implies that x(x3−r2x−1)
> 0 since x < 0. Hence, r2x2 < x(x3 − 1), implying |r2x2| < |x| |x3 − 1|,
since x and x3 − 1 are negative. This implies that∣∣∣∣ r2x2

x3 − 1

∣∣∣∣ < |x|.
Hence, for all x ∈ (q, 0) and r > r0 we have |Gr(x)| < |x|. This implies
that all points in (q, 0) are in O. Now we need to show that the interval
(p, q) is in Ap. Recall that the point p is superattracting if r = 31/22−1/6.
For 31/22−1/3 = r0 < r < 31/22−1/6 the critical value c is less than p. In
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this case for all points x in (p, q) we have p < Gr(x) < x, implying that
(p, q) ∈ Ap.

If r ≥ 31/22−1/6 then c > p. For these r-values Gr(x) is continuous
with no critical points on the interval (p, c). Hence, the interval (p, c) is
mapped to the interval (Gr(c), Gr(p)) = (Gr(c), p). Continuing, the image
of the interval (p, c) under Gnr (x) is the interval (Gnr (c), p) (if n is odd) or
(p,Gnr (c)) (if n is even). Since c is in the immediate basin of attraction for p
we know that as n→∞ we have Gnr (c)→ p. Hence, Gnr (x)→ p as n→∞
for all x ∈ (p, c), implying that (p, c) ⊂ Ap. Since G′r(q) > 1 and there are
no fixed points or poles in (c, q) and c is the local minimum point we know
that Gr(c) < Gr(x) < x for all x ∈ (c, q). Hence, all of these x-values will
eventually iterate into the interval (Gr(c), c) ⊂ Ap, so (c, q) ⊂ Ap. Since c is
in Ap this implies that (p, q) ⊂ Ap.

Therefore, (p, q) ⊂ Ap and (q, 0) ⊂ O, and consequently q ∈ ∂Ap∩∂O.

Theorem 2.12. ∂O meets ∂(ωiAp) at exactly one point for i = 0, 1, 2.

Proof. From the lemma we know q ∈ ∂Ap ∩ ∂O. We claim that
∂Ap ∩ ∂O = {q}. Assume that there exists another point, α ∈ ∂Ap ∩ ∂O.
Since Ap = Ap and O = O we know that α ∈ ∂Ap ∩ ∂O as well. Let γA
represent the portion of ∂Ap between α and α containing q. Now let (α, q)A
be the portion of γA connecting α to q and (q, α)A the portion connect-
ing q to α. In a similar fashion we can define γO and its subsets (α, q)O
and (q, α)O. Denote by Γupper the bounded complement of the closed curve
{α}∪{q}∪(α, q)A∪(α, q)O and Γlower the bounded complement of the closed
curve {q} ∪ {α} ∪ (q, α)A ∪ (q, α)O. Let Γ = Γupper ∪ Γlower (see Figure 11).
Note that Γ 6= ∅. If Γ were empty this would imply that ∂Ap and ∂O meet
at an arc contained in the Julia set. We can then define N , a neighbor-
hood of q, such that N is contained in Ap ∪ O ∪ (∂Ap ∩ ∂O). Since N is a
neighborhood of the Julia set we know that the iterates of N must eventu-
ally cover the entire Riemann sphere minus at most two points. This is not
possible since the intersection of N and the Fatou set is contained in the
forward invariant set Ap ∪O. Hence, N would never iterate to cover points
contained in ωAp or ω2Ap. This contradiction establishes that Γ must be
non-empty.

Since ∂Ap and ∂O are forward invariant, Gr(∂Γupper) ⊂ ∂Ap ∪ ∂O and
the same is true for ∂Γlower. Hence, Gr(Γupper) and Gr(Γlower) are either
contained within Ap ∪ Γ ∪ O or are unbounded.

The first is impossible for it would imply that Gnr (Γlower) ⊂ Ap ∪ Γ ∪ O
for all n > 0. Hence, we can take a neighborhood N of ∂Γlower that contains
only points from Ap ∪ Γ ∪ O. This neighborhood is contained in Ap ∪ Γ ∪ O
for all iterations. This is a contradiction because N is a neighborhood con-
taining points in the Julia set of Gr (namely ∂Γlower ∩N) and therefore its
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q

Γupper α

Γlower

α

Ap

O

Fig. 11. ∂Ap meets ∂O at three points

iterates must eventually cover the entire Riemann sphere minus at most two
points. The same argument holds for Γupper.

Hence, it must be the case thatGr(Γupper) andGr(Γlower) are unbounded.
Therefore, both Γupper and Γlower contain poles and both of these regions
are incident to Ap and O only. Hence, for i = 0, 1, 2 we have two sets,
ωi(Γupper) and ωi(Γlower), that are distinct and contain poles. This implies
that our degree 3 map has at least six poles. This contradiction establishes
the result.

2.5. Dynamics of Gr on J(Gr). We shall now describe the dynamics of
Gr on J(Gr) via symbolic dynamics. For r < r0 we know that Gr|J(Gr) is
conjugate to the shift map on three symbols. Now let us consider r > r0.
Consider the closed curve ∂O encircling zero. Its pre-image consists of two
closed curves: ∂O itself and a closed curve surrounding∞ that we will denote
by ∂O−1

∞ . Note that ∂O is mapped in two-to-one fashion over itself making
two counterclockwise twists around the origin, while ∂O−1

∞ is mapped in one-
to-one fashion over ∂O making one clockwise twist around the origin. All
points outside ∂O−1

∞ and inside ∂O are attracted to the origin. Therefore,
all of our interesting dynamics occurs in the annular region between ∂O
and ∂O−1

∞ . We will denote this region by R.

Theorem 2.13. ∂(ωiAp) meets ∂(O−1
∞ ) at exactly one point for i, j =

0, 1, 2.

Proof. Let the pre-image of q lying on the negative real axis be denoted
q−1. Note that q−1 < q and the interval (−∞, q−1) is mapped over the
interval (q, 0). However, (q, 0) ⊂ O (see proof of Lemma 2.11). Hence, q−1 ∈
∂O−1
∞ . Further, the interval (q−1, p) is mapped onto (p, q) and (p, q) ⊂ Ap

(see proof of Lemma 2.11). Therefore, q−1 ∈ ∂Ap. Hence, ∂Ap meets ∂O−1
∞ at

exactly one point along the negative real axis. By symmetry, similar results
hold for ∂(ωAp) and ∂(ω2Ap).
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Let us consider the region obtained from R by removing the open sets
Ap, ωAp and ω2Ap. We will cut this region into three parts with the rays
arg z = π/3, arg z = π and arg z = 5π/3. We will call these regions R1,
R2, and R3, with R1 between arg z = 5π/3 and arg z = π/3, R2 between
arg z = π/3 and arg z = π, and R3 between arg z = π and arg z = 5π/3 (see
Figure 12).

R1

R3

R2

Ap

ωAp

ω2Ap

O

Fig. 12. The regions R1, R2, R3

Note that it follows from Corollary 2.10 and Theorems 2.12 and 2.13
that only six points lie in multiple regions. The repelling fixed point q and
its pre-image q−1 on R− are the only points in R2 ∩ R3. We have exactly
two points in R1 ∩ R2, namely ω2q and ω2q−1, and exactly two points in
R3∩R1, namely ωq and ωq−1. Each Ri (i = 1, 2, 3) is mapped in one-to-one
fashion over R1, R2 and R3 by Gr. The argument used to show this is the
same as the argument used to show the similar result in Section 2.3, except
that D is replaced by O.

We are now in a position to describe the dynamics of Gr on J(Gr) using
symbolic dynamics on the regions R1, R2, and R3. To each point z ∈ J(Gr)
we can assign a sequence s(z) = s1s2s3 . . . using the rule Gir(z) ∈ Rsi . Since
six points lie in multiple regions those points (and all of their pre-images) will
be associated with multiple sequences. Hence, we will be able to show that
Gr|J(Gr) is conjugate to a quotient of a one-sided shift on three symbols.

Theorem 2.14. There is a semiconjugacy between Gr|J(Gr) and a quo-
tient of the one-sided shift map on three symbols. The semiconjugacy is
given by associating to each point z ∈ J(Gr) a sequence {s0, s1, . . .} where
sn = 1, 2, 3 and is given by Gnr (z) ∈ Rsn.

Proof. We need to show that each sequence corresponds to at least one
point in the Julia set and that no sequence corresponds to multiple points.
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Since each region Ri is mapped over all three regions we are guaranteed that
each sequence will correspond to at least one point in the Julia set.

The Julia set is contained in
⋃
Ri but

⋃
Ri contains no critical points.

Hence we know that the critical points are disjoint from the Julia set, im-
plying that Gr is dynamically hyperbolic on its Julia set. This expansion
guarantees that no sequence can correspond to multiple points.

We only have a semiconjugacy and not a conjugacy due to the six points
that lie in multiple regions. Any sequence ending with {111111 . . . } is equiv-
alent to the same sequence ending with {232323 . . . } or {323232 . . . }, and
any sequence ending with {222222 . . . } is equivalent to the same sequence
ending in {333333 . . . }. The former of these identifications corresponds to
the two-cycle {ωq, ω2q} and its pre-images, while the latter corresponds to
the fixed point q and its pre-images. If we exclude these cases our semicon-
jugacy becomes a conjugacy.
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