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Abstract. We study the notion of computable categoricity of computable structures,
comparing it especially to the notion of relative computable categoricity and its rela-
tivizations. We show that every 1-decidable computably categorical structure is relatively
∆0

2-categorical. We study the complexity of various index sets associated with computable
categoricity and relative computable categoricity. We also introduce and study a varia-
tion of relative computable categoricity, comparing it to both computable categoricity and
relative computable categoricity and its relativizations.

1. Introduction. This paper contributes to computable (effective)
model theory, a subject devoted to understanding structures with effective
presentations. We recall that a structure is computable if it has a presenta-
tion where the universe and atomic diagram are computable. A very long-
term program in computable model theory is to align syntactic complexity
of (aspects of) computable structures with computability-theoretic proper-
ties. As an illustration of this program, we recall the notion of computable
categoricity.

Definition 1.1. A computable structure S is computably categorical if
between any two computable presentations A and B of S, there is a com-
putable isomorphism (1).

As is well-known, the countable dense linear order without endpoints
is computably categorical using Cantor’s back-and-forth argument. The
model-theoretic view is to try to put this computable categoricity result
in some larger framework. The idea is that perhaps there is some deeper
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(1) Note that unlike the notion of κ-categoricity in classical model theory, which is a
property of theories, computable categoricity is a property of (computable) structures.
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explanation of this categoricity result. As it turns out, there is indeed such
a deeper reason for countable dense linear orders: These structures have a
certain kind of computable Scott formula (family), making them relatively
computably categorical, a strengthening of computable categoricity as fol-
lows.

Definition 1.2. A computable structure S is relatively computably cate-
gorical if between any two (possibly noncomputable) presentations A and B
of S, there is an isomorphism computable in deg(A) ∪ deg(B), where we
identify a presentation with its atomic diagram; or, equivalently, if for any
computable presentation A of S and any (possibly noncomputable) presen-
tation B of S, there is an isomorphism computable in deg(B).

We now state the following classical result of Goncharov. It can be viewed
as a computable analog of the Scott Isomorphism Theorem.

Theorem 1.3 (Goncharov [11]). The following are equivalent for a com-
putable structure S:

(1) The structure S is relatively computably categorical.
(2) The structure S has a c.e. Scott family of (finitary) existential for-

mulas over some fixed c ∈ S, that is, a c.e. family Φ of existential
formulas over some fixed c ∈ S such that each a ∈ S satisfies some
ϕ ∈ Φ, and if a, b ∈ S both satisfy the same ϕ ∈ Φ then they are
automorphic. In other words, the orbits of S are effectively isolated
by (finitary) existential formulas.

(3) The structure S has a c.e. family Φ of (finitary) existential formulas
over some fixed c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ,
and if a, b ∈ S both satisfy the same ϕ ∈ Φ then they satisfy the
same existential formulas. In other words, the existential types of S
are effectively isolated by (finitary) existential formulas.

The program of aligning computational properties of structures with
effective syntactic properties goes back to the pioneering work of Gon-
charov [11], Ash and Nerode [4] and others, and is the theme of Ash and
Knight [2].

Our paper sits squarely within this program. This paper is devoted to
trying to understand computable categoricity and the extent to which com-
putable categoricity aligns itself with effective infinitary Scott formulas via
theorems like Theorem 1.3.

Another goal of this paper is to relate computable categoricity to de-
finability in arithmetic. The fundamental results of Emil Post showed that
computational complexity (as measured by the jump operator) goes hand
in hand with syntactic definability (as measured by quantifier depth and
arithmetical complexity). Post’s Theorem says that the Σ0

n-sets are the sets
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many-one reducible to ∅(n), and the ∆0
n+1-sets are exactly the ∅(n)-com-

putable sets. Thus we would anticipate that there should be some alignment
of arithmetic complexity with the syntactic definability (in arithmetic) of
computable structures. A natural way to measure this is via index sets. In
this vein, a rather long-standing open problem in computable model theory
concerns the index set complexity of the computably categorical structures.

Question 1.4. What is the computational complexity of a computable
structure being computably categorical (in terms of the arithmetic or ana-
lytic hierarchy)?

In this paper, we will establish the computational complexity of a com-
putable structure being relatively computably categorical. We also estab-
lish the computational complexity of a computable structure being isomor-
phic to a fixed computably categorical or relatively computably categorical
structure. Question 1.4 was resolved by Downey, Kach, Lempp, Lewis, Mon-
talbán, and Turetsky [7] using techniques from this paper.

Theorem 1.5 (Downey, Kach, Lempp, Lewis, Montalbán, Turetsky [7]).
The index set of the computably categorical structures is Π1

1-complete.

Previously, the best-known lower bound was shown by White [17],
namely, Π0

4-hardness. Recently, Hirschfeldt, Kramer, Miller, and Shlapen-
tokh [13] have shown that the index set of the computably categorical alge-
braic fields is Π0

4-hard.

1.1. A first summary. We start with our motivating questions:

• How does computable categoricity align itself with descriptive com-
plexity of the structure (in the language of the structure)?
• How does computable categoricity align itself with computational com-

plexity as measured by, for example, the index sets associated with the
structures, that is, to definability in arithmetic?
• How are the considerations above affected by stronger effectivity con-

siderations about the structure, i.e., beyond simple computable pre-
sentability? What happens if the structure is decidable or n-decidable
for some n? Does this make any difference?

Before we give the formal definitions needed for our results, we offer
an informal description of our findings. If we require 2-decidability, then
computable categoricity aligns itself with a c.e. Scott family of existential
formulas in the sense of Theorem 1.3 by another result of Goncharov (see
Theorem 1.10). If we require 1-decidability, then computable categoricity
aligns itself with a c.e. Scott family of Σc

2-formulas. The surprise is that
computable categoricity with no extra decidability does not align itself with
the existence of a c.e. Scott family of formulas in any level of the hyper-
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arithmetic hierarchy, as will be shown in [7]. This result uses technology
introduced here.

1.2. Definitions and our results in more detail. To state and
demonstrate our results, we will need some further definitions. Ash extended
Theorem 1.3 from relative computable categoricity to relative ∆0

α-catego-
ricity.

Definition 1.6. A computable structure S is relatively ∆0
α-categorical

if between any two (possibly noncomputable) presentations A and B of S,
there is an isomorphism which is ∆0

α(A ⊕ B); or, equivalently, if for any
computable presentation A of S and any (possibly noncomputable) presen-
tation B of S, there is an isomorphism computable in ∆0

α(B).

Ash relativized Goncharov’s theorem using “computable infinitary Σα-
formulas” (denoted as Σc

α-formulas):

Definition 1.7 (Ash [1]). We define by recursion on computable ordi-
nals α the collections of Σc

α- and Πc
α-formulas (in a computable language L).

Each such formula has only a finite number of free variables, though it may
have infinitely many bound variables.

(1) A Σc
0- or Πc

0-formula is a quantifier-free first-order L-formula.
(2) A Σc

α-formula, for computable α > 0, is (logically equivalent to)
an infinite c.e. disjunction of formulas of the form ∃x ϕ(x, y) where
each ϕ is a Πc

β-formula for some β < α and y is the tuple of free
variables.

(3) A Πc
α-formula, for computable α > 0, is (logically equivalent to) the

negation of a Σc
α-formula.

Theorem 1.8 (Ash [1]). The following are equivalent for a computable
structure S:

(1) The structure S is relatively ∆0
α-categorical.

(2) The structure S has a Σ0
α-Scott family of Σc

α-formulas over some
fixed c ∈ S, i.e., a Σ0

α-family Φ of Σc
α-formulas over some fixed

c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both
satisfy the same ϕ ∈ Φ then they are automorphic. (In other words,
the orbits of S are effectively isolated by Σc

α-formulas.)
(3) The structure S has a c.e. family Φ of Σc

α-formulas over some fixed
c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S
both satisfy the same ϕ ∈ Φ then they satisfy the same Σc

α-formu-
las. (In other words, the Σc

α-types of S are effectively isolated by
Σc
α-formulas.)

One might at first guess that the notions of computable categoricity and
relative computable categoricity coincide (although together Theorems 1.3
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and 1.5 indicate that they cannot). However, if we add more computability-
theoretic assumptions, then the two notions do coincide. These assumptions
are specified in the following definition.

Definition 1.9. A computable presentation A of a computable struc-
ture S is:

(1) decidable if the elementary diagram of A is computable;
(2) n-decidable if the Σn-elementary diagram of A (in the first-order

language of S) is computable.

If S is computably categorical, it is easy to see that some computable
presentation of S is decidable (n-decidable) if and only if every computable
presentation of S is decidable (n-decidable).

Goncharov showed that for 2-decidable structures, computable categoric-
ity and relative computable categoricity coincide.

Theorem 1.10 (Goncharov [11]). A 2-decidable structure is computably
categorical if and only if it is relatively computably categorical.

The assumption of 2-decidability cannot be dropped completely, as ob-
served by Goncharov [12]; in fact, Kudinov showed that even 1-decidability
is not sufficient to ensure that computable categoricity and relative com-
putable categoricity coincide.

Theorem 1.11 (Kudinov [14]). There is a 1-decidable structure that is
computably categorical but not relatively computably categorical.

Our first main theorem shows that Goncharov’s result “almost” holds
for 1-decidable structures.

Theorem 1.12. Any 1-decidable, computably categorical structure is rel-
atively ∆0

2-categorical.

We will prove Theorem 1.12 in Section 2, and related results in Section 3.
The reader might perceive an emerging pattern here, namely, that weak-

ening the decidability hypothesis by a quantifier level increases the level
of relative categoricity by a jump. Thus, the natural guess would be that
with 0-decidability (i.e., computable presentability), computable categoric-
ity would imply relative ∆0

3-categoricity. Alas, this attractive pattern is far
from the truth as evidenced by the following:

Theorem 1.13 (Downey, Kach, Lempp, Lewis, Montalbán, Turetsky [7]).
For every computable ordinal α, there is a computably categorical structure
that is not relatively ∆0

α-categorical.

This suggests the following natural, and important, question.

Question 1.14. Is there a computably categorical structure that is not
relatively hyperarithmetically categorical?
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In contrast to the concept of computable categoricity, relative com-
putable categoricity turns out to be relatively simple to classify in terms
of its complexity: In Section 4, we prove the following:

Theorem 1.15 (Folklore). The index set of the relatively computably
categorical structures is Σ0

3-complete.

In Section 4, we also examine the index set complexity of certain fixed
computably categorical and relatively computably categorical structures,
such as torsion-free abelian groups and structures with unusual index sets. In
Section 5, we introduce the related notion of relative computable categoricity
above a degree and examine its relationship with computable categoricity
and relative computable categoricity and its relativizations. Whilst these
results are not particularly difficult, they do shed more light on this material.

We refer the reader to [2] for background on computable model the-
ory and effective algebra. Notation is more or less standard and generally
follows [2] and [15].

2. Every 1-decidable computably categorical structure is rela-
tively ∆0

2-categorical. In this section, we show that computable categoric-
ity implies relative ∆0

2-categoricity amongst 1-decidable structures. The crux
of the proof is Lemma 2.2.

Definition 2.1. For a structure A and tuples a, p ∈ A, define

Σn-tpp(a) := {ϕ(x, y) ∈ Σn : A |= ϕ(a, p)},
Σc
n-tpp(a) := {ϕ(x, y) ∈ Σc

n : A |= ϕ(a, p)},
where in both cases we consider only finitary (or infinitary, respectively)
formulas in the language of the structure.

Lemma 2.2. If A is computably categorical and 1-decidable, then there is
a tuple p ∈ A such that distinct Σ1-types over p are incomparable under in-
clusion, and for any a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a

′), then Σc
2-tpp(a) =

Σc
2-tpp(a

′).

Note here that for a tuple a, the (finitary, first-order) Σ1-type determines
the (computable infinitary) Σc

1-type as well as the (classically infinitary)
Σi

1-type. (This relationship, of course, fails at higher levels.)

Proof of Lemma 2.2. We build a computable presentation B isomorphic
to A and attempt to make B not computably isomorphic to A. The amount
of B constructed when we consider the computable function ϕe witnessing A
and B being computably isomorphic will determine the parameter p.

In order to ensure A and B are classically isomorphic, we build an iso-
morphism F : B → A in a ∆0

2-manner. We build B by constructing its
atomic diagram in stages. At each stage s, we enumerate the next atomic
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sentence true about A into the atomic diagram of B as determined by the
isomorphism F (as approximated at stage s).

Let {ψi}i∈ω be a computable enumeration of all Σ1-formulas in the lan-
guage of A.

Strategy defeating ϕe: We fix a partial computable function ϕe : B → A
and seek to ensure that ϕe is not an isomorphism.

Let s0 be the stage at which this strategy is initialized. This strategy takes
no action until a stage s1 > s0 when Bs0 ⊆ domFs1 and As0 ⊆ rangeFs1 .

We then let b0 := Bs1 and restrain the strategy, in the sense that F �b0
cannot be changed by this strategy. At every stage s after becoming active,
before we enumerate the next sentence into the atomic diagram of B, we
look for an opportunity to change F in such a way that it still extends to an
isomorphism, but such that F ◦ϕ−1

e is guaranteed not to be an automorphism
of A (ensuring that if F is an isomorphism, as it will be, then ϕe is not an
isomorphism). We will find such opportunities if the types do not obey the
conclusion of the lemma.

Before describing the strategy, we note the following. For any stage

t > s1, suppose b is a tuple from the domain of Bt, and let δt(b0, b, f) be
the atomic diagram of Bt, where f := Bt \ (b0 ∪ b). Suppose a ∈ A. At a
stage s > s1, we can redefine F to map b to a without changing F �b0 if and
only if A |= ∃x [δs−1(Fs−1(b0), a, x)]. Here, we consider δs−1 instead of δs
because when this strategy acts at stage s, we have not yet enumerated the
next sentence into the atomic diagram of B.

At a stage s > s1, we consider every triple (b, b
′
, d) with b, b

′ ∈ dom(ϕe,s)
and d ∈ dom(ϕe,s) \ (b0 ∪ b). If this is the first stage at which we have
considered this triple, we use 1-decidability to determine if there is a tuple

c ∈ A|d| such that

A |= ∃y [δs−1(Fs−1(b0), Fs−1(b
′
), c y)],

i.e., we ask whether we can redefine F by putting Fs(b) := Fs−1(b
′
) and

Fs(d) := c while respecting the restraint. If there is no such c, we never
consider this triple again (since we cannot redefine F , there is no point in
considering it further). If there is such a c, we search for one and assign it
to this triple. When we consider this triple at future stages, this is the c to
which we refer.

Then, for every triple (b, b
′
, d) being considered (along with its associ-

ated c), we use 1-decidability to determine if

(1) A |=
[
ψi(Fs−1(b), Fs−1(d))⇔ ¬ψi(Fs−1(b

′
), c)

]
for some i < s, i.e., we ask whether redefining F by putting Fs(b) := Fs−1(b

′
)

and Fs(d) := c might be useful. If so, fix some triple and some i0 < s for
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which (1) holds. We use 1-decidability to determine whether

(2) A |=
[
ψi0(ϕe(b), ϕe(d))⇔ ψi0(Fs−1(b), Fs−1(d))

]
,

i.e., we determine whether or not it is necessary to perform any action to
prevent F ◦ϕ−1

e from being an automorphism. If (2) holds, we put Fs(b) :=

Fs−1(b
′
) and Fs(d) := c, and extend Fs so that As ⊆ rangeFs and Bs ⊆

domFs. If (2) fails, we put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d), and
extend Fs so that As ⊆ rangeFs and Bs ⊆ domFs. Regardless of whether (2)
holds or fails, we declare the strategy complete.

If (1) fails for all triples being considered and all i < s, we repeat the

above process with ∃y δs in place of ψi. That is, for every triple (b, b
′
, d) and

associated c being considered, we use 1-decidability to determine if

(3) A |= ¬∃y [δs(Fs−1(b0), Fs−1(b
′
), c y)],

i.e., we ask whether we will lose the ability to redefine F after we enumerate
the next atomic sentence into the diagram of B. If (3) fails for every triple,
we will not lose the ability to redefine F , so we leave F alone and take no
further action for this strategy at stage s.

If (3) holds for some triple, fix a triple for which it holds. We will lose
the ability to redefine F , so we use 1-decidability to determine if

(4) A |= ∃y [δs(ϕe(b0), ϕe(b), ϕe(d)y)],

i.e., we determine whether or not it is necessary to perform any action
to prevent F ◦ ϕ−1

e from being an automorphism. If (4) holds, we put

Fs(b) := Fs−1(b
′
) and Fs(d) := c and extend Fs such that As ⊆ rangeFs and

Bs ⊆ domFs. If (4) fails, we put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d),
and extend Fs such that As ⊆ rangeFs and Bs ⊆ domFs. Regardless of
whether (4) holds or fails, we declare the strategy complete.

The strategy has two outcomes: wait and stop. Of course, these corre-
spond to whether the strategy has been declared complete.

Construction: We put these strategies on a tree, performing a straight-
forward finite-injury argument in the usual manner. At each stage, the vis-
ited strategies on the tree act in priority order. After they have acted, if no
strategy defined Fs, we define Fs by extending Fs−1 to include As and Bs
in the range and domain, respectively. Then the global strategy building B
acts by taking the next atomic sentence θs(a) true about A and enumerat-
ing θs(Fs(a)) into the atomic diagram of B.

Verification: We verify that F := lims Fs exists and is an isomorphism.
Consequently, there will be a (least) k such that ϕk : B → A is a computable
isomorphism. Let σ be the strategy for ϕk along the true path, and let b0
be the restraint of σ. We show the desired relationships between the types
of tuples of A using p := F (b0).
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Claim 2.2.1. The function F := lims Fs exists and is an isomorphism.

Proof. The existence of F follows from the fact that, if a strategy rede-
fines F on an element (in either the domain or the range), then no lower-
priority strategy can redefine F on that element. Thus, by induction, the
function F can change only finitely many times on any element (in either
the domain or the range).

By construction, the function F is surjective and respects atomic sen-
tences. Thus, it is injective (as equality is an atomic sentence) and so an
isomorphism.

Claim 2.2.2. If a strategy for defeating ϕe is along the true path and
declared complete, then ϕe is not an isomorphism.

Proof. Let (b, b
′
, d) be the triple we act for. Note that F (b) = Fs(b) and

F (d) = Fs(d).
If we act because of some ψi0 , then regardless of whether (2) holds, we

have

A |=
[
ψi0(ϕe(b), ϕe(d))⇔ ¬ψi0(Fs(b), Fs(d))

]
.

If we act because of δs, then regardless of whether (4) holds, we have

A |= ∃y [δs(ϕe(b0), ϕe(b), ϕe(d)y)]⇔ ¬∃y [δs(Fs(b0), Fs(b), Fs(d)y)].

Thus, in either case, F ◦ ϕ−1
e is not an automorphism.

Claim 2.2.3. The Σ1-types over p are incomparable under inclusion.

Proof. Towards a contradiction, we suppose that there are a, a′ ∈ A with

(5) Σ1-tpp(a) ( Σ1-tpp(a
′).

Consider any stage s + 1 at which σ is visited such that Fs(b) = a and

Fs(b
′
) = a′ for some b, b

′ ∈ dom(ϕk,s). Then at such a stage, it will always
be possible for σ to define Fs+1(b) = a′.

Note that (5) is equivalent to Σ1-tp(p a) ( Σ1-tp(p a′). Since F ◦ ϕ−1
k is

an automorphism, we have

Σ1-tp(ϕk(b0)ϕk(b)) ( Σ1-tp(p a′).

Fix a formula ψi true of p a′ but false of p a. Then at any stage s > i when

the strategy considers the triple (b0 b, b0 b
′
, ∅), it will redefine F (b) = a′ to

defeat ϕk, contrary to our choice of k.

Claim 2.2.4. For any tuples a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a
′) then

Σc
2-tpp(a) = Σc

2-tpp(a
′).

Proof. Suppose that Σ1-tpp(a) = Σ1-tpp(a
′), or equivalently Σ1-tp(p a) =

Σ1-tp(p a′). By symmetry, it suffices to show

Σc
2-tp(p a) ⊆ Σc

2-tp(p a′).
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Fix a formula ∃x χ(p a, x) ∈ Σc
2-tp(p a) with χ ∈ Πc

1 and a witness g ∈ A so
that A |= χ(p a, g). We show ∃x χ(p a, x) ∈ Σc

2-tp(p a′).

Consider a stage s > s1 when σ is visited, F (b) = a, F (b
′
) = a′ and

F (d) = g have converged, and b0, b, b
′
, d ∈ dom(ϕk,s). Since

A |= ∃x δs(p, a, g x),

from Σ1-tp(p a) = Σ1-tp(p a′), we have

A |= ∃c ∃y δs(p, a′, c y).

Thus, there will be a c assigned to the triple (b0 b, b0 b
′
, d). Since σ is never

declared complete (by Claim 2.2.2), there is never a stage t > s when

A |= ¬∃y [δt(p, a
′, c y)].

Thus σ will never lose the ability to define F (b) = a′ and F (d) = c.
If there were some ψi such that

A |= ψi(p a
′, c) ∧ ¬ψi(p a, g),

then at some stage when we consider ψi, the strategy σ would be able to
defeat ϕk, contrary to our choice of k.

Thus A |= χ(p a′, c). We conclude that ∃x χ(p a′, x) ∈ Σc
2-tp(p a′) as

desired.

This completes the proof of Lemma 2.2.

We are now ready to prove the main theorem of Section 1:

Theorem 1.12. Any 1-decidable, computably categorical structure A is
relatively ∆0

2-categorical.

Proof. Fix the parameters p from the above lemma.
For each a ∈ A, let χa(x) be the infinitary formula

χa(x) :=
∧

ψ∈Π1(p)
A|=ψ(a)

ψ(x),

i.e., the conjunction of all first-order Π1-formulas (with parameters from p)
true of a. As a consequence of 1-decidability, this is a Πc

1-formula.
We show that the family of formulas {χa(x)}a∈A constitutes a Scott

family. By Theorem 1.8, it suffices to show that they isolate the Σc
2-types.

We therefore suppose A |= χa(a
′) and show Σc

2-tpp(a
′) = Σc

2-tpp(a). If

A |= χa(a
′), then every Π1-fact true of a is true of a′. Hence every Σ1-fact

true of a′ is true of a, i.e.,

Σ1-tpp(a
′) ⊆ Σ1-tpp(a).

By Lemma 2.2, it follows that Σ1-tpp(a
′) = Σ1-tpp(a). By Lemma 2.2 again,

this implies that Σc
2-tpp(a

′) = Σc
2-tpp(a).
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We conclude that the family of formulas {χa(x)}a∈A constitutes a Scott
family and so A is relatively ∆0

2-categorical.

3. Pushing on isomorphisms and results related to Theorem 1.12.
Theorem 1.12 raises questions about various ways in which the hypotheses
can be weakened or the conclusion strengthened. In this section, we ex-
plore a number of such variations. None of the constructions are individ-
ually particularly difficult, so we only sketch their proofs. However, these
constructions and many of the later ones rely on the technique of pushing
on isomorphisms. We illustrate this technique in isolation, demonstrating
the existence of a computably categorical structure S that is not relatively
computably categorical.

Theorem 3.1 (Goncharov [12, Theorem 4]). There is a computable
structure A that is computably categorical but not relatively computably cat-
egorical.

Proof. Before discussing the formal details, we informally present the
requisite ideas. The structure A will be a directed graph consisting of in-
finitely many finite connected components. Each component will consist of
either two, three, or four cycles sharing only a single vertex v, termed the
root vertex.

In order to prevent A from being relatively computably categorical, we
diagonalize against all pairs (c, Φ), where c is a finite tuple of elements
from the universe of A and Φ is a c.e. family of existential formulas with
parameters from c. We create vertices v1 and v2 which are not automorphic
but Φ cannot distinguish them.

In order to ensure A is computably categorical, we construct a partial
computable map fj from A to Bj (the jth (partial) directed graph). If A
and Bj are isomorphic, the map fj will be an isomorphism.

More formally, we meet the following requirements to prevent relative
computable categoricity:

Ri : The ith pair (ci, Φi) is not a Scott family for A.

We meet the following requirements to ensure computable categoricity:

Sj : If A ∼= Bj , then fj : A ∼= B is a computable isomorphism.

Strategy for meeting Ri (in isolation): We take the following actions,
being careful to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2

and a loop of length 3`+ 1 to v1.
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(3) For every formula ϕ(x, ci) := ∃y [ψ(x, y, ci)] in Φi, search for a tuple
a1 < s such that A |= ψ(v1, a1, ci).

(4) If such a formula and tuple are found, attach a loop of length 3`+ 2
to v1 and a loop of length 3`+ 1 to v2.

These actions prevent (ci, Φi) from witnessing that A is relatively com-
putably categorical: If we never find a formula ϕ and tuple a1, then not
every singleton satisfies some ϕ ∈ Φi.

If we find a formula ϕ and tuple a1, let s be the stage at which these
are found. Then by construction, the component of v1 at stage s embeds
into the component of v2 at stage s+ 1, and the component of v2 at stage s
embeds into the component of v1 at stage s+ 1. This can be extended to an
embedding As ↪→ As+1 via the identity off these components, and notably
this embedding maps v1 to v2 and fixes ci elementwise.

Since ϕ is existential, we have

As |= ϕ(v1, c) ⇒ As+1 |= ϕ(v2, c) ⇒ A |= ϕ(v2, c),

but v1 and v2 are not automorphic.

Strategy for meeting Sj (in isolation): As the construction ofA proceeds,
we attempt to define fj so that it maps components in A to components
in Bj . Finding the image of a component in A is a two-step process: We
identify root vertices in Bj as those vertices having out-degree at least two
(this is the sole purpose of the loops of length two). While identifying root
vertices in Bj , we also search for cycles emanating from already identified
root vertices in Bj . When we find a component in Bj with the same lengths
of cycles emanating from it as a component in A, we map the root vertex
and cycles appropriately.

Conflicts between strategies and their resolution: Unfortunately, our ac-
tion to defeat relative computable categoricity conflicts heavily with our ac-
tion for computable categoricity. Trying to define a computable isomorphism
between A and Bj , the naive approach would be to wait for the components
to appear in A and Bj and to define the isomorphism appropriately. If and
when the components grow in A or Bj , an opponent would have the opportu-
nity to switch v1 and v2, killing our computable isomorphism fj . As we need
infinitely many pairs of components to defeat relative computable categoric-
ity, an opponent would have sufficiently many opportunities to diagonalize
against all computable functions.

The critical observation is that this opportunity to diagonalize can be
prevented by slowing down the construction: For the finitely many higher-
priority Ri-strategies (which build finitely many finite components), the Sj-
strategy defines the computable isomorphism fj nonuniformly. For the com-
ponents built by lower-priority Ri-strategies, we use the above-mentioned
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technique of pushing on isomorphisms: The Sj-strategy will allow the lower-
priority Ri-strategy to extend its component in step (4) only gradually as
follows:

(4′a) Attach a loop of length 3`+ 2 to v1.
(4′b) Wait until this loop appears in Bj for every j < i for which A ∼= Bj .
(4′c) Attach a loop of length 3`+ 1 to v2.

In this way, the above problem cannot occur: At any time, we will be able
to distinguish v1 and v2 in Bj . Of course, it will likely be the case that
A 6∼= Bj for some j < i, in particular that some Bj with j < i does not
have a loop of length 3`+ 2. Hence, we may wait at step (4′b) unnecessarily
(since we cannot effectively know whether A ∼= Bj), causing step (4′c) not
to be reached. This would cause our diagonalization attempt against Φi to
be unsuccessful.

The solution is to have Ri-strategies guess the outcomes of higher-
priority Sj-strategies via a priority tree. Each Ri-strategy will have two
outcomes: wait (indicating that the strategy is still searching for a for-
mula ϕ and a tuple a1) and act (indicating that the strategy has found
the desired ϕ and a1). Each Sj-strategy will have an infinite outcome ∞
(indicating that Sj believes A ∼= Bj) and finite outcomes k for all k ∈ ω
(counting the number of times Sj has taken outcome ∞).

Full strategy for meeting Ri: We take the following actions, always being
careful to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2

and a loop of length 3`+ 1 to v1.
(3) For every formula ϕ(x) := ∃y [ψ(x, y, ci)] in Φi, search for a tuple

a1 < s such that A |= ψ(v1, a1, ci).
(4) If such a formula and tuple are found, attach a loop of length 3`+ 2

to v1.
(5) Wait until the next stage at which the strategy is accessible.
(6) Attach a loop of length 3`+ 1 to v2.

While the strategy is searching at step (3), it has outcome wait. Once
it has found a formula ϕ and a tuple a1, it has outcome act.

Full strategy for meeting Sj : Let σ on the priority tree be the Sj-strategy
in question. Let s be the current stage. Let k be the number of stages less
than s at which σ had outcome ∞.

We consider certain root vertices in A: For each τ ⊂ σ such that τ̂wait
⊆ σ, we consider the root vertices created by τ ; for each τ ⊂ σ such that
τ̂act ⊆ σ and τ has reached step (6), we consider the root vertices created
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by τ ; and for each τ 6⊂ σ with τ incomparable with σ̂k, we consider the
root vertices created by τ .

For each root vertex v in A we are considering, if fj(v) is not yet defined,
we search Bj,s for a root vertex u with a component identical to the compo-
nent of v and define fj(v) := u and then extend fj to an isomorphism of the
components. If fj(v) is defined, and the component of v appears identical
to the component of fj(v) in Bj,s, we extend fj to an isomorphism of the
components, if it is not already.

After this action, if for every vertex v we are considering, fj(v) is defined
and fj is an isomorphism of the components of v and fj(v), then σ has
outcome ∞ at stage s. Otherwise, it has outcome k.

Construction: For an Sj-strategy, we order the outcomes as ∞ < · · · <
2 < 1 < 0. For an Ri-strategy, we order the outcomes as act < wait. We
create a priority tree by devoting each level to one requirement in some
effective fashion. At stage s, we let all visited strategies of length at most s
act in order of priority.

Verification: Define the true path through the priority tree in the usual
fashion. We note the important fact that if the current path moves to the
left of a node on the priority tree that has already been visited, that node
can never be visited again.

It is immediate from the construction that A is a computable presen-
tation. We verify that it is both computably categorical and not relatively
computably categorical.

Claim 3.1.1. The structure A is computably categorical.

Proof. Fix an index j such that A ∼= Bj , and let σ be the Sj-strategy
along the true path. By assumption, the presentation Bj contains a compo-
nent isomorphic to every component of A, so σ will eventually define fj(v)
for every vertex it considers. For the components built by τ ⊂ σ, since σ is on
the true path, these components will never grow once σ begins considering
them, so fj is correct on these.

For the components built by strategies τ incomparable with σ, we observe
that τ can never be visited after σ begins considering them, and so they can
never grow once they are considered. So fj is correct on these.

For the components built by τ ⊇ σ̂∞, if τ has final outcome wait, then
the components never grow once σ begins considering them.

If τ adds the loop of length 3`+ 2 to v1, then before τ added this loop,
σ defined fj(v1) to be an element of Bj with a loop of size 3`+1. After τ adds
this loop, σ will never again have outcome ∞ unless a loop of length 3`+ 2
appears attached to fj(v1), and if σ never again has outcome ∞, then v1 is
the unique vertex with a loop of size 3` + 1. So the loop of length 3` + 2
must appear on fj(v1).
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If τ adds the loop of length 3`+1 to v2, then σ must have outcome∞ at
some stage after τ attached the loop of length 3`+ 2 to v1. So fj(v1) has a
loop of size 3`+ 2 and one of size 3`, and fj(v2) has a loop of size 3`. Then
there are only two loops of size 3` in A, one with a loop of size 3` + 2 and
one without, so by elimination fj(v2) must be the correct image of v2. So
the loop of length 3`+ 1 must appear on fj(v2).

For the components built by τ ⊇ σ̂k for some k, if σ is considering
this component at stage s, then it has had outcome ∞ more than k many
times by stage s. So the components can never again grow once they are
considered, hence fj is correct on these.

By the above, since fj is correct on every component on which it is
defined, and it will be defined on every component it considers, σ must have
true outcome ∞. So by construction, every component is considered, and
thus fj is an isomorphism.

Claim 3.1.2. The structure A is not relatively computably categorical.

Proof. Fix an index i and let σ be the Ri-strategy along the true path.
Then either σ will wait forever at step (3), or it will reach step (6). In the
former case, the element v1 fails to satisfy any ϕ ∈ Φi. In the latter case,
the nonautomorphic elements v1 and v2 satisfy ϕ ∈ Φi. In either case, the
family Φi is not a Scott family.

This concludes the proof of Theorem 3.1.

Having illustrated the technique of pushing on isomorphisms, we return
to Theorem 1.12. One might think that a simpler way to prove it would
be to relativize Goncharov’s Theorem 1.10. After all, if A is 1-decidable,
then relative to 0′, the presentation A is 2-decidable. However, a relativized
version of Goncharov’s Theorem 1.10 would require a modified version of
computable categoricity as a hypothesis, as follows:

Corollary 3.2. If A is a 1-decidable computable presentation of a
structure S with the property that for every ∆0

2-computable presentation B
of S there is a ∆0

2-computable isomorphism f : B ∼= A, then S is relatively
∆0

2-categorical.

We show that the hypothesis of “∆0
2-computable categoricity” in the

above corollary is not implied by computable categoricity:

Theorem 3.3. There is a 1-decidable, computably categorical structure S
having a computable presentation A and a ∆0

2-computable presentation B
such that A and B are not ∆0

2-isomorphic.

Proof. The structure S is an undirected graph. If we were not seeking S
to be computably categorical, the structure S could be built as the union
of infinitely many substructures Si. Each Si would consist of roots vi,j for
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j ∈ ω ∪ {∞}. For j ∈ ω, the root vi,j would have a loop of length p2k
i for

every k < j + 1 and one of length p2j+1
i ; furthermore, vi,∞ would have a

loop of length p2k
i for every k ∈ ω (here pi is the ith prime). Thus, the

substructure Si would consist of an (ω + 1)-chain of components, with the
finite components matching the infinite component for longer and longer
segments, yet each having a unique loop size to distinguish it from the
infinite component and other finite components.

Of course, takingA to be the standard presentation of S, we could build a
∆0

2-computable presentation B not isomorphic toA via any ∆0
2-isomorphism.

This could be done by using the substructure Si to diagonalize against the
ith ∆0

2-function ϕi : A → B: When ϕi converges on vi,∞, we make its image
in B be vi,j for some large j ∈ ω.

As we are seeking a computably categorical structure, we alter the iso-
morphism type of S to include the pushing on isomorphisms machinery.
In particular, we build a computable structure A, taking S to be its iso-
morphism type. As we are seeking a 1-decidable structure, we use large
loop sizes rather than powers of primes. After constructing A, we build the
∆0

2-computable presentation B.

The construction of the components in A proceeds as expected.

Construction of a component : Using increasing numbers of loops, we
build accumulation points in the Σc

1-type space.

(1) Set k := 0. Create a root vertex vi,∞ and attach a loop of large
size ni,0.

(2) Attach a loop of large size ni,k+1 to vi,∞.
(3) Wait until the next stage this strategy is visited (this allows higher-

priority isomorphism strategies to “push on isomorphisms”).
(4) Create a root vertex vi,k with attached loops of all sizes ni,0, . . . , ni,k.

Also attach a loop of distinct large size mi,k to vi,k.
(5) Increment k and return to step (2).

Unfortunately, as described above, the resulting structure would not
be 1-decidable. For example, “Does vi,∞ have degree at least i?” is a Σ0

1-
question, and answering it would require knowing how many times we reach
step (2). Similarly, “Are there at least i many loops of size ni,0?” is a Σ0

1-
question that requires knowing how many times we reach step (4). As a
remedy, instead of a single root vertex vi,∞, we create an infinite collection
of root vertices joined by infinitely many paths of length 2 (that is, we create
infinitely many copies of the vi,∞-component, with infinitely many paths of
length 2 between every two copies of the root vertex). We do the same for
each root vertex vi,k, creating an infinite collection of root vertices joined by
infinitely many paths of length 2. Because of this, for any even size, there
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will be a loop of that size attached to vi,j and to vi,∞. So we require that
our sizes ni,k and mi,k are always odd.

We create a tree of strategies as in the proof of Theorem 3.1. Some levels
will be devoted to Sj-strategies, which ensure that if Bj ∼= A, then there
is some computable isomorphism between them. Others will be devoted to
Ri-strategies, which simply perform the above construction of points (with
the modifications discussed).

Verification of A: The structure S is computably categorical because of
the pushing on isomorphism technology already illustrated: An isomorphism
strategy Sj of higher priority than Ri can always distinguish the copy of vi,∞
in Bj by the ni,k+1 loop. Because Ri-strategies wait at step (3), no vi,k
with this loop will be created until the copy of vi,∞ in Bj has distinguished
itself with a larger loop. Lower-priority Sj-strategies nonuniformly know the
image of vi,∞ in Bj . The image of vi,k can always be uniquely identified by
the loop of size mi,k.

Of course, the above is not quite correct, because we create infinite col-
lections of each vi,∞ and each vi,k. So rather than uniquely identifying the
point vi,∞ or vi,k in Bj , we uniquely identify the collection. Once the col-
lection has been found, however, a simple back-and-forth construction can
construct the isomorphism.

Claim 3.3.1. The presentation A is 1-decidable.

Proof. It suffices to show that for any canonically given finite graph G,
we can effectively determine whether or not G occurs as an induced subgraph
of A. For a canonically given finite graph G, we wait until a stage s in the
construction when a loop of some size ni,k > |G| has been enumerated
into the construction, and then we answer whether or not G is an induced
subgraph of A as follows.

First, we identify all simple loops in G of odd length. If any of these
loops have more than one vertex of degree greater than 2, we know that G
is not an induced subgraph of A. If any of these loops are of a size we have
not yet used as some ni,k or mi,k by stage s, then since our loop sizes are
always chosen large, no loop of that size will ever be used, and so we know G
is not an induced subgraph of A.

Otherwise, every simple loop of odd length has size some ni,k or mi,k

already chosen during the construction. If some loop of size ni,k and some
other loop of size ni′,k′ with i 6= i′ are in the same component, then we
know G is not an induced subgraph of A. Similarly, if a loop of size ni,k is
in the same component as a loop of size mi′,k′ with i 6= i′ or k > k′, then we
know that G is not an induced subgraph of A. Also, if a loop of size mi,k is
in the same component as a loop of size mi′,k′ with i 6= i′ or k 6= k′, then
we know that G is not an induced subgraph of A. Finally, if two distinct
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simple loops of odd length intersect, then we know that G is not an induced
subgraph of A.

Otherwise, call a vertex in G a root if it has degree greater than 2. Note
that any embedding of G as an induced subgraph of A must map the roots
of G to roots of A. Let G′ be the induced subgraph of G containing those
vertices which are roots and also those vertices which are not part of a simple
loop of odd length. Any embedding of G as an induced subgraph of A will
give a two-coloring of G′ which colors all the roots of G′ red and such that
every vertex colored blue has degree at most 2: Color a vertex red if it maps
to a root of A, and blue otherwise.

Conversely, if G′ admits a two-coloring which colors all its roots red and
such that every vertex colored blue has degree at most 2, then G can be em-
bedded into A as an induced subgraph: For each component, if it contains
a loop of size mi,k, then map that component into the collection of copies
of vi,k, mapping the red vertices to roots in A; if the component does not
contain a loop of size mi,k for any k, but does contain one of size ni,k for
some k, map the component into the collection of copies of vi,∞, again map-
ping red vertices to roots in A; if the component contains no simple loops
of odd sizes, then map the component into the collection of copies of v0,∞.

Thus we can decide if G is an induced subgraph of A by considering the
finitely many two-colorings of G′.

Construction of B: We work in the presence of a 0′-oracle. We begin by
simply copying A, while simultaneously studying ∆0

2-functions from A to B.
When a ∆0

2-function ϕ` converges on some accumulation point vi,∞ ∈ A with
i > `, we may assume v′i,∞ := ϕ`(vi,∞) is a copy of vi,∞ in B (as otherwise
we have won against ϕ`). We use our oracle to determine if Ri will ever
again reach step (2) and then step (4). If so, we pause the construction
of v′i,∞ until this happens. We make v′i,∞ the image of the new vi,k instead
of vi,∞, defeating the function ϕ`. Since we are requiring that i > `, our
approximation to ϕ`(vi,∞) ∈ B reaches a limit.

This finishes the proof of Theorem 3.3

Just as we relativized Goncharov’s result to 0′ to weaken the decidability
requirement, we can do the same for our Theorem 1.12:

Corollary 3.4. If a computable structure A is such that every ∆0
2-com-

putable copy is isomorphic via a ∆0
2-computable isomorphism, then A is

relatively ∆0
3-categorical.

We have already seen that the hypothesis of “∆0
2-computable categoric-

ity” in the above corollary is not implied by computable categoricity. Here
we show that the implication can fail very badly:
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Theorem 3.5. There is a computably categorical structure A such that
every noncomputable ∆0

2-degree computes a presentation B not isomorphic
to A by any ∆0

2-isomorphism.

Proof. Our structure is a directed graph consisting of pairs of compo-
nents. Each pair will contain a larger component and a smaller component
and be assigned a distinct prime p. The larger component will be a vertex
with loops of sizes pk for all k ≤ r+ 2, while the smaller component will be
a vertex with loops of sizes pk for all k ≤ r. The parameter r for the pair
will initially be 1, and will grow (possibly to infinity) as the construction
proceeds.

Let {Me}e∈ω be an enumeration of all partial computable structures,
{Xi}i∈ω an enumeration (of partial characteristic functions) of all ∆0

2-sets,
and {gj}j∈ω an enumeration of all partial ∆0

2-functions. We build a struc-
ture A and structures {Bi}i∈ω to meet the following requirements:

Ne :Me
∼= A ⇒ ∃f ≤T ∅ [f :Me

∼= A]

Ri : Bi ≤T Xi and Bi ∼= A
Pi,j : Xi >T ∅ ⇒ ¬[gj : A ∼= Bi]

Strategy for meeting Ne: This is a standard pushing on isomorphisms
strategy.

Strategy for meeting Ri: The strategy maintains a Turing functional Γi
with Bi = ΓXi

i and a bijection Fi mapping components of A to compo-
nents of Bi. At every stage, Ri grows the components of Bi to match the
corresponding components in A. These facts about new loops in Bi are enu-
merated into Γi with the use of k where pk is the size of the loop.

If Xi changes to a new version, removing certain loops from Bi, we restore
those loops to Bi by enumerating new axioms for them into Γi. The exception
is if gj,s(x)↓ = Fi,s(x) for some root vertex x of the larger component of some
Pi,j-strategy, and the largest two loops attached to Fi,s(x) are removed: then
we instead take the opportunity to redefine Fi(x), interchanging the role of
larger and smaller components in Bi.

Strategy for meeting Pi,j : We initially choose an unused large prime p
and begin building (in A) the components for p. Let x ∈ A be the root vertex
of the larger component. The behavior of the strategy at stage s depends
on whether gj,s(x)↓ = Fi,s(x). If so, we increment r, adding a new loop to
each of the two components. If not, we do nothing.

Construction: We place the Ne- and Pi,j-strategies on a priority tree
in the standard fashion. The Ri-strategies are not placed on the tree, but
instead act at every stage.

Verification: Clearly A is a total computable structure.
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Claim 3.5.1. The Ne-strategies ensure their requirement.

Proof. This is the now-familiar “pushing on isomorphisms” argument:
If Ne is of higher priority than a pair being constructed, then the pair
respects Ne’s isomorphism by only adding one loop at a time. If Ne is of
lower priority than a pair of components, then it nonuniformly knows which
component is larger and which is smaller.

Claim 3.5.2. The Ri-strategies ensure their requirement.

Proof. If Xi is not a true ∆0
2-set, then Ri is trivially satisfied, so we

assume that it is. The use of the loops in Bi does not grow, so since Xi

eventually stops changing on initial segments, Bi eventually stops changing.
Thus Bi is an Xi-computable structure.

Furthermore, at every stage s, Fi,s : As → Bi,s is an isomorphism. Thus
on all components where Fi = lims Fi,s exists, A is isomorphic to Bi. The
only components at which this limit might not exist are components built
by Pi,j-strategies that infinitely often see gj,s(x) = Fi,s(x). But such com-
ponents have their r grow to infinity, and thus the larger and smaller com-
ponents are identical. Therefore it does not matter which component maps
to which, and we may extend Fi to an isomorphism A ∼= Bi.

Note that we cannot ask that Fi = lims Fi,s be a total isomorphism,
because then we would be unable to meet requirement Pi,j with gj = Fi.

Claim 3.5.3. The Pi,j-strategies ensure their requirement.

Proof. If Xi is not a true ∆0
2-set, then Pi,j is trivially satisfied, so we

assume that Xi is a true ∆0
2-set. We argue that if gj : A ∼= Bi is an iso-

morphism, then Xi is computable. Let x be the root vertex of the larger
component built by the Pi,j-strategy along the true path.

We note if gj : A ∼= Bi is an isomorphism, then the parameter r for Pi,j
grows without bound. For if it was bounded, then gj(x) and Fi(x) would
coincide as x would have a unique image in Bi because the appropriate com-
ponents are finite. However this would imply that gj,s(x) and Fi,s(x) coincide
at infinitely many stages, causing r to grow without bound, contradicting
the boundedness of r.

We therefore assume the parameter r for Pi,j grows without bound. For
any n, let sn be the least stage at which the parameter r equals n. Let t be
the least stage for which gj(x) = gj,s(x) for all s > t, noting t exists as we
are supposing gj is an isomorphism. For any z, we claim that X�z = Xsn�z,
where n > z is any number with sn > t and such that Xs�z was constant
for s ∈ [sn, sn+1]. From this it will follow that X is computable.

To see this, suppose otherwise. Then let t′ > sn be least with X�z =
Xt′�z. Consider those axioms in Γi concerning loops attached to Fi(x); note
that before stage sn, no facts concerning any loop of size n + 2 or greater
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had been enumerated. So until stage t′, every axiom concerning a loop of
size n + 2 or greater had use extending Xsn�z. Thus at stage t′, all loops
attached to Fi(x) of size at least n+ 2 are removed from Bi. By assumption
t′ > sn+1, so at stage t′, the largest two loops attached to Fi(x) are both of
size at least n+ 2. So at stage t′, Ri has the opportunity to redefine Fi(x),
interchanging components. These components might swap back at a later
stage due to Xs�z reverting to Xsn�z, but at every stage s > t′ with Xs�z =
Xt′�z, we will have Fi,s(x) 6= gj,t(x), and gj,t(x) = gj,s(x) by choice of t.
Since Xt′�z = X�z, Fi,s(x) and gj,s(x) will differ at all but finitely many
stages s, contrary to the assumption that r grows without bound.

This completes the proof of Theorem 3.5.

4. Index sets, computable categoricity, and relative computable
categoricity. In this section, we study the complexity of index sets asso-
ciated with computably categorical structures and relatively computably
categorical structures. In particular, we show that the index set complexity
of relatively computably categorical structures is Σ0

3-complete. Though the
authors are not aware of any proofs of this fact in the literature, we at-
tribute this result to folklore as it is certainly known to many. We also show
there is a fixed relatively computably categorical structure whose index set
is Σ0

3-complete and a computably categorical structure whose index set is
Π0

1-complete (within M).

Theorem 1.15 (Folklore). The index set of the relatively computably
categorical structures is Σ0

3-complete.

Proof. From the equivalence of (1) and (3) in Theorem 1.3, relative com-
putable categoricity is easily seen to be Σ0

3.
For Σ0

3-hardness, we make use of (the proof of) Theorem 4.1 of [8].
There, Downey and Montalbán showed that, given a Σ0

3-set S, there is a uni-
formly computable sequence {Vi}i∈ω of vector spaces over Q such that Vi
is finite-dimensional if and only if i ∈ S. As it is easy to see that the
finite-dimensional vector spaces over Q are relatively computably categor-
ical (any isomorphism is determined by the image of the (finitely many)
basis elements) and that the infinite-dimensional vector spaces over Q are
not (relatively) computably categorical, Σ0

3-hardness follows.

If M is any structure, a priori its index set {i : M ∼= Mi} is Σ1
1 as it

may be rather difficult to tell whether or not M and Mi are isomorphic.
WhenM is computably categorical, it is much simpler as it suffices to check
the computable isomorphisms.

Proposition 4.1. If a computable structure M is computably categori-
cal, then its index set {i :M∼=Mi} is Σ0

3.
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Proof. It suffices to note thatM∼=Mi if and only if there is an index e
such that ϕe is an isomorphism between M and Mi, i.e., such that ϕe is
total, injective, surjective, and preserves the atomic diagram. These are Π0

2,
Π0

1, Π0
2, and Π0

1, respectively.

Surprisingly, it is rather difficult to find a particular computably cate-
gorical structure M whose index set is Σ0

3-hard. Natural candidates such
as dense linear orders, equivalence structures with classes all of some fixed
size, and infinite-dimensional vector spaces over a fixed finite field all have
Π0

2-index sets. Generalizing these examples slightly, any fixed computably
categorical linear order, equivalence structure, or vector space has an index
set of the complete 1-degree of d.c.e. sets over 0′.

Torsion-free abelian groups of rank 1 (or, equivalently, subgroups of the
rationals) do provide an example of a (relatively) computably categorical
structureM whose index set is Σ0

3-hard. The only algebraic background we
require is Baer’s Theorem, which can be found in any standard reference
(see, e.g., Fuchs [9, 10]).

Theorem 4.2 (with Alexander Melnikov). Let G be the subgroup of
(Q : +) generated by the set {1/p : p a prime}. Then G is relatively com-
putably categorical, and its index set {i : G ∼= Gi} is Σ0

3-complete.

Proof. We note G is relatively computably categorical. For if H1 and H2

are presentations of G, an isomorphism f : H1 → H2 can be defined by
fixing a nonzero element a ∈ H1 and its image b ∈ H2 under a classical
isomorphism. Then to define f(x) for an arbitrary x ∈ H1, it suffices to
search for the rational number q such that x = qa, search for the element
y ∈ H2 such that y = qb, and let f(x) := y. This is readily seen to be an
isomorphism and is computable from deg(H1) ∨ deg(H2).

We also note that the index set {i : G ∼= Gi} is Σ0
3 by Proposition 4.1.

We show this index set is Σ0
3-hard by building, for every i, a c.e. subgroup

Gi ≤ (Q,+) such that G ∼= Gi if and only if i ∈ Cof. We then exploit the
fact that from an index for a c.e. subgroup of a computable group, one can
effectively obtain an index for an isomorphic computable group.

Construction: Fix a computable relation R(i, x, y) satisfying

i ∈ Cof if and only if ∃x ∃∞y R(i, x, y).

Let P ⊂ ω be the set of primes. We build a co-c.e. set Ai ⊆ P in stages,
letting Ai,s = {as0 < as1 < · · · } be its stage s approximation. At stage s,
if R(i, x, s) holds for some x < s, we choose x least such, and remove asx
from Ai. We enumerate 1/asx into Gi. We also close Gi under the group
operations.
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Verification: We argue that G ∼= Gi if and only if i ∈ Cof. If i ∈ Cof,
choose x least such that ∃∞y R(i, x, y). Then clearly |Ai| = x. Thus Ge is
the subgroup generated by {1/p : p 6∈ {a0, . . . , ax−1}}. By Baer’s Theorem,
this is isomorphic to G.

If instead i 6∈ Cof, then for every x, let yx be least such that for all y > yx
and x′ ≤ x, the predicate R(i, x′, y) does not hold. Then ax = ayxx . Thus
|Ai| =∞, and so G 6∼= Gi by Baer’s Theorem.

Analyzing the opposite extreme, it is natural to ask how simple the index
set of a computably categorical structure can be. As determining whether
an index is a presentation of a structure can introduce artificial complexity,
we restrict ourselves to the class of nonempty computable models.

Definition 4.3. For any signature L, denote the class of all nonempty
computable models with signature L by M = ML. Note that we are taking
a computable structure to be a computable subset of ω with computable
functions, relations, and constants (total on the universe).

Proposition 4.4 (with Adam Day). There is an infinite computably
categorical structure M whose index set {i : M ∼= Mi} is Π0

1-complete
within M.

Proof. The signature L for our structure M has a unary function S,
a binary function f , and constants 0 and 1. The unary function S will
be the successor function. The binary function f will satisfy (∀i ∈ M)
(∀s ∈ M) [f(i, s) ∈ {0M, 1M}]. The structure M := (M : S, f, 0, 1) will
be such that the reduct (M : S, 0, 1) is (isomorphic to) the standard model
(ω : S, 0, 1), where S is the successor function. The function f will be used
to ensure that an expansion N = (N : S, f, 0, 1) of the theory of (ω : S, 0, 1)
with a nonstandard universe can be easily distinguished as being nonisomor-
phic toM. In particular, the construction will exploit our working within M
by building the structureM so that ifMi is to be isomorphic toM, it must
witness any element of itself being standard in an effectively bounded length
of time.

Fix an enumeration {Mi}i∈ω of all presentations of (candidate) struc-
tures in the signature L. We denote by n̄M and n̄Mi the elements (Sn(0))M

and (Sn(0))Mi , respectively. We assume that at stage s, the element (s+1)
Mi

is not yet defined. Note that it will be the case that n = n̄M, and that n̄Mi

may not exist.

Construction: The universe M of M is ω. As already suggested, we
define 0M and 1M to be 0 ∈ ω and 1 ∈ ω, respectively, and define S(n) =
n+ 1 for each n ∈ ω.

At each stage s, we define f(i, s) for all i ∈ ω. At stage s = 0, we define
f(i, 0) = 0 for all i ∈ ω. At stage s > 0, the definition of f(i, s) is, by
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default, the value f(i, s − 1). The exception occurs if the structure Mi is
challenging the structureM at stage s, namely, when ı̄Mi and an element x
exist in Mi such that fMi (̄ıMi , x) is defined but x has not yet been seen
to be standard. In this case, let x be the Gödel least such; the definition
of f(i, s) is 1 if fMi (̄ıMi , x) = 0Mi and 0 otherwise, and we say that fM

is accepting the challenge by (i, x) starting at stage s. If x is later seen to
be standard in Mi at a stage t, then we say Mi defeated the challenge
by (i, x) at stage t. Until the challenge by (i, x) is defeated, fM does not
accept a challenge from any (i, y) with x 6= y. If the challenge is defeated,
then fM accepts the challenge from the next Gödel least element from Mi

that presents a challenge.

Verification: By construction, the structure M is infinite and compu-
table. Moreover, it is computably categorical as a consequence of ω under
successor being computably categorical. It therefore suffices to argue that
the set

{i :M∼=Mi}
is Π0

1 in M. Fix an index i. As we are working in M, we may assume SMi

and fMi are total on Mi. For each stage s, we believe M and Mi are
isomorphic if and only if

(1) there is no “trivial reason” to believe otherwise, i.e., SMi must ap-

pear to be a successor function on Mi, f
Mi must take the value 0Mi

or 1Mi , 0Mi must not be the successor of any element in Mi,
1Mi must be S(0Mi), and fMi (̄ıMi , n̄Mi) must equal fM(i, n), and

(2) if fM accepts the challenge by (i, x) starting at stage s, then we

have x ∈ {0̄Mi , 1̄Mi , . . . , s̄Mi}.

We argue that if M 6∼= Mi then there is some stage after which we
believe M and Mi are not isomorphic. If M and Mi are not isomorphic
for a trivial reason, then we will eventually cease believing them to be iso-
morphic. If M and Mi are not isomorphic for a nontrivial reason, then
the structure Mi must have nonstandard elements. So there is some non-
standard element x for which fM accepted the challenge by (i, x) at some
stage s, but Mi did not defeat the challenge by (i, x). Then, once the el-
ements {0̄Mi , 1̄Mi , . . . , s̄Mi} are defined, we cease believing M and Mi to
be isomorphic by our definition of f(i, s).

Conversely, if we believe that M and Mi are not isomorphic at some
stage, there are two possibilities. If we believe them not isomorphic for a
trivial reason, then certainly M 6∼= Mi. If we believe them not isomorphic
because a challenge by some (i, x) was accepted starting at stage s and x 6∈
{0̄Mi , 1̄Mi , . . . , s̄Mi}, then there are two cases. If x is a nonstandard element
of Mi, then M 6∼= Mi. If x is a standard element of Mi, then let t be the
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stage at which the challenge was defeated. Then x ∈ {(s+ 1)
Mi
, . . . , t̄Mi}.

But by construction, fM(i, n) 6= fMi(i, x) for all n ∈ {(s+ 1)
Mi
, . . . , t̄Mi}.

Thus M 6∼=Mi.

We conclude that the index set of M is Π0
1 in M. We observe that it

is easily seen to be Π0
1-complete: For a Π0

1 formula ∀s [ϕ(n, s)], construct a
structure Mn by copying M until an s with ¬ϕ(n, s) is seen. At this time,
make a “wrong” definition of fMn , but preserve totality.

5. Relative categoricity above a degree. The notions of computable
categoricity and relative computable categoricity are traditionally relativiz-
ed (as in Definition 1.6) by allowing oracle access to a fixed number of jumps
over the presentations of the relevant models. Another method of relativiza-
tion would be to allow oracle access to a fixed degree. We explore this idea
in this section. As the constructions are not particularly difficult and intro-
duce no significant new ideas (relying only on the pushing on isomorphisms
machinery), we only sketch their proofs.

Definition 5.1. Let d be a Turing degree. A computable structure S is
relatively computably categorical above d (or relatively ∆0

α-categorical above d,
respectively) if between any two presentations A,B ≥T d of S, there is
an isomorphism computable in deg(A) ∪ deg(B) (or ∆0

α(deg(A) ∪ deg(B)),
respectively).

Proposition 5.2. For a computable structure S, the following are equiv-
alent:

(1) The structure S is relatively ∆0
α-categorical above d.

(2) Between any two presentations A and B of S, there is an isomor-
phism computable in ∆0

α(deg(A) ∪ deg(B) ∪ d).

Proof. If S is trivial, i.e., if there is a tuple of elements such that ev-
ery permutation of the universe that fixes this tuple pointwise is an au-
tomorphism, then the equivalence is immediate. We therefore assume S is
nontrivial.

For “(1) implies (2)”, we use the fact that the degree spectrum of a
structure is upwards closed (see Theorem 3.21 of [2]). From this, we have a
presentation A′ and isomorphism g1 : A → A′ with deg(A′) = deg(A) ∪ d
and deg(g1) ≤ deg(A) ∪ d; and a presentation B′ and isomorphism g2 :
B → B′ with deg(B′) = deg(B) ∪ d and deg(g2) ≤ deg(B) ∪ d. By relative
∆0
α-categoricity above d, there is an isomorphism f : A′ ∼= B′ with f ∈

∆0
α((deg(A)∪d)∪(deg(B)∪d)). Then g−1

2 ◦f ◦g1 : A ∼= B is an isomorphism
and deg(g−1

2 ◦ f ◦ g1) ≤ ∆0
α(deg(A) ∪ deg(B) ∪ d).

The direction “(2) implies (1)” is immediate.
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For some classes of structures, there is no difference between relative
computable categoricity and relative computable categoricity above d (for
any degree d).

Theorem 5.3. A linear order is relatively computably categorical above
a degree d if and only if it is relatively computably categorical.

A Boolean algebra is relatively computably categorical above a degree d
if and only if it is relatively computably categorical.

Proof. The proof that a (relatively) computably categorical linear or-
der can possess at most finitely many adjacencies succeeds in the presence
of a d-oracle, as does the proof that a (relatively) computably categorical
Boolean algebra can possess at most finitely many atoms.

On the other hand, there are classes of structures where this notion
does not coincide with either computable categoricity or relative computable
categoricity.

Theorem 5.4. For any nonzero c.e. degree d, there is a structure S
that is relatively computably categorical above d but not computably categor-
ical.

Proof. Fix a c.e. set D ∈ d. The structure S we construct is a rigid
undirected graph.

Construction: The isomorphism type of S contains an “ω-spine”, i.e., a
sequence of vertices in order type ω. For each n, two paths emanate from
the nth element of the spine: If n 6∈ D, the paths have lengths 1 and 2; while
if n ∈ D, the paths have lengths 2 and 3. Clearly, this S is computably
presentable.

Verification: Towards showing that S is relatively computably categori-
cal above d, fix presentationsA and B of S. We show how deg(A)∪deg(B)∪d
computes an isomorphism f : A → B. We nonuniformly know the initial el-
ements of the spines in A and B. The function f maps the ω-spines in the
obvious way, noting the ω-spines of A and B can be effectively found using
deg(A) and deg(B). For the nth element of the spine, if n ∈ D, the func-
tion f waits until both a path of length 2 and a path of length 3 appear in
both A and B. Then it maps them as appropriate. If n 6∈ D, the function f
waits until both a path of length 1 and a path of length 2 appear in both A
and B, mapping them appropriately. It is clear that f is an isomorphism
computable in deg(A) ∪ deg(B) ∪ d.

Towards showing that S is not computably categorical, we exhibit com-
putable copies A and B of S that are not computably isomorphic. For A, we
construct the ω-spine with a path of length 1 and a path of length 2 at every
n ∈ ω. When we see a number n enter D, we extend the path of length 1 at
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the nth element of the ω-spine to be a path of length 3. For B, we construct
the ω-spine with a path of length 1 and a path of length 2 at every n ∈ ω.
When we see a number n enter D, we extend the path of length 1 at the
nth element of the ω-spine to be a path of length 2 and extend the path of
length 2 at the nth element of the ω-spine to be a path of length 3. The
unique isomorphism π : A → B computes d as membership of n in D can be
determined by noting whether the initial path of length 1 in A is mapped
to the initial path of length 1 in B (in which case n 6∈ D) or not (in which
case n ∈ D).

Remark 5.5. We note that Theorem 5.4 can be improved significantly
by exploiting the structures introduced by Csima, Franklin, and Shore [5].
Indeed, the result remains true for any degree d that is d.c.e. and above
some 0(α), where α is a nonlimit computable ordinal.

Theorem 5.6. For any nonzero c.e. degree d, there is a computable
structure S that is computably categorical, relatively computably categorical
above d, but not relatively computably categorical.

Proof. Fix a c.e. set D ∈ d. The structure S is again an undirected
graph containing an ω-spine with two finite paths emanating from each
vertex of the ω-spine. As in Theorem 5.4, we attempt to increase the lengths
of the paths emanating from an element of the ω-spine when n enters D.
Here, however, we must respect the pushing on isomorphism machinery: If n
enters D, we immediately increase the path of length two to a path of length
three; we do not increase the path of length one to a path of length two until
the higher-priority isomorphism requirements permit. Unlike in the proof of
Theorem 3.1, diagonalization strategies do not claim a location to work at
until they are ready to act.

Construction: We construct a computable presentation A, taking S to
be its isomorphism type. The structure A contains an ω-spine. Emanating
from the nth element of the spine is a path of length one and a path of
length two if n 6∈ D. If and when n enters D, we extend the path of length
two at the nth element of the spine to a path of length three. Let an be the
first element in the path of original length two (i.e., the element which is
adjacent to the nth element of the spine).

As in the proof of Theorem 3.1, we have a tree of strategies, some
constructing isomorphisms and some diagonalizing against Scott families.
A strategy σ attempting to defeat a Scott family (ci, Xi) of existential for-
mulas is ready to act at stage s if:

(1) The strategy σ has not yet acted.
(2) The strategy σ is accessible at stage s.
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(3) There is some n ∈ Ds, a previous stage t < s, and some ϕ ∈ Xi such
that:

• n 6∈ Dt,
• At |= ϕ(an, ci), and
• the parameter ci is disjoint from the paths emanating from the
nth element of the spine.

A strategy that is ready to act acts by growing the path of length one
emanating from the nth element of the spine into a path of length two (if
some other strategy has not already done this).

Verification: As we build a computable structure, it is immediate that
we have a computably categorical structure as a consequence of the usage
of the pushing on isomorphism machinery. We therefore verify that it is
not relatively computably categorical and that it is relatively computably
categorical above d.

Clearly if some strategy σ working to defeat (ci, Xi) acts at some stage,
then (ci, Xi) cannot be a Scott family for S: The formula ϕ holds of an
element in the path of length 3 and of an element in the path of length 2,
despite the structure being rigid. So if (ci, Xi) is a Scott family, then the
strategy along the true path working to defeat it never acts. Consequently,
for any n ∈ D and ϕ ∈ Xi, we have As |= ϕ(an, ci) only if n ∈ Ds or some
element of ci occurs in a path coming out of n. Thus the computable function

n 7→ (µs)[(∀m ≤ n)(∃ϕ ∈ Xi,s)[As |= ϕ(am, ci)]]

is total and a finite modification of it majorizes the modulus of D, contra-
dicting D being noncomputable.

The structure is relatively computably categorical above d as we can con-
struct a deg(A)∪deg(B)∪d-isomorphism between any two presentations A
and B. Just as in Theorem 5.4, we may nonuniformly map the ω-spines. For
the nth element of the ω-spine, we check whether n is in D. If it is, we wait
to see a path of length three in both A and B before mapping either path;
if it is not, we wait only to see a path of length two before mapping either
path. In either case, we know that the other path must be shorter (though
we do not necessarily know its length), so our mapping cannot be wrong.

By changing the widgets attached to the elements of the ω-spine, we
obtain a similar theorem at the level of one jump higher.

Theorem 5.7. There is a computable structure S that is computably cat-
egorical, relatively computably categorical above 0′′, but not relatively ∆0

2-cat-
egorical.

Proof. The structure S is again an undirected graph with an ω-spine.
Unlike in the proof of Theorem 5.4 and of Theorem 5.6, the widgets emanat-
ing from the nth element of the spine will be cliques (vertex sets with edges
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between every pair of vertices) rather than paths. Depending on the behav-
ior of the strategy controlling n, these cliques will either both be infinite, or
of finite sizes k and k + 2 for some k.

We construct a computable presentation A, taking S to be its isomor-
phism type. For any Σc

2-formula ψ, the statement “A |= ψ(x, c)” is effectively
equivalent to ∀∞y [ϕ(x, c, y)] for some computable relation ϕ. We therefore
diagonalize against c.e. families of formulas of this form.

Strategy for defeating a family (Xi, ci): The strategy is assigned to work
with the nth element of the spine, for some n. We begin by constructing a
clique of size one and a clique of size three emanating from this element.
Let an be some point in the larger clique and bn be some point in the smaller
clique.

If σ is accessible at stage s, let t < s be the last stage at which σ
was accessible (with t := 0 if there is no such stage). Let (rs, ϕs) be the
least pair (by Gödel number) such that rs ∈ ω, ∀∞y [ϕs(x, ci, y)] ∈ Xi,s,
and ϕs(an, ci, y) and ϕs(bn, ci, y) both hold for all y with rs ≤ y < s. If
(rt, ϕt) = (rs, ϕs), then σ does nothing at stage s. Otherwise, the strategy σ
grows each clique by one element (being careful to never use elements of ci).

Construction: We place the strategies on a priority tree in the usual
fashion, including computable categoricity strategies which use the usual
pushing on isomorphism machinery. At every stage, we let all accessible
strategies act in order of priority.

Verification: As we build a computable structure, it is immediate that
we have a computably categorical structure as a consequence of the usage
of pushing on isomorphisms. We therefore verify that it is not relatively
∆0

2-categorical and that it is relatively computably categorical above 0′′.
Suppose towards a contradiction that (ci, Xi) is a Scott family of Σc

2-
formulas. Let n be the number assigned to the strategy along the true
path which diagonalizes against (ci, Xi). If there is some formula ψ(x) =
∀∞y ψ(x, y) in Xi with A |= ψ(an, ci) ∧ ψ(bn, ci), then there is some Gödel
least pair (r, ϕ) such that (∀y ≥ r) [ϕ(an, ci, y)∧ϕ(bn, ci, y)]. Then this pair
will be (rs, ϕs) for all but finitely many s, and thus the two cliques will
be of finite, distinct sizes. Thus an and bn will not be in the same orbit,
contradicting (ci, Xi) being a Scott family.

If there is no such formula ψ, then for every pair (r, ϕ), there is some
y > r such that at least one of ϕ(an, ci, y) or ϕ(bn, ci, y) fails. So (r, ϕ) will
not be (rs, ϕs) for any s > y. So there are infinitely many stages at which
the cliques attached to n grow. So they will be infinite, and thus an and bn
will be in the same orbit, contradicting (ci, Xi) being a Scott family.

The structure is relatively computably categorical above 0′′ because 0′′

can determine the eventual behavior of the strategy controlling n. Given two
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copies A and B, if the two cliques at n are infinite, it does not matter which
clique in A maps to which in B, so a simple back-and-forth argument can
construct an isomorphism. If the two cliques are finite, then 0′′ can determine
when they have stopped growing, and then we can wait for appropriately
sized cliques in A and B before defining our map.

Theorem 5.8. There is a structure S that is computably categorical,
relatively ∆0

2-categorical, and not relatively computably categorical above d
for any degree d.

Proof. The structure built in the proof of Theorem 3.3 suffices. It is
computably categorical by construction. Since it is 1-decidable, by Theo-
rem 1.12, it is relatively ∆0

2-categorical (it is also easy to exhibit a Scott
family). For any degree d ≥ 0′, the construction of B can be modified to
produce a d-computable structure which is not isomorphic to A by any
d-computable isomorphism. This suffices as, fixing an arbitrary degree d,
the structure S will not be relatively computably categorical above d⊕ 0′,
and so not relatively computably categorical above d.
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