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Abstract. According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroupD
of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of
the dual groups is a topological isomorphism. We introduce four conditions on D that
are necessary for it to determine G and we resolve the following question: If one of these
conditions holds for every dense (or Gδ-dense) subgroup D of G, must G be metrizable?
In particular, we prove (in ZFC) that a compact abelian group determined by all its
Gδ-dense subgroups is metrizable, thereby resolving a question of Hernández, Macario
and Trigos-Arrieta. (Under the additional assumption of the Continuum Hypothesis CH,
the same statement was proved recently by Bruguera, Chasco, Domı́nguez, Tkachenko
and Trigos-Arrieta.) As a tool, we develop a machinery for building Gδ-dense subgroups
without uncountable compact subsets in compact groups of weight ω1 (in ZFC). The
construction is delicate, as these subgroups must have non-trivial convergent sequences in
some models of ZFC.

All spaces and topological groups are assumed to be Hausdorff. Recall
that a topological space X is called:

• κ-bounded (for a given cardinal κ) if the closure of every subset of X
of cardinality at most κ is compact,
• countably compact if every countable open cover of X has a finite

subcover,
• pseudocompact if every real-valued continuous function defined on X

is bounded.
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It is well known that compact → κ-bounded → ω-bounded → countably
compact → pseudocompact, for every infinite cardinal κ.

The symbols w(X), nw(X), χ(X) and d(X) denote the weight, the net-
work weight, the character and the density of a space X, respectively. All
undefined topological terms can be found in [21].

As usual, N denotes the set of natural numbers, P denotes the set of all
prime numbers, Z denotes the group of integers, Z(p) = Z/pZ denotes the
cyclic group of order p ∈ P with the discrete topology, and T denotes the
circle group with its usual topology. The symbol c denotes the cardinality
of the continuum, ω1 denotes the first uncountable cardinal and ω = |N|.
Clearly, ω < ω1. By Cantor’s theorem, ω1 ≤ c. The Continuum Hypothesis
CH says that ω1 = c. We recall that this equality is both consistent with and
independent of the usual Zermelo–Fraenkel axioms ZFC of set theory [29].

Recall that a cardinal τ is strong limit if 2σ < τ for every cardinal
σ < τ . For an ordinal (in particular, for a cardinal) α, we denote by cf(α)
the cofinality of α. For a cardinal κ and a set X, the symbol [X]≤κ denotes
the family of all subsets of X having cardinality at most κ. All undefined
set-theoretic terms can be found in [29].

When topological groups G and H are topologically isomorphic, we de-
note this fact by G ∼= H.

1. Introduction. Let G be an abelian topological group. We denote
by Ĝ the dual group of all continuous characters endowed with the compact-
open topology. Following [9, 10], we say that a dense subgroup D of G

determines G if the restriction homomorphism Ĝ→ D̂ of the dual groups is
a topological isomorphism. According to [9, 10], G is said to be determined
if every dense subgroup of G determines G. The cornerstone in this topic is
the following theorem due to Chasco and Außenhofer:

Theorem 1.1 ([2, 7]). Every metrizable abelian group is determined.

A remarkable partial inverse of this theorem was proved by Hernández,
Macario and Trigos-Arrieta. (Under the assumption of the Continuum Hy-
pothesis, it was established earlier by Comfort, Raczkowski and Trigos-
Arrieta in [9, 10]).

Theorem 1.2 ([24, Corollary 5.11]). Every compact determined abelian
group is metrizable.

While Theorem 1.1 says that every dense subgroup of a metrizable
abelian group determines it, Theorem 1.2 asserts that every non-metrizable
compact abelian group necessarily contains some dense subgroup that does
not determine it.
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A subgroup D of a topological group G is called Gδ-dense in G if D∩B
6= ∅ for every non-empty Gδ-subset B of G [12]. The following classical result
is due to Comfort and Ross [12]:

Theorem 1.3. A dense subgroup D of a compact group G is pseudo-
compact if and only if D is Gδ-dense in G.

The following question was asked by Hernández, Macario and Trigos-
Arrieta in [24, Question 5.12(iii)]:

Question 1.4. Does there exist (in ZFC ) a non-metrizable compact
abelian group G such that every Gδ-dense subgroup D of G determines G?

This question was also repeated in [14, Question 4.12].

It is useful to state explicitly the negation of the statement in Ques-
tion 1.4:

Question 1.5. Let G be a compact abelian group such that every Gδ-
dense subgroup of G determines G. Must G be metrizable (in ZFC )?

By Theorem 1.3, one can replace “Gδ-dense” by “dense pseudocompact”
in both questions to get their equivalent versions.

Theorem 1.2 says that a compact abelian group G is metrizable provided
that every dense subgroup of G determines it. Since Gδ-dense subgroups of G
are dense in G, a positive answer to Question 1.5 (equivalently, a negative
answer to Question 1.4) would provide a strengthening of Theorem 1.2, be-
cause one would get the same conclusion under a weaker assumption, requir-
ing only a much smaller family of Gδ-dense subgroups of G to determine it.
One of the goals of this paper is to accomplish precisely this, without re-
course to any additional set-theoretic assumptions beyond Zermelo–Fraenkel
axioms ZFC of set theory.

Remark 1.6. Chasco, Domı́nguez and Trigos-Arrieta proved that every
compact abelian group G with w(G) ≥ c has a Gδ-dense subgroup which
does not determine G (see [8, Theorem 14]). Independently, Bruguera and
Tkachenko proved that every compact abelian group G with w(G) ≥ c
contains a proper Gδ-dense reflexive subgroup D ([6, Theorem 4.9]). As
mentioned at the end of [8, Section 3], this D cannot determine G. (Indeed,̂̂
D = D 6= G =

̂̂
G implies D̂ 6= Ĝ.) It is clear that, under the assumption of

the Continuum Hypothesis, these results yield a consistent positive answer
to Question 1.5, and therefore a consistent negative answer to Question 1.4.

An overview of the paper follows. Inspired by Questions 1.4 and 1.5, in
Section 2 we introduce four properties that every dense subgroup determin-
ing a compact abelian group must have (see Diagram 1), thereby making a
first attempt to clarify the “fine structure” of the notion of determination.
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Section 3 collects some basic facts about the properties introduced that help
the reader better understand these new notions.

In Section 4, we investigate what happens to a compact group when all
its dense (or all its Gδ-dense) subgroups are assumed to have one of the four
properties introduced in Section 2. Our results in Section 4 substantially
clarify the “fine structure” of the notion of a determined group by address-
ing the following question systematically: “How much determination” of a
compact group is really necessary in order to get its metrization in the spirit
of Theorem 1.2 or Question 1.5? It turns out that such metrization criteria
can be obtained under much weaker conditions than full determination; see
Theorems 4.2 and 4.5. In turn, Theorems 4.1, 4.3 and 4.4 serve to demon-
strate that the conditions equivalent to the metrization of a compact group
in Theorems 4.2 and 4.5 are the best possible, thereby pinpointing the exact
property among the four necessary conditions “responsible” for both the va-
lidity of Theorem 1.2 and the positive answer to Question 1.5. The answer
to Question 1.5 itself comes as a particular corollary of the main result; see
Corollary 4.6. An added bonus of our approach is that many results in this
section hold for non-abelian compact groups as well, whereas the notion of
a determined group is restricted to the abelian case. (A non-commutative
version of a determined group was introduced recently in [22].)

In Section 5 we develop a machinery for constructing Gδ-dense subgroups
D without uncountable compact subsets in compact groups G of weight ω1.
Furthermore, when G belongs to a fixed variety V of groups, the subgroup
D can be chosen to be a free group in the variety V. Our machinery works
in ZFC alone. As in Section 4, results in this section do not require G to
be abelian. The primary novelty here is our ability to successfully handle
small weights of G (like ω1) at the expense of “killing” only uncountable
compact subsets of D. Known constructions in the literature usually “kill”
all infinite compact subsets, thereby eliminating also all non-trivial conver-
gent sequences in D, but this stronger conclusion is accomplished at the
expense of having been able to handle only groups G of weight c. In fact,
this difference is inherent in the nature of the problem and not purely co-
incidental. Indeed, Remark 5.6 shows that the group D we construct must
have non-trivial convergent sequences under some additional set-theoretic
assumptions. As a particular corollary of our results, we produce a pseu-
docompact group topology on the free group Fc with c many generators
without uncountable compact subsets. A recent result by Thom [34] implies
that such a topology on Fc must necessarily contain a non-trivial convergent
sequence; see Remark 5.7.

Sections 6, 7 and 8 are devoted to the proofs of all theorems from Sections
4 and 5. Section 9 contains some examples showing the limits of our results,
and Section 10 lists open problems related to the topic of this paper.
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2. Four necessary conditions for determination of a compact
abelian group. In this section we introduce four conditions and show that
they are all necessary for determination of a compact abelian group.

Definition 2.1. Let X be a space.

(i) We shall say that X is w-compact if there exists a compact subset
C of X such that w(C) = w(X).

(ii) We shall say that X has the Arhangel’skĭı property (or is an Arhan-
gel’skĭı space) provided that w(X) ≤ |X|.

The letter w in front of “compact” in item (i) is intended to abbreviate
the word “weight”, but one can also view it as an abbreviation of the word
“weak”, as every compact space is obviously w-compact.

The name for the class of spaces in item (ii) was chosen to pay tribute
to the first paper of Professor Arhangel’skĭı [1] where he introduced the
notion of network weight and demonstrated its importance in the study
of compact spaces. A celebrated result of Arhangel’skĭı from [1] says that
w(X) = nw(X) ≤ |X| for every compact space X. In our terminology, this
means that every compact space has the Arhangel’skĭı property. In fact, a bit
more can be said. Indeed, let X be a w-compact space. Then X contains a
compact subset C such that w(C) = w(X). Combining this with the above
result of Arhangel’skĭı, we obtain w(X) = w(C) ≤ |C| ≤ |X|. Therefore,
X has the Arhangel’skĭı property. This argument shows that

(α) a w-compact space has the Arhangel’skĭı property.

Definition 2.2. Let G be a topological group.

(i) We shall say that G is projectively w-compact if every continuous
homomorphic image of G is w-compact.

(ii) We shall say that G is projectively Arhangel’skĭı if every continuous
homomorphic image of G has the Arhangel’skĭı property.

Since compactness is preserved by continuous images and compact spaces
are w-compact, all compact groups are projectively w-compact. From (α)
and Definition 2.2(ii) we get

(β) projectively w-compact groups are projectively Arhangel’skĭı.

The following necessary condition for determination was found by the
authors in [16]. Since it plays a crucial role in the present paper, we provide a
shorter self-contained proof requiring no recourse to the notion of qc-density
that was essential in [16].

Theorem 2.3 ([16, Corollary 2.4]). If a subgroup D of an infinite com-
pact abelian group G determines G, then D contains a compact subset X
such that w(X) = w(G).
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Proof. Since D determines G and Ĝ is discrete, there exists a compact
subset X of D and an open neighbourhood V of 0 in T such that W (X,V ) =

{0}, where W (X,V ) = {χ ∈ Ĝ : χ(X) ⊆ V }. Let π : Ĝ → C(X,T)

be the restriction homomorphism defined by π(χ) = χ�X for χ ∈ Ĝ, where
C(X,T) denotes the group of all continuous functions from X to T equipped
with the compact-open topology. Since kerπ ⊆ W (X,V ) = {0}, π is a

monomorphism, and so w(G) = |Ĝ| = |H|, where H = π(Ĝ). Furthermore,
the open subset U = {f ∈ C(X,T) : f(X) ⊆ V } of C(X,T) satisfies
U ∩ H = {0}, so H is a discrete subgroup of C(X,T). Therefore, |H| =
w(H) ≤ w(C(X,T)) = w(X) + ω by [21, Proposition 3.4.16]. This proves
that w(G) ≤ w(X) + ω. To finish the proof of the inequality w(G) ≤ w(X),
it suffices to show that X is infinite. Indeed, assume that X is finite. Then
C(X,T) = TX is compact, and so the discrete subgroup H of C(X,T) must

be finite. This contradicts the fact that |H| = |Ĝ| ≥ ω, as G is infinite.
Finally, the reverse inequality w(X) ≤ w(G) is clear.

The relevance of the four notions introduced in Definitions 2.1 and 2.2 to
the topic of our paper is evident from the following corollary of this theorem.

Corollary 2.4. If a subgroup D of a compact abelian group determines
it, then D is projectively w-compact.

Proof. Let D be a dense subgroup of a compact abelian group G that
determines G, and let f : D → N be a continuous homomorphism onto
some topological group N . Then f can be extended to a continuous group
homomorphism from G to the completion H = N̂ of N , and we denote this
extension by the same letter f . Since D determines G, the dense subgroup
f(D) of the compact group f(G) = H determines H [10, Corollary 3.15].
If H is finite, then f(D) = H is compact, so trivially w-compact. If H is
infinite, we apply Theorem 2.3 to conclude that f(D) contains a compact
set X with w(X) = w(H) = w(f(D)). That is, f(D) is w-compact. This
shows that D is projectively w-compact.

The relations between the properties introduced above in the class of
precompact abelian groups can be summarized in the following diagram:

compact

��
determining the completion

2.4��

metrizable
1.1oo

projectively w-compact

��

(β) // projectively Arhangel’skĭı

��
w-compact

(α) // Arhangel’skĭı

Diagram 1



Metrization criteria for compact groups 167

This diagram shows that the four properties from Definitions 2.1 and 2.2
are necessary for the completion of a precompact abelian group to be deter-
mined. With a possible exception of the arrow 2.4, none of the other arrows
in Diagram 1 is invertible.

A dense subgroup D of a compact group G that determines G need not
be either compact or metrizable. To see this, it suffices to recall that the
direct sum

⊕
α<ω1

T of ω1 copies of T determines Tω1 ; see [10, Corollary
3.12].

In Example 9.1, we exhibit a pseudocompact projectively Arhangel’skĭı
group D that is not w-compact. (Furthermore, under the assumption of CH,
D can even be chosen to be countably compact.) In particular, neither the
arrow (α) nor the arrow (β) is reversible.

For every infinite cardinal κ, there exists a κ-bounded w-compact (thus,
Arhangel’skĭı) abelian group that is not projectively Arhangel’skĭı (and so
is not projectively w-compact); see Example 9.2.

We do not know if the arrow 2.4 in Diagram 1 is invertible. In fact, it
is tempting to conjecture that Corollary 2.4 gives not only a necessary but
also a sufficient condition for a compact abelian group to be determined by
its dense subgroup.

Question 2.5. Does every dense projectively w-compact subgroup of a
compact abelian group determine it?

We refer the reader to Remark 10.2(ii) for a partial positive answer to
this question.

3. Properties of Arhangel’skĭı spaces and projectively Arhan-
gel’skĭı groups. Our first remark shows that the Arhangel’skĭı property is
“local”.

Remark 3.1. For every space X, the inequalities w(X) ≤ |X| and
χ(X) ≤ |X| are equivalent.

Proposition 3.2.

(i) All locally compact spaces have the Arhangel’skĭı property.
(ii) First countable (in particular, metric) spaces have the Arhangel’skĭı

property.
(iii) The class of Arhangel’skĭı spaces is closed under taking perfect pre-

images; that is, if f : X → Y is a perfect map from a space X onto
an Arhangel’skĭı space Y , then X has the Arhangel’skĭı property.

(iv) If w(X) is a strong limit cardinal, then X has the Arhangel’skĭı
property.

Proof. (i) Let X be a locally compact space. If X is finite, then X has
the Arhangel’skĭı property. Suppose that X is infinite. Since the one-point
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compactification Y of X is compact, it has the Arhangel’skĭı property, so
w(Y ) ≤ |Y |. Since X is infinite and Y \X is a singleton, |Y | = |X|. Since
X is a subspace of Y , we get w(X) ≤ w(Y ). This proves that w(X) ≤ |X|.

(ii) For finite spaces X, this follows from (i). If X is infinite, then the
conclusion follows from Remark 3.1.

(iii) Since finite spaces have the Arhangel’skĭı property by (i), we shall
assume that X is infinite. Since Y has the Arhangel’skĭı property,

(3.1) w(Y ) ≤ |Y | = |f(X)| ≤ |X|.
There exists a one-to-one continuous map g : X → Z onto a space Z such
that w(Z) ≤ nw(X) ≤ |X| [1]. Let h : X → Y × Z be the diagonal product
of f and g defined by h(x) = (f(x), g(x)) for all x ∈ X. Since f is a perfect
map, so is h [21, Theorem 3.7.9]. Since g is one-to-one, h is an injection. It
follows that X and h(X) are homeomorphic, so

w(X) = w(h(X)) ≤ w(Y × Z) = max{w(Y ), w(Z)} ≤ max{w(Y ), |X|}.
Combining this with (3.1), we conclude that w(X) ≤ |X|. Thus, X has the
Arhangel’skĭı property.

(iv) Since d(X) ≤ w(X) ≤ 2d(X) and w(X) is a strong limit cardinal,
w(X) = d(X) ≤ |X|.

Proposition 3.3. If a topological group G contains a dense subgroup H
with the Arhangel’skĭı property, then G itself has the Arhangel’skĭı property.

Proof. Since H is dense in G, χ(H) = χ(G). Since H has the Ar-
hangel’skĭı property, χ(H) ≤ w(H) ≤ |H|. Since H is a subgroup of G,
|H| ≤ |G|. This shows that χ(G) ≤ |G|. Therefore, G has the Arhangel’skĭı
property by Remark 3.1.

This proposition does not hold for spaces since one may have w(Y ) <
w(X) when Y is a dense subspace of X.

Proposition 3.4. Every pseudocompact group G such that w(G) ≤ c is
projectively Arhangel’skĭı.

Proof. Indeed, let f : G→ H be a continuous surjective homomorphism
of G onto a topological group H. Then H is pseudocompact, as a continuous
image of the pseudocompact space G. If H is finite, then H has the Arhan-
gel’skĭı property by Proposition 3.2(i). Assume now that H is infinite. Then
|H| ≥ c [20, Proposition 1.3(a)]. To show that H has the Arhangel’skĭı

property, it suffices to note that w(H) ≤ c. Indeed, let f̂ : Ĝ → Ĥ be the

extension of f over the completion Ĝ of G. Since Ĝ is compact and f̂ is
surjective, w(H) = w(Ĥ) ≤ w(Ĝ) = w(G) ≤ c.

Item (i) of our next proposition shows that the restriction on weight
in Proposition 3.4 is the best possible, while item (ii) of Proposition 3.5
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shows that even groups “arbitrarily close” to compact need not have the
Arhangel’skĭı property. (Compare this with Proposition 3.2(i).)

Proposition 3.5.

(i) Every compact group G with w(G) = c+ has a dense countably com-
pact subgroup without the Arhangel’skĭı property.

(ii) For every infinite cardinal κ, each compact group G of weight τ =

22
2κ

has a dense κ-bounded subgroup without the Arhangel’skĭı prop-
erty.

Proof. (i) Since c+ ≤ 2c, applying [27, Theorem 2.7] we can choose a
dense subgroup H of G such that |H| = c. By the standard closing-off
argument, we can find a countably compact subgroup D of G such that
H ⊆ D and |D| ≤ c. Since H is dense in G, so is D. Since |D| = c < c+ =
w(G) = w(D), D does not have the Arhangel’skĭı property.

(ii) By [27, Theorem 2.7], G contains a dense subgroup H of size 22
κ
.

Let D be the κ-closure of H in G; that is, D =
⋃
{A : A ∈ [H]≤κ}, where A

denotes the closure of A in G. Clearly, D is a subgroup of G containing H,
so D is dense in G. Since |[H]≤κ| ≤ 22

κ
and |A| ≤ 22

κ
for every A ∈ [H]≤κ,

we conclude that |D| ≤ 22
κ
< 22

2κ

= w(D). Therefore, D does not have the
Arhangel’skĭı property.

4. Metrizability of compact groups via conditions on their dense
subgroups. Our first theorem in this section demonstrates that the weakest
condition in Diagram 1 is not sufficient to get the metrizability of a compact
group G even when this condition is imposed on all dense subgroups of G.

Theorem 4.1. Every dense subgroup of a compact group G has the Ar-
hangel’skĭı property if and only if w(G) is a strong limit cardinal.

Our second theorem shows that the projective version of the weakest con-
dition in Diagram 1 imposed on all dense subgroups of a compact group G
suffices to obtain its metrizability.

Theorem 4.2. Every dense subgroup of a compact group G is projec-
tively Arhangel’skĭı if and only if G is metrizable.

Since a dense determining subgroup of a compact abelian group is pro-
jectively Arhangel’skĭı (see Diagram 1), the “only if” part of this result
strengthens Theorem 1.2 by offering the same conclusion under a much
weaker assumption.

For a cardinal σ, the minimum cardinality of a pseudocompact group of
weight σ is denoted by m(σ) [11].

The next theorem is a counterpart of Theorem 4.1 for Gδ-dense sub-
groups.
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Theorem 4.3. Every Gδ-dense subgroup of a compact group G has the
Arhangel’skĭı property if and only if m(w(G)) ≥ w(G).

Our next result is the counterpart of Theorem 4.2 with “dense” replaced
by “Gδ-dense”.

Theorem 4.4. For a compact group G, the following conditions are
equivalent:

(i) every Gδ-dense (equivalently, each dense pseudocompact) subgroup
of G is projectively Arhangel’skĭı;

(ii) all dense countably compact subgroups of G are projectively Arhan-
gel’skĭı;

(iii) w(G) ≤ c.

This theorem shows that having all Gδ-dense subgroups of a compact
group G projectively Arhangel’skĭı is not sufficient to obtain metrizabil-
ity of G. Our next theorem shows that strengthening “projectively Arhan-
gel’skĭı” to “projectively w-compact” yields metrizability of G in the case
when G is either connected or abelian.

Theorem 4.5. Let G be a compact group that is either abelian or con-
nected. If all Gδ-dense (equivalently, all dense pseudocompact) subgroups
of G are projectively w-compact, then G is metrizable.

Combining this result with Corollary 2.4, we obtain the following corol-
lary solving Question 1.4 in the negative and Question 1.5 in the positive.

Corollary 4.6. If all Gδ-dense subgroups of a compact abelian group G
determine it, then G is metrizable.

Under the assumption of the Continuum Hypothesis, one can obtain the
following stronger version of Theorem 4.5 in the abelian case.

Theorem 4.7. Assume CH. If all dense countably compact subgroups of
a compact abelian group G are projectively w-compact, then G is metrizable.

The proofs of Theorems 4.1–4.4 are postponed until Section 6, while the
proofs of Theorems 4.5 and 4.7 are given in Section 8.

Let G be any compact abelian group of weight ω1. It follows from The-
orem 4.4 that all Gδ-dense subgroups of G are projectively Arhangel’skĭı,
even though G is not metrizable. This shows that “projectively w-compact”
cannot be weakened to “projectively Arhangel’skĭı” in the assumption of
Theorems 4.5 and 4.7. Furthermore, since ω1 is not a strong limit cardinal,
Theorem 4.1 implies that G has a dense subgroup without the Arhangel’skĭı
property. In Example 9.3 below, we shall exhibit compact abelian groups G
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of arbitrarily large weight such that every Gδ-dense subgroup of G has the
Arhangel’skĭı property, but there exists a dense subgroup of G without the
Arhangel’skĭı property.

We finish this section with the following corollary of its main results.

Corollary 4.8. For a compact abelian group G, the following condi-
tions are equivalent:

(i) G is metrizable;
(ii) every dense subgroup of G determines G;

(iii) every Gδ-dense (equivalently, each dense pseudocompact) subgroup
of G determines G;

(iv) every dense subgroup of G is projectively Arhangel’skĭı;
(v) every Gδ-dense (equivalently, each dense pseudocompact) subgroup

of G is projectively w-compact.

Furthermore, under CH, the following two items can be added to the list
of equivalent conditions (i)–(v):

(vi) every dense countably compact subgroup of G determines G;
(vii) every dense countably compact subgroup of G is projectively w-com-

pact.

Proof. (i)→(ii) is Theorem 1.1, (ii)→(iv) follows from Diagram1, (iv)→(i)
follows from Theorem 4.2.

(i)→(iii) follows from Theorem 1.1, (iii)→(v) follows from Corollary 2.4,
(v)→(i) is Theorem 4.5.

(i)→(vi) follows from Theorem 1.1, (vi)→(vii) follows from Corollary 2.4.
Finally, (vii)→(i) is Theorem 4.7. (We note that only the last implication
needs CH.)

Since countable compactness is stronger than pseudocompactness and a
dense pseudocompact subgroup of a compact abelian group is Gδ-dense in
it (Theorem 1.3), the implication (vi)→(i) of Corollary 4.8 strengthens the
consistent result typeset in italics in Remark 1.6.

5. Pseudocompact groups of small weight without uncountable
compact subsets. For a subset X of a group G we denote by 〈X〉 the
subgroup of G generated by X.

By a variety of groups we mean, as usual, a class of groups closed under
taking Cartesian products, subgroups and quotients (i.e., a closed class in
the sense of Birkhoff [5]). Another, equivalent, way of defining a variety is
by giving a fixed family of identities satisfied by all groups of the variety
([5]; see also [31, Theorem 15.51]).
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Definition 5.1. Let V be a variety of groups.

(a) Recall that a subset X of a group G is called V-independent provided
that the following two conditions are satisfied:

(i) 〈X〉 ∈ V;
(ii) for every map f : X → H with H ∈ V, there exists a homomor-

phism f̃ : 〈X〉 → H extending f .

(b) For every group G ∈ V the cardinal rV(G) = sup{|X| : X is a
V-independent subset of G} is called the V-rank of G.

(c) A group G is V-free if G is generated by some V-independent sub-
set X of G. We call this X the generating set (or the set of genera-
tors) of G and we write G = FV(X).

Theorem 5.2. Let V be a variety of groups and L be a compact metric
group that belongs to V such that rV(Lω) ≥ ω. Let I be a set such that ω1 ≤
|I| ≤ c. Then the group LI contains a Gδ-dense (so dense pseudocompact)
V-free subgroup D of cardinality c such that all compact subsets of D are
countable. Since w(D) = |I|, the group D is not w-compact.

The proof of this theorem is postponed until Section 7.

Corollary 5.3. Let L be a compact simple Lie group. Then for every
uncountable set I of size at most c, the group LI contains a Gδ-dense free
subgroup D of cardinality c such that all compact subsets of D are countable;
in particular, D is not w-compact.

Proof. By [3, Theorem 2], rG(Lω) ≥ rG(L) ≥ ω, where G is the variety
of all groups. Now we can apply Theorem 5.2 with V = G.

Corollary 5.4. For every non-trivial compact metric abelian group L
and every uncountable set I of size at most c, the group LI contains a
Gδ-dense subgroup D of cardinality c such that all compact subsets of D
are countable; in particular, D is not w-compact. Furthermore, if L is un-
bounded, then D can be chosen to be free.

Proof. We consider two cases.

Case 1: L is bounded . Let n be the order of L, and letAn be the variety of
abelian groups of order n. Then L ∈ An and rAn(Lω) ≥ ω, so the conclusion
follows from Theorem 5.2 applied to V = An.

Case 2: L is unbounded . Let A be the variety of all abelian groups.
Then rA(Lω) ≥ ω, so the conclusion follows from Theorem 5.2 applied to
V = A.

Following [15, Definition 5.2], we say that a variety V is precompact
if V is generated by its finite groups. One can find in [15, Lemma 5.1] a
host of conditions equivalent to precompactness of a variety. In particular,
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it is worth noting in connection with Theorem 5.2 that the existence of a
compact group L ∈ V with rV(L) ≥ ω is equivalent to precompactness of
the variety V.

Most of the well-known varieties are precompact; see [15, Lemma 5.3]
and the comment following this lemma. The Burnside variety Bn for odd
n > 665 is not precompact [13].

Corollary 5.5. For a variety V, the following conditions are equivalent:

(i) V is precompact;
(ii) for every cardinal σ with ω1 ≤ σ ≤ c, the V-free group with c many

generators admits a pseudocompact group topology of weight σ with-
out uncountable compact subsets; in particular, this topology is not
w-compact.

Proof. (i)→(ii). Suppose that V is precompact. By [15, Lemma 5.1], there
exists a compact metric group L ∈ V with rV(L) ≥ ω. Since rV(Lω) ≥ rV(L),
we get (ii) by applying Theorem 5.2 to L and a set I of cardinality σ.

(ii)→(i). This follows from [15, Theorem 5.5].

Our next remark shows that Theorem 5.2 and its Corollaries 5.3–5.5 are
the best possible results that one can obtain in ZFC.

Remark 5.6. Assume MA+¬CH, where MA stands for Martin’s Ax-
iom. In Theorem 5.2 and Corollaries 5.3, 5.4, take I to be a set of size ω1,
and let D be the group as in the conclusion of these results. In Corollary 5.5,
let σ = ω1 and let D denote the V-free group with c many generators. Then
D is a topological group of weight ω1 < c. Since MA holds, every count-
able subgroup of D is Fréchet–Urysohn [30]; in particular, D contains many
non-trivial convergent sequences. Therefore, “all compact subsets of D are
countable” cannot be strengthened to “all compact subsets of D are finite”
in the conclusions of Theorem 5.2 and Corollaries 5.3, 5.4, and “without
uncountable compact subsets” cannot be strengthened to “without infinite
compact subsets” in the conclusion of Corollary 5.5.

Recall that the strongest totally bounded group topology on a group is
called its Bohr topology .

Remark 5.7. Thom recently proved that the free group with two gener-
ators equipped with its Bohr topology contains a non-trivial convergent se-
quence [34]. This easily implies that every precompact group topology on the
free group with two generators contains a non-trivial convergent sequence.
Since pseudocompact groups are precompact, it follows that every pseu-
docompact free group of size c contains a non-trivial convergent sequence.
Combining this with Theorem 1.3, we conclude that the group D as in the
conclusion of Corollary 5.3 contains a non-trivial convergent sequence. This
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shows that “all compact subsets of D are countable” cannot be strength-
ened to “all compact subsets of D are finite” in the conclusion of Corollary
5.3, and “without uncountable compact subsets” cannot be strengthened to
“without infinite compact subsets” in the conclusion of Corollary 5.5 when
V is the variety of all groups.

6. Proofs of Theorems 4.1–4.4

Proof of Theorem 4.1. Suppose that w(G) is not a strong limit cardinal.
Then there exists a dense subgroup D of G such that |D| = d(G) < w(G) =
w(D); see [27, Theorem 2.7]. Hence, D does not have the Arhangel’skĭı
property.

Suppose now that w(G) is a strong limit cardinal. Let D be a dense
subgroup of G. Since w(D) = w(G), the cardinal w(D) is strong limit.
Hence, D has the Arhangel’skĭı property by Proposition 3.2(iv).

Proof of Theorem 4.3. Let σ = w(G). Assume that every Gδ-dense sub-
group of G has the Arhangel’skĭı property. According to [11], G has a Gδ-
dense subgroup D of size m(σ). Since D has the Arhangel’skĭı property, this
yields m(σ) = |D| ≥ w(D) = w(G) = σ. Conversely, if m(σ) ≥ σ holds,
then for every Gδ-dense subgroup D of G, one has |D| ≥ m(σ) ≥ σ = w(D),
so D has the Arhangel’skĭı property.

Fact 6.1 ([28, Lemma 1.5]). Let G be an infinite compact group. For
every infinite cardinal τ ≤ w(G) there exists a continuous homomorphism
f : G→ H of G onto a compact group H with w(H) = τ .

Fact 6.2. Suppose that f : G→ H is a continuous surjective homomor-
phism of compact abelian groups, D is a subgroup of H and D1 = f−1(D).

(i) If D is dense in H, then D1 is dense in G.
(ii) If D is pseudocompact (countably compact, κ-bounded for some in-

finite cardinal κ), then D1 has the same property.
(iii) If D is not (projectively) w-compact, then D1 is not projectively

w-compact either.
(iv) If D is not (projectively) Arhangel’skĭı, then D1 is not projectively

Arhangel’skĭı either.

Proof. (i) The closure L of D1 in G is compact, and so is its continuous
image f(L). Hence, f(L) is closed in H. Since D ⊆ f(L) and D is dense in
H, we conclude that f(L) = H. Since ker f ⊆ D1 ⊆ L and L is a subgroup
of G, we deduce that L = G. Thus, D1 is dense in G.

(ii) Since the map f is perfect, the conclusion follows from the well-known
fact that the properties listed in (ii) are preserved by taking full preimages
under perfect maps.

(iii) and (iv) are straightforward.
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Proof of Theorem 4.2. The “if” part follows from Diagram 1. Let us
prove the “only if” part. Let G be a non-metrizable compact group. By
Fact 6.1, there exists a continuous group homomorphism f : G → H onto
a compact group H such that w(H) = ω1. Since ω1 is not a strong limit
cardinal, we can use Theorem 4.1 to find a dense subgroup D of H without
the Arhangel’skĭı property. By Fact 6.2, D1 = f−1(D) is a dense subgroup
of G that is not projectively Arhangel’skĭı.

Proof of Theorem 4.4. (i)→(ii). This implication is trivial, as all count-
ably compact groups are pseudocompact.

(ii)→(iii). Assume that w(G) ≥ c+. By Fact 6.1, there exists a contin-
uous surjective homomorphism f : G → H onto a compact group H such
that w(H) = c+. By Proposition 3.5(i), H has a dense countably compact
subgroup D without the Arhangel’skĭı property. By Fact 6.2, D1 = f−1(D)
is a dense countably compact subgroup of G that is not projectively Arhan-
gel’skĭı, in contradiction with (ii). This proves that w(G) ≤ c.

(iii)→(i). Let D be a Gδ-dense subgroup of G. Then D is pseudocom-
pact. Since w(D) = w(G) ≤ c, from Proposition 3.4 we conclude that D is
projectively Arhangel’skĭı.

7. Proof of Theorem 5.2

Lemma 7.1. Let X be a set, V be a variety of groups, and let e denote
the identity element of FV(X). For every g ∈ FV(X) \ {e} there exists a
unique non-empty finite set F ⊆ X such that g ∈ 〈F 〉 and g 6∈ 〈F ′〉 for
every proper subset F ′ of F .

Proof. The existence of such an F is clear. Suppose that F0 and F1 are
finite subsets of X such that g ∈ 〈Fi〉 and g 6∈ 〈F ′i 〉 for every proper subset
F ′i of Fi (i = 0, 1). Let F ′ = F0 ∩ F1, so that F ′ ⊆ Fi for i = 0, 1.

Fix i = 0, 1. Let f : X → FV(X) be the map that coincides with the
identity on Fi and sends every element x ∈ X \ Fi to e ∈ FV(X). Since
X is V-independent, FV(X) = 〈X〉 ∈ V by item (i) of Definition 5.1(a),
so we can use item (ii) of the same definition to find a homomorphism
f̃ : FV(X)→ FV(X) extending f . Since g ∈ 〈Fi〉 and f is the identity on Fi,
we conclude that f̃(g) = g. Since g ∈ 〈F1−i〉, we have

g = f̃(g) ∈ 〈f(F1−i)〉 = 〈f(F1−i ∩ Fi) ∪ f(F1−i \ Fi)〉(7.1)

= 〈f(F ′) ∪ {e}〉 = 〈f(F ′)〉 = 〈F ′〉.

From g ∈ 〈Fi〉, (7.1), F ′ ⊆ Fi and our assumption on Fi we conclude
that Fi = F ′ = F0 ∩ F1 = Fi ∩ F1−i. This proves that Fi ⊆ F1−i.

Since the last inclusion holds for both i = 0, 1, it follows that F0 = F1,
as required.
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For every g ∈ FV(X)\{e} we denote by suppX(g) the unique set F ⊆ X
as in the conclusion of Lemma 7.1.

Lemma 7.2. If X is a set, V is a variety of groups, g ∈ FV (X)\{e} and
g ∈ 〈Z〉 for some Z ⊆ X, then suppX(g) ⊆ Z.

Proof. Since g ∈ 〈Z〉, there exists a finite set E ⊆ Z with g ∈ 〈E〉.
Let F be a subset of E having the minimal size among all subsets D of E
satisfying g ∈ 〈D〉. Then g ∈ 〈F 〉 and g 6∈ 〈F ′〉 for every proper subset F ′

of F . Lemma 7.1 implies that suppX(g) = F ⊆ E ⊆ Z.

We shall call a space X semi-Bernstein provided that every compact
subset of X is countable. A motivation for this definition comes from the
classical notion of a Bernstein subset of the real line. One can easily see that
a subset X of the real line R is a Bernstein set if and only if both X and its
complement R \X are semi-Bernstein spaces in our terminology.

Lemma 7.3. Assume that V is a variety of groups and X is a V-indepen-
dent subset of a separable metric group K such that |X| = c. Then there
exists Z ⊆ X such that |Z| = c and 〈Z〉 is semi-Bernstein.

Proof. Since X is V-independent, 〈X〉 is isomorphic to FV(X), so we can
use the notation suppX(g) for all g ∈ 〈X〉\{e}. Since K is separable metric,
the family

(7.2) C = {C ⊆ 〈X〉 : C is compact and |C| = c}
has size at most c, so we can fix an enumeration C = {Cα : α < c} of C.
By transfinite recursion on α < c we shall choose xα, yα ∈ X satisfying
conditions (iα)–(iiiα) below:

(iα) xα 6∈ {xβ : β < α},
(iiα) {xβ : β ≤ α} ∩ {yβ : β ≤ α} = ∅,
(iiiα) yα ∈ suppX(gα) for some gα ∈ Cα.

Basis of recursion. Let g0 ∈ C0 \ {e}. Choose arbitrary y0 ∈ suppX(g0)
and x0 ∈ X \ {y0}. Now conditions (i0)–(iii0) are satisfied.

Recursive step. Suppose that α < c and xβ, yβ ∈ X were already chosen
for all β < α so that conditions (iβ)–(iiiβ) are satisfied. We shall choose
xα, yα ∈ X satisfying conditions (iα)–(iiiα). Let

(7.3) Hα = 〈{xβ : β < α} ∪ {yβ : β < α}〉.
Then |Hα| ≤ |α| · ω < c. Since |Cα| = c, we can choose

(7.4) gα ∈ Cα \Hα.

From (7.3) and (7.4) it follows that suppX(gα) 6⊆ {xβ : β < α}, so we can
choose

(7.5) yα ∈ suppX(gα) \ {xβ : β < α}.
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From (7.4) and (7.5) we conclude that (iiiα) holds. As |X| = c and |Hα| < c,
we can choose

(7.6) xα ∈ X \ (Hα ∪ {yα}).
Now (iα) is satisfied by (7.3) and (7.6). Since (iiβ) holds for every β < α, we
have {xβ : β < α} ∩ {yβ : β < α} = ∅. Combining this with (7.5) and (7.6),
we get (iiα).

The recursive construction has been completed. Since (iα) holds for every
α < c, the set Z = {xα : α < c} ⊆ X has cardinality c. It only remains to
show that 〈Z〉 contains no uncountable compact subsets.

Indeed, suppose that C is an uncountable compact subset of 〈Z〉. By
[21, Exercise 1.7.11], every separable metric space is a union of a perfect set
and a countable set. Since a perfect set has size c, it follows that |C| = c.
Since C ⊆ 〈Z〉 ⊆ 〈X〉, (7.2) implies C ∈ C, and so C = Cα for some
α < c. By (iiiα), there exists gα ∈ Cα such that yα ∈ suppX(gα). Since
gα ∈ Cα = C ⊆ 〈Z〉, Lemma 7.2 implies that suppX(gα) ⊆ Z. In particular,
yα ∈ Z. On the other hand, since (iiβ) holds for every β < c, we conclude
that yα 6∈ {xβ : β < c} = Z. This contradiction shows that 〈Z〉 is semi-
Bernstein.

Lemma 7.4. Let V be a variety of groups and let I be a set with ω1≤ |I| ≤ c.
Assume that K is a compact metric group, X ⊆ KI and ϕ : X → K is an
injection such that:

(i) ϕ(X) is V-independent,
(ii) 〈ϕ(X)〉 is semi-Bernstein,

(iii) 〈X〉 ∈ V,
(iv) for every x ∈ X there exists Jx ∈ [I]≤ω such that πi(x) = ϕ(x) for

each i ∈ I \ Jx, where πi : KI → K is the projection on the ith
coordinate.

Then X is V-independent and 〈X〉 is semi-Bernstein.

Proof. From (iv) one immediately gets the following claim:

Claim 1. For every Y ∈ [X]≤ω we have:

(a) the set IY = I \
⋃
x∈Y Jx is uncountable;

(b) πi�Y = ϕ�Y for all i ∈ IY .

Let Y be a finite subset of X. Since 〈Y 〉 ⊆ 〈X〉 ∈ V by (iii), it follows
that 〈Y 〉 ∈ V. By Claim 1(a), we can choose i ∈ IY . By Claim 1(b), πi�Y =
ϕ�Y . Since ϕ is an injection, πi�Y is an injection as well. Since πi(Y ) =
ϕ(Y ) ⊆ ϕ(X) and ϕ(X) is V-independent by (i), we conclude that Y is
V-independent [15, Lemma 2.4]. Since this holds for every finite subset Y
of X, the set X is V-independent as well [15, Lemma 2.3].
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Since X and ϕ(X) are both V-independent, there exists a unique iso-
morphism Φ : 〈X〉 → 〈ϕ(X)〉 extending ϕ. The next claim is an immediate
corollary of Claim 1(b) and our definition of Φ.

Claim 2. For every Y ∈ [X]≤ω one has πi�〈Y 〉 = Φ�〈Y 〉 for all i ∈ IY .

For every subset J of I let pJ : KI → KJ denote the projection.

Assume that C is an uncountable compact subset of 〈X〉. Then Φ(C)
is an uncountable subset of 〈ϕ(X)〉, so the closure F of Φ(C) in K is an
uncountable compact subset of K. By (ii), F \ 〈ϕ(X)〉 6= ∅, so we can select

(7.7) b ∈ F \ 〈ϕ(X)〉 ⊆ F \ Φ(C).

Since K is a metric space, b ∈ F \Φ(C) and Φ(C) is dense in F , we can choose
a faithfully indexed sequence {cn : n ∈ N} ⊆ C such that the sequence
{Φ(cn) : n ∈ N} converges to b in K. Fix Y ∈ [X]≤ω such that {cn : n∈N}
⊆ 〈Y 〉. From Claim 2 we conclude that

(7.8) {πi(cn) : n ∈ N} = {Φ(cn) : n ∈ N} for all i ∈ IY .

Use Claim 1(a) to fix j ∈ IY . Since the sequence {cn : n ∈ N} is faithfully
indexed and Φ is an injection, it follows from (7.8) that the sequence {πj(cn) :
n ∈ N} is faithfully indexed. Therefore, the sequence {pS(cn) : n ∈ N} is
faithfully indexed as well, where S = {j} ∪

⋃
x∈Y Jx. Since KS is compact,

the sequence {pS(cn) : n ∈ N} has an accumulation point y ∈ KS . Define
g ∈ KI by

(7.9) g(i) =

{
y(i) if i ∈ S,
b if i ∈ I \ S

for all i ∈ I.

Claim 3. g belongs to the closure of the set {cn : n ∈ N} in KI .

Proof. Let W be an open neighbourhood of g in KI . Then there exist an
open set U ⊆ KS and an open set V ⊆ KI\S such that g ∈ U×V ⊆W . Since
I \ S ⊆ IY and the sequence {Φ(cn) : n ∈ N} converges to b in K, applying
(7.8) and (7.9) we can find n0 ∈ N such that pI\S(cn) ∈ V for all n ∈ N with
n ≥ n0. Since y is an accumulation point of {pS(cn) : n ∈ N}, there exists
an integer m ≥ n0 such that pS(cm) ∈ U . Now cm ∈ U × V ⊆W .

Since C is compact, it is closed in KI . From {cn : n ∈ N} ⊆ C and
Claim 3 we get g ∈ C. Since C ⊆ 〈X〉, it follows that g ∈ 〈X〉. Let E be a
finite subset of X with g ∈ 〈E〉. Since IE is uncountable by Claim 1(a) and
S is countable, we can choose i ∈ IE \S. Then b = πi(g) = Φ(g) by (7.9) and
Claim 2. Thus, b = Φ(g) ∈ Φ(〈X〉) = 〈ϕ(X)〉, in contradiction with (7.7).

This proves that all compact subsets of 〈X〉 are countable.

Lemma 7.5. Let V be a variety of groups and let I be a set with ω1 ≤
|I| ≤ c. Assume that K ∈ V is a compact metric group containing a V-



Metrization criteria for compact groups 179

independent subset Z of K such that |Z| = c and 〈Z〉 is semi-Bernstein.
Then there exists a subset X of H = KI with the following properties:

(a) X is a V-independent subset of H of size c;
(b) 〈X〉 is semi-Bernstein;
(c) X is Gδ-dense in H.

Proof. For every J ∈ [I]≤ω let KJ = {yα,J : α < c} be an enumeration
of KJ .

From |I| ≤ c it follows that
∣∣[I]≤ω

∣∣ ≤ c, so we can fix a faithful enumer-
ation Z = {zα,J : α < c, J ∈ [I]≤ω} of Z.

For α < c and J ∈ [I]≤ω define xα,J ∈ H by

(7.10) xα,J(i) =

{
yα,J(i) if i ∈ J
zα,J if i ∈ I \ J

for all i ∈ I.

We claim that X = {xα,J : α < c, J ∈ [I]≤ω} has the desired properties.
Define the bijection ϕ : X → Z by ϕ(xα,J) = zα,J for (α, J) ∈ c×[I]≤ω. Then
items (i), (ii) and (iv) of Lemma 7.4 are satisfied. Since 〈X〉 is a subgroup of
H = KI and K ∈ V, it follows that 〈X〉 ∈ V, so item (iii) of Lemma 7.4 is
satisfied as well. Applying this lemma, we conclude that X is V-independent
and (b) holds. Since ϕ : X → Z is a bijection, |X| = |Z| = c. Thus, (a) also
holds.

It remains to check (c). For this, it suffices to show that pJ(X) = KJ for
every J ∈ [I]≤ω, where pJ : KI → KJ is the projection. Fix such a J . Let
y ∈ KJ . There exists α < c such that y = yα,J . Now pJ(xα,J) = yα,J = y
by (7.10). Since xα,J ∈ X, we conclude that y ∈ pJ(X). Since y ∈ KJ was
chosen arbitrarily, this proves that pJ(X) = KJ .

Proof of Theorem 5.2. Let K = Lω. Note that KI ∼= LI , as I is un-
countable. Therefore, we can work in H = KI instead of LI .

Since L ∈ V, we also have K ∈ V. Since rV (K) ≥ ω and Kω ∼= K, it
follows from [15, Lemma 4.1] that K contains a V-independent set of size c.
This set (taken as X) and K satisfy the assumptions of Lemma 7.3. Let Z
be as in the conclusion of this lemma. Applying Lemma 7.5 to Z and K,
we obtain the set X as in the conclusion of Lemma 7.5. We claim that the
subgroup D = 〈X〉 of H has the desired properties. Indeed, D is Gδ-dense
in H by item (c) of the lemma. All compact subsets of D are countable by
item (b). Since D = 〈X〉, from item (a) we deduce that D is a V-free group
with c many generators.

8. Proofs of Theorems 4.5 and 4.7. The proof of the following well-
known fact can be found, for example, in [10, Theorem 4.15 and Discussion
4.14].
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Fact 8.1. Let G be a compact abelian group.

(i) If G is connected, then there exists a continuous surjective homo-
morphism of G onto Tw(G).

(ii) If τ is a cardinal such that ω < cf(τ) ≤ τ ≤ w(G), then there exists
a continuous surjective homomorphism f : G → H = Kτ , where
K = T or K = Z(p) for some prime number p.

The proof of the following fact can be found in [25, Proposition 3.2].

Fact 8.2. If N is a totally disconnected closed normal subgroup of a
compact connected group K, then w(K/N) = w(K).

We denote by G′ the commutator subgroup of a group G. Recall that
a group G is perfect if G = G′. A semisimple group is a perfect compact
connected group [26, Definition 9.5]. For a topological group G, we use c(G)
to denote the connected component of G and we use Z(G) to denote the
center of G. We need the following well-known fact.

Fact 8.3. Let G be a non-trivial compact connected group and let A =
c(Z(G)).

(i) G = A ·G′ and ∆ = A ∩G′ is totally disconnected.
(ii) G ∼= (A×G′)/∆ and G/∆ ∼= A/∆×G′/∆.

(iii) w(G) = max{w(A), w(G′)}.
(iv) w(A) = w(A/∆) = w(G/G′).
(v) If G = G′ is semisimple, then A = ∆ = {e}, G/Z(G) is a product

of compact simple Lie groups and w(G/Z(G)) = w(G).
(vi) The group G/∆ admits a continuous surjective homomorphism onto

Tw(A) ×
∏
i∈I Li, where each Li is a compact simple Lie group and

w(G′) = ω · |I|.
(vii) If cf(w(G)) > ω, then G admits a continuous surjective homo-

morphism onto Tw(G), or onto Lw(G) for some compact simple Lie
group L.

Proof. One can find (i) in [26, Theorem 9.24] and (ii) in [26, Corollary
9.25].

(iii) From (i) it follows that G is a continuous image of A×G′, so w(G) ≤
w(A ×G′) = max{w(A), w(G′)}. Since both A and G′ are subgroups of G,
max{w(A), w(G′)} ≤ w(G).

(iv) Since A is connected, the first equality follows from (i) and Fact
8.2. From (i) one easily gets the isomorphism G/G′ ∼= A/∆, which gives the
second equality.

(v) This is a particular case of a theorem of Varopoulos [36]. The equality
w(G/Z(G)) = w(G) follows from Fact 8.2 since Z(G) is totally disconnected
[26, Theorem 9.19].
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(vi) By (iv) and Fact 8.1(i), the connected compact abelian group A/∆
admits a continuous surjective homomorphism onto Tw(A).

Since ∆ ⊆ Z(G) ⊆ Z(G′), the group G′/∆ has G′/Z(G′) as its quo-
tient. Since G′ is semisimple [26, Corollary 9.6], from this and item (v) it
follows that G′/∆ admits a continuous surjective homomorphism onto a
product

∏
i∈I Li, where each Li is a compact simple Lie group and w(G′) =

w(G′/Z(G′)) = ω · |I|.
Since G/∆ ∼= A/∆×G′/∆ by (ii), we get the conclusion of item (vi).
(vii) This follows from (iii), (vi) and the fact that there are only countably

many pairwise non-isomorphic (as topological groups) compact simple Lie
groups.

Proof of Theorem 4.5. Suppose that G is not metrizable.

Claim 4. There exists a continuous surjective homomorphism f : G→
H = Lω1, where either L = T or L = Z(p) for some prime number p, or
L is a compact simple Lie group.

Proof. If G is abelian, then the conclusion follows from Fact 8.1(ii). If
G is connected, we first use Fact 6.1 to find a continuous homomorphism of
G onto a (compact connected) group K of weight ω1, and then apply Fact
8.3(vii) to K.

When L is abelian, we apply Corollary 5.4 with I = ω1 to get a sub-
group D of H as in the conclusion of this corollary. When L is a compact
simple Lie group, we apply Corollary 5.3 with I = ω1 to get a subgroup D
of H as in the conclusion of this corollary. In both cases, we use Fact 6.2
to conclude that D1 = f−1(D) is a Gδ-dense subgroup of G that is not
projectively w-compact. This contradicts the assumption of our theorem.
Therefore, G must be metrizable.

Lemma 8.4. Assume CH. If K = T or K = Z(p) for some prime num-
ber p, then H = Kω1 has a dense countably compact subgroup D without
infinite compact subsets.

Proof. We consider two cases.

Case 1: K = T. Tkachenko [35] constructed a dense countably compact
subgroup D of Kω1 such that |D| = c = ω1 and D has no non-trivial
convergent sequences.

Case 2:K = Z(p) for some prime number p. In this case we can argue as
follows. Since CH implies Martin’s Axiom MA, and the group L = Z(p)ω is
compact (in the Tychonoff product topology), by the implication (a)→(c) of
[19, Theorem 3.9], the group L admits a countably compact group topology
without non-trivial convergent sequences. An analysis of that proof shows
that this topology comes from a monomorphism j : L→ Z(p)c such thatD =



182 D. Dikranjan and D. Shakhmatov

j(L) is a dense subgroup of Z(p)c. Under CH, we conclude that H = Kω1

has a dense countably compact subgroup D without non-trivial convergent
sequences (1).

The rest of the proof is common for both cases. Suppose that X is
an infinite compact subset of D. Since D has no non-trivial convergent
sequences, X does not have any point of countable character. Then |X| ≥
2ω1 > ω1 = c by the Čech–Pospǐsil theorem. This contradicts the inequality
|X| ≤ |D| = c. Therefore every compact subset X of D is finite.

Proof of Theorem 4.7. Suppose that G is not metrizable. Use Fact 8.1(ii)
to find a continuous surjective homomorphism f : G→ H = Kω1 , where K
is either T or Z(p) for some prime number p. Let D be a dense countably
compact subgroup of H without infinite compact subsets constructed in
Lemma 8.4. Since D is dense in H, w(D) = w(H) = ω1. This shows that D
is not w-compact. By Fact 6.2, D1 = f−1(D) is a dense countably compact
subgroup of G that is not projectively w-compact. This contradicts the
assumption of our theorem. Therefore, G must be metrizable.

9. Examples

Example 9.1. For every cardinal τ such that ω1 ≤ τ ≤ c, there exists
a pseudocompact projectively Arhangel’skĭı group D of weight τ that is not
w-compact. Furthermore, under CH, D can even be chosen to be countably
compact. Indeed, let K = T or K = Z(p) for some prime number p. Apply
Corollary 5.4 to L = K and I = τ to find a Gδ-dense subgroup D of Kτ

such that all compact subsets of D are countable; in particular, D is not
w-compact. By Theorem 1.3, D is pseudocompact. Under CH, we can use
Lemma 8.4 to choose D to be even countably compact. Since w(D) =
w(Kτ ) = τ ≤ c, from Proposition 3.4 we conclude that D is projectively
Arhangel’skĭı.

Recall that a subgroup D of a topological abelian group G is called
essential in G if D ∩ N = {0} implies N = {0} for every closed subgroup
N of G [4, 32, 33]. A topological group G is called minimal if there exists
no Hausdorff group topology on G strictly coarser than the topology of G.
A dense subgroup D of a compact abelian group G is minimal if and only
if D is essential in G [4, 32, 33].

Example 9.2. Let p be a prime number and κ be an infinite cardinal.

Define τ = 22
2κ

. Then there exists a dense essential (= minimal) κ-bounded
w-compact subgroup of Z(p2)τ that is not projectively Arhangel’skĭı. Indeed,

(1) In case p = 2, one can also make a recourse to an old result of Hajnal and Juhász
[23] asserting the existence of a subgroup D of Kω1 that is an HFD set. Such D is a dense
countably compact subgroup of Kω1 without infinite compact subsets.
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let G = Z(p2)τ and let f : G → G be the (continuous) homomorphism
defined by f(g) = pg for g ∈ G. Let H = f(G). Then H ∼= Z(p)τ . From
Proposition 3.5(ii), we get a dense κ-bounded subgroup D of H ∼= Z(p)τ

without the Arhangel’skĭı property. Applying Fact 6.2, we conclude that
D1 = f−1(D) is a dense κ-bounded subgroup of G that is not projectively
Arhangel’skĭı. Since pG = ker f is easily seen to be an essential subgroup
of G, from ker f ⊆ D1 it follows that D1 is an essential subgroup of G.
Finally, note that ker f ∼= Z(p)τ is a compact subset of D1 such that
w(ker f) = w(Z(p)τ ) = τ = w(G) = w(D1), which shows that D1 is w-
compact.

For an infinite cardinal σ, define log σ = min{τ ≥ ω : σ ≤ 2τ}. Let
i0 = ω, and let iα+1 = 2iα for every ordinal α and iβ = sup{iα : α < β}
for every limit ordinal β > 0.

Example 9.3. Let G be a compact group of weight σ > ω.

(i) If cf(log σ) = ω and σ = (log σ)+, then every Gδ-dense subgroup
of G has the Arhangel’skĭı property. Indeed, by Theorem 4.3, it
suffices to show that m(σ) ≥ σ. It is known that log σ ≤ m(σ)
and cf(m(σ)) > ω [11, Theorem 2.7]. Therefore, m(σ) > log σ and
m(σ) ≥ (log σ)+ = σ by our hypothesis.

(ii) If α is an ordinal of countable cofinality and σ = i+
α , then all Gδ-

dense subgroups of G have the Arhangel’skĭı property. Indeed, it
suffices to check that σ = i+

α satisfies the hypothesis of item (i).
Obviously, log σ = iα, so cf(log σ) = cf(iα) = cf(α) = ω and
σ = i+

α = (log σ)+.
(iii) If σ is a cardinal as in (ii), then G has a dense subgroup without

the Arhangel’skĭı property. Indeed, σ is not a strong limit cardinal,
so the conclusion follows from Theorem 4.1.

Here is an alternative proof of item (ii) of this example that makes
no recourse to its item (i) and the cardinal function m(−). Assume that
D is a Gδ-dense subgroup of G without the Arhangel’skĭı property. Then
|D| < w(D) = w(G) = i+

α , so |D| ≤ iα. Since iα is a strong limit cardinal
and i+

α = w(D) ≤ 2|D|, we deduce that |D| = iα. Therefore, D is a pseudo-
compact group such that |D| a strong limit cardinal of countable cofinality.
This contradicts a well-known theorem of van Douwen [20].

10. Final remarks and open questions

Remark 10.1. While “projectively w-compact” and “projectively Ar-
hangel’skĭı” can differ for a single topological group, from Diagram 1 and
the equivalence of items (ii), (iv) and (v) of Corollary 4.8 one concludes that
these two properties and the property “determining the completion” coincide
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when imposed uniformly on all dense subgroups of a given compact abelian
group. Similarly, while it is unclear whether “determining the completion”
and “projectively w-compact” may differ for a single topological group, the
equivalence of items (iii) and (v) of Corollary 4.8 shows that these two
properties coincide when imposed uniformly on all Gδ-dense subgroups of a
given compact abelian group.

Recall that a topological group G is called totally minimal if all (Haus-
dorff) quotient groups of G are minimal.

Remark 10.2. (i) In a forthcoming paper [17] we prove that every dense
totally minimal subgroup of a compact abelian group G determines G. This
shows that, in contrast with the results in Section 4, a weaker form of “deter-
mination” asking all dense totally minimal subgroups of G to determine G
imposes no restrictions whatsoever on a compact abelian group G.

(ii) In a forthcoming paper [18] we prove that totally minimal abelian
groups are projectively w-compact . Therefore, the italicized statement in
item (i) shows that the answer to Question 2.5 is positive for this (proper)
subclass of the class of projectively w-compact groups.

Question 10.3. What can one say about a compact (abelian) group G
such that all dense subgroups of G are w-compact?

From Theorem 4.1 and Diagram 1 it follows that w(G) must be a strong
limit cardinal, but we do not know if G must be metrizable.

Question 10.4. What is the minimal weight σ of an ω-bounded abelian
group that is not projectively Arhangel’skĭı? Is σ = c+?

We only know that c+ ≤ σ ≤ 22
c
. The first inequality follows from

Proposition 3.4, and the second from Example 9.2 (with κ = ω).

Question 10.5. Does Theorem 4.5 hold for all compact groups?

Question 10.6. Does Theorem 4.7 hold in ZFC? Does the implication
(vi)→(i) of Corollary 4.8 hold in ZFC?

As an intermediate step towards solving this question, one may also
wonder if CH can be weakened to Martin’s Axiom MA in Theorem 4.7 and
in the implication (vi)→(i) of Corollary 4.8.

We conjecture that the following question has a negative answer (al-
though we have no counterexample at hand):

Question 10.7. If every dense ω-bounded subgroup of a compact abelian
group G determines it, must G be metrizable?

Here comes the counterpart of Question 10.3 for Gδ-dense subgroups:

Question 10.8. Describe the compact (abelian) groups G such that every
Gδ-dense subgroup of G is w-compact.
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Question 10.9. Let K = T or K = Z(p) for some prime number p. In
ZFC, does there exist a dense countably compact subgroup D of Kω1 without
uncountable compact subsets?

As one can see from the proof of Theorem 4.5, a positive answer to this
question for K = T and K = Z(p) for all p ∈ P would yield a positive answer
to Question 10.6.
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