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On the spectrum of stochastic perturbations of the shift
and Julia sets
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Abstract. We extend the Killeen–Taylor study [Nonlinearity 13 (2000)] by investi-
gating in different Banach spaces (`α(N), c0(N), c(N)) the point, continuous and residual
spectra of stochastic perturbations of the shift operator associated to the stochastic adding
machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected
to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the
Julia set of an endomorphism of C2.

1. Introduction. In this paper, we study in detail the spectrum of
some stochastic perturbations of the shift operator introduced by Killeen
and Taylor in [3]. We focus on large Banach spaces for which we complete the
Killeen–Taylor study. We also investigate the case of the Fibonacci base, but
in this case, we have not been able to compute the residual and continuous
spectra exactly.

We recall that in [3], Killeen and Taylor defined the stochastic adding
machine as a stochastic perturbation of the shift in the following way: let

N be a nonnegative integer written in base 2 as N =
∑k(N)

i=0 εi(N)2i where
εi(N) = 0 or 1 for all i. It is known that there exists an algorithm that com-
putes the digits of N+1. This algorithm can be described by introducing an
auxiliary binary “carry” variable ci(N) for each digit εi(N) in the following
manner: Put c−1(N + 1) = 1 and

εi(N+1) = εi(N)+ ci−1(N+1) mod 2, ci(N+1)=

[
εi(N)+ ci−1(N+1)

2

]
for i ≥ 0, where [z] denotes the integer part of z ∈ R+.
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Let {ei(n) : i ≥ 0, n ∈ N} be an independent, identically distributed
family of random variables which take the value 0 with probability 1 − p
and the value 1 with probability p. Let N be an integer. Given a sequence
(ri(N))i≥0 of 0’s and 1’s such that ri(N) = 1 for finitely many indices i,
we consider the sequences (ri(N + 1))i≥0 and (c′i(N + 1))i≥−1 defined by
c′−1(N + 1) = 1 and for all i ≥ 0,

ri(N + 1) = ri(N) + ei(N)c′i−1(N + 1) mod 2,

c′i(N + 1) =

[
ri(N) + ei(N)c′i−1(N + 1)

2

]
.

With this definition a number
∑∞

i=0 ri(N)2i transitions to a number∑∞
i=0 ri(N+1)2i. In particular, an integer N having binary representation of

the form εn . . . εk+10 11 . . . 11︸ ︷︷ ︸
k

transitions to εn . . . εk+11 00 . . . 00︸ ︷︷ ︸
k

with prob-

ability pk+1, and a number having binary representation εn . . . εk 11 . . . 11︸ ︷︷ ︸
k

transitions to εn . . . εk 00 . . . 00︸ ︷︷ ︸
k

with probability pk(1− p). Equivalently, we

obtain a Markov process ψ(N) with state space N by setting ψ(N) =∑∞
i=0 ri(N)2i. The corresponding transition operator is denoted by Sp.

For p = 1 the transition operator equals the left shift, hence the stochas-
tic adding machine can be seen as a stochastic perturbation of the left shift
operator. It is also a model of Weber law in the context of counter and
pacemarker errors. This law is used in biology and psychophysiology [4].

In [3], P. R. Killeen and J. Taylor studied the spectrum of the transition
operator Sp (of ψ(N)) on `∞. They proved that the spectrum σ(Sp) is equal
to the filled Julia set of the quadratic map f : C → C defined by f(z) =
(z − (1− p))2/p2, i.e. σ(Sp) = {z ∈ C : (fn(z))n≥0 is bounded} where fn is
the nth iteration of f .

In [6], Messaoudi and Smania defined the stochastic adding machine in
the Fibonacci base in the following manner. Consider the Fibonacci sequence
(Fn)n≥0 given by

F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2 ∀n ≥ 2.

Using the greedy algorithm, we can write every nonnegative integer N in a

unique way as N =
∑k(N)

i=0 εi(N)Fi where εi(N) = 0 or 1 and εi(N)εi+1(N)
6= 11, for all i ∈ {0, . . . , k(N)− 1} (see [11]). It is known that addition of 1
in the Fibonacci base (adding machine) is recognized by a finite state trans-
ducer. In [6], the authors defined the stochastic adding machine by intro-
ducing a “probabilistic transducer”. They also computed the point spectrum
of the transition operator acting in `∞ associated to the stochastic adding
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machine with respect to the base (Fn)n≥0. In particular, they showed that
the point spectrum σpt(Sp) in `∞ is related to the filled Julia set Kg of the
function g : C2 → C2 defined by

g(x, y) =

(
1

p2
(x− 1 + p)(y − 1 + p), x

)
.

Precisely, they proved that

σpt(Sp) = Kp = {λ ∈ C : (qn(λ))n≥1 is bounded},

where qF0(z) = z, qF1(z) = z2,

qFk(z) =
1

p
qFk−1

(z)qFk−2
(z)− 1− p

p
for all k ≥ 2

and for all nonnegative integers n, we have qn(z) = qFk1 . . . qFkm where
Fk1 + · · ·+ Fkm is the Fibonacci representation of n.

In particular, σpt(Sp) is contained in the set

Ep = {λ ∈ C : (qFn(λ))n≥1 is bounded} = {λ ∈ C : (λ1, λ) ∈ Kg}

where λ1 = 1− p+ (1− λ− p)2/p.
Here we investigate the spectrum of the stochastic adding machines in

base 2 and in the Fibonacci base in different Banach spaces. In particular, we
compute exactly the point, continuous and residual spectra of the stochastic
adding machine in base 2 for the Banach spaces c0, c, `

α, α ≥ 1.

For the Fibonacci base, we improve the result in [6] by proving that the
spectrum of Sp acting on `∞ contains Ep. The same result is proved for the
Banach spaces c0, c and `α, α ≥ 1.

The paper is organized as follows. In Section 2, we recall some ba-
sic facts of spectral theory. In Section 3, we state our main results (The-
orems 3.1–3.3). Sections 4 and 5 contain the proofs in the case of the base
2 and the Fibonacci base, respectively.

2. Basic facts from spectral theory (see for instance [2], [8]–[10]).
Let E be a complex Banach space and T a bounded operator on it. The
spectrum of T , denoted by σ(T ), is the set of complex numbers λ for which
T − λ IdE is not an isomorphism (IdE is the identity map).

If λ is in σ(T ) then one of the following assertions holds:

(i) T − λ IdE is not injective. In this case we say that λ is in the point
spectrum denoted by σpt(T ).

(ii) T − λ IdE is injective, not onto and has dense range. We say that λ
is in the continuous spectrum denoted by σc(T ).

(iii) T − λ IdE is injective and does not have dense range. We say that
λ is in the residual spectrum denoted by σr(T ).
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It follows that σ(T ) is the disjoint union

σ(T ) = σpt(T ) ∪ σc(T ) ∪ σr(T ).

The spectrum of a bounded operator acting on a Banach space is a compact
subset of C [10]. There is a connection between the spectrum of T and
the spectrum of the dual operator T ′ acting on the dual space E′ by T ′ :
φ 7→ φ ◦ T. In particular, we have

Proposition 2.1 (Phillips Theorem [9, p. 145]). Let E be a Banach
space and T a bounded operator on it. Then σ(T ) = σ(T ′).

We also have a classical relation between the point and residual spectra
of T and the point spectrum of T ′.

Proposition 2.2 ([1, p. 581]). For a bounded operator T we have

σr(T ) ⊂ σpt(T ′) ⊂ σr(T ) ∪ σpt(T ).

In particular, if σpt(T ) = ∅ then

σr(T ) = σpt(T
′).

3. Main results. Our main results are stated in the following three
theorems.

Main Theorem 3.1. The spectrum of the operator Sp acting on c0,
c and `α, α ≥ 1, is equal to the filled Julia set Kf of the quadratic map
f(z) = (z − (1 − p))2/p2. Precisely, in c0 (resp. `α, α > 1), the continuous
spectrum of Sp is equal to Kf and the point and residual spectra are empty.
In c, the point spectrum is {1}, the residual spectrum is empty and the
continuous spectrum equals Kf \ {1}.

Main Theorem 3.2. In `1, the point spectrum of Sp is empty. The
residual spectrum of Sp is not empty and contains a countable dense subset
of the Julia set Jf = ∂Kf , viz.

⋃∞
n=0 f

−n{1} ⊂ σr(Sp). The continuous
spectrum of Sp is the complement of the residual spectrum in the filled Julia
set Kf .

Main Theorem 3.3. The spectra of Sp acting respectively in `∞, c0,
c and `α, α ≥ 1, associated to the stochastic Fibonacci adding machines
contain the set Ep = {λ ∈ C : (λ1, λ) ∈ Kg} where Kg is the filled Julia set
of the function g and λ1 = 1− p+ (1− λ− p)2/p.

Conjecture 3.4. We conjecture that in the case of `1, the residual spec-
trum of the transition operator associated to the stochastic adding machine
in base 2 is σr(Sp) =

⋃∞
n=0 f

−n{1}. For the Fibonacci stochastic adding ma-
chine, we conjecture that the spectra of Sp in the Banach spaces appearing
in Theorem 3.3 are all equal to Ep.
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Remark. The methods we use can be adapted to a large class of stochas-
tic adding machines given by transducers. Furthermore, let us point out that
from the Killeen and Taylor method one may deduce in the case of `∞ that
the residual and continuous spectra are empty. By contrast, here we compute
directly the residual and continuous spectra in `α, c0 and c.

4. Proofs in base 2. We are interested in the spectrum of Sp on three
Banach spaces connected by duality. The space c0 is the space of complex
sequences which converge to zero, in other words, the continuous functions
on N vanishing at infinity. The dual space of c0 is by the Riesz Theorem
the space of bounded Borel measures on N with total variation norm. This
space can be identified with `1, the space of summable row vectors. Finally,
the dual space of `1 is `∞, the space of bounded complex sequences.

We are also interested in the spectrum of Sp as an operator on the space
`α with α > 1 and also in the space c of convergent complex sequences.

Proposition 4.1. The operator Sp (acting on the right) is well defined
on each X ∈ {c0, c, `α (α ≥ 1)}; moreover, ‖Sp‖ ≤ 1.

Since the operator Sp is doubly stochastic, the proposition is a straight-
forward consequence of the following more general lemma.

Lemma 4.2. Let A = (ai,j)i,j∈N be an infinite matrix with nonnegative
entries. Assume that there exists a positive constant M such that

(1) sup
i∈N

( ∞∑
j=0

ai,j

)
≤M, (2) sup

j∈N

( ∞∑
i=0

ai,j

)
≤M.

Then A defines a bounded operator on the spaces c0, c, `∞ and `α with
α ≥ 1. In addition the norm of A is less than M .

Proof. From (1) it is easy to see that A is well defined on `∞ and its
norm is less than M .

Now, let v = (vn)n≥0, v 6= 0, be such that limn→∞ vn = l ∈ C. Then
for any ε > 0 there exists a positive integer j0 such that for any j ≥ j0, we
have |vj − l| ≤ ε/(2M). Let d =

∑∞
j=0 an,j . Then from (1) we have, for any

n ∈ N,

|(Av)n − dl| =
∣∣∣ ∞∑
j=0

an,j(vj − l)
∣∣∣ ≤ j0−1∑

j=0

an,j |vj − l|+
ε

2
.(4.1)

But by (2), for any j ∈ {0, . . . , j0 − 1}, we have
∑∞

n=0 an,j < ∞, so there
exists n0 ∈ N such that for any n ≥ n0 and j ∈ {0, . . . , j0 − 1}, we have

|an,j | ≤
ε

2j0(δ + 1)
where δ = sup{|vj − l| : j ∈ N}.(4.2)
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Combining (4.1) with (4.2) we get

|(Av)n − dl| ≤ ε, ∀n ≥ n0.

Hence AX ⊂ X if X = c0 or c.

Now take α > 1 and v ∈ `α. For any i ∈ N, we have

|(Av)i|α ≤
( ∞∑
j=0

ai,j |vj |
)α
.

Let α′ be the conjugate exponent of α, i.e., 1/α + 1/α′ = 1. Then, by the
Hölder inequality,( ∞∑

j=0

ai,j |vj |
)α
≤
( ∞∑
j=0

ai,j

)α/α′( ∞∑
j=0

ai,j |vj |α
)
.

Hence ( ∞∑
j=0

ai,j |vj |
)α
≤
(

sup
l∈N

∞∑
j=0

al,j

)α/α′( ∞∑
j=0

ai,j |vj |α
)
.(4.3)

Thus

‖Av‖αα ≤Mα/α′
∞∑
i=0

( ∞∑
j=0

ai,j |vj |α
)

= Mα/α′
∞∑
j=0

( ∞∑
i=0

ai,j

)
|vj |α

≤Mα/α′ sup
j∈N

( ∞∑
i=0

ai,j

)
‖v‖αα ≤M1+α/α′‖v‖αα.

Therefore

‖Av‖α ≤M‖v‖α.

Hence A is a continuous operator and ‖A‖ ≤M .

The case α = 1 is an easy exercise and it is left to the reader.

From Proposition 4.1, we deduce that Sp is a Markov operator and its
spectrum is contained in the complex unit disc.

Consider the map f : z ∈ C 7→
( z−(1−p)

p

)2
and denote by Kf the associ-

ated filled Julia set defined by

Kf = {z ∈ C : |f (n)(z)|9∞}.

Killeen and Taylor investigated the spectrum of Sp acting on `∞. They
proved that the point spectrum of Sp is equal toKf . In addition, they showed
that the spectrum is invariant under the action of f . As a consequence, one
may deduce that the continuous and residual spectra in this case are empty.

Here we will compute exactly the residual part and the continuous part
of the spectrum of Sp acting on c0, c and `α, α ≥ 1.
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Theorem 4.3. The spectrum of the operator Sp acting on each X ∈
{c0, c, `α (1 ≤ α < ∞)} is equal to Kf . More precisely, in c0 (resp. `α,
α > 1), the continuous spectrum of Sp is equal to Kf and the point and
residual spectra are empty. In c, the point spectrum is the singleton {1}, the
residual spectrum is empty and the continuous spectrum is Kf \ {1}.

For the proof of Theorem 4.3 we shall need the following proposition.

Proposition 4.4. The spectrum of Sp in each X∈{c0, c, `α (1≤α≤∞)}
is contained in Kf .

The main idea of the proof of Proposition 4.4 can be found in the Kil-
leen–Taylor proof. The key argument is that S̃2

p is similar to the operator
ESp ⊕OSp, where

S̃p =
Sp − (1− p) Id

p

and E,O denote the even and odd operators acting on X by

E(h0, h1, . . .) = (h0, 0, h1, 0, h2, . . .),

O(h0, h1, . . .) = (0, h0, 0, h1, 0, h2, . . .),

for any h = (h0, h1, . . .) in X. Precisely, for all v = (vi)i≥0 ∈ X, we have

S̃2
p(v) = ESp(v0, v2, . . . , v2n, . . .) +OSp(v1, v3, . . . , v2n+1, . . .).

As a consequence we deduce from the mapping spectral theorem [9] that
the spectrum of Sp is invariant under f .

Let us start the proof of Theorem 4.3 by proving the following result.

Proposition 4.5. The point spectrum of Sp acting on each X ∈
{c0, `α (α ≥ 1)} is empty, and the point spectrum of Sp on c is {1}.

For the proof, we need the following lemma from [3].

Lemma 4.6 ([3]). Let n be a nonnegative integer and Xn = {m ∈ N :
(Sp)n,m 6= 0}. Then the following properties are valid:

(1) For all nonnegative integers n, we have n ∈ Xn and (Sp)n,n = 1− p.
(2) If n = εk . . . ε10, k ≥ 2, is an even integer then Xn = {n, n+ 1} and

(Sp)n,n+1 = p.
(3) If n = εk . . . εt0 1 . . . 1︸ ︷︷ ︸

s

is an odd integer with s ≥ 1 and k ≥ t ≥ s+1,

then Xn = {n, n + 1, n − 2m + 1 (1 ≤ m ≤ s)} and n transitions
to n + 1 = εk . . . εt1 0 . . . 00︸ ︷︷ ︸

s

with probability (Sp)n,n+1 = ps+1, and

to n − 2m + 1 = εk . . . εt0 1 . . . 1︸ ︷︷ ︸
s−m

0 . . . 0︸ ︷︷ ︸
m

, 1 ≤ m ≤ s, with probability

(Sp)n,n−2m+1 = pm(1− p).
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Proof of Proposition 4.5. Let λ be an eigenvalue of Sp associated to
the eigenvector v = (vn)n≥0 in X ∈ {c0, c, `α (α ≥ 1)}. By Lemma 4.6,
(Sp)i,i+k = 0 for all i, k ∈ N with k ≥ 2. Therefore, for all integers k ≥ 1,
we have

k∑
i=0

(Sp)k−1,ivi = λvk−1.(4.4)

Hence one can prove by induction on k that for all integers k ≥ 1, there
exists a complex number qk = qk(p, λ) such that

vk = qkv0.(4.5)

By Lemma 4.6 and the fact that ((Sp − λ Id)v)2n = 0 for all nonnegative n,
we get

pn+1v2n + (1− p− λ)v2n−1 +
n∑
i=1

pi(1− p)v2n−2i = 0, ∀n ≥ 0.(4.6)

Hence

v2n =
1

p
A−

(
1

p
− 1

)
v0,

where

A = − 1

pn

(
(1− p− λ)v2n−1+(2n−1−1) +

n−1∑
i=1

pi(1− p)v2n−1+(2n−1−2i)

)
.

On the other hand, by the self-similarity structure of the transition ma-
trix Sp, one can prove that if i and j are two integers such that for some
positive integer n we have 2n−1 ≤ i, j < 2n, then the transition probability
from i to j is equal to the transition probability from i− 2n−1 to j − 2n−1.
Using this last fact and (4.6), it follows that

v2n =
1

p
q2n−1v2n−1 −

(
1

p
− 1

)
v0.

This gives

q2n =
1

p
q22n−1 −

(
1

p
− 1

)
,(4.7)

where

q20 = q1 = −1− p− λ
p

.

Case 1: v ∈ c0 or `α, α ≥ 1. We have limn→∞ q2n = 0. Thus by (4.7),
we get p = 1, which is absurd, then the point spectrum is empty.

Case 2: v ∈ c. Assume that lim qn = l ∈ C. Then by (4.7), we deduce
that l = 1 or l = p − 1. On the other hand, for any n ∈ N, there exist k
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nonnegative integers n1 < · · · < nk such that n = 2n1 + · · · + 2nk . We can
prove (see [3]) that

qn = q2n1 . . . q2nk .(4.8)

Then lim q2n−2+2n = l2 = l, thus l = p−1 is excluded. Since Sp is stochastic,
we conclude that l = 1 and σpt,c(Sp) = {1}.

Remark. By the same arguments as above, Killeen and Taylor [3] proved
that the point spectrum of Sp acting on `∞ is equal toKf . In fact, it is easy to
see from the arguments above that σpt,`∞(Sp) = {λ ∈ C : qn(λ) bounded}.
Indeed, (4.7) implies that if (q2n)n≥0 is bounded, then |q2n | ≤ 1 for all n ≥ 0.
This clearly forces σpt,`∞(Sp) = {λ ∈ C : q2n(λ) bounded} by (4.8). Now,
since

q2n = h ◦ fn−1 ◦ h−1(q1) = h ◦ fn−1(λ), ∀n ∈ N,

where h(x) = x/p− (1− p)/p, we conclude that σpt,`∞(Sp) = Kf . It follows
from Proposition 4.4 that σ`∞(Sp) = Kf and the residual and continuous
spectra are empty.

Proposition 4.7. The residual spectrum of Sp acting on X ∈ {c0, c, `α
(α > 1)} is empty.

Proof. Let λ be an element of the residual spectrum of Sp acting on c0
(resp. c). Then, by Proposition 2.2, we deduce that there exists a sequence
u = (uk)k≥0 ∈ `1 such that u(Sp − λ Id) = 0.

Claim. uk = (1/qk)u0 for all k ∈ N.

We have

∀k ∈ 2N, (u(Sp − λ Id))k+1 = puk + (1− p− λ)uk+1 = 0.

Hence

∀k ∈ 2N, uk = q1uk+1.(4.9)

If k is odd, then k = 2n − 1 + t where t = 0 or t =
∑s

j=2 2njwith 1 ≤ n <
n2 < · · · < ns. Since (u(Sp − λ Id))k+1 = 0, we have

pn+1uk + (1− p− λ)uk+1 +
n∑
i=1

pi(1− p)uk+2i = 0.(4.10)

Observe that the relation (4.10) between uk and uk+2n is similar to the
relation (4.6) between v2n and v0. We will prove, by induction on n, that

uk = q2nuk+2n .(4.11)

Indeed, if n = 1 then by (4.10) and (4.9), we get

p2uk + (q1(1− p− λ) + p(1− p))uk+2 = 0.
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Therefore

uk =

(
q21
p
− 1− p

p

)
uk+2 = q2uk+2.

Thus (4.11) is proved for n = 1.

Now, assume that (4.11) holds for 1, . . . ,m − 1. Take n = m and
1 ≤ i < m. Then k + 2i = 1 + 2 + · · · + 2m−1 + 2i + t = 2i − 1 + t′ where
t′ = 2m + t. Applying the induction hypothesis, we get

uk+2i = q2iuk+2i+1 = q2iq2i+1 . . . q2m−1uk+2m .

On the other hand, since 2i + · · ·+ 2m−1 = 2m − 2i, we have

uk+2i = q2m−2iuk+2m .(4.12)

Considering (4.10) with n = m and (4.12) yields

uk = − 1

pm+1

(
(1− p− λ)q2m−1 +

m∑
i=1

pi(1− p)q2m−2iuk+2m

)
.

Combining this with (4.5) and (4.6), we obtain (4.11) for n = m. Thus (4.11)
holds for all integers n ≥ 1.

In particular, u2n−1−1 = q2n−1u2n−1 for all n ≥ 1. Thus

u2n−1 =
1

q20q2 . . . q2n−1

u0 =
1

q2n−1
u0, ∀n ≥ 1.(4.13)

On the other hand, for all integers n ≥ 1, by (4.9) we have u2n =
q20u2n+20 , and from (4.11) we see that

u2n = q20q21u22−1+2n = · · · = q20q21 . . . q2n−1u2n+1−1.(4.14)

Consequently, from (4.13) and (4.14), we obtain

u2n =
1

q2n
u0, ∀n ≥ 1.(4.15)

Now fix an integer k ∈ N and assume that k =
∑s

i=1 2ni where 0 ≤ n1 <
· · · < ns. We will prove by induction on s that

uk =
1

q2n1 q2n2 . . . q2ns
u0 =

1

qk
u0.(4.16)

Indeed, it follows from (4.15) that (4.16) is true for s = 1.

Now assume that (4.16) is true for all integers 1 ≤ i < s.

Case 1: k is odd . In this case

k =
s∑
i=1

2ni = 2n − 1 + l =
n−1∑
j=0

2j + l

where l = 0 if n = s+ 1 and l =
∑s

i=n 2ni if n ≤ s.
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If n ≥ 2, we use (4.11) to get uk−2n−1 = q2n−1uk and by induction
hypothesis, we have

uk =
1

q2n−1qk−2n−1

u0 =
1

qk
u0.

If n = 1, we consider (4.9) to write uk = (1/q1)uk−1. Thus, we deduce,
by induction hypothesis, that

uk =
1

q1qk−1
u0 =

1

qk
u0.

Case 2: k is even. In this case n1 > 0, and by (4.9), we deduce that

uk = q20uk+20 = q20uk+21−1.

Applying (4.11), it follows that

uk = q20q21uk+22−1 = · · · = q20q21 . . . q2n1−1uk+2n1−1

= q20q21 . . . q2n1−1u(k−2n1 )+2n1+1−1.

Hence

uk = q20 . . . q2n1−1q2n1+1u(k−2n1 )+2n1+2−1
= q20 . . . q2n1−1q2n1+1 . . . q2n2−1u(k−2n1−2n2 )+2n2+1−1.

Thus

uk =

∏ns
i=0 q2i∏s
i=1 q2ni

u2ns+1−1.(4.17)

By (4.17) and (4.13) we get

uk =
1∏s

i=1 q2ni
u0 =

1

qk
u0.

Therefore we have proved that for all nonnegative integers k,

uk =
1

qk
u0.(4.18)

We conclude that u is in `1 if and only if
∑∞

k=1 |1/qk(λ)| < ∞. But this
shows that the residual spectrum of Sp acting on c0 or c satisfies

σr(Sp) ⊂
{
λ ∈ D(0, 1) :

∞∑
k=1

∣∣∣∣ 1

qk(λ)

∣∣∣∣ <∞}.(4.19)

We claim that
∑∞

k=1 |1/qk(λ)| <∞ implies |q2n−1| ≥ 1 for all n ≥ 1. Indeed,
by d’Alembert’s Theorem, we have

lim sup
|qn|
|qn+1|

≤ 1.(4.20)

Now assume that n is even. Then n = 2k0 + · · ·+ 2km where 1 ≤ k0 < k1 <
. . . < km (representation in base 2). In this case n+1 = 20 +2k0 + · · ·+2km .
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Using (4.8), we obtain |qn|/|qn+1| = 1/|q1|, and by (4.20) we get

|q1| ≥ 1.(4.21)

Since

q2n =
1

p
q22n−1 −

(
1

p
− 1

)
for all n ≥ 0,

the triangle inequality yields |q2n | ≥ 1 for all n ≥ 1. Let i be a positive inte-
ger. Since 2i−1 =

∑i−1
j=0 2j , we deduce by (4.8) that q2i−1 = q2i−1q2i−2 · · · q1.

Hence

|q2i−1| ≥ 1 for any i ≥ 1.

On the other hand, considering the first coordinate of the vector u(Sp−λ Id)
= 0 we have

(1− p− λ)u0 +

∞∑
i=1

pi(1− p)u2i−1 = 0.

Dividing by p, we obtain

q1 =
∞∑
i=1

pi−1(1− p)/q2i−1.(4.22)

We claim that there exists an integer i0 ∈ N such that |q2i0−1| > 1. Indeed,

if not the series
∑

i∈N 1/|q2i−1| will diverge. Thus |q1| <
∑∞

i 6=i0 p
i(1 − p) +

pi0−1(1 − p) < 1, absurd. We conclude that the residual spectrum of Sp
acting on c0 (resp. c) is empty.

The same proof shows that the residual spectrum of Sp acting on `α,
α > 1, is empty.

Remark. By (4.19), it follows that λ ∈ σr(X) with X = c0, c or `α,
α > 1, implies lim |qn(λ)| = +∞. But this contradicts Proposition 4.4, so
that σr,c0(Sp) = σr,`α(Sp) = ∅.

Proposition 4.8. The following equalities are satisfied:

σc,c(Sp) = Kf \ {1}, σc,c0(Sp) = σc,`α(Sp) = Kf for all α > 1.

Proof. Assume that X ∈ {c0, c}. Then, by the Phillips Theorem, the
spectrum of Sp in X is equal to the spectrum of Sp in `∞, and from Propo-
sitions 4.5 and 4.7, we obtain the result.

Now, assume X = `α, α > 1. According to Propositions 4.4, 4.5 and 4.7,
it is enough to prove that Kf ⊂ σ(Sp). Consider λ ∈ Kf . We will prove that
λ belongs to the approximate point spectrum of Sp. For all integers k ≥ 2,
put w(k) = (1, q1(λ), . . . , qk(λ), 0, 0, . . .)t ∈ `α where (qk(λ))k≥1 = (qk)k≥1 is
the sequence defined in (4.5), and let u(k) = w(k)/‖w(k)‖α.

Claim. limn→∞ ‖(Sp − λ Id)u(2
n)‖α = 0.
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Indeed, we have

∀i ∈ {0, . . . , k − 1}, ((Sp − λ Id)u(k))i = 0.

Thus
∞∑
i=0

|((Sp − λ Id)u(k))i|
α =

∑∞
i=k |

∑k
j=0(Sp − λ Id)i,jw

(k)
j |α

‖w(k)‖αα
.

Putting ai,j = |(Sp − λ Id)i,j | for all i, j and using (4.3), we get∣∣∣ k∑
j=0

(Sp − λ Id)i,jw
(k)
j

∣∣∣α ≤ C k∑
j=0

|(Sp − λ Id)i,j | |w(k)
j |

α

where C = supi∈N(
∑∞

j=0 |(Sp − λ Id)i,j |)α/α
′

and α′ is the conjugate of α.
Observe that C is a finite nonnegative constant because Sp is a stochastic

matrix and λ belongs to Kf which is a bounded set.
In this way we have

‖(Sp − λ Id)u(k)‖αα ≤ C
∞∑
i=k

(
∑k

j=0 |w
(k)
j |α|(Sp − λ Id)i,j |)
‖w(k)‖αα

=
C

‖w(k)‖αα

k∑
j=0

|w(k)
j |

α
∞∑
i=k

|(Sp − λ Id)i,j |.

Now, for k = 2n, we will compute the terms

Ak,j =

∞∑
i=k

|(Sp − λ Id)i,j |, 0 ≤ j ≤ k.

Assume that 0 ≤ j < k = 2n. Then (Sp − λ Id)i,j = (Sp)i,j for all i ≥ k.

Case 1: j is odd. Then by Lemma 4.6, (Sp)i,j 6= 0 if and only i = j − 1
or i = j. Hence (Sp)i,j = 0 for all i ≥ k. Thus

Ak,j = 0.(4.23)

Case 2: j = 0. Then by Lemma 4.6, we have

Ak,j =
∞∑
i=2n

(Sp)i,0 =
∞∑

i=n+1

pi(1− p) = pn+1.(4.24)

Case 3: j is even and j > 0. Then j = εn−1 . . . εs 0 . . . 0︸ ︷︷ ︸
s

=
∑n−1

i=s εi2
i

with s ≥ 1 and εs = 1. But by Lemma 4.6, (Sp)i,j 6= 0 if and only if
i = 2m − 1 + j for some 0 ≤ m ≤ s. Hence i < 2n = k.

Therefore, in this case

Ak,j = 0.(4.25)
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Now assume j = k = 2n. In this case, we have

Ak,j = |1− p− λ|+
∞∑

i=2n+1

(Sp)i,2n .

On the other hand, by Lemma 4.6, (Sp)i,2n 6= 0 if and only if i = 2n+2m−1
for some 0 ≤ m ≤ n, and (Sp)2n+2m−1,2n = pm(1− p). Therefore

Ak,j =
∞∑
i=2n

|(Sp − λ Id)i,2n | = |1− p− λ|+
n∑

m=0

pm(1− p).(4.26)

By (4.23)–(4.26), we have for k = 2n and 0 ≤ j ≤ k,

Ak,j 6= 0 ⇔ j = 0 or j = k = 2n.

Consequently,

‖(Sp − λ Id)u(2
n)‖αα ≤ C

|w(k)
0 |αAk,0 + |w(k)

k |
αAk,k

‖w(k)‖αα

= C
pn+1 + |q2n |α(|1− p− λ|+

∑n
m=0 p

m(1− p))
‖w(2n)‖αα

.

We claim that ‖w(2n)‖α →∞ as n→∞. Indeed, if not, since the sequence
‖w(2n)‖α is increasing, it must converge. Put w = (qi)i≥0 with q0 = 1. It
follows that the sequence (w(2n))n≥0 converges to w in `α, which means
that there exists a nonzero vector w ∈ `α such that (Sp − λ Id)w = 0.
This contradicts Proposition 4.5. Now, since λ belongs to the filled Julia
set which is a bounded set and (qn)n≥0 is a bounded sequence, it follows
that ‖(Sp − λ Id)u(2

n)‖α → 0, and the claim is proved. We conclude that λ
belongs to the approximate point spectrum of Sp and the proof of Proposi-
tion 4.8 is complete.

This ends the proof of Theorem 4.3.

Spectrum of Sp acting on the right on `1. Here, we will study the
spectrum of Sp acting (on the right) on `1. We deduce from Proposition 4.4
that this spectrum is contained in Kf . On the other hand, using the same
proof as for Proposition 4.8, we find that Kf is contained in the approximate
point spectrum of Sp. This shows that the spectrum of Sp acting on `1 is
equal to Kf .

Theorem 4.9. In `1, the residual spectrum contains a countable dense
subset of the Julia set Jf = ∂Kf . The continuous spectrum is not empty
and is equal to the complement of the residual spectrum in the filled Julia
set Kf .
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Proof. The proof of Proposition 4.7 shows that the residual spectrum
of Sp in `1 is equal to the point spectrum of Sp (acting on the right) in
(`1)′ = `∞. By (4.18) and (4.22), we see that

σr(Sp)

=

{
λ ∈ C : (qn(λ)) and (1/qn(λ)) are bounded and q1 =

∞∑
i=1

pi−1(1− p)
q2i−1

}
= Kf ∩

{
λ ∈ C : (1/qn(λ)) is bounded and q1 =

∞∑
i=1

pi−1(1− p)
q2i−1

}
.

On the other hand we have

q22n = f(q22n−1) = · · · = fn(q21) = fn+1(λ), ∀n ≥ 0.(4.27)

Let n ∈ N and En = {λ ∈ C : q2n(λ) = 1}.

Claim 1.
⋃∞
n=0En =

⋃∞
n=0 f

−n{1}.

Indeed, let λ∈C be such that fn(λ) = 1 for some n≥ 1. Then, by (4.27),
we have q2n−1 = 1 or q2n−1 = −1. From (4.7), we see that q2n−1 = −1 implies
q2n = 1. Hence f−n{1} ⊂ En−1∪En. Since 1 ∈ En for all n ≥ 0, we conclude
that

⋃∞
n=0 f

−n{1} ⊂
⋃∞
n=0En. The other inclusion follows from (4.27).

Claim 2.
⋃∞
n=0En ⊂ σr(Sp).

Indeed, assume that n ∈ N and λ ∈ En. Then by (4.7), we get

q2k = 1, ∀k ≥ n.(4.28)

But from (4.28) and (4.8), the sequences (qk(λ))k≥0 and (1/qk(λ))k≥0 are
bounded. Moreover,

q1 =

∞∑
i=1

pi−1(1− p)
q2i−1

⇔ q2 =

∞∑
i=2

pi−2(1− p)q1
q2i−1

⇔ q2k =

∞∑
i=k+1

pi−k−1(1− p)q20 . . . q2k−1

q2i−1
, ∀k ≥ 0

⇔ q2k =
∞∑

i=k+1

pi−k−1(1− p)
q2kq2k+1 . . . q2i−1

, ∀k ≥ 0.

Thus

q1 =

∞∑
i=1

pi−1(1− p)
q2i−1

⇔ 1 =

∞∑
i=0

pi(1− p).

From this, λ ∈ σr(Sp) and Claim 2 is proved.
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Since 1 is a repulsing fixed point of f , it follows that
⋃∞
n=0 f

−n{1} is
a dense subset of the Julia set Jf . From this fact combined with Claims 1
and 2, we conclude that the residual spectrum contains a countable dense
subset of the Julia set Jf .

On the other hand, (p − 1)2 ∈ Kf since f((p − 1)2) = (p − 1)2, but
(p − 1)2 6∈ σr(Sp) because for any positive integer n, q2n((p − 1)2) = p − 1,
which implies that lim qn = 0 and hence 1/qn is not bounded. Thus (p− 1)2

∈ σc(Sp). This finishes the proof of the theorem.

Conjecture 4.10. The residual spectrum in `1 equals
⋃∞
n=0 f

−n{1}.

Spectrum of Sp acting on the left. The Phillips Theorem combined
with Proposition 2.2 and Theorems 4.3 and 4.9 leads to the following re-
sult.

Theorem 4.11. The spectrum of Sp (acting on the left) in the spaces
c0, c, `α with 1 ≤ α ≤ ∞ equals the filled Julia set Kf . Precisely:

In c0 and `α with 1 ≤ α < ∞, the spectrum equals the continuous spec-
trum.

In c, the point spectrum equals {1} and the continuous spectrum equals
Kf \ {1}.

In `∞, the point spectrum equals the residual spectrum in `1.

5. Fibonacci stochastic adding machine (see [6]). Let us consider
the Fibonacci sequence (Fn)n≥0 given by the relation

F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2 ∀n ≥ 2.

Using the greedy algorithm, we can write (see [11]) every nonnegative integer

N in a unique way as N =
∑k(N)

i=0 εi(N)Fi where εi(N) = 0 or 1 and
εi(N)εi+1(N) 6= 0, for 0 ≤ i ≤ k(N)− 1.

It is known that addition of 1 in base (Fn)n≥0 (called the Fibonacci
adding machine) is given by a finite state transducer on A∗ × A∗ where
A = {0, 1}. This transducer is formed by two states (an initial state I and a
terminal state T ). The initial state is connected to itself by two arrows. One
of them is labeled by (10, 00) and the other by (101, 000). There are also
two arrows going from the initial state to the terminal one. One of these
arrows is labeled by (00, 01) and the other by (001, 010). The terminal state
is connected to itself by two arrows. One of them is labeled by (0, 0) and
the other by (1, 1).

Assume thatN = εn . . . ε0. To find the digits ofN+1, we will consider the
finite path c = (pk+1, ak/bk, pk) . . . (p2, a1/b1, p1)(p1, a0/b0, p0) where pi ∈
{I, T}, p0 = I, pk+1 = T , ai, bi ∈ A∗ where A = {0, 1} and the words
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ak . . . a0 and bk . . . b0 have no two consecutive 1’s. Moreover . . . 0 . . . 0ak . . . a0
= . . . 0 . . . 0εn . . . ε0.

Hence N + 1 = ε′n . . . ε
′
0, where

. . . 0 . . . 0bk . . . b0 = . . . 0 . . . 0ε′n . . . ε
′
0.

Example: If N = 10 = 10010 then N corresponds to the path

(T, 1/1, T )(T, 00/01, I)(I, 10/00, I).

Hence N + 1 = 10100 = 11.

T I

101 / 000

00 / 01

x / x

001 / 010

10 / 00

Fig. 1. Transducer of the Fibonacci adding machine

In [6], the authors define the stochastic adding machine as follows. Con-
sider a “probabilistic” transducer Tp (see Fig. 2) where 0 < p < 1, defined
in the following manner.

The states of Tp are I and T . The labels are of the form (0/0, 1), (1/1, 1),
(a/b, p) or (a/a, 1− p) where a/b is a label in T .

The labeled edges in Tp are of the form (T, (x/x, 1), T ) where x ∈ {0, 1}
or of the form (r, (a/b, p), q) or (T, (a/a, 1−p), q) where (r, a/b, q) is a labeled
edge in T , with q = I.

The stochastic process ψ(N) is defined by ψ(N) =
∑∞

i=0 ri(N)Fi where
(ri(N))i≥0 is an infinite sequence of 0’s and 1’s without two consecutive 1’s
and with finitely many nonzero terms.

The sequence (ri(N))i≥0 is defined as follows. Put ri(0) = 0 for all i, and
assume that we have defined (ri(N − 1))i≥0, N ≥ 1. In the transducer Tp,
consider a path

. . . (T, (0/0, 1), T ) . . . (T, (0/0, 1), T )(pn+1, (an/bn, tn), pn) . . . (p1, (a0/b0, t0), p0)

where p0 = I and pn+1 = T, such that the words . . . r1(N −1)r0(N −1) and
. . . 00an . . . a0 are equal. We define the sequence (ri(N))i≥0 as the infinite
sequence whose terms are 0 or 1 such that . . . r1(N)r0(N) = . . . 00bn . . . b0.

We remark thatψ(N−1) transitions toψ(N) with probability pψ(N−1)ψ(N)

= tntn−1 . . . t0.

Example: If N = 10 = 10010, then, in the transducer of the Fibonacci
adding machine, N corresponds to the path

(T, 1/1, T )(T, 00/01, I)(I, 10/00, I).
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In the stochastic Fibonacci adding machine, we have the following paths:

(1) (T, (1/1, 1), T )(T, (0/0, 1), T )(T, (0/0, 1), T )(T, (10/10, 1 − p), I). In
this case N = 10010 transitions to 10010 with probability 1− p.

(2) (T, (1/1, 1), T )(T, (00/00, 1−p), I)(I, (10/00, p), I). In this case N =
10 transitions to 10000 = 8 with probability p(1− p).

(3) (T, (1/1, 1), T )(T, (00/01, p), I)(I, (10/00, p), I). In this case N = 10
transitions to 10100 = 11 with probability p2.

T I

( 101 / 000, p )

( 00 /  01, p )

( x / x, 1 )

( 00 /  00, 1 - p ) ( 10 / 00, p )

 

( 001 / 010, p )

( 001 /  001, 1 - p )

( 10 / 10, 1 - p )

 

( 101 / 101, 1 - p )

Fig. 2. Transducer of the Fibonacci fallible adding machine

By using the transducer Tp, we can prove the following result (see [6]).

Proposition 5.1. Let N be a nonnegative integer. Then the following
statements hold:

(1) N transitions to N with probability 1− p.
(2) N = εk . . . ε200 with k ≥ 2 transitions to N + 1 = εk . . . ε201 with

probability p.
(3) N = εk . . . εt00 1010 . . . 1010︸ ︷︷ ︸

2s

with s ≥ 1 and k ≥ t ≥ 2s + 2 tran-

sitions to N + 1 = εk . . . εt01 0 . . . 00︸ ︷︷ ︸
2s

with probability ps+1, and to

N −
∑m

i=1 F2i−1 = N − F2m + 1 = εk . . . εt00 10 . . . 10︸ ︷︷ ︸
2s−2m

0 . . . 00︸ ︷︷ ︸
2m

, 1 ≤

m ≤ s, with probability pm(1− p).
(4) N = εk . . . εt0 0101 . . . 0101︸ ︷︷ ︸

2s

with s ≥ 2 and k ≥ t ≥ 2s+1 transitions

to N + 1 = εk . . . εt0 1000 . . . 000︸ ︷︷ ︸
2s

with probability ps, and to N −∑m
i=0 F2i = N −F2m+1 + 1 = εk . . . εt00 10 . . . 10︸ ︷︷ ︸

2s−2m

0 . . . 00︸ ︷︷ ︸
2m−1

, 2 ≤ m ≤ s,

with probability pm−1(1− p).
(5) N = εk . . . ε3001 with k ≥ 3 transitions to N + 1 = εk . . . ε3010 with

probability p.
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By Proposition 5.1, we construct the transition graph. We also find the
associated transition operator Sp.



1−p p 0 0 0 0 0 0 0 0 0 0 0 . . .

0 1−p p 0 0 0 0 0 0 0 0 0 0 . . .

p(1−p) 0 1−p p2 0 0 0 0 0 0 0 0 0 . . .

0 0 0 1−p p 0 0 0 0 0 0 0 0 . . .

p(1−p) 0 0 0 1−p p2 0 0 0 0 0 0 0 . . .

0 0 0 0 0 1−p p 0 0 0 0 0 0 . . .

0 0 0 0 0 0 1−p p 0 0 0 0 0 . . .

p2(1−p) 0 0 0 0 p(1−p) 0 1−p p3 0 0 0 0 . . .

0 0 0 0 0 0 0 0 1−p p 0 0 0 . . .

0 0 0 0 0 0 0 0 0 1−p p 0 0 . . .

0 0 0 0 0 p(1−p) 0 0 p(1−p) 0 1−p p2 0 . . .

.

.

.

.

.

.

.

.

.
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.

.


Fig. 3. Transition graph of the stochastic adding machine in the Fibonacci base

Remark. In [6], the authors prove that the point spectrum of Sp in `∞

is equal to the set Kp = {λ ∈ C : (qn(λ))n≥1 is bounded}, where qF0(z) = z,
qF1(z) = z2, qFk(z) = (1/p)qFk−1

(z)qFk−2
(z)−(1− p)/p for all k ≥ 2, and for

all nonnegative integers n we have qn = qFk1 . . . qFkm where Fk1 + · · ·+ Fkm
is the Fibonacci representation of n. In particular, σpt(Sp) is contained
in

Ep = {λ ∈ C : (qFn(λ))n≥1 is bounded} = {λ ∈ C : (λ1, λ) ∈ Kg}

where Kg is the filled Julia set of the function g : C2 → C2 defined by
g(x, y) =

(
1
p2

(x−1 +p)(y−1 +p), x
)

and λ1 = 1−p+ (1− λ− p)2/p. They

also investigated the topological properties of Ep.

Proposition 5.2. The operator Sp is well defined in the Banach spaces
c0, c and `α, α ≥ 1. The point spectra of Sp acting in c0 and `α associated to
the stochastic Fibonacci adding machines are empty. In c, the point spectrum
equals {1}.

Proof. By Proposition 5.1, we can prove that the sum of the entries in
every column of Sp is bounded by a fixed constant M > 0.

Indeed, let n ∈ N and sn =
∑∞

i=0 pi,n be the sum of the entries in the
nth column.

If n = εk . . . ε201 or n = εk . . . ε3010 (Fibonacci representation), then by
(1), (2) and (5) of Proposition 5.1, we have sn = 1.

If n = εk . . . εt01 0 . . . 00︸ ︷︷ ︸
s

, s ≥ 2, then for all integers i ∈ N, pi,n > 0

implies that i = n or i = n− 1 or i = εk . . . εt01 0 . . . 0︸ ︷︷ ︸
s−2m

01 . . . 01︸ ︷︷ ︸
2m

, s ≥ 2m, or
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i = εk . . . εt01 0 . . . 0︸ ︷︷ ︸
s−2m

10 . . . 10︸ ︷︷ ︸
2m

, s ≥ 2m. Hence

sn ≤ 1− p+ pds/2e + 2

∞∑
m=1

pm(1− p) ≤ 1 + 2p.

If n = 0, then sn ≤ 1 + p.

On the other hand, since Sp is a stochastic matrix, Proposition 4.1 shows
that Sp is well defined in c0, c (resp. in `α, α ≥ 1).

Now, let λ be an eigenvalue of Sp in X where X ∈ {c0, c, `α (α ≥ 1)}
associated to the eigenvector v = (vi)i≥0 ∈ X. Since the transition probabil-
ity from any nonnegative integer i to any integer i+ k, k ≥ 2, is pi,i+k = 0
(see Proposition 5.1), the operator Sp satisfies (Sp)i,i+k = 0 for all i, k ∈ N
with k ≥ 2. Thus for every integer k ≥ 1, we have

k∑
i=0

pk−1,ivi = λvk−1.(5.1)

Hence we can prove by induction on k that for any integer k ≥ 1, there
exists a complex number ck = ck(p, λ) such that

vk = ckv0.(5.2)

Using the fact that the matrix Sp is self-similar, we can prove that ck = qk
for all k ∈ N (see Theorem 1 in [6]). Since

qFn(z) =
1

p
qFn−1(z)qFn−2(z)− 1− p

p
, ∀n ∈ N,

and (qFn) converges to 0 as n → ∞, we deduce that the point spectrum
of Sp acting in c0 (resp. in `α, α ≥ 1) is empty. Using the same idea as in
Proposition 4.5, we see that σpt,c = {1}.

Remark. By the Phillips Theorem and duality, it follows that the spec-
tra of Sp acting in X ∈ {c0, c, `1, `∞} associated to the stochastic Fibonacci
adding machine are all equal.

Theorem 5.3. The spectrum of Sp acting in X ∈ {`∞, c0, c, `α (α ≥ 1)}
contains the set Ep = {λ ∈ C : (qFn(λ))n≥0 is bounded}.

Proof. The proof is similar to the proof of Proposition 4.8 and will be
done in the case `α, α > 1. Let λ ∈ Ep and let us prove that λ belongs to
the approximate point spectrum of Sp in `α, α > 1.

For every integer k≥ 2, consider w(k) = (1, q1(λ), . . . , qk(λ), 0, 0, . . .)t ∈ `α
where (qk(λ))k≥1 = (qk)k≥1 is defined in the proof of Proposition 5.2. Let

u(k) = w(k)/‖w(k)‖α.

Claim. limn→∞ ‖(Sp − λ Id)u(Fn)‖α = 0.
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By using the same proof as for Proposition 4.8, we have

‖(Sp − λ Id)u(Fn)‖αα ≤
D

‖w(Fn)‖αα

Fn∑
j=0

|w(Fn)
j |αBFn,j

where D is a positive constant and BFn,j =
∑∞

i=Fn
|(Sp − λ Id)i,j |.

We can prove as in Proposition 4.8 that for 0 ≤ j ≤ Fn,

BFn,j 6= 0 ⇔ j = 0 or j = Fn.

Indeed, if j ∈ {1, . . . , Fn−1}, then since i≥Fn, we have (Sp−λ Id)i,j = pi,j .
If the Fibonacci representation of j is j = εk . . . ε201 or j = εk . . . εt10 . . . 0,
it is easy to see by Proposition 5.1 that pi,j 6= 0 implies i < Fn.

On the other hand, if j = 0 then BFn,j =
∑∞

l=Fn
pl,0. Since pl,0 6= 0 if

and only l = Fi − 1, and since pFi−1,0 = pdi/2e(1 − p), we have BFn,j ≤
2
∑∞

i=m p
i(1− p) = 2pm where m = d(n+ 1)/2e.

Now assume j = Fn. In this case, BFn,j = |1−p−λ|+
∑∞

i=Fn+1 pi,Fn . On
the other hand, by Proposition 5.1, pi,Fn 6= 0 if and only if i = Fn + Fm − 1

for some 0 ≤ m ≤ n and pFn+Fm−1,Fn = p[m/2](1− p). Therefore

BFn,Fn = |1− p− λ|+
n∑

m=0

pdm/2e(1− p) ≤ |1− p− λ|+ 2.(5.3)

Hence

‖(Sp − λ Id)u(Fn)‖αα ≤ D
2pm + |qFn |α(|1− p− λ|+ 2)

‖w(Fn)‖αα
.

Since ‖w(Fn)‖α → ∞ as n → ∞ goes to infinity and (qFn)n≥0 is bounded,
it follows that ‖(Sp − λ Id)u(Fn)‖α → 0. Therefore λ belongs to the approx-
imate point spectrum of Sp. Thus the spectrum of Sp acting on `α, α > 1,
contains Ep.

The case of `1 can be handled in the same way. The details are left to
the reader.

Open questions. We are not yet able to compute the residual and
continuous spectrum of Sp acting in `∞, c0, c or in `α, α ≥ 1. We conjecture
that σ(Sp) = Ep. Moreover, in the case of `∞ we conjecture that the residual
spectrum is empty and the continuous spectrum is Ep \ Kp. The difficulty
here is that the matrix Sp is not doubly stochastic. One may also look for a
characterization of all real numbers 0 < p < 1 for which Ep 6= Kp.
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