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Abstract. If G is a group then the abelian subgroup spectrum of G is defined to be
the set of all κ such that there is a maximal abelian subgroup of G of size κ. The cardinal
invariant A(G) is defined to be the least uncountable cardinal in the abelian subgroup
spectrum of G. The value of A(G) is examined for various groups G which are quotients of
certain permutation groups on the integers. An important special case, to which much of
the paper is devoted, is the quotient of the full symmetric group by the normal subgroup
of permutations with finite support. It is shown that, if we use G to denote this group,
then A(G) ≤ a. Moreover, it is consistent that A(G) 6= a. Related results are obtained for
other quotients using Borel ideals.

1. Introduction and definitions. The maximality of abelian sub-
groups plays a role in various parts of group theory. For example, Mycielski
[9, 8] has extended a classical result on Lie groups and shown that a maxi-
mal abelian subgroup of a compact connected group is connected. For finite
symmetric groups the question of the size of maximal abelian subgroups has
been examined by Burns and Goldsmith in [4] and Winkler in [16]. It will be
shown in Corollary 3.1 that there is not much interest in generalizing this
study to infinite symmetric groups; the cardinality of any maximal abelian
subgroup of the symmetric group of the integers is 2ℵ0 . The purpose of this
paper is to examine the size of maximal abelian subgroups for a class of
groups closely related to the symmetric group of the integers; these arise by
taking an ideal on the integers, considering the subgroup of all permutations
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which respect the ideal and then taking the quotient by the normal subgroup
of permutations which fix all integers except for a set in the ideal. It will be
shown that the size of maximal abelian subgroups in such groups is sensitive
to the nature of the ideal as well as to various set-theoretic hypotheses.

The reader familiar with applications of the Axiom of Choice may not
be surprised by the assertion just made since one can imagine construct-
ing ideals on the integers by transfinite induction such that the quotient
group just described exhibits various desired properties. Consequently, it is
of interest to restrict attention to only those ideals which do not require the
Axiom of Choice for their definition. All of the ideals considered will have
simple definitions—indeed, they will all be Borel subsets of P(ω) with the
usual topology—and, in fact, the first three sections will focus on the ideal
of finite sets. It should be mentioned that there is a large body of work
examining the analogous quotients of the Boolean algebra P(ω) modulo an
analytic ideal; the monograph [6] by Farah is a good reference for this sub-
ject. However, the analogy is far from perfect since, for example, whereas
the Boolean algebra P(ω)/[ω]<ℵ0 can consistently have 22ℵ0 automorphisms
[10] it is shown in [1] that the quotient of the full symmetric group of the in-
tegers modulo the subgroup of finite permutations has only countably many
outer automorphisms. Nevertheless, it may be possible to employ methods
similar to those of [6] in order to distinguish between different quotient al-
gebras up to isomorphism. This has been done for elementary equivalence
in [14, 13] for quotients of the full symmetric group on κ by the normal sub-
groups fixing all but λ elements. However, since the full symmetric group
of the integers has only two proper normal subgroups [11], quotients of
certain, naturally arising subgroups will be considered instead. One of the
goals of this study is to use the cardinal invariants associated with maximal
abelian subgroups as a tool to distinguish between isomorphism types of
such groups.

In order to state the main results precisely some notation is needed.

Definition 1.1. If G is a group then define the abelian subgroup spec-

trum of G to be the set of all κ such that there is a maximal abelian subgroup
ofG of size κ. Define A(G) to be the least uncountable cardinal in the abelian
subgroup spectrum of G.

The requirement that A(G) be uncountable rather than just infinite is
important because many groups have maximal abelian subgroups isomor-
phic to Z. In particular, quotients of the symmetric group on N often have
a fixed point free permutation of N consisting of a single cycle which gener-
ates a maximal abelian subgroup. The question of whether maximal abelian
subgroups which are not finitely generated are uncountable will not be con-
sidered here.
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Notation 1.1. Throughout this paper the symbol S will be used to
denote the symmetric group on N. For π ∈ S let supp(π) denote the support
of π, which is defined to be {x ∈ domain(π) : π(x) 6= x}. If I is an ideal (1)
on N then S(I) ⊆ S will denote the subgroup of all permutations preserving
I; in other words, a permutation π belongs to S(I) provided that π(A) ∈ I
if and only if A ∈ I. On the other hand, F(I) will be used to denote the
normal subgroup of S(I) consisting of all permutations π ∈ S(I) such that
supp(π) ∈ I. The abbreviation F = F([N]<ℵ0) will also be used.

The focus of this paper will be on computing A(S(I)/F(I)) for various
simply defined ideals. This cardinal will be denoted by A(I).

Notation 1.2. Given a pair of permutations {π, π′} ∈ [S]2 define

NC(π, π′) = {n ∈ N : π(π′(n)) 6= π′(π(n))}.

A pair of permutations {π, π′} ∈ [S]2 will be said to almost commute modulo

an ideal I if NC(π, π′) ∈ I and they will be said to almost commute if
NC(π, π′) is finite.

Notation 1.3. Given a permutation π and X ⊆ N define the orbit

of X under π by orbπ(X) = {πi(x)}i∈Z, x∈X . The abbreviation orbπ(n) =
orbπ({n}) will be used when no confusion is possible. If S is a set of permu-
tations then define

orbS(X) =
{

n
∏

i=1

πj
i (x)

}

n∈ω, x∈X, πi∈S, j∈{−1,1}
.

Notation 1.4. Given a set of permutations S ⊆ S define ΩS to be the
set of all non-empty, minimal sets closed under the group generated by the
permutations in S. Define ΩS(n) to be the unique element of ΩS containing
n. If A and B are in ΩS then define A to be S-isomorphic to B if there is a
bijection ψ : A→ B such that π(ψ(a)) = ψ(π(a)) for each π ∈ S and a ∈ A.

Notation 1.5. Given two finite subsets A and B of N of the same
cardinality, define ∆A,B : A→ B to be the unique order preserving mapping
between them and let ∆A = ∆A,|A|. Let ∆{A,B} = ∆A,B ∪∆B,A.

The set-theoretic notation used throughout will adhere to the contempo-
rary standard. In particular, [X]k will denote the family of subsets of X of
cardinality k and [X]<k will denote the family of subsets of X of cardinality
less than k. Occasionally ≡∗ will be used to denote equivalence modulo a
finite set. Since cardinal invariants of the continuum are closely linked to
the investigation of A(I) it is worthwhile recalling the definitions of some
well known invariants.

(1) An ideal is a collection of subsets of the integers closed under finite unions and
subsets.
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Definition 1.2. Given an ideal I ⊆ P(ω) let P(ω)/I be the quotient
Boolean algebra and denote the least cardinal of a maximal, uncountable,
pairwise disjoint family (2) in P(ω)/I by a(I). In the special case I = [N]<ℵ0

the invariant a(I) is denoted by a and it should be noted that a is also the
least cardinal of an infinite, maximal almost disjoint family; namely, a family
A ⊆ P(ω) such that any two of its elements have finite intersection and A
is maximal with respect to this property. The least cardinal of an ideal
B ⊆ P(ω)/[ω]<ℵ0 such that there is no C ∈ P(ω)/[ω]<ℵ0 disjoint from all
members of B (other than the equivalence class of the finite sets) is denoted
by p.

In Section 2 it is shown that a is an upper bound for A([N]<ℵ0) while in
Section 3 it is shown that p serves as a lower bound for A([N]<ℵ0). Sections 4
and 5 deal with consistency results. In Section 4 it is shown that a is not
the best possible upper bound for A([N]<ℵ0) since in the iterated Laver
model A([N]<ℵ0) is strictly less than a. Sections 5 and 6 deal with quotients
using ideals other than the ideal of finite sets. It is shown in Section 5 that
adding ℵ1 Cohen reals to a model where 2ℵ0 > ℵ1 yields a model where
A(I1/x) = ℵ1 < 2ℵ0 and I1/x is the ideal of sets whose reciprocals form
a series with finite sum. Section 6 deals with ideals similar to the density
ideal. It is shown that A(I) = 2ℵ0 for many of these ideals I. No extra
set-theoretic axioms are used here. The final section contains some open
questions.

2. An upper bound

Proposition 2.1. A([N]<ℵ0) ≤ a.

Proof. Let A be a maximal almost disjoint family of subsets of N of size
a and let F (A) be the free abelian group generated by A; in other words,
F (A) consists of all f : A → Z such that f has finite support. For a ∈ A

define πa : a → a by πa(i) = min({j ∈ a : j > i}) and, for j ∈ Z, let πj
a

denote the j-fold composition of πa, noting that both the domain and range
of πj

a are co-finite subsets of a. If f ∈ F (A) then let Φ(f) be the set of all
permutations π such that there is a finite set F ⊆ N such that if a and a′

are distinct elements of supp(f) then a ∩ a′ ⊆ F and such that

π(j) =

{

π
f(a)
a (j) if j ∈ a \ F and f(a) 6= 0,

j if j /∈ F and (∀a ∈ A) j /∈ a or f(a) = 0,

leaving Φ(f) undefined if there are no such permutations. Observe that
Φ(0) = F where 0 denotes the constant function with value 0. Also note
that if π ∈ Φ(f) and σ ∈ Φ(g) then π ◦ σ ∈ Φ(f + g). Since it is easy to

(2) See [15] for a more detailed discussion of this invariant.
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see that if π ∈ F and σ ∈ Φ(f) then both σ ◦ π and π ◦ σ are in Φ(f), it
follows that Φ(f) is a coset of F if it is defined. Since Φ is easily seen to
be one-to-one, it is an isomorphism between a subgroup of F (A) and the
subgroup Φ(F (A)) of S/F.

In fact, Φ(f) is defined precisely when
∑

a∈A f(a) = 0. To see this, let
f ∈ F (A) and suppose that the support of f is B and

∑

b∈B f(b) = 0. Let
F ⊆ N be a finite set such that b ∩ b′ ⊆ F for any two distinct b and b′

in B and such that F ∩ b is an initial segment of b for each b ∈ B. Let
B+ = {b ∈ B : f(b) > 0} and B− = {b ∈ B : f(b) < 0}. If b ∈ B+ let b∗

be the first f(b) elements of b \ F and if b ∈ B− let b∗ be the first −f(b)
elements of b \ F . Let θ :

⋃

b∈B− b∗ →
⋃

b∈B+ b∗ be any bijection and define
π as follows:

π(j) =



















j if j /∈
⋃

b∈B b \ F ,

π
f(b)
b if j ∈ b ∈ B+,

π
f(b)
b if j ∈ b \ b∗ and b ∈ B−,

θ(j) if j ∈
⋃

b∈B− b∗,

and observe that π is a bijection. Moreover, F ∪
⋃

b∈B− b∗ witnesses that
φ ∈ Φ(f). It is an easy exercise to use the maximality of A to show that if
∑

f(a) 6= 0 then Φ(f) = ∅.

To see that Φ(F (A)) is maximal abelian let π/F ∈ S/F\Φ(F (A)). Before
continuing, some notation will be introduced. Given two distinct elements a
and a′ of A let fa,a′ ∈ F (A) be such that supp(fa,a′) = {a, a′} and fa,a′(a) =
1 = −fa,a′(a′). Choose πa,a′ ∈ Φ(fa,a′).

Claim 1. If a ∈ A is such that supp(π) ∩ a is infinite then supp(π) ∩ a
is a co-finite subset of a.

Proof. Let a′ ∈ A \ {a}. If the claim fails then there are infinitely many
n ∈ a such that n /∈ supp(π) but πa,a′(n) ∈ supp(π). For any such n it
follows that π ◦ πa,a′(n) 6= πa,a′(n) while πa,a′ ◦ π(n) = πa,a′(n). Hence π/F
and πa,a′/F do not commute.

Claim 2. If a ∈ A is such that supp(π) ∩ a is infinite then π(a) ⊆∗ a.

Proof. If not, there are infinitely many n ∈ a such that π(n) /∈ a. Let
X be the set of all such n and choose a′ ∈ A \ {a} such that π(X) \ a′ is
infinite. Then πa,a′ ◦ π(n) = π(n) and πa,a′(n) 6= n for all but finitely many
n ∈ π−1(π(X) \ a′). From the last inequality it follows that π(πa,a′(n)) 6=
π(n) and hence πa,a′/F does not commute with π/F.

Claim 3. If a ∈ A is such that supp(π)∩a is infinite then there is some

i ∈ Z such that π↾a ≡∗ πi
a↾a.
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Proof. From Claims 1 and 2 it follows that for almost all n ∈ a there

is some k(n) such that π(n) = π
k(n)
a (n). Let a′ ∈ A \ {a}. If the claim is

false then there are infinitely many n ∈ a such that k(n) 6= k(πa(n)) =
k(πa,a′(n)). For any such n it follows that

πa,a′ ◦ π(n) = π
k(n)+1
a,a′ (n)

6= π
k(πa,a′ (n))+1

a,a′ (n)

= π
k(πa,a′ (n))

a,a′ (πa,a′(n)) = π ◦ πa,a′(n)

and hence πa,a′ ◦ π and π ◦ πa,a′ disagree on infinitely many integers.

There are now two cases to consider.

Case 1: There is a finite subset {a1, . . . , an} ⊆ A such that supp(π) ⊆∗
⋃n

i=1 ai. In this case, use Claim 3 to choose integers ki ∈ Z such that

π↾ai ≡
∗ πki

ai

for each i ≤ n. This contradicts the assumption that π/F /∈ Φ(F (A)).

Case 2: There is no finite subset {a1, . . . , an} ⊆ A such that supp(π) ⊆∗
⋃n

i=1 ai. In this case there are uncountably many a ∈ A such that supp(π)∩a
is infinite. Use Claim 3 to conclude that there is some i ∈ Z such that,
without loss of generality, π↾a ≡∗ πi

a for uncountably many a ∈ A. Hence
there is some k ∈ N such that π↾{n ∈ a : n ≥ k} = πi

a↾{n ∈ a : n ≥ k} for
uncountably many a ∈ A. Therefore, there are distinct a and b in A such
that {n ∈ a : n ≥ k} ∩ {n ∈ b : n ≥ k} is not empty. If j is the maximal
element of this intersection then π(j) = πi

a(j) 6= πi
b(j) = π(j).

3. A lower bound. The next series of preliminary lemmas will be used
in the proof of Theorem 3.2 which establishes a lower bound for A([N]<ℵ0).
Corollary 3.1 has as a trivial consequence the fact that any maximal abelian
subgroup of the full symmetric group of the integers has cardinality 2ℵ0 ;
however, this can also be shown by using the topology of pointwise conver-
gence on this group and noting that any maximal abelian subgroup must be
closed and uncountable, and hence have cardinality 2ℵ0 .

Lemma 3.1. Let S be a finite subset of S whose elements almost commute

with each other.

(1) If all the orbits of each π ∈ S are finite then each element of ΩS is

finite.

(2) If , in addition, for each π ∈ S all the orbits of π have size less

than or equal to m(π) then the cardinality of all but finitely many

elements of ΩS is no greater than
∏

π∈S m(π).
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Proof. Proceed by induction on n = |S|, the case n = 1 being trivial. If
the lemma is true for n let S = {πi}

n+1
i=1 and S ′ = {πi}n

i=1. Define

B =
n
⋃

i=1

NC(πi, πn+1),

and if the orbit of each π ∈ S is bounded by m(π) then let B′ be the
union of those finitely many A ∈ ΩS′ whose cardinality is not bounded by
∏n

i=1m(πi). Define

B∗ =
⋃

m∈orbπn+1 (B∪B′)

ΩS′(m).

Observe that B∗ is finite by the induction hypothesis and the fact that the
orbits of πn+1 are finite. Hence, it suffices to show that if C ∈ ΩS′ and
C ∩B∗ = ∅ then C ′ = orbπn+1(C) belongs to ΩS . The fact that it is finite is
immediate since all orbits of πn+1 are finite; similarly, if |C| ≤

∏n
i=1m(πi)

then it follows that |C ′| ≤
∏n+1

i=1 m(πi).

To see that C ′ ∈ ΩS it suffices to show that if i ≤ n and c ∈ C ′

then orbπi
(c) ⊆ C ′. There is some d ∈ C such that c ∈ orbπn+1(d). Since

orbπi
(d) ⊆ C ⊆ C ′ it follows that if orbπi

(c) 6⊆ C ′ then there must be
some e ∈ orbπn+1(d) such that πi(e) ∈ C ′ and πi(πn+1(e)) /∈ C ′. But
πn+1(πi(e)) ∈ C ′ by definition. Hence πn+1 ◦ πi(e) 6= πi ◦ πn+1(e), con-
tradicting the fact that e /∈ B.

Lemma 3.2. Let S ⊆ S be finite and suppose that π ∈ S and θ ∈ S almost

commute with each member of S. Then there is a finite set Y such that for

any set X, if π↾X ∪Y = θ↾X ∪Y then π↾orbS(X) = θ↾orbS(X). Moreover ,
if π and θ actually commute with each member of S then Y can be taken to

be the empty set.

Proof. Let Y ′ =
⋃

σ∈S NC(σ, π) ∪ NC(σ, θ) and Y =
⋃

σ∈S σ(Y ′) ∪

σ−1(Y ′). Note that orbS(X ∪ Y ) =
⋃∞

i=0X
(i) where X(0) = X ∪ Y and

X(n+1) =
⋃

σ∈S orbσ(X(n)), and hence it suffices to show by induction that

π↾X(n) = θ↾X(n) for each n assuming that π↾X(0) = θ↾X(0). To this end,
suppose that π↾X(n) = θ↾X(n) and x ∈ X(n+1) \ X(n). Then there are
x ∈ X(n) and σ ∈ S such that x ∈ orbσ(x). But π(x) = θ(x) and hence
σk(π(x)) = σk(θ(x)) for any k. If n > 1 then x /∈ Y and it follows that
π(σk(x)) = θ(σk(x)) for all k. Since x = σk(x) for some k the result follows.

If n = 1 it will be shown by induction on |k| that if x ∈ X(1) and
x ∈ X(0) and σ ∈ S are such that x = σk(x) then θ(x) = π(x). If |k| = 0
this is immediate. First assume that k > 0 and θ(σk−1(x)) = π(σk−1(x)). If
σk−1(x) /∈ Y ′ then σk−1(x) /∈ NC(π, σ) ∪ NC(θ, σ) and so

θ(σk(x)) = σ(θ(σk−1(x))) = σ(π(σk−1(x))) = π(σk(x))
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as required. On the other hand, if σk−1(x) ∈ Y ′ then σ(σk−1(x)) ∈ Y and
so θ(σk(x)) = π(σk(x)) in this case also. The case that k < 0 is handled
similarly.

Definition 3.1. If H ⊆ S is a subgroup then define H to be strongly

almost abelian if for each h ∈ H there is a finite set F (h) ⊆ N such that if
h1 and h2 belong to H then NC(h1, h2) ⊆ F (h1) ∪ F (h2).

Lemma 3.3. If H ⊆ S is an uncountable subgroup and F : H → [N]<ℵ0

attests to the fact that H is strongly almost abelian then there is a perfect

set P ⊆ S and a finite W ⊆ N such that :

• There is some g∗ ∈ H such that for all n ∈ N \W and π ∈ P either

π(n) = n or π(n) = g∗(n).
• NC(π, h) ⊆W ∪ F (h) ∪ h−1(W ) for π ∈ P and h ∈ H.

Moreover , if H is actually abelian and not just strongly almost abelian then

W can be assumed to be empty and it can be concluded that each π ∈ P
commutes with each h ∈ H.

Proof. Given X ⊆ N and a finite W ⊆ N define cl0W (X) = X,

cl1W (X) = {z ∈ N \W : (∃h ∈ H)(∃x ∈ X \ F (h)) z = h(x)

and z /∈ F (h−1)} ∪X

and let cln+1
W (X) = cl1W (clnW (X)); finally, let clW (X) =

⋃∞
i=1 cliW (X). Ob-

serve first that it follows from an argument similar to that in Lemma 3.2
that if F (g1) ⊆ W and F (g2) ⊆ W and g1↾X = g2↾X then g1↾cl

1
W (X) =

g2↾cl
1
W (X), and hence g1↾clW (X) = g2↾clW (X). If for every W ∈ [N]<ℵ0

there is some AW ∈ [N]<ℵ0 such that AW ∪ clW (AW ) = N then it follows
that each g ∈ H is determined by its values on F (g)∪AF (g). This contradicts
the assumption that H is uncountable.

Therefore there must be some W ∈ [N]<ℵ0 such that clW (A) 6= N for
every A ∈ [N]<ℵ0 . Furthermore, it is possible to choose some finite W ′ ⊇W
such that the set of all g ∈ H such that F (g) ⊆W ′ is uncountable. Observe
that clW (A) ⊇ clW ′(A) for any A, so it is possible to select {ai}∞i=1 ⊆ N

such that {clW ′({ai})}∞i=1 is an infinite family covering N \ W ′. Observe
that if g ∈ H is such that F (g) ⊆ W ′ and g↾clW ′({ai}) is the identity
for all but finitely many i then g is determined by its values on W ∪ {ai :
(∃n ∈ clW ′({ai})) g(n) 6= n}. Hence, there must be some g ∈ H such that
F (g) ⊆W ′ and g↾clW ′({ai}) is not the identity for infinitely many i. Let

Z =
{

i ∈ N : (∃n ∈ clW ′({ai})) g(n) 6= n and g−1(W ′) ∩ clW ′({ai}) = ∅
}

.

First notice that it follows from the definition of clW ′ and the inclusion
F (g) ⊆ W ′ that g(clW ′({ai})) ⊆ clW ′({ai}) ∪W ′. Hence g↾clW ′({ai}) is a
permutation of clW ′({ai}) for each i ∈ Z. Therefore, if for each t : Z → 2
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the function gt is defined by

gt(n) =

{

g(n) if n ∈ clW ′({ai}) and t(i) = 0,

n otherwise,

then gt is a permutation of N. It is routine to check that each gt(h(n)) =
h(gt(n)) provided that n /∈W ′ ∪ F (h) ∪ h−1(W ′).

Corollary 3.1. If H ⊆ S is an uncountable, maximal strongly almost

abelian subgroup then |H| = 2ℵ0.

Proof. The maximality of H implies that it must contain the perfect set
of the conclusion of Lemma 3.3.

Lemma 3.4. If H is a maximal abelian subgroup of S/F and there are

{π1/F, . . . , πn/F} ⊆ H

such that , letting S = {π1, . . . , πn}, the set {|a|}a∈ΩS
is infinite, then |H|

= 2ℵ0 .

Proof. Let Aj =
⋃

(ΩS ∩ [N]j) and note that A = {Aj}∞j=2 is an infinite
family of pairwise disjoint sets. For each non-empty Aj ∈ A choose some
j∗ ≤ n such that πj∗↾Aj is different from the identity. For each F : A → 2
define

θF (k) =

{

πj∗(k) if k ∈ Aj and F (Aj) = 1,

k otherwise,

and observe that θF is a bijection and that if F and G differ on an infinite
set then so do θF and θG. It suffices to show that NC(θF , π) is finite for each
π ∈ H and F : A → 2.

To see this, let π ∈ H and let j be so large that

(

n
⋃

i=1

NC(πi, π)
)

∩
(

∞
⋃

i=1

Ai

)

⊆

j
⋃

i=1

Ai.

Hence, if k ≥ j then π↾Ak commutes with πi↾Ak for i ≤ n. It suffices to
show that π↾Ak is a permutation of Ak for k ≥ j, because it will then follow
that for m ∈ Ak,

π ◦ θF (m) = π ◦ πk∗(m) = πk∗ ◦ π(m) = θF ◦ π(m)

if F (Ak) = 1, and

π ◦ θF (m) = π(m) = θF ◦ π(m)

if F (Ak) = 0. To see that π↾Ak is a permutation of Ak let a ∈ Ak. Then
π is an S-isomorphism from ΩS(a) onto ΩS(π(a)). If π(a) ∈ Al for some
l 6= k then |ΩS(a)| = k 6= |ΩS(π(a))|, and this contradicts the fact that π is
a bijection.
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Definition 3.2. If g ∈ S then define I(g) =
⋃

{a ∈ Ω{g} : |a| = ℵ0}.
For a finite set S ⊆ S define

I∗(S) =
⋃

σ∈S

⋃

m∈I(σ)

ΩS(m).

Lemma 3.5. If H ⊆ S is an uncountable, maximal , almost commuting

subgroup of size less than 2ℵ0 then [N]<ℵ0 ∪ {I∗(S)}S∈[H]<ℵ0 generates a

proper ideal.

Proof. If not, let B ⊆ H and C ⊆ N be finite sets such that I∗(B) ∪ C
= N. Without loss of generality it may be assumed that NC(b, b′) ⊆ C for
each b and b′ in B. Let S = {A ∈ ΩB : A ∩ C = ∅}. Observe that each set
in S is infinite. In order to see this, let A ∈ S and note that

A ⊆ I∗(B) =
⋃

b∈B

⋃

m∈I(b)

ΩB(m)

since A∩C = ∅. Hence there are b and m ∈ I(b) such that A∩ΩB(m) 6= ∅.
But since A ∈ ΩB it must also be the case that m ∈ A. Since b ∈ B it
follows that orbb(m) ⊆ A and so A is infinite by the definition of I(b).

Moreover, S itself is an infinite set, since otherwise Lemma 3.2 would
imply that H is countable. To see this, let Y be a finite set given by
Lemma 3.2 such that if θ and π almost commute with each b ∈ B and
θ↾(X ∪ Y ) = π↾(X ∪ Y ) then θ↾orbB(X) = π↾orbB(X). Assuming S is
finite, choose a finite set X such that X ∩ A 6= ∅ for all A ∈ S. Then
⋃

x∈X orbB(x) ⊇
⋃

S and so any h ∈ H is determined by its values on
X ∪ Y ∪ C.

With these observations in hand, let SS be the symmetric group on S and
define Φ : H → SS by Φ(h)(s) = t if and only if |h(s)∩ t| = ℵ0. First observe
that Φ is well defined. To see this, suppose that s ∈ S and h ∈ H and there
are distinct t and t′ in S such that |h(s)∩t| = |h(s)∩t′| = ℵ0. Then there exist
i and j in s\

⋃

b∈B NC(h, b) such that h(i) ∈ t and h(j) ∈ t′. But then, since
{i, j} ⊆ s ∈ ΩB , there is some g in the subgroup generated by B such that
g(i) = j. Since i /∈

⋃

b∈B NC(h, b) it follows that h(j) = h(g(i)) = g(h(i)).
Furthermore, g(h(i)) ∈ t because h(i) ∈ t and g belongs to the subgroup
generated by B. However, h(j) ∈ t′ and t and t′ are disjoint. Therefore
h(g(i)) 6= g(h(i)), contradicting the choice of i. A similar argument shows
that Φ is a homomorphism.

Moreover, its image Φ(H) is an abelian subgroup of SS . To see this, let
s ∈ S. If Φ(g)(Φ(h)(s)) 6= Φ(h)(Φ(g)(s)) then g(h(s)) 6≡∗ h(g(s)), and hence
there are infinitely many i ∈ s such that g(h(i)) 6= h(g(i)), contradicting the
fact that h almost commutes with g.

To begin, it will be shown that there cannot be a perfect set P ⊆ SS

such that:
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(1) There is some g∗ ∈ H such that for all s ∈ S and π ∈ P either
π(s) = s or π(s) = Φ(g∗)(s).

(2) Every element of P commutes with every element of Φ(H).

To see this, suppose that P and g∗ contradict the assertion. For π ∈ P define
π∗ ∈ S by

π∗(i) =

{

i if i ∈ s ∈ S and π(s) = s,

g∗(i) if i ∈ s ∈ S and π(s) 6= s.

It suffices to show that π∗ almost commutes with each h ∈ H. To see that
let i ∈ N \ NC(g∗, h) and s ∈ S be such that i ∈ s. If π(s) = s then
h(π∗(i)) = h(i) = π(h(i)), the last equality holding because h(i) ∈ Φ(h)(s)
and π(Φ(h)(s)) = Φ(h)(π(s)) = Φ(h)(s). On the other hand, if π(s) 6= s then
h(π∗(i)) = h(g∗(i)) = g∗(h(i)) = π∗(h(i)), the last equality holding because
h(i) ∈ Φ(h)(s) and π(Φ(h)(s)) = Φ(h)(π(s)) 6= Φ(h)(s).

It will now be shown that Φ(H) is uncountable. Once this is done, since
Φ(H) has already been shown to be abelian, it will follow from Lemma 3.3
that there exist P and g∗ satisfying conditions (1) and (2). So suppose that
Φ(H) is countable. To begin, notice that there must be some A ∈ ΩΦ(H)

such that {h↾
⋃

A}h∈H is uncountable—keep in mind that A ⊆ ΩB . This is
so because if not, then it is easy to find P and g∗ satisfying conditions (1)
and (2). Simply let g∗ ∈ H be any permutation such that Φ(g∗)↾A is different
from the identity on infinitely many sets in ΩΦ(H). Then let P be the set of
all g ∈ SS such that for all A ∈ ΩΦ(H) either g↾A = Φ(g∗)↾A or else g↾A is
the identity. If no such g∗ exists then it follows that H is countable because
{h↾

⋃

A}h∈H is countable for each A ∈ ΩΦ(H) and each h is the identity on
all but finitely many A ∈ ΩΦ(H).

Hence, there must be some A ∈ ΩΦ(H) such that {h↾
⋃

A}h∈H is uncount-
able and so there is some h∗ ∈ H such that {h↾

⋃

A : Φ(h)↾A = Φ(h∗)↾A} is
uncountable. Observe that if Φ(h)↾A = Φ(h′)↾A and there is some i ∈

⋃

A
such that h(i) = h′(i) then h↾

⋃

A ≡∗ h′↾
⋃

A. To see this, note first that
if {i, j} ⊆ s ∈ A then there is some b in the group generated by B such
that b(i) = j. Since s /∈ C it follows that h(j) = h(b(i)) = b(h(i)) =
b(h′(i)) = h′(j). If j ∈

⋃

A then there are si and sj in A such that i ∈ si

and j ∈ sj and there is h ∈ H such that Φ(h)(si) = sj . Since si is infi-
nite, there is some i∗ ∈ si \ (NC(h, h) ∪ NC(h, h′)) such that h(i∗) ∈ sj .
Hence h(h(i∗)) = h(h(i∗)) = h(h′(i∗)) = h′(h(i∗)) and since {h(i∗), j} ⊆ sj

it follows that h(j) = h′(j). But since {h↾
⋃

A : Φ(h)↾A = Φ(h∗)↾A} is
uncountable it is possible to find h and h′ such that there are i and j in
⋃

A such that h(i) = h′(i), h(j) 6= h′(j) and Φ(h)↾A = Φ(h∗)↾A. This is a
contradiction.

The following alternative characterization, due to M. Bell, of the cardinal
invariant p of Definition 1.2 will be used in the proof of Theorem 3.2.
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Theorem 3.1 ([3]). The cardinal p is the least cardinal such that there is

a σ-centerd partially ordered set (3) P and a collection D of p dense subsets

of P for which there is no centered subset G ⊆ P intersecting each member

of D.

Theorem 3.2. If H ⊆ S/F is an uncountable, maximal abelian subgroup

then |H| ≥ p—in other words, A([N]<ℵ0) ≥ p.

Proof. If H ⊆ S/F is an uncountable, maximal abelian subgroup and
|H| < p then it follows from Lemma 3.5 that {I∗(S) : {σ/F : σ ∈ S} ∈
[H]<ℵ0} generates a proper ideal.

Let P be the partial order consisting of all p = (hp,Sp) such that:

(1) hp is a finite involution (4),
(2) Sp is a finite subset of S such that {σ/F : σ ∈ Sp} ⊆ H,

and define p ≤ q if and only if

(1) hp ⊇ hq,
(2) Sp ⊇ Sq,
(3) the domain of hp \ hq is disjoint from I∗(Sq),
(4) if j is in the domain of hp \hq and σ ∈ Sq then σ(j) is in the domain

of hp \ hq and σ(hp(j)) = hp(σ(j)).

It is clear that P is σ-centered because if hp = hq then the conditions p
and q have the common extension (hp,Sp ∪ Sq). Moreover, the sets Dπ =
{p ∈ P : π ∈ Sp} are dense for all π ∈ S. Furthermore, so are the sets

En = {p ∈ P : n ∈ domain(hp) ∪ I∗(Sp)}.

To see this, let p ∈ P and suppose that n /∈ I∗(Sp). This, together with
Lemma 3.1, implies that ΩSp(n) is finite since all of the infinite orbits under
Sp are contained in I∗(Sp). Now let hq be the union of hp and the identity
on ΩSp(n) and let q = (hq,Sp). Then q ∈ En and q ≤ p.

Hence, if |H| < p then there is a filter G ⊆ P meeting each Dπ for π ∈ H
and En for n ∈ N. Define πG : N → N by

πG(j) =

{

hp(j) if (∃p ∈ G) j ∈ domain(hp),

j if (∀p ∈ G) j /∈ domain(hp).

It is easily verified that πG ∈ S. To see that πG/F commutes with each
member of H let π/F ∈ H. Let p ∈ G be such that π ∈ Sp. Then if
j ∈ N \ domain(hp) there are two possibilities. If there is some q ∈ G such
that j belongs to the domain of hq it is clear that π(πG(j)) = π(hq(j)) =

(3) A partially ordered set is said to be σ-centerd if it is the union of countably many
centered subsets—in other words, it is the union of countably many subsets any finite
subset of which has a lower bound.

(4) In other words, h
p is it own inverse.
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hq(π(j)) = πG(π(j)). However, if there is no q ∈ G such that j ∈ domain(hq)
then, by the fact that Ej ∩G 6= ∅, there is some q ∈ G such that j ∈ I∗(Sq).
Since π ∈ Sq it follows that π(j) ∈ I∗(Sq). Hence πG(j) = j and πG(π(j)) =
π(j) and so π(πG(j)) = π(j) = πG(π(j)).

All that remains to be shown is that the following sets are dense:

Dπ,k = {p ∈ P : (∃j ≥ k) hp(j) 6= π(k)}

for π ∈ H and k ∈ N because then a filter G ⊆ P can be chosen meeting
each relevant Dπ,k. To establish this, let p ∈ P be given. By Lemma 3.1
each element of ΩSp which is disjoint from I∗(Sp) is finite. Moreover, by
Lemma 3.4 there must be infinitely many of the same cardinality, and hence
there must be distinct A and B in ΩSp such that:

(1) both A and B are disjoint from I∗(Sp),
(2) both A and B are disjoint from the domain of hp,
(3) k < min(A),
(4) k < min(B),
(5) Φ : A→ B is an Sp-isomorphism.

There are two possibilities. If Φ = π↾A then let hq be the union of hp and
the identity on A and let q = (hq,Sp). Otherwise, let hq = hp ∪Φ∪Φ−1 and
let q = (hq,Sp). In either case q ≤ p and q ∈ Dπ,k.

4. A([N]<ℵ0) can be smaller than a. This section will establish that
A([N]<ℵ0) is smaller than a in the Laver model. The argument will require
some preliminary definitions and observations.

Definition 4.1. If F ⊆ [N]<ℵ0 then F will be said to be small provided
that:

• If b ⊆ a ∈ F then b ∈ F .
• If G is an infinite subset of F then G contains an infinite ∆-system.

A collection X of subsets of N will be said to be F -splitting if for every
sequence {Gn}∞n=0 each element of which is an infinite set of pairwise disjoint
subsets of F there is X ∈ X such that [X]<ℵ0 ∩Gn 6= ∅ for each n. Although
the notion of splitting will be sufficient for most of the arguments to follow, at
one point a more complicated notion will be used. A collection X of subsets
of N will be said to be fully-F-splitting if for every sequence {(Gn, Yn)}∞n=0

such that each Gn is an infinite set of pairwise disjoint subsets of F and
Yn ⊆ N, there is X ∈ X such that for each n there is a ∈ Gn such that
∆a(X ∩ a) = Yn ∩ |a|; in other words, X is a copy of Yn on the collapse of
some member of Gn.

The notion of splitting which already exists in the literature, for ex-
ample in [5], corresponds to what is here called fully-[N]1-splitting. It is



210 S. Shelah and J. Steprāns

worth noting that all the small families considered here will be of bounded
cardinality, and if all elements of a small family F have cardinality less than
k then in defining fully-F -splitting one need not consider arbitrary sequences
{(Gn, Yn)}∞n=0 but only those for which Yn ⊆ k. In [5] A. Dow has shown
that if X is splitting and W is obtained by iterated Laver forcing over V
then X is still splitting in W . Let L denote the Laver partial order and let
Lβ denote the countable support iteration of L of length β. A modification
of the argument in [5] shows the following.

Theorem 4.1. If F is small and X is fully-F-splitting in V then

1 
Lβ
“X̌ is fully-F̌-splitting”

where β is an ordinal.

Proof. The proof is almost the same as the proof of Lemma 9 on pages
245–247 of [5]. One obvious change is that the An of that proof are now
required to enumerate pairs (Gn, Yn) such that Gn is an L-name for an infinite
collection of pairwise disjoint elements of F , and Yn is an L-name for a subset
of N. The only other change required is that Fact 2 on page 246 must be
replaced (5) by the following:

New Fact 2. If S ∈ L∩M and n ∈ ω there is S′ ⊆ S with the same root

as S such that the collection {S′〈t〉 : S′〈t〉 ∈ M and S′〈t〉 
 “(∃a ∈ Gn)
∆a(a ∩X) = Yn ∩ |a|”} is pre-dense below S′.

In order to prove this the following claim is required:

Claim. If T is a well founded tree such that each non-maximal node has

infinitely many immediate successors and F is a function from the maximal

nodes of T to F then there is a subtree T ′ ⊆ T such that

• each maximal node of T ′ is a maximal node of T ,
• each non-maximal node of T ′ has infinitely many immediate succes-

sors,
• there is F ′ : T ′ → F such that

– if t ⊆ t′ are in T ′ then F ′(t) ⊆ F ′(t′),
– if t is a maximal element of T ′ then F ′(t) = F (t),
– if t⌢m ∈ T ′ and t⌢k ∈ T ′ and m 6= k then F ′(t⌢m) ∩ F ′(t⌢k)

=F ′(t).

Proof. The claim is easily proved by induction on the rank of T using
the fact that F is small.

In order to prove New Fact 2 let r be the root of S and let l̊ be a name
for the value of the Laver real at |r|. Let T be the well founded tree whose

(5) The X in [5] seems to be a typographical error and should be changed to S. Also
the “|=” there is clearly intended to be “
”.
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maximal nodes are minimal elements, t, of S such that there is some St ⊆ S
such that the root of St is t and

St 
L “F̌t ∈ Gn and min(F̌t) > l̊ and Yn ∩ max(F̌t) = y̌t”

and define F (t) = Ft. Use the Claim to find a well founded tree T ′ ⊆ T as
well as a function F ′ : T ′ → F as in the conclusion of the claim. For any
t ∈ T ′ which is not maximal define yt = yt∩|F ′(t)|. Let T ′′ ⊆ T ′ be a subtree
such that r ∈ T ′′ and if s ∈ T ′′ is not maximal in T ′′ then s has infinitely
many immediate successors in t′′ and the set of yt⌢n such that t⌢n ∈ T ′′

converges to zt ⊆ N. Let

T ∗ = {t ∈ T ′ : ∆F ′(t)F
′(t) ∩X = zt ∩ |F ′(t)|}.

Observe that the requirement in the definition of Ft that min(Ft) > l̊ guaran-
tees that F ′(r) = ∅ and hence r ∈ T ∗. In fact, if t ∈ T ∗ and t is not maximal
in T then t has infinitely many successors in T ∗. To see this, it may as well be
assumed that F ′(t⌢m) \ F ′(t) 6= ∅ for all m such that t⌢m ∈ T ′. It follows
that {F ′(t⌢m)\F ′(t) : t⌢m ∈ T ′} is a pairwise disjoint, infinite family in F
and z′t = {n−|F ′(t)|}n∈zt ⊆ N and both are in M. Hence there are infinitely
manym such that∆F ′(t⌢m)\F ′(t)F

′(t⌢m)\F ′(t)∩X = z′t∩|F
′(t⌢m)\F ′(t)|,

and for any such m it follows that ∆F ′(t⌢m)F
′(t⌢m) ∩X = zt ∩ |F ′(t)|. In

other words, t has infinitely many successors in T ∗.
Let S′ = T ∗ ∪

⋃

{St : t ∈ max(T ∗)}. It is clear that, provided that
S′ ∈ L, S′ 
L “(∃a ∈ Gn) ∆a(a ∩ X) = Yn ∩ |a|”. In order to see that
S′ ∈ L, let s ∈ S′. If s ≥ t for some maximal t ∈ T ∗ then s ∈ St, and since
t is the root of St, it follows that s has infinitely many successors. Hence
it may be assumed that s is a non-maximal element of T ∗. It has already
been established that s has infinitely many successors in T ∗ and hence s has
infinitely many successors in S′.

The preceding result will not be used in full generality. For most of the
argument the following two corollaries will suffice.

Corollary 4.1. If G ⊆ Lβ is generic over V , B : N → N is a function

in V and F ∈ V [G] is an infinite function from D ⊆ N to N such that

F (d) < B(d) for d ∈ D then there is a function H ∈ V such that H(d) =
F (d) for infinitely many d ∈ D.

Proof. Let FB be the set of singletons {{(n,m)} : n ∈ N and m < B(n)}.
Observe that FB is small and that the set of functions in V bounded by B is
FB-splitting in V . Letting Gm = {{(d, F (d))} : d ∈ D and d > m} it follows
that there is a function H ∈ V such that H ∩ Gm 6= ∅ for each m. Hence
H(d) = F (d) for infinitely many d ∈ D.

Corollary 4.2. If G ⊆ Lβ is generic over V , B : N → N is a function

in V such that B(n) > n for all n and F ∈ V [G] is an infinite function from
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D ⊆ N to N such that B(d) < F (d) for d ∈ D then there is X ⊆ N in V
such that

• for each x ∈ X there is no element of X between x and B(x),
• there are infinitely many x ∈ X such that F (x) ∈ X.

Proof. Let FB be the set of pairs {{n,m} : n ∈ N and m > B(n)}. Let
XB be the set of all infinite subsets X ⊆ N in V such that for each x ∈ X
there is no element of X between x and B(x). Observe that FB is small
and that XB is FB-splitting in V . Letting Gm be an infinite pairwise disjoint
subset of {{d, F (d)} : d ∈ D and d > m} it follows that there is X ∈ XB

such that for each m there is a ∈ Gm such that a ⊆ X. Hence X satisfies
the conclusion.

Lemma 4.1. If V satisfies 2ℵ0 = ℵ1 then there is an almost commuting

family P of permutations such that for each G ⊆ Lω1 which is a generic

filter over V and for each permutation h of N in V [G] \ V there is some

π ∈ P which does not almost commute with h.

Proof. Let {(qη, hη)}η∈ω1 enumerate all pairs (q, h) such that

q 
Lω1
“h is a permutation of N”.

This enumeration will be used to construct involutions {πη}η∈ω1 by induc-
tion on η. It will be established that for each ξ < ω1 there is q ≤ qξ such
that either q 
Lω1

“hξ ∈ V ” or there is β ≤ ξ such that

(4.1) q 
Lω1
“|NC(hξ, π̌β)| = ℵ0”.

It is immediate that P = {πη}η∈ω1 will have the desired properties.

In order to describe the inductive construction, suppose that {πη}η∈ξ

have been constructed. Let {ηi}∞i=0 enumerate ξ and define pi = πηi
. Let

Ωi(k) = Ω{pn}i
n=0

(k) and note that because the {πη}η∈ξ are almost com-

muting involutions it follows from Lemma 3.1 that |Ωi(k)| ≤ 2i for all but
finitely many k. Let τm(k) denote the canonical isomorphism type of Ωm(k).
To be more precise, let

τm(k) = (|Ωm(k)|, p1 ◦∆
−1
Ωm(k), p2 ◦∆

−1
Ωm(k), . . . , pm ◦∆−1

Ωm(k), ∆Ωm(k)(k),≤)

and note the role of the constant determined by k. In particular, if n ≤ m
and τm(i) = τm(k) then τn(i) = τn(k) because these can be defined from
the constant using the first m permutations. Each τm(k) will be referred to
as an m-isomorphism type.

Next, define Γ : N → N such that for each j the following conditions
hold:

(1) If τ is a j-isomorphism type and {k ∈ N : τj(k) = τ} is finite then
τj(k) 6= τ for each k ≥ Γ (j).
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(2) If τ is a j-isomorphism type and {k ∈ N : τj(k) = τ} is infinite then
there are {li}2

i=0 such that

(a) τj(li) = τ for i < 3,
(b) Ωj(ln) ∩Ωj(lm) = ∅ if 0 ≤ n < m < 3,
(c) j < min(Ωj(li)) ≤ max(Ωj(li)) < Γ (j) for i < 3.

(3) If x < j then max(Ωj(x)) < Γ (j).
(4) If m and n are less than or equal to j then max(NC(pn, pm)) < Γ (j).

Finally, define Γ (j) = Γ (Γ (Γ (j))).

The induction depends on considering various cases.

Case 1: qξ 6
Lω1
“(∀β < ξ) |NC(hξ, πβ)| < ℵ0”. In this case let q ≤ qξ

and β < ξ be such that q 
Lω1
“|NC(hξ, πβ)| = ℵ0” and note that condi-

tion (4.1) is satisfied. In this case simply let πξ be the identity permutation.

Case 2: Case 1 fails and qξ 6
Lω1
“hξ /∈ V ”. In this case simply let

q ≤ qξ and h be a permutation in V such that q 
Lω1
“hξ = ȟ”.

Case 3: Cases 1 and 2 both fail and there is some integer J such that

qξ 6
Lω1
“(∀k > J) hξ↾ΩJ(k) is a permutation of ΩJ(k)”.

Before continuing with this case, define a partial function F by letting F (i)
for each integer i ≥ J be the least integer such that there is some j such
that

i < j < F (i),(4.2)

τi(j) = τi(F (i)),(4.3)

Γ (i) < min(Ωi(j)) and Γ (i) < min(Ωi(F (i))),(4.4)

Ωi(j) 6= Ωi(F (i)),(4.5)

hξ ◦∆
−1
Ωi(F (i)) 6= hξ ◦∆

−1
Ωi(j)

.(4.6)

The first thing to note is that qξ 
Lω1
“(∀i ∈ N) F (i) is defined”. In

order to see that, suppose that q ≤ qξ and i provide a counterexample; in
other words, q 
Lω1

“F̌ (̌i) is not defined”. It is possible to extend q to q′

such that for each i-isomorphism type τ there is a permutation hτ such that

q′ 
Lω1
“(∀k > i) i <min(Ωi(k)) and τi(k) = τ ⇒ hξ↾Ωi(k) = hτ ◦∆Ωi(k)”.

But this means that q′ forces that hξ is determined by {hτ : τ is an i-
isomorphism type} and the value of hξ on Ωi(k) for those finitely many k
such that Γ (i) 6< min(Ωi(k)). Hence, q′ 
Lω1

“hξ ∈ V ”, contradicting the
assumption that Case 2 fails.

Subcase 3A: qξ 
Lω1
“(∃∞n) F (n) > Γ (n)”. In this case if we set D =

{n ∈ N : Γ (n) < F (n)} then F ↾D is an infinite function. By Corollary 4.2
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it is possible to find X ∈ V and q ≤ qξ such that

(4.7) q 
Lω1
“(∃∞x ∈ X) F (x) ∈ X”

and for each x ∈ X there is no element of X between x and Γ (x). For
x ∈ X let x∗ be the least element of X greater than x. Choose Lx < x∗ such
that τx(Lx) = τx(x∗) and Γ (x) < min(Ωx(Lx)). To see that this is possible
observe that x∗ > Γ (x) > Γ (Γ (x)) and so {k : τx(k) = τx(x∗)} must be
infinite by (1) in the definition of Γ . Hence Lx can be found between Γ (x)
and Γ (Γ (x)) using (2) in the definition of Γ . It follows that ∆{Ωx(Lx),Ωx(x∗)}

commutes with pm if m ≤ x. Moreover, max(Ωx(x∗)) < Γ (x∗). Hence, if
x and y are distinct members of X then the domain of ∆{Ωx(Lx),Ωx(x∗)} is
disjoint from ∆{Ωy(Ly),Ωy(y∗)}. Hence, if πξ is defined by

πξ(n) =

{

∆{Ωx(Lx),Ωx(x∗)}(n) if n ∈ Ωx(Lx) ∪Ωx(x∗) for some x ∈ X,

n otherwise,

then πξ almost commutes with each pm and hence with each πη.

It remains to show that q 
Lω1
“|NC(hξ, πξ)| = ℵ0”. To this end let

x ∈ X be such that F (x) also belongs to X. Let z be the greatest element of
X below F (x); in other words, F (x) = z∗ and so τz(Lz) = τz(F (x)). Since
x ≤ z it follows that τx(Lz) = τx(F (x)) also. Furthermore, since F (x) is, by
definition, the least integer such that there some j such that conditions (4.2)–
(4.6) hold with x in place of i it follows that τx(j) = τx(F (x)) = τx(Lz) and

hξ ◦∆
−1
Ωx(Lz) = hξ ◦∆

−1
Ωx(j)

for any such j. Since

hξ ◦∆
−1
Ωx(F (x)) 6= hξ ◦∆

−1
Ωx(j)

it follows that∆{Ωx(Lz),Ωx(F (x))} does not commute with hξ↾Ωx(Lz). Because
x ≤ z this implies that ∆{Ωz(Lz),Ωz(F (x))} does not commute with hξ↾Ωz(Lz).
Since

∆{Ωz(Lz),Ωz(F (x))} ⊆ πξ

it must be that q 
Lω1
“(∃n > x) hξ(πξ(n)) 6= πξ(hξ(n))”. From (4.7) it

follows that (4.1) holds.

Subcase 3B: qξ 6
Lω1
“(∃∞n) F (n) > Γ (n)”. Using Corollary 4.1 let

q ≤ qξ and H ∈ V be such that

q 
Lω1
“(∃∞n) H(n) = F (Γn(0))”.

For each n choose, if possible, an integer Ln such that

• Γn(0) < Ln < H(n) < Γn+1(0),
• Γ (Γn(0)) < min(ΩΓ n(0)(Ln)),
• τΓ n(0)(Ln) = τΓ n(0)(H(n)),
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and then define πξ by

πξ(m) =







∆{ΩΓn(0)(Ln),ΩΓn(0)(H(n))}(m)

if m ∈ ΩΓ n(0)(Ln) ∪ΩΓ n(0)(H(n)),

m otherwise.

Since Γ (Γn(0)) < min(ΩΓ n(0)(Ln)) and H(n) < Γn+1(0) for each n it fol-

lows, using (3) in the definition of Γ , that the domains of

∆{ΩΓn(0)(Ln),ΩΓn(0)(H(n))} and ∆{ΩΓm(0)(Lm),ΩΓm(0)(H(m))}

are disjoint if n 6= m; in other words, there is no contradiction in the defi-
nition of the involution πξ. It is immediate from (4.2) and (4.3) in the def-
inition of F that if H(n) = F (Γn(0)) then Ln exists and, from (4.6), that
∆{ΩΓn(0)(Ln),ΩΓn(0)(H(n))} does not commute with hξ. Hence (4.1) holds.

Case 4: Neither of Cases 1, 2 or 3 holds. In this case it may be assumed
that

qξ 
Lω1
“(∀i)(∀k)(∃j > k) hξ↾Ωi(k) is not a permutation of Ωi(k)”

because otherwise Case 3 holds for some extension of qξ. Since qξ forces hξ

to be a permutation it follows that

qξ 
Lω1
“(∀i)(∀k)(∃j > k) hξ(j) /∈ Ωi(j)”.

Let F0(i) be the least integer j > i satisfying

hξ(j) /∈ Ωi(j),(4.8)

(∀m ≤ i)(∀k ≥ min(Ωi(j))) hξ(pm(k)) = pm(hξ(k)),(4.9)

(∃∞m) τi(j) = τi(m),(4.10)

and define F1(i) = hξ(F0(i)).

Subcase 4A: F1(Γ
n(0)) < Γn+1(0) for all but finitely many n. In this

case, using Conditions 4.9 and 4.10 as well as (2) in the definition of Γ , it
is possible to conclude that for each n there are jn

0 , jn
1 and jn

2 such that

• τΓ n(0)(j
n
0 ) = τΓ n(0)(j

n
1 ),

• hξ↾ΩΓ n(0)(j
n
1 ) is a bijection from ΩΓ n(0)(j

n
1 ) onto ΩΓ n(0)(j

n
2 ),

• ΩΓ n(0)(j
n
0 ), ΩΓ n(0)(j

n
1 ) and ΩΓ n(0)(j

n
2 ) are all distinct,

• Γ (Γn(0)) < min(ΩΓ n(0)(j
n
i )) for each i < 3.

Using Corollary 4.1, let Θ : N → N × N × N belonging to V and q ≤ qξ be
such that

(4.11) q 
Lω1
“(∃∞n) Θ(n) = (Θ0(n), Θ1(n), Θ2(n)) = (jn

0 , j
n
1 , j

n
2 )”.

Note that, without loss of generality, it may be assumed that

τΓ n(0)(Θ0(n)) = τΓ n(0)(Θ1(n))
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for each n. As in the previous cases, the domains of

∆{ΩΓn(0)(Θ0(n)),ΩΓn(0)(Θ1(n))} and ∆{ΩΓm(0)(Θ0(m)),ΩΓm(0)(Θ1(m))}

are disjoint if n 6= m. Moreover, the domain of ∆{ΩΓn(0)(Θ0(n)),ΩΓn(0)(Θ1(n))}

is disjoint from ΩΓ m(0)(Θ2(m)) even in the case n = m. Hence, letting πξ

be defined by

πξ(m) =







∆{ΩΓn(0)(Θ0(n)),ΩΓn(0)(Θ1(n))}(m)

if m ∈ ΩΓ n(0)(Θ0(n)), ΩΓ n(0)(Θ1(n)),

m otherwise,

it follows that πξ is an involution which almost commutes with each πη for
η ∈ ξ. Furthermore, πξ is the identity on each ΩΓ n(0)(Θ2(n)).

Moreover, if Θ(n) = (jn
0 , j

n
1 , j

n
2 ) then πξ is the identity on ΩΓ n(0)(j

n
2 ).

Hence, in this case, πξ(hξ(h
−1
ξ (jn

2 ))) = jn
2 . On the other hand, h−1

ξ (jn
2 ) be-

longs to ΩΓ n(0)(j
n
1 ) and so πξ(h

−1
ξ (jn

2 )) belongs to ΩΓ n(0)(j
n
0 ). In particular,

it does not belong to ΩΓ n(0)(j
n
1 ). Since hξ↾ΩΓ n(0)(j

n
1 ) is a bijection from

ΩΓ n(0)(j
n
1 ) onto ΩΓ n(0)(j

n
2 ) by (4.9), it follows that hξ(πξ(h

−1
ξ (jn

2 ))) does not

belong to ΩΓ n(0)(j
n
2 ) and, in particular, it is not equal to jn

2 . In other words,

q forces that hξ(πξ(h
−1
ξ (jn

2 ))) 6= πξ(hξ(h
−1
ξ (jn

2 ))) and Γn(0) < h−1
ξ (jn

2 ) <

Γn+1(0). From (4.11) it follows that (4.1) holds.

Subcase 4B: There are infinitely many n such that F0(Γ
n(0)) >

Γn+1(0). Using Corollary 4.2 find q ≤ qξ and X ⊆ N such that X ∈ V
and

(4.12) q 
Lω1
“(∃∞x ∈ X) F0(x) ∈ X”,

and for each x ∈ X there is no element of X between x and Γ (x). For each
x ∈ X let x∗ be the least element of X greater than x. For each such x there
is some jx such that

• x < jx < x∗,
• Γ (x) < min(Ωx(jx)),
• Ωx(jx) ∩Ωx(x∗) = ∅,
• τx(jx) = τx(x∗).

Let πξ be defined by

πξ(m) =

{

∆{Ωx(jx),Ωx(x∗)}(m) if m ∈ Ωx(jx) ∪Ωx(x∗) for some x ∈ X,

m otherwise.

Observe that if x ∈ X and F (x) = z∗ for some z ∈ X then q 
Lω1

“hξ(jz) ∈ Ωx(jz)” since F0(x) = z∗ is defined to be the least integer k
such that hξ(k) /∈ Ωx(k). Hence q 
Lω1

“πξ(hξ(jz)) ∈ Ωx(z∗)”. However,
πξ(jz) = z∗ and so q 
Lω1

“hξ(πξ(jz)) = hξ(z
∗) /∈ Ωx(z∗)”. It follows from

(4.12) that (4.1) holds.
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Subcase 4C: Neither Case 4A nor Case 4B holds. Let F = [N]2 and
let X be the set of all infinite subsets of N in V . Clearly, F is small and X
is fully-F -splitting. Let Gm be a maximal pairwise disjoint set of pairs {i, j}
such that i > m and

Γ i(0) < Γ j(0) < F1(Γ
i(0)) ≤ Γ j+1(0),

and let Ym = {0}. Because Case 4A fails, each Gm is an infinite pairwise
disjoint subset of F . Using Theorem 4.1 applied to {(Gm, Ym)}∞m=0 it is
possible to find X ∈ X such that there are infinitely many x ∈ X such that
Γ j(0) < F1(Γ

x(0)) ≤ Γ j+1(0) and j /∈ X.

Now let F (x) = F0(Γ
x(0)) for x ∈ X and note that F is also bounded

by a function in V because Case 4B fails. Using Corollary 4.1 it is possible
to find q ≤ qξ and f in V such that

(4.13) q 
Lω1
“(∃∞x ∈ X) f(x) = F (x)”.

For each x ∈ X choose, if possible, jx such that

• Γ x(0) < jx < Γ x+1(0),
• Γ (Γ x(0)) < min(Ωx(jx)),
• τΓ x(0)(jx) = τΓ x(0)(f(x)),
• ΩΓ x(0)(jx) 6= ΩΓ x(0)(f(x)),

and observe that if f(x) = F (x) then such a jx exists. This is so because,
by the definition of F0, there are infinitely many j such that τΓ x(0)(j) =
τΓ x(0)(F0(Γ

x(0))) = τΓ x(0)(f(x)). As in previous cases, let πξ be defined by

πξ(m) =







∆{ΩΓx(0)(jx)),ΩΓx(0)(f(x))}(m)

if m ∈ ΩΓ x(0)(jx)) ∪ΩΓ x(0)(f(x)) for some x ∈ X,

m otherwise.

Just as in previous cases, it is easy to check that πξ is well defined and
almost commutes with each πη for η ∈ ξ. Moreover,

(4.14) (∀j /∈ X)(∀m /∈ ΩΓ j−1(0)(f(j − 1)))

Γ j(0) < m ≤ Γ j+1(0) ⇒ πξ(m) = m.

Now suppose that x ∈ X and f(x) = F (x) and

Γ j(0) < F1(Γ
x(0)) ≤ Γ j+1(0)

and j /∈ X. Then πξ(jx) = f(x) = F0(Γ
x(0)) and hence hξ(f(x)) =

hξ(F0(Γ
x(0))) = F1(Γ

x(0)) and so F1(Γ
x(0)) /∈ ΩΓ x(0)(f(x)). From (4.14)

we conclude that πξ(F1(Γ
x(0))) = F1(Γ

x(0)). Next, note that since jx 6=
f(x) it follows that hξ(jx) 6= hξ(f(x)) = F1(Γ

x(0)) and so πξ(hξ(jx)) 6=
πξ(F1(Γ

x(0)) = F1(Γ
x(0)) = hξ(πξ(jx)). From (4.13) it follows that (4.1)

holds.
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The following result, due to S. Shelah, is 5.31 in [12]. It will suffice to
know that Laver forcing L is NEP without having to define the concept.

Lemma 4.2. Let {Bα}α∈ω1 be a family of Borel sets in a model of set

theory V and suppose that V |=
⋂

α∈ω1
Bα = ∅. Let P be a NEP partial

order with definition in V and suppose that {Pα}α∈ω2 is a countable support

iteration such that Pα+1 = Pα ∗ P for every α ∈ ω2. If

1 
Pω1
“

⋂

α∈ω1

Bα = ∅”

then

1 
Pω2
“

⋂

α∈ω1

Bα = ∅”.

Theorem 4.2. It is consistent that A([N]<ℵ0) = ℵ1 < a.

Proof. The model witnessing this is the one obtained by forcing with
Lω2 over a model V satisfying 2ℵ0 = ℵ1. From Lemma 4.1 it follows that
there is an almost commuting family P of permutations such that for each
G ⊆ Lω1 which is a generic filter over V and for each permutation h of N

in V [G] \ V there is some π ∈ P which does not almost commute with h.
Then if Q is any maximal almost commuting family of permutations in V
containing P it follows that if G ⊆ Lω1 is a generic filter over V then for
each permutation h of N in V [G] there is some π ∈ Q such that either π = h
or π does not almost commute with h. In other words, letting Bπ be the
Borel set of all permutations of the integers which almost commute with π
but are not equal to π, we have

1 
Lω1
“

⋂

π∈Q

Bπ = ∅”.

It follows from Lemma 4.2 that

1 
Lω2
“

⋂

π∈Q

Bπ = ∅”

or, in other words, 1 
Lω2
“A([N]<ℵ0) = ℵ1”. The fact that a = ℵ2 in this

model is well known and can be found, for example, in [2].

5. The Cohen model and the summable ideals. The remaining
results will deal with quotients of groups of permutations of the integers
with respect to ideals other than the ideal of finite sets. Since Section 6
will be devoted to establishing that a(I) < A(I) = 2ℵ0 for a certain ideal,
it is natural to ask whether the phenomenon A(I) < 2ℵ0 might not be a
peculiarity of the finite ideal. This section will show that this is not the case.
The ideal I1/x is defined to be the set of allX ⊆ N such that

∑

x∈X 1/x <∞.
It will be shown that S(I1/x)/F(I1/x) has a maximal abelian subgroup of
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size ℵ1 in any model obtained by adding uncountably many Cohen reals.
The basic scheme of the argument is that in a model of the form V [{cξ}ξ∈ω1 ]
where {cξ}ξ∈ω1 are Cohen reals, it is possible to define permutations {πξ}ξ∈ω1

with πξ ∈ V [{cη}η∈ξ+1] which almost commute and are close to maximal
in the following sense: Given any permutation π which is not first order
definable using elements of {πξ}ξ∈ω1 as parameters, there is some ξ ∈ ω1

such that NC(π, πξ) /∈ I1/x. In other words, if G is the group generated by
{πξ}ξ∈ω1 , and G′ ⊇ G/F(I1/x) is any maximal abelian group, each element
of which is the equivalence class of some permutation which is first order
definable using elements of {πξ}ξ∈ω1 as parameters, then the cardinality ofG′

is the same as that of G, and moreover, G′ is a maximal abelian subgroup of
S(I1/x)/F(I1/x). The rest of the section will concentrate on the construction
of {πξ}ξ∈ω1 . Consequently, many of the results of this section will assume
as a hypothesis a family of permutations with certain properties. These can
profitably be thought of as the permutations obtained from the Cohen reals
at some stage of the transfinite induction.

Definition 5.1. A family of permutations F will be said to be tame if

(1) each π ∈ F is an involution,
(2) each pair of permutations in F almost commute modulo the ideal

I1/x,
(3) if a ⊆ F is finite then Ωa consists of finite sets and

F (a) =
⋃

{x ∈ Ωa : (∃π ∈ a)(∃n ∈ x) π(n) = n}

belongs to the ideal I1/x, and Ω∗
a will denote {x ∈ Ωa : x 6⊆ F (a)},

(4) for every finite a ⊆ F there is κ(a) ∈ [Ω∗
a]<ℵ0 and a family

{Φa
x,y}x,y∈Ω∗

a\κ(a) such that

(a) each mapping Φa
x,y is an a-isomorphism from x to y,

(b) Φa
y,z ◦ Φ

a
x,y = Φa

x,z,
(c) if a ⊆ b then, except for a finite set of exceptions, if x0 and x1

belong to Ω∗
b then for all y0 ∈ Ω∗

a such that y0 ⊆ x0 there is
some y1 ∈ Ω∗

a such that Φb
x0,x1

↾y0 = Φa
y0,y1

.

The notation Φa
{x,y} will be used to represent Φa

x,y ∪ Φ
a
y,x.

The following lemma provides a method for enlarging tame families. This
will be used in the transfinite induction mentioned in the introduction to
this section.

Lemma 5.1. If F is a tame family of permutations and this is witnessed

by

{Φa
x,y : a ∈ [F ]<ℵ0 and x, y ∈ Ω∗

a \ κ(a)}

and {an}∞n=0 is a family of finite subsets of F such that
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• an ⊆ an+1 for each n,
•

⋃∞
n=0 an = F ,

• {xn, yn} ∈ [Ω∗
an

\ κ(an)]2 for each n,
• (xn ∪ yn) ∩ (xm ∪ ym) = ∅ unless n = m,
• N \

⋃∞
n=0(xn ∪ yn) ∈ I1/x,

• for each finite subset a ⊆ F and for all but finitely many n, if x ∈
Ω∗

a \ κ(a) and x ⊆ xn then there is some x′ ∈ Ω∗
a \ κ(a) such that

Φan
xn,yn

↾x = Φa
x,x′ ,

and π =
⋃∞

n=0 Φ
an

{xn,yn}
, then F ∪ {π} is also tame.

Proof. The fact that π almost commutes with each member of F is
immediate from the fact that each Φa

{x,y} is an a-isomorphism. Since each

Φa
{x,y} is an involution, so is π. This also implies that Ωa∪{π} consists of

finite sets. For any finite a ⊆ F it is immediate that

F (a ∪ {π}) ⊆ F (a) ∪
(

N \
∞
⋃

n=m

xn ∪ yn

)

∈ I1/x

where m is chosen large enough that a ⊆ am.

The finite sets λ(a) ⊆ Ω∗
a for a ∈ [F ∪ {π}]<ℵ0 and the family

{

Ψa
x,y : a ∈ [F ∪ {π}]<ℵ0 and x, y ∈ Ω∗

a \ λ(a)
}

witnessing that F∪{π} is tame must be defined. If a ⊆ F define λ(a) = κ(a)
and Ψa

x,y = Φa
x,y for x, y ∈ Ω∗

a \ λ(a). In order to define λ(a ∪ {π}), start by

using the hypothesis of the lemma to find an integer λ(a ∪ {π}) so great
that if n ≥ λ(a ∪ {π}) and x ∈ Ω∗

a \ κ(a) and x ⊆ xn then there is some
x′ ∈ Ω∗

a such that Φan
xn,yn

↾x = Φa
x,x′ . Then define

λ(a ∪ {π}) = κ(a) ∪
⋃

i<λ(a∪{π})

{x ∈ Ω∗
a : x ⊆ xi ∪ yi}

and note that it is finite since the xi are finite. Observe that if z ∈ Ω∗
a∪{π} \

λ(a ∪ {π}) then z ⊆ xm ∪ ym for some m ≥ λ(a ∪ {π}). Denote this integer
m by m(z). Consequently, if z ∈ Ω∗

a∪{π} \λ(a∪{π}) then z = zx ∪ zy where

zx ⊆ xm(z) and zy ⊆ ym(z) and both zx and zy belong to Ω∗
a. Given z and z

in Ω∗
a∪{π} \ λ(a ∪ {π}) define

Ψa∪{π}
z,w = Φa

zx,wx ∪ Φa
zy,wy

and note that Ψ
a∪{π}
z,w is an a ∪ {π}-isomorphism. It is also routine to verify

that condition (4)(c) of Definition 5.1 holds. To see that (4)(c) is satisfied
let a ⊆ b ⊆ F∪{π} be finite. Let a′ = a\{π} and b′ = b\{π}. It may as well
be assumed that π ∈ b since otherwise the hypothesis that F is tame can
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be applied directly. Let z0 and z1 in Ω∗
b \ λ(b) be arbitrary and let w0 ∈ Ω∗

a

be such that w0 ⊆ z0. Then

Ψ b
z0,z1

↾w0 = (Φb′

zx
0 ,zx

1
∪ Φb′

zy
0 ,zy

1
)↾w0 = Φb′

zx
0 ,zx

1
↾(w0 ∩ z

x
0 ) ∪ Φb′

zy
0 ,zy

1
↾(w0 ∩ z

y
0)

= Φa′

w0∩zx
0 ,wx

1
∪ Φa′

w0∩zy
0 ,wy

1

for some wx
1 and wy

1 provided that neither w0 ∩ zx
0 nor w0 ∩ z

y
0 come from

the finite set of exceptions to condition (4)(c) for a′ and b′. There are then
two cases to consider. If a′ = a then, because w0 ∈ Ωa, either w0 ∩ zx

0 = ∅
or w0 ∩ z

y
0 = ∅. Hence either

Φa′

w0∩zx
0 ,wx

1
∪ Φa′

w0∩zy
0 ,wy

1
= Φa

w0,wx
1

or

Φa′

w0∩zx
0 ,wx

1
∪ Φa′

w0∩zy
0 ,wy

1
= Φa

w0,wy
1
,

and in either case the result is established. On the other hand, if a 6= a′

then π ∈ a and since w0 ∈ Ωa it follows that π(w0 ∩ zx
0 ) = w0 ∩ z

y
0 . Hence

π(wx
1 ) = wy

1 and so, letting w1 = wx
1 ∪ wy

1 ,

Φa′

w0∩zx
0 ,wx

1
∪ Φa′

w0∩zy
0 ,wy

1
= Ψa

w0,w1

as required.

For the rest of this section some simplifying notation will be introduced
to refer to closed sets of orbits associated with families of permutations.
The elements of Ω∗

a will be enumerated as {Ωi
a}

∞
i=0 in such a way that

i < j if and only if min(Ωi
a) < min(Ωj

a). If F is a tame family and a is a
finite subset of F then, in this context, κ(a) will be an integer such that
condition (4) in Definition 5.1 holds for all Ωi

a with i ≥ κ(a); in other words,

the finite set of exceptions to condition (4) is contained in {Ωi
a}

κ(a)
i=0 . The

following definition describes a partial order which can be used to create a
permutation satisfying the hypothesis of Lemma 5.1.

Definition 5.2. Given a tame family F such that this is witnessed by

{Φa
i,j : a ∈ [F ]<ℵ0 and i, j ≥ κ(a)}

and which also satisfies

(5.1) (∀π ∈ F) lim
n→∞

π(n)

n
= 1,

define the partial order P(F) to consist of all pairs

p = ({(ap
m, i

p
m, j

p
m)}kp

m=0, εp) = ({(am, im, jm)}k
m=0, ε)

such that, letting D(p) =
⋃k

m=0Ω
im
am

∪Ωjm
am ,

(1) k ∈ N,
(2) each am is a finite subset of F ,
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(3) am ⊆ am+1,
(4) im and jm are distinct integers greater than κ(am),

(5) (Ωim
am

∪Ωjm
am) ∩ (Ωin

an
∪Ωjn

an) = ∅ unless n = m,
(6) if a ⊆ ak and

• i, j > jk,
• Ωi′

a ⊆ Ωi
ak

,

then Φak

i,j↾Ω
i′
a = Φa

i′,j′ for some j′,
(7) ε > 0,

and if

δ = sup
u∈N\D(p)

sup
π∈ak

∣

∣

∣

∣

1 −
π(u)

u

∣

∣

∣

∣

then

(5.2)

(

1 + 2α

(

1 −
1

(1 + δ)α
+

jk + 1

min(Ωk
ak

)

))

(1 + δ)α < 1 + ε

where α = |akp |. Also,

(5.3)
∑

n<jk and n/∈D(p)

1/n+
∑

n>jk and y∈F (a)

1/n < 1.

Define p ≤ q if εp ≤ εq and (ap
m, i

p
m, j

p
m) = (aq

m, i
q
m, j

q
m) for m ≤ kq and

(5.4) 1 − ε <
Φap

m

ipm,jp
m

(u)

u
< 1 + ε

for m > kq and u ∈ Ωipm
ap

m
.

The following technical lemma will be useful in applying the partial order
P(F).

Lemma 5.2. Suppose that F is a tame family and a is a finite subset of

F and α = |a|. Suppose also that ε > 0 and m ∈ N, and furthermore that

(5.5) (∀i ≥ m)(∀x ∈ Ωi
a)(∀π ∈ a)

∣

∣

∣

∣

1 −
π(x)

x

∣

∣

∣

∣

< ε,

(5.6)
∑

k∈F (a)

1/k < log

(

1 + 2β

1 + β

)

.

Then the following inequalities hold for any i ≥ m and any k:

max(Ωi
a)

min(Ωi
a)

< (1 + ε)α,(5.7)

min(Ωi+1
a )

min(Ωi
a)

< 1 + β +
m2α

min(Ωi
a)
,(5.8)
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min(Ωi+k
a )

min(Ωi
a)

<

(

1 + β +
m2α

min(Ωi
a)

)k

,(5.9)

(1 − ε)α <
Φa

i,i+k(n)

n
<

(

1 + β +
m2α

min(Ωi
a)

)k

(1 + ε)α.(5.10)

Proof. To prove (5.7) the first thing to note is that if {x, y} ⊆ Ωi
a then

there is k ≤ α and a sequence (π1, . . . , πk) ∈ ak such that

x = π1 ◦ · · · ◦ πk(y).

Given x ∈ Ωi
a let k(x) be the least integer such that

x = π1 ◦ · · · ◦ πk(x)(min(Ωi
a))

and proceed by induction on k(x) to show that
x

min(Ωi
a)
< (1 + ε)α

for every x ∈ Ωi
a. If k(x) = 0 then x = min(Ωi

a) and the result is clear.
Suppose that the lemma has been established for all x such that k(x) = n.
Given x such that k(x) = n+ 1 it is possible to find x′ such that k(x′) = n
and x = π(x′) for some π ∈ a. From (5.5) it follows that

π(x′)

x′
< 1 + ε

and from the induction hypothesis it follows that

x′

min(Ωi
a)
< (1 + ε)n,

and hence
x

min(Ωi
a)
< (1 + ε)n+1

as desired.
To see that (5.8) holds begin by observing that if m ≤ i′ ≤ i and Ωi′

a \
min(Ωi

a) 6= ∅ then, by (5.7),

min(Ωi
a) < max(Ωi′

a ) < min(Ωi′

a )(1 + ε)α,

and hence

min(Ωi′

a ) >
min(Ωi

a)

(1 + ε)α
.

Therefore, the cardinality of
⋃

m≤i′≤i

Ωi′

a \ min(Ωi
a)

is no greater than
(

min(Ωi
a) −

min(Ωi
a)

(1 + ε)α

)

2α = min(Ωi
a)β.
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Using the fact that

min(Ωi
a)+min(Ωi

a)2β
∑

n=min(Ωi
a)+min(Ωi

a)β

1

n
< log

(

1 + 2β

1 + β

)

it follows that F (a) ∪
⋃

m≤i′≤iΩ
i′
a does not cover the interval of integers

between min(Ωi
a) and min(Ωi

a) + min(Ωi
a)2β. Hence

min(Ωi+1
a ) < min(Ωi

a) + min(Ωi
a)2β +m2α

as required.

The general statement (5.9) follows by repeated application of (5.8).

To prove (5.10) let n ∈ Ωi
a. Combining (5.7) and (5.9) yields

Φa
i,i+k(n)

n
≤

max(Ωi+k
a )

min(Ωi
a)

<

(

1 + β +
m

min(Ωi
a)

)k

(1 + ε)α,

establishing the last half of the inequality. For the first half, note that
min(Ωi

a) ≤ min(Ωi+k
a ), and hence from (5.7) and (5.9) it follows that

Φa
i,i+k(n)

n
≥

min(Ωi+k
a )

max(Ωi
a)

≥
min(Ωi

a)

max(Ωi
a)
>

1

(1 + ε)α
> (1 − ε)α.

Lemma 5.3. If p ∈ P(F) and j ≥ jp
kp then there is q ≤ p such that

Ωj
a ⊆ D(q).

Proof. It suffices to prove this for the case that j = 1 + jp
kp . Let

q = ({(aq
m, i

q
m, j

q
m)}kp+1

m=0 , εp)

where (aq
m, i

q
m, j

q
m) = (ap

m, i
p
m, j

p
m) if m ≤ kp and iqkp+1 = j, jq

kp+1 = j + 1
and aq

kp+1 = akp . From condition (5.2) of Definition 5.2 and conclusion (5.10)
of Lemma 5.2, with k = 1 it follows that requirement (5.4) is satisfied and
so q ∈ P(F) and q ≤ p.

Lemma 5.4. If p ∈ P(F) and ε > 0 and a ⊆ N is finite then there is

q ≤ p such that εq ≤ ε and aq
kq ⊇ a.

Proof. Let b = a ∪ ap
kp . First apply Lemma 5.3 to extend p to q′ so that

the domain of D(q′) is sufficiently large that condition (6) of Definition 5.2
holds as well as condition (5.2) with

δ = sup
u∈N\D(q′)

sup
π∈b

∣

∣

∣

∣

1 −
π(u)

u

∣

∣

∣

∣

and εp replaced by ε. It can also be arranged that κ(b) < max(D(q′)) and
that

∑

n<jk and n/∈D(q′)

1/n+
∑

n>jk and y∈F (b)

1/n < 1.
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Then let l be the least integer j such that Ωj
b ∩D(q′) = ∅ and let

q = ({(aq
m, i

q
m, j

q
m)}kq′+1

m=0 , ε)

where (aq
m, i

q
m, j

q
m) = (aq′

m, i
q′
m, j

q′
m) if m ≤ kq′ and iq

kq′+1
= l, jq

kq′+1
= l + 1

and aq

kq′+1
= b. Note that just as in the proof of Lemma 5.3 it follows that

q ∈ P(F) and q ≤ q′ ≤ p.

Corollary 5.1. If G ⊆ P(F) is generic define (an, in, jn) = (ap
n, i

p
n, j

p
n)

for some (or , equivalently , any) p ∈ G. If πG is defined by

πG =
∞
⋃

n=0

Φan

{in,jn}

then πG almost commutes with each member of F and the family F ∪ {πG}
is tame.

Proof. From Definition 5.2 it follows that πG is an involution and from
Lemma 5.4 that it almost commutes with each member of F . From Lem-
mas 5.3 and 5.4 it follows that

⋃∞
n=0 an = F and N \

⋃∞
n=0(in ∪ jn) ∈ I1/x.

Now Lemma 5.1 shows that the family F ∪ {πG} is tame.

Lemma 5.5. If p ∈ P(F) and θ ∈ S(I1/x) but π is not first order definable

using finitely many parameters from F and k ∈ N then there is q ≤ p such

that

q 
P(F) “

∞
∑

i=k

{1/i : πG(θ(i)) 6= θ(πG(i))} > 1”

where πG is as defined in Corollary 5.1.

Proof. As a convenience, let a = ap
kp , α = |a|. Let t∗ be such that

hypothesis (5.6) of Lemma 5.2 holds with m = t∗ and then choose t ≥ t∗ to
be some integer such that the inequalities

1 − εp <
π(x)

x
< 1 + εp

hold for any j > t and x ∈ Ωj
a. By appealing to Lemma 5.3 it may assumed

that t ≤ kp. A final application of Lemma 5.3 will allow the assumption that
if

δ = sup
j∈N\D(p)

sup
π∈a

∣

∣

∣

∣

1 −
π(j)

j

∣

∣

∣

∣

then

(5.11)

(

1 + 2α

(

1 −
1

(1 + δ)α
+

t+ 1

min(ΩJ
a )

))6

(1 + δ)α < 1 + εp

where J = kp + 1.
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For use later on, let ε be so small that

2

1 − 2α6ε
< 1 + εp

and choose ζ small enough that

(5.12)
2 (1 + 2α((1 + ζ)α − 1)) (1 + ζ)α

1 − 2α6(ε+ (1 + ζ)α − 1)
< 1 + εp.

Using Lemma 5.3, is may be assumed (6) that

1 − ζ <
π(x)

x
< 1 + ζ

for all x /∈ D(p) and π ∈ a. A final application of Lemma 5.3 shows that it
may also be assumed that

(5.13)
∑

n∈F (a)\t

1/n < log(2).

The following fact will play a role later in the proof but is included here
to explain the significance of the exponent 6 in inequality (5.11) as well as
in the indexing to follow.

Claim 4. Given any π ∈ Sym(6) other than the identity there is σ ∈
Sym(6) without fixed points such that σ is an involution and σ does not

commute with π.

Proof. The proof is elementary.

Define Ei =
⋃5

w=0Ω
J+6i+w
a for each i ∈ N. Given a fixed point free

involution H of some interval of integers [J, J + 2K] let

pH = ({(am, im, jm)}kp+K
m=0 , εp)

where

(am, im, jm) =

{

(ap
m, i

p
m, j

p
m) if m ≤ kp,

(a, im, H(im)) if m > kp,

and {im}kp+K
m=kp+1 enumerates a maximal subset of the domain of H which is

disjoint from its image under H. Note that it may turn out that pH /∈ P(F)
because it is possible that, for example,

Φa
{im,H(im)}(n)

n
> 1 + εp

(6) Actually, it must also be observed that Lemma 5.3 does not require changing the
value of ε

p.



Maximal abelian subgroups 227

for some n ∈ Ωim
a . However,

(5.14) if |im −H(im)| < 6 then 1 − εp <
Φa
{im,H(im)}(n)

n
< 1 + εp

by condition (5.11) and conclusion (5.10) of Lemma 5.2.
Observe that if X ⊆ N then by conclusion (5.9) of Lemma 5.2,

(5.15) X ∈ I1/x if and only if E(X) ∈ I1/x

where E(X) =
⋃

X∩Ej 6=∅Ej . This will be used repeatedly in order to restrict

the possible structure of θ.

To begin, let W : N → N be defined so that if x ∈ Ωi
a then θ(x) ∈ Ω

W (x)
a .

First note that if there exist x1 and x2 in Ωu
a such thatW (x1) 6= W (x2) then,

because Ωa is a minimal set closed under the permutations in a, there must
be some permutation π in the group generated by a such that π(x1) = x2,
and hence θ(π(x1)) 6= π(θ(x1)). Therefore, by (5.15), it may be assumed that
if Z is the set of all z such that there is y ∈ Ωa(z) such that W (z) 6= W (y)
then E(Z) ∈ I1/x. Let

∑

z∈Z 1/z = sZ .

Next, let W ′ be defined for x /∈ E(Z) such that if x ∈ Ei then Ω
W (x)
a ∈

EW ′(x). Let

X = {x ∈ N : (∃i ∈ N)(∃y ∈ Ei) x ∈ Ei and W ′(y) 6= W ′(x)}

and suppose that E(X) /∈ I1/x. For each i such that Ei ∩ Z = ∅ and
Ei∩X 6= ∅ choose yi ∈ Ei and xi ∈ Ei such that W ′(yi) 6= W ′(xi) and let σi

be a fixed point free involution of {J +6i+n}5
n=0 such that if yi ∈ Ω

wy
a and

xi ∈ Ωwx
a then σi(wy) = wx. (Note that wy 6= wx since Ei ∩ Z = ∅.). Then,

using (5.15), it is possible to choose K ∈ N such that
∑K

i=0 1/yi > 1 + sZ .
If Ei ∩ Z 6= ∅ and 0 ≤ i ≤ K let σi be any fixed point free involution of
{J + 6i + n}5

n=0. Let H =
⋃k

i=0 σi and note that q = pH ∈ P(F) by (5.14)
and q ≤ p. It follows from the choice of K and the definition of X that q
satisfies the requirements of the lemma.

Hence, it may be assumed that E(X) ∈ I1/x and W ′ is constant on Ei

provided that Ei ⊆ N \E(X). Let Y = {i ∈ N : Ei ⊆ N \E(X)}. Let W ′′ be

defined on Y such that if x ∈ Ei then Ω
W ′(x)
a ⊆ EW ′′(i). Therefore there is a

partition Y = Y0 ∪Y1 ∪Y2 ∪Y3 such that W ′′(Yi)∩Yi = ∅ for each i ∈ 3 and
W ′′ is the identity on Y3. Let j ∈ 4 be such that

⋃

i∈Yj
Ei /∈ I1/x. Observe

that for each i ∈ Yj there is a permutation ̺i of 6 such that if z ∈ ΩJ+6i+u
a

then W (z) = J + 6W ′′(i) + ̺i(u).

First assume that j ∈ 3. Choose σi and βi to be any involutions of 6 with-
out fixed points such that ̺i(σi(u)) 6= βi(̺i(u)) for some u < 6. It follows

that if z ∈ ΩJ+6i+u
a then Φa

{J+6i+u,J+6i+σi(u)}(z) ∈ Ω
J+6i+σi(u)
a . Moreover,

θ(z) ∈ Ω
J+6W ′′(i)+̺i(u)
a and θ(Φa

{J+6i+u,J+6i+σi(u)}(z)) ∈ Ω
J+6W ′′(i)+̺i(σi(u))
a .
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However,

Φa
{J+6W ′′(i)+̺i(u),J+6W ′′(i)+βi(̺i(u))}(θ(z)) ∈ ΩJ+6W ′′(i)+βi(̺i(u))

a

6= ΩJ+6W ′′(i)+̺i(σi(u))
a .

Therefore if q forces πG to contain both

Φa
{J+6i+u,J+6i+σi(u)} and Φa

{J+6W ′′(i)+̺i(u),J+6W ′′(i)+βi(̺i(u))}

this will guarantee that πG(θ(z)) 6= θ(πG(z)) for z ∈ ΩJ+6i+u
a .

With this in mind, let K be such that
∑

i∈K∩Yj

1

max(Ei)
> 1,

let
H =

⋃

i∈K∩Yj

σi ∪ βW ′′(i)

and note that pH ≤ p by (5.14). The choice of K guarantees that q = pH is
as required by the lemma.

Hence, assume that j = 3. If the set of i ∈ Y3 such that ̺i is not the
identity is not in I1/x then using Claim 4 it is possible to choose, for each
i ∈ Y3, an involution σi of 6 without fixed points which does not commute
with ̺i. Using an argument very similar to the previous case it is possible
to find a sufficiently large K so that if

H =
⋃

i∈K∩Y3

σi

then pH is as required by the lemma. Notice that since there are no βi in
this case, Claim 4 must be used in this argument.

Therefore, by omitting a set in I1/x, it may be assumed that ̺i is the

identity for all i ∈ Y3. For any permutation ̺ of ΩJ
a and z ∈ 6 let Y (̺, z) be

the set of all i ∈ Y3 such that

ΦJ+6i+z,J ◦ θ ◦ ΦJ,J+6i+z↾Ω
J
a = ̺.

If for each z ∈ 6 there is only one permutation ̺z of ΩJ
a such that

⋃

i∈Y (̺z ,z)Ω
J+6i+z
a /∈ I1/x then θ/F(I1/x) can be defined from a and {̺z}z∈6.

So it may be assumed that it is possible to choose z ∈ 6 and a permutation ̺z

of ΩJ
a such that if U0 = Y (̺z, z) and U1 = N\U0 then

⋃

i∈U0
ΩJ+6i+z

a /∈ I1/x

and
⋃

i∈U1
ΩJ+6i+z

a /∈ I1/x. For j ∈ U1 let ̺j = ΦJ+6j+z,J ◦ θ ◦ ΦJ,J+6+z and
note that ̺j 6= ̺. The key point to keep in mind is that if i ∈ U0 and j ∈ U1

then

Φa
J+6j+z,J ◦ (θ ◦ Φa

J+6i+z,J+6j+z ◦ θ
−1 ◦ (Φa

J+6i+z,J+6j+z)
−1) ◦ Φa

J,J+6j+z

= (Φa
J+6j+z,J ◦ θ ◦ Φa

J,J+6j+z) ◦ (Φa
J+6i+z,J ◦ θ−1 ◦ Φa

J,J+6i+z) = ̺ ◦ ̺−1
j
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and it follows that θ ◦ Φa
{J+6i+z,J+6j+z} ◦ θ

−1 ◦ (Φa
{J+6i+z,J+6j+z})

−1 is dif-

ferent from the identity. Therefore if H is any involution such that H(J +
6i + z) = J + 6j + z for i ∈ U0 and j ∈ U1 then then there is x ∈ Ei

such that the inequality πG(θ(x)) 6= θ(π(x)) is forced by pH . However,
notice that, unlike all previous cases, i and j are not equal, and so if
|i − j| is too large then requirement (5.4) may fail for pH . The remain-
der of the argument is devoted to showing that there are sufficiently many
pairs (i, j) ∈ U0 × U1 such that pH satisfies (5.4) as well as the conclusion
of the lemma.

To this end, let U = {n ∈ U0 : n + 1 ∈ U1}. For n ∈ U let n0 be the
greatest integer such that the interval [n − n0, n] is contained in U0 and
let n1 be the largest integer such that [n + 1, n + 1 + n1] ⊆ U1. Let U∗

0 be
the set of all n ∈ U such that n0 ≤ n1 and U∗

1 be the set of all n ∈ U
such that n0 > n1. Define U ′

i =
⋃

n∈U∗
i
[n− n0, n+ n1 + 1] and observe that

Y3 = U ′
0 ∪ U

′
1. Hence, either U ′

0 or U ′
1 fails to belong to I1/x. In either case

the following argument is similar so assume that U ′
0 /∈ I1/x.

Recall the definitions of ε and ζ at the beginning of the proof. It will
first be shown that if

m > n > m(1 − ε)

then

(5.16) 1 − εp <
Φa

J+6n+u,J+6m+u(i)

i
< 1 + εp

for any i ∈ ΩJ+6n+u
a . Keep in mind that min(Ei) = min(ΩJ+6i

a ) for any i.

Begin by observing, using conclusion (5.7) of Lemma 5.2, that if Ωj
a inter-

sects the interval [min(En)(1 + ζ)α,min(Em)] then J + 6n ≤ j ≤ J + 6m.
Hence,

(5.17) N ∩ [min(En)(1 + ζ)α,min(Em)] ⊆
m
⋃

z=n

Ez ∪ F (a).

Note that

|F (a) ∩ [min(En)(1 + ζ)α,min(Em)]| ≤ min(Em)/2

because of condition (5.13). Therefore,

(5.18) min(Em) − min(En)(1 + ζ)α ≤ 2α6(m− n) + min(Em)/2.
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It follows that

min(Em)/2 − min(En)

≤ 2α6(m− n) + (min(En)(1 + ζ)α − min(En))

≤ 2α6(m− n) + 2α(J + 6n)((1 + ζ)α − 1)

≤ 2α(6(m− n) + 6n((1 + ζ)α − 1)) + 2αJ((1 + ζ)α − 1)

≤ 2α(6(m− n) + 6m((1 + ζ)α − 1)) + 2αJ((1 + ζ)α − 1)

≤ 2α6m(ε+ (1 + ζ)α − 1) + 2αJ((1 + ζ)α − 1),

and hence

min(Em)

2min(En)
− 1 ≤

m

min(En)
(2α6(ε+ (1 + ζ)α − 1)) + 2αJ((1 + ζ)α − 1).

Therefore, using the fact that m ≤ min(Em) and J ≤ min(En),

min(Em)

min(En)
≤

2 (1 + 2α((1 + ζ)α − 1))

1 − 2α6(ε+ (1 + ζ)α − 1)
≤

1 + εp

(1 + ζ)α

by inequality (5.12). Therefore, using conclusion (5.7) of Lemma 5.2,

Φa
J+6n+u,J+6m+u(i)

i
≤

max(Em)

minEn
≤ 1 + εp

for any u < 6 and i ∈ En. Similar reasoning shows that both inequali-
ties (5.16) hold. Consequently, definingH so that H(J+6n+u) = J+6m+u
will not conflict with condition (5.4) holding for pH .

The only question which remains is whether it is possible to add enough
of these extensions to provide a large witness to πG not commuting with θ.
In case there is some K such that n0 ≥ n(1 − ε) for all n ≥ K it follows
that

∑

n∈U ′
0\K

∑n
j=n0

1/j = ∞. Moreover, for each n ≥ K and j such that

n0 ≤ j ≤ n there is some xj ∈ Ej such that

(5.19) θ(Φa
{J+6j+z,J+6(j+n0)+z}(xj)) 6= Φa

{J+6j+z,J+6(j+n0)+z}(θ(xj))

since j + n0 < n+ n1. Hence, by (5.15), it follows that
∑

j∈U ′
0\K

1/xj = ∞

and so it is possible to choose M so that
∑M

j∈U ′
0\K

1/xj ≥ 1. Defining H so

that H(J+6j+z) = J+6(j+n0)+z for n ∈ U ′
0 such that K ≤ n ≤M and

n0 ≤ j ≤ n will satisfy the lemma because, in this case, n(1−ε) ≤ n0 ≤ j ≤ n
and so pH ∈ P(F) by (5.16).

In the other case, there is an infinite set U ′′ ⊆ U ′
0 such that n0 < n(1−ε)

for each n ∈ U ′′. It follows that if n ∈ U ′′ and n(1 − ε) ≤ j ≤ n then there
is some xj ∈ Ej such that

θ(Φa
{J+6j+z,J+6(j+⌈n(1−ε)⌉)+z}(xj)) 6= Φa

{J+6j+z,J+6(j+⌈n(1−ε)⌉)+z}(θ(xj)).
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Using Lemma 5.2 it follows that for n ∈ U ′′,
n

∑

i=⌈n(1−ε)⌉

1/xi ≥
n

∑

i=⌈n(1−ε)⌉

1

max(Ei)
≥

n
∑

i=⌈n(1−ε)⌉

1

min(ΩJ+6i+5
a )(1 + ζ)a

≥
n

∑

i=⌈n(1−ε)⌉

1

2α(J + 6i+ 5)2(1 + ζ)a
,

and elementary calculations using condition (5.13) show that the limit as n
increases to infinity of the last term of the inequality is

1

2α12(1 + ζ)a
ln

(

1

1 − ε

)

= γ > 0.

Now it suffices to choose a finite subset T ⊆ U ′′ such that

|T | > 2/γ

and
n

∑

i=⌈n(1−ε)⌉

1

2α(J + 6i+ 5)2(1 + ζ)a
>
γ

2

for all n ∈ T . Then define H(J+6i+z) = J+6(i+⌈n(1−ε)⌉)+z for n ∈ T
and n(1 − ε) ≤ i ≤ n and note that setting q = pH ≤ p as before satisfies
the requirements of the lemma.

Theorem 5.1. It is consistent that A(I1/x) = ℵ1 < 2ℵ0.

Proof. Let V be a model where 2ℵ0 > ℵ1 and let V ′ be obtained from V
by adding ℵ1 Cohen reals. To be precise, V ′ =

⋃

α∈ω1
Vα where {πβ}β∈α ∈ Vα

and Vα+1 = Vα[Gα] where Gα is Cohen generic over Vα for the partial order
P({πβ}β∈α). Moreover, πα = πGα . Using Lemmas 5.3 and 5.4 and Lemma 5.1
it follows that {πβ}β∈α is a tame family whose elements almost commute for
each α ≤ ω1. Let Γ ⊇ {πα}α∈ω1 be a maximal almost abelian subgroup of
the subgroup of all π ∈ S(I1/x)/F(I1/x) which are first order definable from
some finite subset of {πα}α∈ω1 . To see that Γ is maximal in S(I1/x)/F(I1/x)
suppose that π ∈ V [{πβ}β∈α]. If π is first order definable from some finite
subset of {πβ}β∈α then either π ∈ Γ or there is some θ ∈ Γ such that
NC(π, θ) /∈ I1/x. On the other hand, if π is not first order definable from
some finite subset of {πβ}β∈α then by Lemma 5.5 and genericity it follows
that NC(π, πα) /∈ I1/x.

6. It is possible that a(I) < A(I). Since it has been shown in Propo-
sition 2.1 that A([N]<ℵ0) ≤ a it is natural to wonder whether there might
be a more general result asserting that A(I) is bounded by a(I) as defined
in Definition 1.2. It will be shown that no such result holds, at least not in
the generality indicated.



232 S. Shelah and J. Steprāns

Fix an increasing sequence N = {ni}∞i=0 of integers such that

lim
i→∞

ni+1 − ni

ni+2 − ni+1
= 0

and define

I(N ) =

{

A ⊆ N : lim
i→∞

|A ∩ [ni, ni+1)|

ni+1 − ni
= 0

}

.

Theorem 6.1. A(I(N )) = 2ℵ0 .

Proof. To begin, the following claim will be established:

Claim 5. If g ∈ S(I(N )) then there is B ∈ I(N ) such that if j ∈
[ni, ni+1) \B then g(j) ∈ [ni, ni+1).

Proof. Let

B+ =
∞
⋃

i=0

{n ∈ N : ni ≤ n < ni+1, g(n) ≥ ni+1},

B− =

∞
⋃

i=0

{n ∈ N : ni ≤ n < ni+1, g(n) < ni}.

If B+∪B− ∈ I(N ) then the claim is proved. To begin, suppose B+ /∈ I(N ).
Choose ε > 0 and an infinite Y ⊆ N such that

|B+ ∩ [ni, ni+1)|

ni+1 − ni
≥ ε

for each i ∈ Y . By thinning out Y it may also be assumed that if i and j
belong to Y and i < j and m ∈ B+ ∩ [ni, ni+1) then g(m) < nj . It follows
that

g(B+) ∩ [ni+1, nj) = g(B+ ∩ [ni, ni+1)) ∩ [ni+1, nj).

Therefore, if i < k < j then

|g(B+) ∩ [nk, nk+1)|

nk+1 − nk
≤

ni+1 − ni

nk+1 − nk

and so g(B+) ∈ I(N ), contradicting the fact that g ∈ S(I(N )). A similar
argument applied to g−1 deals with B−.

Now suppose that G ⊆ S(I(N )) is a maximal subset whose elements
almost commute modulo I(N ) and let g ∈ G \ F(I(N )). By Claim 5, there
isB ∈ I(N ) such that if j ∈ [ni, ni+1)\B then j 6= g(j) ∈ [ni, ni+1). Let g′ be
a permutation such that g′↾N\B = g↾N\B and g′↾[ni, ni+1) is a permutation
of [ni, ni+1) for each i. (This is possible since g : [ni, ni+1) \ B → [ni, ni+1)
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is one-to-one.) Note that g′ belongs to the same coset of F(I(N )) as g. For
any Z ⊆ N let gZ be defined by

gZ(j) =

{

g′(j) if j ∈ [ni, ni+1) and i ∈ Z,

j if j ∈ [ni, ni+1) \B and i /∈ Z,

and note that gZ ∈ S(I(N )) for each Z. Moreover, there is some ε > 0 and
an infinite X ⊆ N such that

|{m ∈ [ni, ni+1) : g′(m) 6= m}|

ni+1 − ni

is greater than ε for each i ∈ X. It follows that if Z and W are subsets
of X and |Z △W | = ℵ0 then gZ and gW do not belong to the same coset
of F(I(N )). Hence it will suffice to show that each gZ commutes with each
member of G.

To this end, let Z ⊆ N and suppose that h ∈ G and use Claim 5 to find
C ∈ I(N ) such that h(j) ∈ [ni, ni+1) for each i and each j ∈ [ni, ni+1) \ C.
Since h and g almost commute modulo I(N ) let D ∈ I(N ) be such that
h(g(j)) = g(h(j)) for j ∈ N \D. Then let E = B ∪h−1(B)∪C ∪D and note
that E ∈ I(N ) since h ∈ S(I(N )). It will be shown that gZ(h(j)) = h(gZ(j))
for each j ∈ N \ E. To see this, let j ∈ [ni, ni+1) \ E and suppose first that
i ∈ Z. In this case gZ(j) = g′(j) = g(j) because j /∈ B. Furthermore, since
j /∈ C, h(j) ∈ [ni, ni+1) and h(j) /∈ B, and hence g(h(j)) = gZ(h(j)). Since
j /∈ D it follows that h(g(j)) = g(h(j)), and hence in this case h(gZ(j)) =
gZ(h(j)). If i /∈ Z then gZ(j) = j because j /∈ B, and since j /∈ C, h(j) ∈
[ni, ni+1). Therefore, since h(j) /∈ B, gZ(h(j)) = h(j) = h(gZ(j)).

Theorem 6.2. a(I(N )) ≤ a.

Proof. Let A be a maximal almost disjoint family of size a. For A ∈ A
define A∗ =

⋃

i∈A[ni, ni+1) and let A∗ = {A∗ : A ∈ A}. Then A∗ is maximal
in P(N)/I(N ).

It follows that a(I(N )) < A(I(N )) in any model of set theory where
a 6= 2ℵ0 .

7. Questions. It is well known that maximal almost disjoint families
of subsets of N cannot have any nice definition; indeed, Mathias has shown
that they cannot be analytic [7]. The results of §2 which establish some
similarity between A([N]<ℵ0) and a raise the following question.

Question 7.1. Is there an analytic, maximal, almost commuting sub-
group of S?

The lower bound of §3 is probably not optimal.
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Question 7.2. Can the lower bound A(S/F) ≥ p of Theorem 3.2 be
improved? Can the tower invariant t serve as a lower bound?

For any function h : N → R one can define the summable ideal Ih

to be the set of all X ⊆ N such that
∑

x∈X h(x) < ∞. Observe that
it is possible to modify the proof of Theorem 6.1 in order to replace the
ideal I(N ) by a summable ideal. In particular, let {ni}∞i=0 be an increas-
ing sequence of integers defined by ni+1 − ni = n3

i and let h be defined
by h(j) = n−3

i if ni ≤ j < ni+1. If g ∈ S(Ih) and the sets B+ and B−

are defined as in the proof of Theorem 6.1 then it is easy to see that
∑

j∈B+∩ni
h(g(j)) ≤ |B+ ∩ ni|n

−3
i ≤ n−2

i and hence Claim 5 still holds,

as does the remainder of the argument of Theorem 6.1. Hence A(Ih) = 2ℵ0 .
This motivates the following question.

Question 7.3. For which functions h is it possible to improve Theo-
rem 5.1 to show that A(Ih) = ℵ1 < 2ℵ0 in the model obtained by adding ℵ1

Cohen reals?

Question 7.4. Are there functions h and g such that it is consistent
that A(Ih) < A(Ig) < 2ℵ0?

Question 7.5. Is it possible to characterize the summable ideals Ih such
that A(Ih) = 2ℵ0? Can the same be done for the Fσ ideals? What can be
said of the Borel or analytic ideals?

At some points in the proof of §5 the permutations constructed can be
taken to be almost commuting rather than just almost commuting modulo
I1/x. The following question asks whether the argument can be strengthened
throughout.

Question 7.6. Can Theorem 5.1 be improved to show that it is con-
sistent with set theory that 2ℵ0 > ℵ1 yet there is an almost commuting
subgroup of S of cardinality ℵ1 which is maximal with respect to commut-
ing modulo I1/x? Does this hold in the Cohen model of Theorem 5.1?

The methods of §4 and §5 require that the subgroups constructed contain
many involutions. While the methods can be modified to produce groups
with no elements of order k for a fixed k, the following questions seem more
subtle.

Question 7.7. Can Theorem 4.2 be modified to assert that it is consis-
tent that there is a maximal, abelian, torsion free subgroup of S/F of size
ℵ1 and ℵ1 < a?

Question 7.8. Can Theorem 5.1 be modified to assert that it is
consistent that there is a maximal, abelian, torsion free subgroup of
S(I1/x)/F(I1/x) of size ℵ1 and ℵ1 < 2ℵ0?
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