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Abstract. We classify the indecomposable injective E(n)∗E(n)-comodules, where
E(n) is the Johnson–Wilson homology theory. They are suspensions of the Jn,r =

E(n)∗(MrE(r)), where 0 ≤ r ≤ n, with the endomorphism ring of Jn,r being Ê(r)
∗

Ê(r),

where Ê(r) denotes the completion of E(r).

Introduction. Perhaps the most important homology theories in alge-
braic topology are complex bordism MU and the many theories derived
from it. In particular, if p is a prime, and we localize at p as we do through-
out this paper, then MU splits as a coproduct of suspended copies of
a spectrum known as BP , with BP∗(∗) ∼= Z(p)[v1, v2, . . . ], where vi has

degree 2(pi − 1). Derived from BP are the many Landweber exact ho-
mology theories [Lan76], such as the Johnson–Wilson theory E(n), with
E(n)∗(∗) ∼= Z(p)[v1, . . . , vn, v−1

n ] and Morava E-theory En (see [DH95]).

As is well-known [Rav86, Theorem 2.2.8], for all of these homology the-
ories h, the homology groups h∗X form a graded comodule over the graded
Hopf algebroid (h∗, h∗h). It therefore behooves us to learn as much as pos-
sible about the category of h∗h-comodules. In particular, products are not
exact in the category of h∗h-comodules, and their derived functors form the
E2-term of a spectral sequence [Hov07] converging to the h∗-homology of a
product of spectra. This spectral sequence offers one possible approach to
the chromatic splitting conjecture of Hopkins [Hov95].

The author has thus been engaged in attempting to understand as much
of the structure of the category of h∗h-comodules as possible, following in
the footsteps of Peter Landweber, whose papers [Lan76], [Lan73], and the
less well-known but excellent [Lan79] are the basis for our understanding
of BP∗BP -comodules. In particular, the author and Strickland, in [HS05a]
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and [HS05b], have shown that analogues of Landweber’s theorems hold in
the category of E∗E-comodules, where E denotes, as it will throughout the
paper, a Landweber exact homology theory of height n such as E(n) or
En. Recall that this means that there is a ring homomorphism BP∗ −→ E∗

so that the sequence (p, v1, . . . , vn) is regular in E∗ and vn is a unit in
E∗/(p, v1, . . . , vn−1).

The present paper is devoted to the study of injective BP∗BP -comodules
and E∗E-comodules. Injective comodules have not been studied before, ex-
cept briefly in [HS05b], because one can almost always use relatively injective
comodules to compute the derived functors of interest in topology. This in-
cludes the Ext groups ExtE∗E(E∗, E∗X) and even the derived functors of
product.

However, we will show in this paper that the injective comodules have a
very rigid structure, in analogy to the Matlis theory of injective modules over
a Noetherian commutative ring (described in [Lam99, Section 3I]). There are
only n + 1 different isomorphism classes of indecomposable injective E∗E-
comodules, where E is, as always, a Landweber exact homology theory of
height n. They are the injective hulls Jr of E∗/Ir, where 0 ≤ r ≤ n and
Ir = (p, v1, . . . , vr−1). Furthermore, if E∗ is evenly graded, Jr

∼= E∗(MrE(r))
up to suspension, where Mr is the fiber of the map of Bousfield localizations
Lr −→ Lr−1. Also, the endomorphism ring of Jr as an E∗E-comodule is

Ê(r)
∗

Ê(r), where Ê(r) = LK(r)E(r) is the completion of E(r) at Ir.

Unfortunately, a good algebraic description of Ê(r)
∗

Ê(r) is not known.
We know that E∗

rEr is the twisted completed group ring Er∗[[Sr]] on the
large Morava stabilizer group (this is an old result of Hopkins and Ravenel;
see [Bak89] or [Hov04b] for proofs of it). It therefore seems likely that

Ê(r)
∗

Ê(r) is very closely related to the stabilizer group Sr. If we accept
this, then we are seeing all of the stabilizer groups Sr for 0 ≤ r ≤ n in the
category of E∗E-comodules. Since the chromatic splitting conjecture is in
some sense about how the apparently unrelated stabilizer groups actually
are related to each other, seeing all of the stabilizer groups together like
this is a good sign and might be useful. We can also find a decomposable
injective comodule whose endomorphism ring is E∗

rEr.

As a corollary of our work, we rediscover the folklore isomorphisms

Ê(n)
∗

(X) ∼= HomE(n)∗(E(n)∗(MnX), Σ−nE(n)∗/I∞n ),

E∗

nX ∼= HomEn∗
(En∗(MnX), Σ−nEn∗/I∞n ).

As far as the author knows, these isomorphisms have not been written down
before, though they were certainly known to Hopkins, Greenlees, Sadofsky,
and others.
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Throughout this paper, p will be a fixed prime integer, all spectra will
be localized at p, and n > 0 will be a fixed positive integer. The symbol E
will denote a Noetherian Landweber exact homology theory of height n, like
E(n) or En. The symbol (A, Γ ) will denote a flat Hopf algebroid.

The author thanks Andy Baker for sharing his insights into Ê(r)
∗

Ê(r).

1. BP∗BP -comodules and E∗E-comodules. The purpose of this sec-
tion is to remind the reader of some of the results on the structure of BP∗BP -
comodules, E∗E-comodules, and the relation between them.

Recall that the Hopf algebroid (A, Γ ) is called an Adams Hopf alge-

broid when Γ is the colimit of a filtered system of comodules Γi, where
each Γi is finitely generated and projective over A. As explained in [Hov04a,
Section 1.4] (though originally due to Hopkins), both (BP∗, BP∗BP ) and
(E∗, E∗E) are Adams Hopf algebroids. When (A, Γ ) is an Adams Hopf al-
gebroid, the category of Γ -comodules is a Grothendieck category [Ste75,
Chapter V]. This means that it is an abelian category in which filtered co-
limits are exact, and that there is a family of generators {Pi}, in the sense
that Γ -comod(

⊕
Pi,−) is a faithful functor. The most natural collection

of generators consists of the dualizable comodules; these are the comod-
ules that are finitely generated and projective over A. These are studied
and proved to be generators in Sections 1.3 and 1.4 of [Hov04a]. Note that
BP∗ and its suspensions do not generate the category of BP∗BP -comodules,
and we know of no naturally defined proper subcollection of the dualizable
comodules which does so.

As is well-known, the category of Γ -comodules is a closed symmetric
monoidal category [Hov04a, Section 1.3]. The tensor product is denoted
M ∧ N ; it is isomorphic as an A-module to the tensor product M ⊗A N of
left A-modules (a different notation is used because the usual tensor product
symbol is reserved for the tensor product of A-bimodules, which occurs
frequently in the theory). The internal Hom object is denoted F (M, N);
there is a natural map F (M, N) −→ HomA(M, N) of A-modules that is an
isomorphism when M is finitely presented over A.

There are enough injectives in any Grothendieck category. One can see
this directly for Γ -comodules by noting that Γ ⊗A J is an injective Γ -
comodule whenever J is an injective A-module. Note that this is a bimod-
ule tensor product, and all the Γ -coaction is concentrated on the Γ tensor
factor; however, it is well-known that Γ ⊗A J is isomorphic as a comodule
to Γ ∧ J (see [Hov04a, Lemma 1.1.5]). Moreover, if A is Noetherian, as it
is for (A, Γ ) = (E∗, E∗E), the category of Γ -comodules is locally Noethe-
rian as well. This means that subcomodules of the generators satisfy the
ascending chain condition; this is obvious because dualizable comodules are
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finitely generated over A. In any locally Noetherian Grothendieck category,
direct sums of injectives are injective and every injective is a direct sum
of indecomposable injectives in an essentially unique way (see [Ste75, Sec-
tions V.4, V.5]).

There is a functor Φ∗ from BP∗BP -comodules to E∗E-comodules defined
by Φ∗M = E∗⊗BP∗

M . This functor is much studied in [HS05a] and [HS05b].
The functor Φ∗ is exact and has a right adjoint Φ∗. The composite Φ∗Φ

∗ is
naturally equivalent to the identity, and the composite Φ∗Φ∗ is the localiza-
tion functor Ln with respect to the hereditary torsion theory of vn-torsion
comodules. In particular, Φ∗ defines an equivalence of categories between
E∗E-comodules and Ln-local BP∗BP -comodules. This result is valid even
if E∗ is not Noetherian, so the results in this paper about injective E∗E-
comodules also apply to the case when E∗ is not Noetherian. It is proved
in [HS05b, Section 2] that Φ∗ and Φ∗ preserve injectives, filtered colimits,
and arbitrary direct sums. In fact, if TnM denotes the subcomodule of vn-
torsion elements in M , then Tn also preserves injectives, and LnJ = J/TnJ
for injective BP∗BP -comodules J .

2. Indecomposable injectives. We have remarked above that every
injective E∗E-comodule is a direct sum of indecomposable injectives. Matlis
has a well-known theory of indecomposable injectives over Noetherian rings
(see, for example, [Lam99, Section 3I]), and we will mimic his theory for in-
decomposable injective E∗E-comodules and BP∗BP -comodules. The object
of this section is to classify all the indecomposable injective E∗E-comodules.

We first point out that indecomposable injectives are relevant even for
BP∗BP -comodules.

Proposition 2.1. Suppose J is an injective BP∗BP -comodule for which

there exists an n such that J has no vn-torsion. Then J is a direct sum of

indecomposable injectives in an essentially unique way.

Before proving this proposition, we point out the following lemma.

Lemma 2.2. If N is an E∗E-comodule, then N is indecomposable if and

only if Φ∗N is indecomposable.

Proof. In general, an object M in an abelian category C is indecompos-
able if and only if the ring C(M, M) has no nontrivial idempotents. Since
Φ∗ is fully faithful, the result follows.

Proof of Proposition 2.1. Since J has no vn-torsion and J is injective,
J is Ln-local. Hence J = Φ∗Φ∗J . Now Φ∗J is an injective object in the
category of E∗E-comodules, and hence Φ∗J ∼=

⊕
Jα, where each Jα is an

indecomposable injective E∗E-comodule. Since Φ∗ preserves direct sums,
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we get

J ∼=
⊕

Φ∗Jα.

Since Φ∗ preserves injectives, and also indecomposables by Lemma 2.2, we
see that J is a direct sum of indecomposable injectives. The uniqueness
of this direct sum decomposition follows from the Krull–Remak–Schmidt–
Azumaya theorem as in Section V.5 of [Ste75], using the fact that the endo-
morphism ring of an indecomposable injective is always local [Ste75, Propo-
sition V.5.1].

The next thing to do is to enumerate all the indecomposable injec-
tives. Recall that the indecomposable injective modules over a commutative
Noetherian ring R are the injective hulls of the R/p, where p is a prime
ideal in R. The ideals Ir = (p, v1, . . . , vr−1) are the prime invariant ideals in
E(n)∗ for 0 ≤ r ≤ n and in BP∗ for 0 ≤ r ≤ ∞ (see [HS05a, Theorem 5.6]
for the E(n)∗ case). For an arbitrary Landweber exact theory of height n, it
is possible that the Ir are not actually prime, but they remain the “categor-
ically prime” invariant ideals in E∗, as explained in [HS05a, Theorem 5.6].
Hence we let Jn,r for 0 ≤ r ≤ n denote the injective hull of E∗/Ir in the
category of E∗E-comodules, and let Jr for 0 ≤ r ≤ ∞ denote the injective
hull of BP∗/Ir in the category of BP∗BP -comodules.

Lemma 2.3. The injective comodules Jn,r for 0 ≤ r ≤ n and Jr for

0 ≤ r ≤ ∞ are indecomposable.

Proof. According to [Ste75, Proposition V.2.8], it suffices to show that
E∗/Ir and BP∗/Ir are coirreducible, which means that any two nontriv-
ial subcomodules M, N have nontrivial intersection. This is obvious for
BP∗/I∞ = Fp. For the other cases, we use the fact that every nontrivial
BP∗BP -comodule or E∗E-comodule has a nonzero primitive [HS05a, The-
orem 5.1]. For example, assume 0 < r < n. Then the primitives in E∗/Ir

are isomorphic to Fp[vr] by [HS05a, Theorem 5.2]. Hence M contains all
sufficiently high powers of vr, as does N , and so M ∩N 6= 0. The other cases
are similar, using the computations of the primitives in BP∗/Ir [Rav86,
Theorem 4.3.2] and in E∗/Ir [HS05a, Theorem 5.2].

We also note that Jr has no vr-torsion in view of [HS05b, Theorem 2.7].
(We will see below that Jn,r also has no vr-torsion.)

Theorem 2.4. An E∗E-comodule J is an indecomposable injective co-

module if and only if J ∼= ΣtJn,r for some 0 ≤ r ≤ n and some t. Similarly ,
a BP∗BP -comodule with no vn-torsion is an indecomposable injective co-

module if and only if J ∼= ΣtJr for some 0 ≤ r ≤ n and some t.

There are probably many different indecomposable injective BP∗BP -
comodules that are vn-torsion for all n.
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Proof. Suppose J is an indecomposable injective E∗E-comodule. Then J
has a nonzero subcomodule that is finitely generated over E∗ (see [Hov04a,
Proposition 1.4.1]). By the filtration theorem [HS05a, Theorem 5.7], any
nontrivial finitely generated E∗E-comodule contains an isomorphic copy of
ΣtE∗/Ir for some t and some r with 0 ≤ r ≤ n. Since J is injective, we see
that ΣtJr ⊆ J ; since J is also indecomposable, ΣtJr

∼= J .
Similarly, suppose J is an indecomposable injective BP∗BP -comodule

with no vn-torsion. It is once again true that J contains a nonzero subco-
module that is finitely generated over BP∗. The new ingredient is [Lan79,
Corollary 7], which implies that, since J has no vn-torsion, its finitely gener-
ated subcomodules are in fact finitely presented over BP∗. Therefore we can
use the usual Landweber filtration theorem [Lan76] to find a subcomodule of
the form ΣtBP∗/Ir for 0 ≤ r ≤ n. As before, this implies that J ∼= ΣtJr.

Note that the obvious inclusions

BP∗/In −→ ΣtBP∗/(p∞, . . . , v∞n−1) −→ v−1
n ΣtBP∗/(p∞, . . . , v∞n−1)

are essential extensions, so these important comodules (defined more pre-
cisely after Theorem 3.1) have the same injective hull Jn. Here t = |v1| +
· · · + |vn−1|, and the inclusion sends 1 ∈ BP∗/In to 1/pv1 · · · vn−1.

It is also useful to know that Φ∗ and Φ∗ map these indecomposable
injectives as one would expect.

Lemma 2.5. We have Φ∗Jr
∼= Jn,r and Φ∗Jn,r

∼= Jr for 0 ≤ r ≤ n.

Proof. Recall that both Φ∗ and Φ∗ preserve injectives by [HS05b, Corol-
lary 2.5], and Φ∗ preserves indecomposables by Lemma 2.2. Hence Φ∗Jn,r

is an indecomposable injective, necessarily without vn-torsion. On the other
hand, since

Φ∗BP∗/Ir = E∗/Ir ⊆ Jn,r,

we conclude that

Ln(BP∗/Ir) ⊆ Φ∗Jn,r.

But Ln(BP∗/Ir) is either BP∗/Ir itself if r < n, or v−1
n BP∗/In if r = n

[HS05a, Lemma 5.3]. In either case we see that Jr ⊆ Φ∗Jn,r. Equality must
hold since Φ∗Jn,r is an indecomposable injective.

It then follows that Φ∗Jr = Φ∗Φ
∗Jn,r

∼= Jn,r, as required.

This lemma implies that Jn,r and Jr share much of the same structure.
For example, we have the following corollary.

Corollary 2.6. Suppose 0 ≤ r ≤ n. Then Jr and Jn,r are Ir-torsion

and vr-periodic.

Proof. For Jr, this follows from Proposition 2.2, Proposition 2.6, and
Theorem 2.7 of [HS05b]. It is clear that if M is Ir-torsion, so is Φ∗M , and so
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Jn,r is Ir-torsion. In particular, since vr is a primitive modulo Ir, this means
that v−1

r Jn,r is a well-defined comodule. The kernel K of Jn,r −→ v−1
r Jn,r is

the vr-torsion in Jr and K intersects E∗/Ir trivially. Since Jn,r is an essential
extension of E∗/Ir, we conclude that Jn,r has no vr-torsion. This means that
v−1
r Jn,r is an essential extension of Jn,r, so v−1

r Jn,r = Jn,r.

3. Structure of indecomposable injectives. We would like to know
more of the structure of the indecomposable injectives Jr and Jn,r, in analogy
to Matlis’ theory described in [Lam99, Section 3I].

The object of this section is to prove the following theorem.

Theorem 3.1. If E = E(n), then there is an isomorphism of comodules

Jn,n
∼= E(n)∗E(n) ⊗E(n)∗ ΣtE(n)∗/I∞n ,

where t = |v1| + · · · + |vn−1|.

Note that in this theorem, we are not free to use any Noetherian Landwe-
ber exact homology theory of height n, but must use E(n) itself. In partic-
ular, we cannot use Morava E-theory.

In this theorem, E(n)∗/I∞n is thought of as an E(n)∗-module, not as a
comodule, and it is the usual construction used in algebraic topology. That
is, we inductively define E(n)∗/I∞r via the short exact sequence

0 −→ E(n)∗/I∞r −→ v−1
r E(n)∗/I∞r −→ E(n)∗/I∞r+1 −→ 0.

Additive generators of E(n)∗/I∞n are given by

λvr
n

pi0vi1
1 · · · v

in−1

n−1

where λ ∈ Fp, r ∈ Z and i0, i1, . . . , in−1 are positive integers. The action of
p, v1, . . . , vn is the obvious one, with a product being 0 if it ever removes
any of p, v1, . . . , vn−1 from the denominator. For example, E(n)∗/In is the
submodule of ΣtE(n)∗/I∞n generated by 1/pv1 · · · vn−1.

We can make a similar construction to form En∗/I∞n , with

En∗ = WFq[[u1, . . . , un−1]][u, u−1]

the coefficient ring of Morava E-theory, where q = pn, WFq is the Witt
vectors of the Galois field Fq, the ui have degree 0, and u has degree −2.
There is a ring homomorphism E(n)∗ −→ En∗ that takes vr to uru

1−pr

for
1 ≤ r < n and vn to u1−pn

. Hence Ir = (p, u1, . . . , ur−1) as an ideal of En∗.
The elements

λur

pi0ui1
1 · · ·u

in−1

n−1

,

where λ ∈ Fq, r ∈ Z and i0, i1, . . . , in−1 are all positive integers, are additive
generators for En∗/I∞n .
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It is important to note that E(n)∗/I∞n is not the increasing union of the
E(n)∗/Ir

n for n > 1. Indeed, E(n)∗/I2
n has distinct elements p and v1 that

are both killed by In, whereas the only elements of E(n)∗/I∞n killed by In

are αvr
n/pv1 · · · vn−1 for α ∈ Fp and r ∈ Z. Thus no shifted copy of E(n)∗/I2

n

can sit inside E(n)∗/I∞n for n > 1.

Theorem 3.1 has the following corollary.

Corollary 3.2. We have

Jr
∼= BP∗BP ⊗BP∗

ΣtE(r)∗/I∞r

and , for any Noetherian Landweber exact E of height n,

Jn,r
∼= E∗BP ⊗BP∗

ΣtE(r)∗/I∞r

for 0 ≤ r ≤ n. Here t = |v1| + · · · + |vr−1|.

In this corollary, E is, as always, a Noetherian Landweber exact homol-
ogy theory of height n.

Proof. The corollary follows from the fact that

Φ∗(E∗E ⊗E∗
M) = BP∗BP ⊗BP∗

M

(see Lemma 2.4 of [HS05a]), and Lemma 2.5.

We will prove Theorem 3.1 by first using Matlis theory to show that
ΣtE(n)∗/I∞n is the injective hull of E(n)∗/In in the category of E(n)∗-
modules. This shows that E(n)∗E(n) ⊗E(n)∗ ΣtE(n)∗/I∞n is an injective
comodule. We then show that both of the maps in the composition

E(n)∗/In
i
−→E(n)∗E(n)⊗E(n)∗E(n)∗/In

1⊗j
−−→E(n)∗E(n)⊗E(n)∗Σ

tE(n)∗/I∞n

are essential extensions. Here i is the unit of the adjunction between the
forgetful functor and the extended comodule functor, with i(a) = ηL(a)⊗ 1,
and j is the embedding of the E(n)∗-module E(n)∗/In into its injective hull.

Proposition 3.3. The injective hull of E(n)∗/In in the category of

E(n)∗-modules is ΣtE(n)∗/I∞n , where t = |v1| + · · · + |vn−1|. Similarly ,
the injective hull of En∗/In in the category of En∗-modules is En∗/I∞n .

Proof. The proof is a computation using Matlis theory, modeled on
[Lam99, Section 3J]. We first note that Q/Z(p)[vn, v−1

n ] is an injective object

in the category of graded Z(p)[vn, v−1
n ]-modules and graded homomorphisms

(not necessarily of degree 0). To see this, one can just use the same proof as
the proof that shows Q/Z(p) is an injective Z(p)-module. This proof works for

discrete valuation rings such as WFq as well, so that (WFq ⊗ Q)/Q[u, u−1]
is an injective object in the category of graded WFq[u, u−1]-modules and
graded homomorphisms. The rest of the proof for En∗ is the same as the
proof for E(n)∗ given below.
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Now let M = Hom∗

Z(p)[vn,v−1
n ]

(E(n)∗, Q/Z(p)[vn, v−1
n ]); then M is an in-

jective graded E(n)∗-module by the generalization of [Lam99, Lemma 3.5]
to the graded case. We define the element

vr
n

pi0vi1
1 · · · v

in−1

n−1

=
1

pi0vi1
1 · · · v

in−1

n−1 v−r
n

of M to be the element that takes the monomial

vi1
1 · · · v

in−1

n−1

to vr
n/pi0 ∈ Q/Z(p)[vn, v−1

n ], and takes the complementary Z(p)[vn, v−1
n ]-

summand of E(n)∗ to 0. Then the submodule of M generated by these
elements is E(n)∗/I∞n . An arbitrary element of M can be written as an
infinite sum of these elements.

By Proposition 3.88 of [Lam99] (again, in the graded case), the In-torsion
in M is still an injective E(n)∗-module. We claim that the In-torsion in M
is just E(n)∗/I∞n . Indeed, it is clear that each of the elements

vr
n

pi0vi1
1 · · · v

in−1

n−1

is In-torsion. On the other hand, if f ∈ M is In-torsion, then Ik
nf = 0

for large k, so f(Ik
n) = 0. Thus f kills all but finitely many monomials

pi0vi1
1 · · · v

in−1

n−1 in E(n)∗. It follows that f is a finite sum of our generating
elements, so is in E(n)∗/I∞n .

Now it is clear that the extension Σ−tE(n)∗/In −→ E(n)∗/I∞n , where 1
goes to 1/pv1 · · · vn−1, is essential, completing the proof.

We need a simple test for essential extensions of comodules.

Lemma 3.4. Suppose (A, Γ ) is a flat Hopf algebroid for which every

Γ -comodule has a primitive. Then an extension M −→ N of Γ -comodules is

essential if and only if Ax ∩ M 6= 0 for all primitives x ∈ N .

Note that every E∗E-comodule has a primitive by [HS05a, Theorem 5.1].

Proof. If N ′ is an arbitrary nonzero subcomodule of N , it must contain
a primitive x of N . The subcomodule Ax generated by x is then inside N ′.
The result follows easily.

Lemma 3.5. If (A, Γ ) is a flat Hopf algebroid and M is an A-module,
then the primitives in the extended comodule Γ⊗AM are the elements 1⊗m.

Proof. Note that x is a primitive if and only if x = f(1) for some co-
module map f : A −→ Γ ⊗A M . But then adjointness implies f is induced by
a map g : A −→ M of A-modules. This means that f(a) = ηL(a) ⊗ g(a) for
all a ∈ A. In particular, x = f(1) = 1 ⊗ g(1). The converse is clear.
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Proposition 3.6. The map

E(n)∗/In
i
−→ E(n)∗E(n) ⊗E(n)∗ E(n)∗/In

defined by i(a) = ηL(a) ⊗ 1 is an essential extension of E(n)∗E(n)-co-
modules.

We note that this proposition is also true for Morava E-theory En, but
the proof requires more care.

Proof. The primitives in E(n)∗E(n) ⊗E(n)∗ E(n)∗/In are the elements

1 ⊗ λvk
n for λ ∈ Z(p) (so λ is the reduction of λ in Fp) and k ∈ Z by

Lemma 3.5. But we have

1 ⊗ λvk
n = ηR(λ)ηR(vn)k ⊗ 1.

Of course ηR(λ) = λ, and also ηR(vn) ≡ vn (mod In). Hence

1 ⊗ λvk
n = ηL(λvk

n) ⊗ 1.

Lemma 3.4 now completes the proof.

Proposition 3.7. The map

E(n)∗E(n) ⊗E(n)∗ E(n)∗/In
1⊗j
−−→ E(n)∗E(n) ⊗E(n)∗ ΣtE(n)∗/I∞n

is an essential extension of E(n)∗E(n)-comodules. Here t = |v1|+· · ·+|vn−1|.

Note that this proposition completes the proof of Theorem 3.1. It is this
proposition that we believe to be false for Morava E-theory En.

Proof. In view of Lemmas 3.4 and 3.5, it suffices to show that there is
an a ∈ E(n)∗ such that

ηL(a) ⊗
λvk

n

pi0vi1
1 · · · v

in−1

n−1

= 1 ⊗
λvk

n

pv1 · · · vn−1
,

ignoring suspensions. But then it is clear that we should take

a = pi0−1vi1−1
1 · · · v

in−1−1
n−1 .

There is a slight subtlety, since ηL(vj) 6= ηR(vj). We get around this by going
in order, from p to v1 to v2, et cetera, using the fact that vj is primitive
modulo Ij . More precisely, for the inductive step, we have

xηL(v
ij−1
j ) ⊗

vk
n

pv1 · · · vj−1v
ij
j · · · v

in−1

n−1

= xηR(v
ij−1

j ) ⊗
vk
n

pv1 · · · vj−1v
ij
j · · · v

in−1

n−1

= x ⊗
vk
n

pv1 · · · vjv
ij+1

j+1 · · · v
in−1

n−1

,

as required.
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4. Indecomposable injectives and duality. In this section, we study
the dualities in the stable homotopy category that arise from the indecom-
posable injectives studied in this paper.

Fix a p-local spectrum X, and integers n ≥ r, and consider the
functor that takes a p-local spectrum Y to the abelian group
HomE∗E(E∗(X ∧ Y ), Jn,r), where E is a Landweber exact homology theory
of height n, as usual. Since Jn,r is an injective E∗E-comodule, this functor
is exact and so is a cohomology theory of Y . Hence it is representable by
some spectrum ∆n,rX, for which we have the natural isomorphism

[Y, ∆n,rX] ∼= HomE∗E(E∗(X ∧ Y ), Jn,r).

Using the injective BP∗BP -comodule Jr, we can also define ∆rX with the
property that

[Y, ∆rX] ∼= HomBP∗BP (BP∗(X ∧ Y ), Jr).

We have the following basic results about these duality functors.

Proposition 4.1. For a p-local spectrum X, define ∆n,rX and ∆rX as

above. Denote ∆n,rS
0 and ∆rS

0 by ∆n,r and ∆r. Then:

(1) ∆n,rX ∼= ∆rX for all n ≥ r, and so ∆n,r is independent of the choice

of E.

(2) [Y, ∆rX] ∼= HomE(r)∗(E(r)∗(X ∧ Y ), ΣtE(r)∗/I∞r ), where t = |v1|+
· · · + |vn−1|.

(3) ∆rX ∼= F (X, ∆r).
(4) ∆r is a BP -injective spectrum with BP∗∆r

∼= Jr, and the isomor-

phism
[X, ∆r] ∼= HomBP∗BP (BP∗X, Jr)

is induced by taking BP -homology. If E∗ is concentrated in even

dimensions, then ∆r is also an E-injective spectrum for all n ≥ r,
with E∗∆r

∼= Jn,r, and the isomorphism

[X, ∆r] ∼= HomE∗E(E∗X, Jn,r)

is induced by taking E-homology.

(5) ∆rX is Lr-local. In particular , ∆rX = F (LrX, ∆r).
(6) ∆rX = 0 if and only if LrX = 0.

Proof. For part (1), we have

[Y, ∆n,rX] = HomE(n)∗E(n)(E(n)∗(X ∧ Y ), Jn,r)
∼= HomBP∗BP (BP∗(X ∧ Y ), Φ∗Jn,r)
∼= HomBP∗BP (BP∗(X ∧ Y ), Jr) = [Y, ∆rX],

using the adjointness between Φ∗ and Φ∗ and the isomorphism Φ∗Jn,r = Jr

of Lemma 2.5.
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Part (2) follows from part (1) and the isomorphisms

[Y, ∆r,rX] = HomE(r)∗E(r)(E(r)∗(X ∧ Y ), Jr,r)
∼= HomE(r)∗(E(r)∗(X ∧ Y ), E(r)∗/I∞r ),

the last of which follows from Theorem 3.1.

Part (3) is an exercise in adjointness, and part (4) follows from [Dev97,
Proposition 1.3 and Theorem 1.5].

Part (5) is clear, since if Y is Lr-acyclic, then E(r)∗(X ∧ Y ) = 0 and so
[Y, ∆rX] = 0.

For part (6), suppose LrX 6= 0. Then E(r)∗X 6= 0, and so E(r)∗X
contains a subcomodule M isomorphic to ΣrE(r)∗/Ij for some 0 ≤ j ≤ r
and some r by [HS05a, Theorem 5.7]. There is obviously a nonzero map (of
some degree) M −→ E(r)∗/I∞r of E(r)∗-modules, obtained by modding out
by Ir and including. Since E(r)∗/I∞r is injective by Proposition 3.3, this map
extends to a nonzero map (of some degree) E(r)∗X −→ E(r)∗/I∞r . This map
corresponds to a nonzero homotopy class in ∆rX, and so ∆rX is nonzero.

We also point out that, as usual, there is a natural map X −→ ∆2
rX

obtained by taking the image of the identity under the isomorphisms

[∆rX, ∆rX] ∼= HomE(r)∗(E(r)∗(X ∧ ∆rX), ΣtE(r)∗/I∞r ) ∼= [X, ∆2
rX].

The spectrum ∆r has in fact been studied before in stable homotopy
theory. Recall that Ln denotes Bousfield localization with respect to E(n),
or any Landweber exact theory of height n. There is a natural map LnX −→
Ln−1X, and the homotopy fiber of this map is traditionally denoted MnX.

Theorem 4.2. Fix an integer r ≥ 1. Then ∆r
∼= Σt+rMrE(r), where

t = |v1| + · · · + |vr−1|. In particular , if E∗ is an evenly graded Landweber

exact homology theory of height n ≥ r, then

Jn,r
∼= Σt+rE∗(MrE(r)).

Proof. Recall from [Rav84, Theorem 6.1] that

π∗MrBP ∼= Σ−rv−1
r (BP∗/I∞r ).

In view of the localization theorem [Rav92, Theorem 7.5.2], we see that

BP∗MrS
0 ∼= Σ−rv−1

r (BP∗/I∞r ).

By Landweber exactness, we conclude that

E(r)∗MrS
0 ∼= Σ−rE(r)∗/I∞r .

But MrE(r) ∼= E(r)∧MrS
0 because of the smash product theorem [Rav92,

Theorem 7.5.6], and the flatness of E(r)∗E(r) implies that

E(r)∗(E(r) ∧ X) ∼= E(r)∗E(r) ⊗E(r)∗ E(r)∗X
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(see Lemma 2.2.7 of [Rav86]). Some diagram chasing is necessary to show
that this isomorphism is an isomorphism of comodules, where the right side
is given the extended comodule structure, so that all the coaction is on the
E(r)∗E(r) tensor factor. Theorem 3.1 then implies that

E(r)∗(MrE(r)) ∼= Σ−t−rJr,r

as E(r)∗E(r)-comodules. This isomorphism then defines a map

MrE(r) −→ Σ−t−r∆r

that is an isomorphism in E(r)-homology. Since both MrE(r) and ∆r are
E(r)-local, the theorem follows.

This theorem has the following corollary, apparently not written down
before but known to several mathematicians, including Hopkins, Greenlees,
and Sadofsky.

Corollary 4.3. Let Ê(n) denote LK(n)E(n), the completion of E(n)
at In. Then

Ê(n)
∗

(X) ∼= HomE(n)∗(E(n)∗(MnX), Σ−nE(n)∗/I∞n ).

On the simplest level, we can think of this corollary as analogous to
the fact that HomZ(p)

(Q/Z(p), Q/Z(p)) ∼= Z(p). As pointed out by Greenlees,
one can look at this corollary as a reflection of the fact that completion

(represented by Ê(n)) should be maps out of local cohomology (represented
by MnE(n)). This is the viewpoint of [GM95, Section 4].

Proof. Theorem 6.19 of [HS99] tells us that

Ê(n)
∗

(X) ∼= [LK(n)X, LK(n)E(n)]∗ ∼= [MnX, MnE(n)]∗.

But Theorem 4.2 implies that

[MnX, MnE(n)]∗ ∼= [Σt+nMnX, ∆n]∗

∼= HomE(n)∗(E(n)∗(Σ
t+nMnX), ΣtE(n)∗/I∞n )

∼= HomE(n)∗(E(n)∗MnX, Σ−nE(n)∗/I∞n ).

We can also determine the endomorphism rings of the indecomposable
injectives Jr and Jn,r.

Corollary 4.4. The endomorphism rings EndBP∗BP (Jr) and

EndE(n)∗E(n)(Jn,r) for 0 ≤ r ≤ n are isomorphic to Ê(r)
∗

Ê(r).

Proof. Both of these endomorphism rings are isomorphic to [∆r, ∆r]
∗ in

view of Proposition 4.1(4). But Theorem 4.2 implies that

[∆r, ∆r]
∗ ∼= [MrE(r), MrE(r)]∗,

which is in turn isomorphic to Ê(r)
∗

Ê(r) by [HS99, Theorem 6.19].
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It is unfortunate that these endomorphism rings of indecomposable in-

jectives turn out to be Ê(r)
∗

Ê(r) instead of E∗
r Er, where Er is Morava

E-theory. The ring E∗
r Er of operations in Morava E-theory is the twisted

completed group ring Er∗[[Γ ]], where Γ is the semidirect product of the au-
tomorphism group of the height r Honda formal group law over Fpr with the
Galois group of Fpr . This is an old result of Hopkins and Ravenel; see [Bak95]

or [Hov04b] for a proof. Since Er is a finite free module over Ê(r), there is

probably some Galois theory relating Ê(r)
∗

Ê(r) to Er∗[[Γ ]], but the author
does not know any details.

We can, however, make a decomposable injective comodule whose endo-
morphism ring is E∗

rEr
∼= Er∗[[Γ ]]. Indeed, we can simply take the comodule

J ′

r,r = Er∗Er ⊗Er∗
Er∗/I∞r .

This is an Er∗Er-comodule that is injective because Er∗/I∞r is an injective
Er∗-module by Proposition 3.3. Under the equivalence of categories between
E(r)∗E(r)-comodules and Er∗Er-comodules of [HS05a], J ′

r,r corresponds to
the direct sum of r(pr−1) copies of Jr,r, with r copies in every even dimension
from 2 to 2(pr − 1); this is the E(r)∗E(r)-comodule

E(r)∗E(r) ⊗E(r)∗ Er∗/I∞r .

There is a spectrum ∆′
r with

[X, ∆′

r]
∼= HomEr∗Er

(Er∗X, J ′

r,r)
∼= HomEr∗

(Er∗X, Er∗/I∞r ).

The analogue to Theorem 4.2 tells us that ∆′
r
∼= ΣrMrEr. We then get

isomorphisms

E∗

nX ∼= HomEn∗
(En∗(MnX), Σ−nEn∗/I∞n ),

again known before by Hopkins, Greenlees, Sadofsky, and others, and

EndEr∗Er
(J ′

r,r)
∼= E∗

r Er
∼= Er∗[[Γ ]].
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