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Abstract. Let Ω ⊂ R
N , N ≤ 3, be a bounded domain with smooth boundary,

γ ∈ L2(Ω) be arbitrary and φ : R → R be a C1-function satisfying a subcritical growth
condition. For every ε ∈ ]0,∞[ consider the semiflow πε on H1

0 (Ω) × L2(Ω) generated by
the damped wave equation

ε∂ttu + ∂tu = ∆u + φ(u) + γ(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Moreover, let π′ be the semiflow on H1

0 (Ω) generated by the parabolic equation

∂tu = ∆u + φ(u) + γ(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Let Γ : H2(Ω) → H1

0 (Ω) × L2(Ω) be the imbedding u 7→ (u, ∆u + φ(u) + γ). We prove
that whenever K ′ is a compact isolated π′-invariant set and (M ′

p)p∈P is a partially ordered
Morse decomposition of K ′ then the imbedded sets K = Γ (K ′) and Mp,0 = Γ (M ′

p),
p ∈ P , continue, for ε > 0 small, to an isolated πε-invariant set Kε a Morse decomposition
(Mp,ε)p∈P of Kε, relative to πε, such that the homology index braid of (πε, Kε, (Mp,ε)p∈P )
is isomorphic to the homology index braid of (π′, K ′, (M ′

p)p∈P ). This, in particular, implies
a connection matrix continuation principle.

1. Introduction. Let N ∈ {1, 2, 3} and Ω ⊂ R
N be a bounded domain

with smooth boundary, γ ∈ L2(Ω) be arbitrary and φ : R → R be a C1-
function such that, for N ≥ 2, there are constants r and C ∈ [0,∞[ with
|φ′(u)| ≤ C(1+ |u|r) for u ∈ R. If N = 3 we also assume that r < 2, i.e. that
φ has subcritical growth.
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For every ε ∈ ]0,∞[ consider the following damped wave equation:

(Hypε)
ε∂ttu+ ∂tu = ∆u+ φ(u) + γ(x), x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0.

It is well-known that equation (Hypε) generates a local semiflow (actually,
a local flow) πε on H1

0 (Ω) × L2(Ω).
Setting, formally, ε = 0 in equation (Hypε) we obtain the parabolic

equation

(Par)
∂tu = ∆u+ φ(u) + γ(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Again it is well-known that equation (Par) generates a local semiflow π′ on
H1

0 (Ω).
It is a natural question whether, for ε → 0, solutions of πε converge, in

some sense, to solutions of π′, properly imbedded into H1
0 (Ω)×L2(Ω). This

question was considered in the context of attractors by Hale and Raugel [12]
and in the context of Conley index theory by the second author in [17].

In fact, in [17] the following result was proved.

Theorem A. Let Γ : H2(Ω) → H1
0 (Ω) × L2(Ω) be the imbedding u 7→

(u,∆u+φ(u)+γ). Moreover , let K ′ be a compact (in H1
0 (Ω)) isolated invari-

ant set relative to π′. Then K ′ ⊂ H2(Ω), and the set K0 := Γ (K ′) continues

to a family (Kε)ε∈[0,ε̃0], where ε̃0 > 0, such that for every ε ∈ ]0, ε̃0], Kε is

a compact isolated invariant set relative to πε such that the Conley index of

(πε,Kε) is equal to the Conley index of (π′,K ′). Furthermore, (Kε)ε∈[0,ε̃0]

is upper-semicontinuous at ε = 0.
Moreover , let (M ′

p)p∈P be a ≺-ordered Morse decomposition of K ′ rela-

tive to π′. Then the family (Mp,0)p∈P := (Γ (M ′
p))p∈P continues to a family

((Mp,ε)p∈P )ε∈[0,ε̃0], where for every ε ∈ ]0, ε̃0], (Mp,ε)p∈P is a ≺-ordered

Morse decomposition of Kε relative to πε. Furthermore, ((Mp,ε)p∈P )ε∈[0,ε̃0]

is upper-semicontinuous at ε = 0.

We refer to [17, Theorems 6.1 and 7.4, and Remark 7.5] for the precise
statement of a more general result.

Theorem A extends previous upper-semicontinuity results for attractors
by Hale and Raugel.

The main goal of this paper is to refine Theorem A to a continuation
result for homology index braids. More precisely, we shall prove

Theorem B. In the notation of Theorem A, for all ε ∈ ]0, ε0], the

(co)homology index braids of (π′,K ′, (M ′
p)p∈P ) and (πε,Kε, (Mp,ε)p∈P ) are

isomorphic.

We recall that if two homology index braids H1 and H2 are isomorphic,
then, by [10, Proposition 1.5], H1 and H2 determine the same collection



Singularly perturbed hyperbolic equations 255

of C-connection matrices. Thus Theorem B shows that, for small ε > 0,
the Morse decomposition (Mp,ε)p∈P of the invariant set Kε relative to the
damped wave equation (Hypε) has the same set of C-connection matrices
as the Morse decomposition (M ′

p)p∈P of the invariant set K ′ relative to
the reaction-diffusion equation (Par). In particular, this means that homo-
logically nontrivial heteroclinic connections of the simpler equation (Par)
survive in the more complicated equation (Hypε).

Theorem B will be proved by an application of some abstract continu-
ation results for regularly and singularly perturbed semiflows, recently es-
tablished in our papers [5] and [7]. Our approach to the proof of Theorem B
is similar to the proof of Theorem A in [17]. As in [17], the first attempt
would be to make a change of variables

Φ : (u, v) 7→ (u,w) := (u, v −∆u− φ(u) − γ)

in (Hypε), consider the corresponding conjugate semiflows π̃ε = Φ∗πε, ε ∈
]0,∞[, and then apply the results of [7] to the family π̃ε, ε ∈ [0,∞[, where
π̃0 = π′. However, as it was pointed out in [17], there is an inherent difficulty
in the present situation due to the fact that the transformation Φ is defined
on the space H2(Ω) × L2(Ω), which is only a subset of the phase space
H1

0 (Ω) × L2(Ω) of the semiflows πε, so π̃ε is not well-defined for ε ∈ ]0,∞[.
That is why we first study, in Section 3, a finite-dimensional perturbation
problem (equations (3.1) and (3.2) below), to which a variable transforma-
tion like Φ is applicable. Results from [7] then yield a continuation result
for homology index braids for the corresponding family of finite-dimensional
semiflows (cf. Theorems 3.1 and 3.6 below).

Combining the compactness and smoothing results for parabolic equa-
tions and the boundedness and smoothing results for damped wave equa-
tions established in [17] with the results from Section 3, we then obtain, in
the last section of the paper, our main result, Theorem 4.2, which implies
Theorem B above.

2. Preliminaries. The purpose of this section is to recall a few con-
cepts from Conley index theory and some preliminary results needed later in
this paper. We assume the reader’s familiarity with the infinite-dimensional
Conley index theory, as developed in [14], [15] and expounded in [16], and
with the papers [9], [11], [5] and [6]. Moreover, we recall some results from
the papers [1], [4], [7] and [17].

In this section, unless otherwise specified, Y is a metric space, π is a
local semiflow on Y and all concepts are defined relative to π.

Suppose that Z is a subset of Y . We denote by Invπ(Z) the largest
invariant subset of Z.
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Z is called π-admissible if it is closed and whenever (xn)n and (tn)n are
such that tn → ∞ and xnπ [0, tn] ⊂ Z for all n ∈ N, then the sequence
(xnπtn)n has a convergent subsequence. We say that π does not explode in

Z if whenever x ∈ Y and xπt ∈ Z as long as xπt is defined, then xπt is
defined for all t ∈ [0,∞[. Moreover Z is called strongly π-admissible if Z is
π-admissible and π does not explode in Z.

Let N and Z be subsets of Y . The set Z is called N -positively invariant

if whenever x ∈ Z, t ≥ 0 are such that xπ [0, t] ⊂ N , then xπ [0, t] ⊂ Z.

Let N , Z1 and Z2 be subsets of Y . Then Z2 is called an exit ramp for N
within Z1 if whenever x ∈ Z1 and xπt′ 6∈ N for some t′ ∈ [0,∞[, then there
exists a t0 ∈ [0, t′] such that xπ [0, t0] ⊂ N and xπt0 ∈ Z2.

If Z1 and Z2 are subsets of Y then Z2 is called an exit ramp for Z1 if Z2

is an exit ramp for N within Z1, where N = Z1.

Definition 2.1 ([11]). A pair (N1, N2) is called a Franzosa–Mischaikow-

index pair (or FM-index pair) for S if:

(1) N1 and N2 are closed subsets of Y with N2 ⊂ N1 and N2 is N1-
positively invariant;

(2) N2 is an exit ramp for N1;
(3) S is closed, S ⊂ IntY (N1 \N2) and S is the largest invariant set in

ClY (N1 \N2).

Given an isolated invariant setK having a strongly π-admissible isolating
neighborhood we denote by h(K) = h(π,K) the Conley index of K and by
H(K) = H(π,K) = H(h(K)) the homology Conley index, where H is
the singular homology functor (with coefficients in some fixed R-module G,
where R is a commutative ring).

For the rest of this paper let P be a fixed finite set and ≺ be a fixed
strict partial order on P .

A set I ⊂ P is called a ≺-interval if whenever i, j, k ∈ P , i, k ∈ I and
i ≺ j ≺ k, then j ∈ I. We denote by I(≺) the set of all ≺-intervals in P .
The set I is called a ≺-attracting interval if whenever i, j ∈ P , j ∈ I and
i ≺ j, then i ∈ I. Let A(≺) denote the set of all ≺-attracting intervals in P .
Of course, A(≺) ⊂ I(≺).

An adjacent n-tuple of ≺-intervals is a sequence (Ij)
n
j=1 of pairwise dis-

joint ≺-intervals whose union is a ≺-interval and such that, whenever j < k,
p ∈ Ij and p′ ∈ Ik, then p′ 6≺ p (i.e. p ≺ p′ or else p and p′ are not related
by ≺). We denote by In(≺) the set of all adjacent n-tuples of ≺-intervals.

Recall the following definition.

Definition 2.2 (cf. [11]). Let π be a local semiflow on Y and S be a
compact invariant set relative to π. A family (Mp)p∈P of subsets of S is
called a ≺-ordered Morse decomposition of S (relative to π) if the following
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properties hold:

(1) The sets Mp, p ∈ P , are closed, π-invariant and pairwise disjoint.
(2) For every full solution σ of π lying in S, either σ(R) ⊂Mk for some

k ∈ P , or there are k, l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

Let C denote the set of all continuous functions from R to Y endowed
with the metric introduced in [1]. Let T be a subset of C. A set S ⊂ Y is
called T -invariant if S = InvT (S), i.e. if and only if for every y ∈ S there is
a σ ∈ T such that σ(R) ⊂ S and y = σ(0). If π is a local semiflow on Y and
N ⊂ Y then we denote by Tπ,N the set of all full solutions of π lying in N .

The previous concept can be generalized as follows:

Definition 2.3 (cf. [4]). Let T be a subset of C. A family (Mp)p∈P of
subsets of Y is called a ≺-ordered T -Morse decomposition if the following
properties hold:

(1) The sets Mp, p ∈ P , are closed, T -invariant and pairwise disjoint.
(2) For every σ ∈ T either σ(R) ⊂ Mk for some k ∈ P or else there are

k, l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

It is easily proved that, for π and S as in Definition 2.2, a family (Mp)p∈P

of subsets of S is a ≺-ordered Morse decomposition of S (relative to π) if and
only if (Mp)p∈P is a ≺-ordered T -Morse decomposition, where T := Tπ,S .

If A,B ⊂ Y then the T -connection set CST (A,B) from A to B is the
set of all points y ∈ Y for which there is a σ ∈ T with σ(0) = y, α(σ) ⊂ A
and ω(σ) ⊂ B. If π, S are as in Definition 2.2 and T := Tπ,S , then we write

CSπ,S(A,B) := CST (A,B).

Recall also the following definitions.

Definition 2.4 (cf. [17]). We say that N is a T -isolating neighborhood

(of a subset S of Y ) if N is closed in Y and InvT (N) ⊂ IntY (N) (with
S = InvT (N)). If S ⊂ Y and there exists a set N ⊂ Y such that N is a
T -isolating neighborhood of S then we call S a T -isolated invariant set .

Definition 2.5 (cf. [1]). Given σ1 and σ2 in C with σ1(0) = σ2(0) the
map σ1 ⊲ σ2 : R → X defined by

(σ1 ⊲ σ2)(t) =

{
σ1(t) if t ≤ 0,

σ2(t) if t ≥ 0,

is called the cut-and-glue of (σ1, σ2). A subset T of C is called cut-and-glue-

invariant if σ1 ⊲ σ2 ∈ T for all σ1, σ2 ∈ T with σ1(0) = σ2(0).

For the rest of this paper, unless specified otherwise, let (X0, d0) be a
metric space, ε0 be a positive number and, for each ε ∈ ]0, ε0], (Yε, dε) be a
metric space and θε ∈ Yε be a distinguished point of Yε. The open ball in Yε

with center v and radius β > 0 is denoted by Bε(v, β).
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For each ε ∈ ]0, ε0] define the set Zε := X0 × Yε. Endow Zε with the
metric

Γε((u, v), (u
′, v′)) := max{ d0(u, u

′), dε(v, v
′)}, (u, v), (u′, v′) ∈ Zε.

Given a subset V of X0, β > 0 and ε ∈ ]0, ε0] define the “inflated” subset
[V ]ε,β of Zε as follows:

[V ]ε,β := {(u, v) ∈ Zε | u ∈ V and v ∈ ClεBε(θε, β)}.

Let π0 be a local semiflow on X0 and for every ε ∈ ]0, ε0] let πε denote
a local semiflow on Zε. We say that the family (πε)ε∈]0,ε0] of local semiflows
converges singularly to the local semiflow π0 if whenever (εn)n and (tn)n are
sequences of positive (resp. nonnegative) numbers such that εn → 0, tn → t0
as n→ ∞, for some t0 ∈ [0,∞[, and whenever u0 ∈ X0 and wn ∈ Zεn , n ∈ N,
are such that Γεn(wn, (u0, θεn)) → 0 as n → ∞ and u0π0t0 is defined, then
there exists an n0 ∈ N such that for all n ≥ n0, wnπεntn is defined and
Γεn(wnπεntn, (u0π0t0, θεn)) → 0 as n→ ∞.

Let η be a positive number and N be a closed subset of X0. We say that
N is a singularly strongly admissible set with respect to η and the family

(πε)ε∈[0,ε0] of local semiflows if the following conditions are satisfied:

(1) N is a strongly π0-admissible set;
(2) for each ε ∈ ]0, ε0] the set [N ]ε,η is strongly πε-admissible;
(3) whenever (εn)n and (tn)n are sequences of positive numbers such that

εn → 0, tn → ∞ as n→ ∞ and whenever wn ∈ Zεn , n ∈ N, are such
that wnπεn [0, tn] ⊂ [N ]εn,η, n ∈ N, then there exist a u0 ∈ N and a
subsequence of the sequence (wnπεntn)n of endpoints, denoted again
by (wnπεntn)n, such that Γεn(wnπεntn, (u0, θεn)) → 0 as n→ ∞.

The following singular continuation result for Morse decompositions was
established in [4].

Theorem 2.6 ([4, Corollaries 4.14 and 4.15]). Assume (πε)ε∈]0,ε0] is a

family of local semiflows that converges singularly to the local semiflow π0,
β ∈ ]0,∞[ and Ñ is a singularly strongly admissible set with respect to β

and (πε)ε∈[0,ε0]. Moreover , suppose that S0 := Invπ0
(Ñ) and (Mp,0)p∈P is

a ≺-ordered Morse decomposition of S0 relative to π0. For each p ∈ P , let

Vp ⊂ Ñ be closed in X0 and such that Mp,0 = Invπ0
(Vp) ⊂ IntX0

(Vp).

Let η ∈ ]0, β]. For ε ∈ ]0, ε0] and p ∈ P set Sε := Invπε([Ñ ]ε,η) and

Mp,ε := Invπε([Vp]ε,η). Then there is an ε̃ ∈ ]0, ε0] such that for every ε ∈

]0, ε̃] and p ∈ P , Sε ⊂ IntZε([Ñ ]ε,η), Mp,ε ⊂ IntZε([Vp]ε,η), p ∈ P , and the

family (Mp,ε)p∈P is a ≺-ordered Morse decomposition of Sε relative to πε.

Suppose that S is a compact invariant set relative to π and let (Mp)p∈P

be a ≺-ordered Morse decomposition of S (relative to π). An index filtration
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for (π, S, (Mp)p∈P ) is a family N = (N(I))I∈A(≺) of closed subsets of Y such
that

(1) for each I ∈ A(≺), the pair (N(I), N(∅)) is an FM-index pair in
M(I),

(2) for any I1, I2 ∈ A(≺), N(I1 ∩ I2) = N(I1)∩N(I2) and N(I1 ∪ I2) =
N(I1) ∪N(I2).

Moreover, N is called strongly π-admissible if N(P ) is strongly π-admissible.

Let N be a strongly π-admissible index filtration for (π, S, (Mp)p∈P ).
For J ∈ I(≺) the set M(J) is an isolated invariant set and we write
H(J) = H(π, J) := H(π,M(J)). If (I, J) ∈ I2(≺), then (M(I),M(J))
is an attractor-repeller pair in M(IJ), where IJ := I ∪ J . Hence there is
the corresponding homology index sequence

//Hq(I)
iI,J

//Hq(IJ)
pI,J

//Hq(J)
∂I,J

//Hq−1(I) //

of (π,M(IJ),M(I),M(J)). Using the filtration N one proves that for every
triple (I, J,K) ∈ I3(≺) the following diagram, made up of the four homology
index sequences defined by (I, J,K), commutes:

�� ��
,,XXXXXXXXXX

rrfffffffffff

H(I) i1
**VVVVVVVV

i4
��

H(K)∂2

tthhhhhhh

∂3




H(IJ) p1

**VVVVVVVVi2
tthhhhhh

H(IJK) p4

**VVVVV

p2

��

H(J)i3
tthhhhhhh

∂1




H(JK) ∂4

**VVVVVVVp3

tthhhhhhh

H(K) ∂2

**VVVVVVV

∂3

��

H(I)i1
tthhhhhhhh

i4




H(IJ) i2
**VVVVVVp1

tthhhhhhhh

H(J)
,,XXXXXXXXXXX

��

H(IJK)
rrfffffffff

��

The collection of all the homology indices H(π,M(J)), J ∈ I(≺), and all
the maps iI,J , pI,J and ∂I,J , (I, J) ∈ I2(≺), is called the homology index

braid of (π, S, (Mp)p∈P ) and is denoted by H(π, S, (Mp)p∈P ).

For the rest of this section assume that, for i = 1, 2, πi is a local semiflow
on the metric space Yi, Si is an isolated invariant set and (Mp,i)p∈P is a ≺-
ordered Morse decomposition of Si relative to πi. Write Mi(I) = Mπi,Si(I),
Hi(I) = H(πi,Mi(I)) and Hi := H(πi, Si, (Mp,i)p∈P ), for i = 1, 2 and I ∈
I(≺).
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Suppose θ := (θ(J))J∈I(≺) is a family θ(J) : H1(J) → H2(J), J ∈ I(≺),
of maps such that, for all (I, J) ∈ I2(≺), the diagram

(2.1)

//H1,q(I)
iI,J

//

θ(I)
��

H1,q(IJ)
pI,J

//

θ(IJ)
��

H1,q(J)
∂I,J

//

θ(J)
��

H1,q−1(I) //

θ(I)
��

//H2,q(I)
iI,J

//H2,q(IJ)
pI,J

//H2,q(J)
∂I,J

//H2,q−1(I) //

commutes. Then we say that θ is a morphism from H1 to H2 and we write
θ : H1 → H2. If each θ(J) is an isomorphism, then we say that θ is an
isomorphism and that H1 and H2 are isomorphic homology index braids,
and we write H1

∼= H2.
We may analogously define the concept of cohomology index braids and

morphisms between them: just use cohomology instead of homology and
reverse all the arrows.

Proposition 2.7. Let X and X ′ be metric spaces, π be a local semiflow

on X and π′ be a local semiflow on X ′. Let γ : X → X ′ be a homeomorphism

which conjugates π with π′. Let S be an isolated π-invariant set which has

a strongly π-admissible isolating neighborhood , and (Mp)p∈P be a Morse

decomposition of S relative to π. Set S′ = γ(S) and M ′
p = γ(Mp), p ∈ P .

Then S′ is an isolated π′-invariant set which has a strongly π′-admissible

isolating neighborhood , and (M ′
p)p∈P is a Morse decomposition of S′ relative

to π′. Moreover ,

H(π, S, (Mp)p∈P ) ∼= H(π′, S′, (M ′
p)p∈P ).

Proof. Intuitively, this result is clear. A rigorous proof follows by an
application of [8, Theorem 3.2] in the case of homology, and of [18, Theo-
rem 4.2] in the case of cohomology.

We will require the following singular continuation principle for homology
index braids and connection matrices established in [7].

Theorem 2.8 ([7, Theorem 3.10]). Assume the hypotheses (and thus

also the conclusions) of Theorem 2.6 hold and let ε̃ > 0 be as in that theorem.

Fix β̃0 ∈ ]0, β[. Suppose that there exists a β0 > 0 such that for all ε ∈ ]0, ε0]
and all η ∈ ]0, β0] the set ClYε(Bε(θε, η)) is contractible. Then there exists

an εc ∈ ]0, ε̃] such that

H(π0, S0, (Mp)p∈P ) ∼= H(πε, Sε, (Mp,ε)p∈P )), ε ∈ ]0, εc] .

Theorem 2.8 refines the corresponding singular Conley index continua-
tion principle established in [2].

Remark 2.9. The above results were originally proved for singular ho-
mology. Analogous definitions and results hold for the Alexander–Spanier
cohomology (with coefficients in G) with the obvious modifications (cf. [6]).
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3. A finite-dimensional perturbation problem. In this section we
state and prove a continuation principle for homology index braids and
connection matrices for a class of singularly perturbed ordinary differential
equations defined on a finite-dimensional space (cf. Theorems 3.1 and 3.6).
Throughout this section, we assume the reader’s familiarity with the results
from [17, Section 3].

Let (E, | · |) be a finite-dimensional Banach space. Given a C1-map
g : E → E and ε > 0 let πε,g be the local (semi)flow generated by the
following ordinary differential equation on E × E:

(3.1) u̇ = v, v̇ = (1/ε)(−v + g(u)), (u, v) ∈ E.

Furthermore, let π′g be the local (semi)flow on E generated by the following
ordinary differential equation on E:

(3.2) u̇ = g(u), u ∈ E.

One of the goals of this section is to prove the following result.

Theorem 3.1. Let N ′ ⊂ E be a compact isolating neighborhood relative

to π′g. Set S′ := Invπ′
g
(N ′) and let (M ′

p)p∈P be a ≺-ordered Morse decom-

position for S′ relative to π′g. For each p ∈ P , let V ′
p ⊂ N ′ be closed in E

such that M ′
p = Invπ′

g
(V ′

p) ⊂ IntE(V ′
p). For all α > 0, ε > 0 and p ∈ P , set

Sε,α := Invπε,g(N
′
α) and Mp,ε,α := Invπε,g(V

′
p,α), where

N ′
α = N ′

α,g := {(u, v) | u ∈ N ′ and |v − g(u)| ≤ α},

V ′
p,α = V ′

p,α,g := {(u, v) | u ∈ V ′
p and |v − g(u)| ≤ α}.

Then for every α ∈ ]0,∞[, there exists an ε0 = ε0(α) ∈ ]0,∞[ such that for

every ε ∈ ]0, ε0], the set N ′
α is an isolating neighborhood of Sε,α relative to

πε,g, and for every p ∈ P , V ′
p,α is an isolating neighborhood of Mp,ε,α relative

to πε,g. Moreover , the family (Mp,ε,α)p∈P is a ≺-ordered Morse decomposi-

tion for Sε,α relative to πε,g and

H(πε,g, Sε,α, (Mp,ε,α)p∈P ) ∼= H(π′g, S
′, (M ′

p)p∈P ).

The proof of Theorem 3.1 will be based on Theorem 2.8. We proceed
similarly to the proof of [17, Theorem 3.1]. Let U be a bounded open neigh-
borhood of N ′ and g̃ : E → E be a C1-map such that g|U = g̃|U and
supu∈E(|g̃(u)| + |Dg̃(u)|) < ∞. The existence of g̃ follows since E is finite-
dimensional.

Since the differential equations defining πε,g and πε,g̃ coincide on the
open neighborhood U ×E of N ′

α in E ×E it follows that N ′
α (resp. V ′

p,α) is
an isolating neighborhood relative to πε,g if and only if N ′

α (resp. V ′
p,α) is an

isolating neighborhood relative to πε,g̃ and

Invπε,g(N
′
α) = Sε,α = Invπε,g̃

(N ′
α),

Invπε,g(V
′
p,α) = Mp,ε,α = Invπε,g̃

(V ′
p,α), p ∈ P.
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Moreover, (Mp,ε,α)p∈P is a ≺-ordered Morse decomposition for Sε,α relative
to πε,g if and only if (Mp,ε,α)p∈P is a ≺-ordered Morse decomposition for
Sε,α relative to πε,g̃.

Similarly, N ′ (resp. V ′
p) is an isolating neighborhood relative to π′g if and

only if N ′ (resp. V ′
p) is an isolating neighborhood relative to π′g̃ and

Invπ′
g
(N ′) = S′ = Invπ′

g̃
(N ′), Invπ′

g
(V ′

p) = M ′
p = Invπ′

g̃
(V ′

p), p ∈ P.

Furthermore, (M ′
p)p∈P is a ≺-ordered Morse decomposition for S′ relative to

π′g if and only if (M ′
p)p∈P is a ≺-ordered Morse decomposition for S′ relative

to π′g̃. Therefore,

H(πε,g, Sε,α, (Mp,ε,α)p∈P ) ∼= H(π′g, S
′, (M ′

p)p∈P )

if and only if

H(πε,g̃, Sε,α, (Mp,ε,α)p∈P ) ∼= H(π′g̃, S
′, (M ′

p)p∈P ).

Hence we may assume, without loss of generality, that

C := sup
u∈E

(|g(u)| + |Dg(u)|) <∞.

In particular, g is globally Lipschitzian and so both πε,g, ε > 0, and π′g are
global semiflows. We write πε := πε,g, ε > 0, and π′ := π′g for short.

Notice that the map Φ : E×E → E×E, Φ(u, v) = (u,w) := (u, v−g(u)) is
a C1-diffeomorphism with inverse Φ−1 given by Φ−1(u,w) = (u, v) := (u,w+
g(u)). Let π̃ε be the conjugate of πε via Φ, i.e. (u,w)π̃εt :=Φ((Φ−1(u,w))πεt),
(u,w) ∈ E × E, t ∈ [0,∞[. Note that π̃ε is the semiflow generated by the
equation

(3.3) u̇ = w + g(u), ẇ = −(1/ε)w −Dg(u)(w + g(u)).

Let Bα be the closed ball in E with radius α centered at zero. It follows
that Φ(N ′

α) = N ′ ×Bα (resp. Φ(V ′
p,α) = V ′

p ×Bα, p ∈ P ).
We have the following

Proposition 3.2. For every α ∈ ]0,∞[, there exists an ε0 = ε0(α) ∈
]0,∞[ such that for all ε ∈ ]0, ε0] and p ∈ P , the set N ′×Bα (resp. V ′

p ×Bα)

is an isolating neighborhood of S̃ε,α (resp. M̃p,ε,α) relative to π̃ε, where

S̃ε,α = Invπ̃ε
(N ′ ×Bα), M̃p,ε,α = Invπ̃ε

(V ′
p ×Bα), p ∈ P.

Moreover , the family (M̃p,ε,α)p∈P is a ≺-ordered Morse decomposition for

S̃ε,α relative to π̃ε and

H(π̃ε, S̃ε,α, (M̃p,ε,α)p∈P ) ∼= H(π′, S′, (M ′
p)p∈P ).

Proof. Define X0 = Yε = E, θε = 0 and d0(u, u
′) = dε(u, u

′) = |u − u′|
for all ε > 0 and u, u′ ∈ E. It follows that N ′ × Bα = [N ′]ε,α for all
ε > 0 and α > 0. Notice that ClYε(Bε(θε, α)) = Bα for all ε > 0 and
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α > 0, and so ClYε(Bε(θε, α)) is contractible. The proof of [17, Lemma 3.6],
shows that the set N ′ is singularly strongly admissible with respect to α
and the family (π̃ε)ε>0 singularly converges to π′. Now an application of
Theorems 2.6 and 2.8 completes the proof.

Proposition 3.3. Let α ∈ ]0,∞[ and let ε0 = ε0(α) ∈ ]0,∞[ be as in

Proposition 3.2. Then for every ε ∈ ]0, ε0] and p ∈ P , the set N ′
α (resp. V ′

p,α)
is an isolating neighborhood of Sε,α (resp. Mp,ε,α) relative to πε, the family

(Mp,ε,α)p∈P is a ≺-ordered Morse decomposition for Sε,α relative to πε and

H(πε, Sε,α, (Mp,ε,α)p∈P ) ∼= H(π̃ε, S̃ε,α, (M̃p,ε,α)p∈P ).

Proof. This follows from Proposition 2.7.

Proof of Theorem 3.1. This follows from Propositions 3.3 and 3.2.

We shall now generalize Theorem 3.1 to comprise isolating neighbor-
hoods which are more general than N ′

α. As in [17], define Tg to be the set
of all functions z : R → E × E such that there is a full bounded solution
u : R → E of π′g so that z(t) = (u(t), g(u(t))) for all t ∈ R. Thus, defining
the map Γg : E → E × E by Γg(ξ) = (ξ, g(ξ)), ξ ∈ E, we see that Tg is the
set of all functions z : R → E ×E such that there is a full bounded solution
u : R → E of π′g with z = Γg ◦ u.

Proposition 3.4. Set π′g := π′ and Γ := Γg. Let K ′ be a compact

isolated invariant set relative to π′. Then Γ (K ′) is a Tg-isolated invariant

set. Let N be a bounded Tg-isolating neighborhood of Γ (K ′). Let β ∈ ]0,∞[
and B′

β be the closed β-neighborhood of K ′ in E. For each α ∈ ]0,∞[, define

B′
β,α := {(u, v) | u ∈ B′

β, |v − g(u)| ≤ α}.

Then there exist an α ∈ ]0,∞[ and a β ∈ ]0,∞[ such that B′
β is an isolating

neighborhood of K ′ relative to π′ and B′
β,α ⊂ N . Moreover , there exists an

ε1 ∈ ]0,∞[ such that for every ε ∈ ]0, ε1], Invπε(B
′
β,α) = Invπε(N).

Proof. This follows from [17, Lemma 3.8 and proof of Theorem 3.9].

We also need the following auxiliary result:

Proposition 3.5. Set π′g := π′ and Γ := Γg. Let K ′ be a compact

isolated invariant set relative to π′ and K := Γ (K ′). Let T be the set of all

(u, v) ∈ Tg such that (u(t), v(t)) ∈ K for all t ∈ R. Moreover , let (M ′
p)p∈P

be a ≺-ordered Morse decomposition of K ′ relative to π′ and define Mp,Γ :=
Γ (M ′

p), p ∈ P . For every I ∈ I(≺) set

M ′(I) :=
⋃

p,q∈I

CSπ′,K′(M ′
p,M

′
q)
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and MΓ (I) := Γ (M ′(I)). Then (Mp,Γ )p∈P is a ≺-ordered T -Morse decom-

position and

(3.4) MΓ (I) =
⋃

p,q∈I

CST (Mp,Mq), I ∈ I(≺).

Moreover , the sets K and Mp,Γ , p ∈ P , and MΓ (I), I ∈ I(≺), are Tg-isolated

invariant sets.

Proof. Write Mp = Mp,Γ and M(I) = MΓ (I) for short. We see either
directly or using [4, Corollary 3.6] that M ′

p, p ∈ P , and M ′(I), I ∈ I(≺), are
compact isolated invariant sets relative to π′. By [17, Lemma 3.8], the sets
K, Mp, p ∈ P , and M(I), I ∈ I(≺), are Tg-isolated invariant sets. Moreover,
the sets Mp are closed in E × E (being compact in E × E) and pairwise
disjoint (Γ being one-to-one). If p ∈ P and (u, v) ∈ Mp are arbitrary, then
u ∈M ′

p so there is a full solution u of π′ lying in M ′
p with u = u(0). Thus u

lies in K ′ and so z := Γ ◦ u lies in Mp ⊂ K and is an element of Tg. Hence
z ∈ T , z lies in Mp and z(0) = (u, v). It follows that Mp is T -invariant.

Let (u, v) ∈ T be arbitrary. Then u is a full solution of π′ lying in K ′.
Thus either u lies in M ′

k for some k ∈ P , which implies that (u, v) lies in Mk,
or else there are k, l ∈ P with k ≺ l, α(u) ⊂M ′

l and ω(u) ⊂M ′
k. In the latter

case it is clear from the continuity of Γ that α(u, v) ⊂Ml and ω(u, v) ⊂Mk.
We have proved that (Mp)p∈P is a ≺-ordered T -Morse decomposition.

Now let p, q ∈ P be arbitrary. We claim that

Γ (CSπ′,K′(M ′
p,M

′
q)) = CST (Mp,Mq).

If u is a full solution of π′ lying in K ′ with α(u) ⊂M ′
p and ω(u) ⊂M ′

q then,
clearly, z := Γ ◦ u ∈ Tg, z lies in K, α(z) ⊂Mp and ω(z) ⊂Mq. Thus

Γ (CSπ′,K′(M ′
p,M

′
q)) ⊂ CST (Mp,Mq).

Conversely, if z ∈ T with α(z) ⊂Mp and ω(z) ⊂Mq then z = Γ ◦ u, where
u is a full solution of π′ lying in K ′. Clearly, α(u) ⊂ M ′

p and ω(u) ⊂ M ′
q.

Hence

Γ (CSπ′,K′(M ′
p,M

′
q)) ⊃ CST (Mp,Mq).

This proves our claim, which, in turn, immediately implies 3.4.

The generalization of Theorem 3.1 reads as follows:

Theorem 3.6. Assume the hypotheses (and hence the conclusions) of

Proposition 3.5. Let N be a bounded Tg-isolating neighborhood of K and

Np ⊂ N be a Tg-isolating neighborhood of Mp,Γ , p ∈ P . For ε ∈ ]0,∞[, set

πε,g := πε, Kε := Invπε(N), and Mp,ε,Γ := Invπε(Np), p ∈ P .

Then there is an ε̃0 ∈ ]0,∞[ such that for every ε ∈ ]0, ε̃0], N is an isolat-

ing neighborhood of Kε relative to πε, and for every p ∈ P , Np is an isolating

neighborhood of Mp,ε,Γ relative to πε. Moreover , the family (Mp,ε,Γ )p∈P is a
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≺-ordered Morse decomposition of Kε and

H(πε,Kε, (Mp,ε,Γ )p∈P ) ∼= H(π′,K ′, (M ′
p)p∈P ).

Proof. Let β ∈ ]0,∞[. Let B′
β be the closed β-neighborhood of K ′ in E.

For p ∈ P , let B′
p,β be the closed β-neighborhood of M ′

p in E. For each
α ∈ ]0,∞[, define

B′
β,α := {(u, v) | u ∈ B′

β, |v − g(u)| ≤ α},

B′
p,β,α := {(u, v) | u ∈ B′

p,β, |v − g(u)| ≤ α}, p ∈ P.

Proposition 3.4 implies that there exist an α ∈ ]0,∞[ and a β ∈ ]0,∞[ such
that B′

β is an isolating neighborhood of K ′ relative to π′ and B′
p,β is an

isolating neighborhood of M ′
p relative to π′ for p ∈ P . Moreover, B′

β,α ⊂ N

andB′
p,β,α ⊂ Np for p ∈ P . Furthermore, there exists an ε1 ∈ ]0,∞[ such that

for every ε ∈ ]0, ε1], Invπε(B
′
β,α) = Invπε(N) and Invπε(B

′
p,β,α) = Invπε(Np),

p ∈ P .

Define N ′ := B′
β and V ′

p := B′
p,β , p ∈ P . Hence for every ε ∈ ]0, ε1], we

have N ′
α = B′

β,α and V ′
p,α = B′

p,β,α, p ∈ P . Thus

(3.5) K ′ = Invπ′(N ′) ⊂ IntE(N ′), M ′
p = Invπ′(V ′

p) ⊂ IntE(V ′
p), p ∈ P.

Moreover, for all ε ∈ ]0, ε1],

(3.6)
Kε = Invπε(N) = Invπε(B

′
β,α) = Invπε(N

′
α),

Mp,ε,Γ = Invπε(Np) = Invπε(B
′
p,β,α) = Invπε(V

′
p,α), p ∈ P.

Now an application of Theorem 3.1 together with (3.5) and (3.6) implies that
there exists an ε̃0 ∈ ]0, ε1] such that for all ε ∈ ]0, ε̃0], the family (Mp,ε,Γ )p∈P

is a ≺-ordered Morse decomposition of Kε relative to πε and

H(πε,Kε, (Mp,ε,Γ )p∈P ) ∼= H(π′,K ′, (M ′
p)p∈P ).

4. Continuation of homology index braids for singularly per-

turbed hyperbolic equations. In this section we will state and prove
the main result of this paper (cf. Theorem 4.2). After recalling some no-
tations from [17] we state a continuation result for Morse decomposition
proved in [17] (cf. Theorem 4.1). Then we state our continuation principle
for homology index braids and connection matrices for singularly perturbed
hyperbolic equations (cf. Theorem 4.2). We assume the reader’s familiarity
with the results from [17].

Let X be a real Hilbert space and A : D(A) ⊂ X → X be a positive
selfadjoint operator with compact resolvent. Then A is sectorial on X and so
it generates the corresponding family (Xα)α∈[0,∞[ of fractional power spaces
(cf. [13]). Let (φν)ν∈N be a complete X-orthonormal basis of X consisting
of eigenfunctions of A. Let Pn : X → X be the orthogonal projection of
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X onto the subspace spanned by the first n eigenfunctions. Moreover, set
Qn := I − Pn where I is the identity map on X.

As in [12] and [17], we will assume the following Standing Hypothesis:

(4.1) N ∈ {1, 2, 3} and Ω ⊂ R
N is a bounded domain with smooth bound-

ary and such that X = L2(Ω) and X1 is continuously included in
H2(Ω); γ ∈ L2(Ω) and φ : R → R is a C1-function such that, for
N ≥ 2, there are constants r and C ∈ [0,∞[ with |φ′(ξ)| ≤ C(1+|ξ|r)
for all ξ ∈ R. If N = 3 then r < 2.

Define the map f : X1/2 → X by

f(u) = φ̂(u) + γ, u ∈ X1/2.

We denote by π′f the local semiflow on X1/2 generated by the abstract
parabolic equation (see [13])

u̇ = −Au+ f(u), u ∈ X1/2.

For ε ∈ ]0,∞[ we also consider the local semiflow πε,f on X1/2×X generated
by the damped hyperbolic equation

u̇ = v, v̇ = (1/ε)(−v −Au+ f(u)), (u, v) ∈ X1/2 ×X.

Let Γf : X1 → X1/2 ×X be the map defined by

Γf (u) := (u,−Au+ f(u)), u ∈ X1.

Moreover, we denote by Tf the set of all maps z : R → X1/2 ×X for which
there is a full bounded solution u of π′f such that z(t) = Γf (u(t)), t ∈ R. In

view of [17, Corollary 4.7], every full bounded solution of π′f lies in X1, so
the definition of Tf makes sense.

The following result has been proved in [17].

Theorem 4.1 ([17, Theorem 7.4]). For ε ∈ ]0,∞[, set π′ := π′f , πε :=

πε,f and Γ := Γf . Let K ′ be a compact isolated invariant set relative to π′

and K := Γ (K ′). Let T be the set of all (u, v) ∈ Tf such that (u(t), v(t)) ∈ K
for all t ∈ R. Moreover , let (M ′

p)p∈P a family of subsets of K ′ which is a

Morse decomposition of K ′ relative to π′ and let Mp := Γ (M ′
p), p ∈ P . For

every I ∈ I(≺) set

M ′(I) :=
⋃

p,q∈I

CSπ′,K′(M ′
p,M

′
q)

and M(I) := Γ (M ′(I)). Then (Mp)p∈P is a ≺-ordered T -Morse decomposi-

tion and

M(I) =
⋃

p,q∈I

CST (Mp,Mq), I ∈ I(≺).

Moreover , the sets K, Mp, p ∈ P and M(I), I ∈ I(≺), are Tf -isolated

invariant sets.
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Let N be a bounded Tf -isolating neighborhood of K, Vp ⊂ N be a

Tf -isolating neighborhood of Mp, p ∈ P , and VI ⊂ N be a Tf -isolating

neighborhood of M(I), I ∈ I(≺). For ε ∈ ]0,∞[ set Kε := Invπε(N),
Mp,ε := Invπε(Vp), p ∈ P , and Mε(I) := Invπε(VI), I ∈ I(≺). Then there

is an ε̃ ∈ ]0,∞[ such that for every ε ∈ ]0, ε̃], N (resp. Vp, resp. VI) is

an isolating neighborhood of Kε (resp. Mp,ε, resp. Mε(I)) relative to πε, for

all p ∈ P and all I ∈ I(≺), the family (Mp,ε)p∈P is a ≺-ordered Morse

decomposition of Kε and

Mε(I) =
⋃

p,q∈I

CSπε,Kε(Mp,ε,Mq,ε), I ∈ I(≺).

We can now state our main result.

Theorem 4.2. Assume the hypotheses (and thus also the conclusions)
of Theorem 4.1 hold and let ε̃ ∈ ]0,∞[ be as in that theorem. Then there is

an ε0 ∈ ]0, ε̃] such that for every ε ∈ ]0, ε0],

H(πε,Kε, (Mp,ε)p∈P ) ∼= H(π′,K ′, (M ′
p)p∈P ).

Theorem 4.2 refines the corresponding Conley index continuation prin-
ciple established in [17].

The rest of this section is devoted to the proof of our main theorem.
We give the proof for the singular homology case. The Alexander–Spanier
cohomology case is analogous.

Theorem 4.2 follows from a series of lemmas. For the rest of this section,
for n ∈ N and θ ∈ [0, 1], let fn,θ : X1/2 → X be defined by

fn,θ = (1 − θ)f(u) + θPnf(Pnu)

= (1 − θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ), u ∈ X1/2.

The following lemma has been proved in [17].

Lemma 4.3 ([17, Theorem 4.3 and Proposition 4.4]). Let N ′ ⊂ X1/2

be bounded and closed. Furthermore, let (nm)m be a sequence in N with

nm → ∞ and (θm)m be an arbitrary sequence in [0, 1]. For every m ∈ N,
let um be a full solution of π′fnm,θm

lying in N ′. Then there is a sequence

(mk)k with mk → ∞ and there is a full solution u of π′ lying in N ′ such

that umk
(t) → u(t) in X1/2, uniformly for t lying in compact subsets of R.

Lemma 4.4. Let N ′ be bounded and closed in X1/2 with K ′ := Invπ′(N ′)
⊂ IntX1/2(N ′). For each p ∈ P , let V ′

p ⊂ N ′ be closed in X1/2 such that

M ′
p = Invπ′(V ′

p) ⊂ IntX1/2(V ′
p). For n ∈ N, θ ∈ [0, 1] and p ∈ P define

K ′
n,θ = Invπ′

fn,θ
(N ′) and M ′

p,n,θ = Invπ′

fn,θ
(V ′

p). Then there is an n0 ∈ N

so that whenever n ≥ n0 and θ ∈ [0, 1], then K ′
n,θ ⊂ IntX1/2(N ′), M ′

p,n,θ ⊂



268 M. C. Carbinatto and K. P. Rybakowski

IntX1/2(V ′
p), p ∈ P , and the family (M ′

p,n,θ)p∈P is a ≺-ordered Morse decom-

position of K ′
n,θ relative to π′fn,θ

. Moreover , for all n ≥ n0 and all θ ∈ [0, 1],

H(π′fn,θ
,K ′

n,θ, (M
′
p,n,θ)p∈P ) ∼= H(π′,K ′, (M ′

p)p∈P ).

Proof. This follows from [5, Corollaries 3.9 and 3.10].

Given n ∈ N we consider the local semiflow π′n generated on the finite-
dimensional space Yn := Pn(X1/2) = Pn(X) by the ordinary differential
equation

(4.2) u̇ = −Au+ Pnf(Pnu), u ∈ Yn.

The local semiflow π′n is the n-Galerkin approximation of π′.
Moreover, let π′′n be the semiflow generated on Zn := Qn(X1/2) by the

evolution equation

(4.3) u̇ = −Au, u ∈ Zn.

By [17, Proposition 4.2], and its proof, the space Yn is positively invariant
relative to the local semiflow π′fn,1

and every bounded π′fn,1
-invariant set

is included in Yn and is π′n-invariant. Moreover, every π′n-invariant set is
π′fn,1

-invariant. Setting K ′
n := K ′

n,1 and M ′
p,n := M ′

p,n,1, p ∈ P , we thus see

that, whenever n ≥ n0, where n0 ∈ N is as in Lemma 4.4, then K ′
n is a

compact π′n-invariant set and the family (M ′
p,n)p∈P is a ≺-ordered Morse

decomposition of K ′
n relative to π′n. Moreover, the following continuation

result has been proved in [5].

Lemma 4.5. Let n0 ∈ N be as in Lemma 4.4. Then for all n ≥ n0,

H(π′fn,1
,K ′

n, (M
′
p,n)p∈P ) ∼= H(π′n,K

′
n, (M

′
p,n)p∈P ).

Now, Lemmas 4.4 and 4.5 imply the following result.

Proposition 4.6 ([5, Theorem 3.11]). Let n0 ∈ N be as in Lemma 4.4.
Then for all n ≥ n0,

H(π′,K ′, (M ′
p)p∈P ) ∼= H(π′n,K

′
n, (M

′
p,n)p∈P ).

Lemma 4.7. Let (εm)m, (nm)m and (θm)m be sequences in ]0,∞[, N and

[0, 1], respectively. Suppose that εm → 0 and nm → ∞. For each m ∈ N,
let (um, vm) be a full solution of πεm,fnm,θm

lying in N . Then there is a

subsequence of ((um, vm))m, denoted again by ((um, vm))m, and there is a

full bounded solution u of π′ such that (um, vm) → (u, v) in X1/2 × X,
uniformly on compact subsets of R. Here, (u, v) = Γ ◦ u.

Proof. This follows from [17, Theorem 5.13].

Lemma 4.8. For ε ∈ ]0,∞[, n ∈ N, θ ∈ [0, 1], p ∈ P and I ∈ I(≺),
define Kε,n,θ = Invπε,fn,θ

(N), Mp,ε,n,θ = Invπε,fn,θ
(Vp) and Mε,n,θ(I) =

Invπε,fn,θ
(VI). Let ε̃ ∈ ]0,∞[ be as in Theorem 4.1. Then there are n′ ∈ N
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and ε′ ∈ ]0, ε̃] so that whenever n ≥ n′, ε ∈ ]0, ε′] and θ ∈ [0, 1], then

Kε,n,θ ⊂ IntX1/2×X(N), Mε,p,n,θ ⊂ IntX1/2×X(Vp), p ∈ P , and the family

(Mp,ε,n,θ)p∈P is a ≺-ordered Morse decomposition of Kε,n,θ relative to πε,fn,θ
.

Proof. It is well-known (cf. [3, Theorems 5.3 and 5.5]) that N is strongly
πε,fn,θ

-admissible for all ε ∈ ]0,∞[, n ∈ N and θ ∈ [0, 1].
It follows from [17, Lemma 6.4] that there exist an n′0 ∈ N and an ε′0 > 0

such that for all n ≥ n′0, ε ∈ ]0, ε′0] and θ ∈ [0, 1] the sets N , Vp, p ∈ P , and
VI , I ∈ I(≺), are isolating neighborhoods relative to πε,fn,θ

.
Notice that

(4.4) W ⊂ N implies that InvTf
(W ) = InvT (W ).

Suppose the conclusion of the lemma does not hold. Then for all n′ ∈ N

and all ε′ ∈ ]0, ε̃] there exist an n ≥ n′, an ε ∈ ]0, ε′] and a θ ∈ [0, 1] such
that the family (Mp,ε,n,θ)p∈P is not a ≺-ordered Morse decomposition of
Kε,n,θ relative to πε,fn,θ

. Hence there are sequences (εm)m in ]0,∞[, (nm)m

in N and (θm)m in [0, 1] such that εm → 0, nm → ∞ as m→ ∞ and, for all
m ∈ N, the family (Mp,εm,nm,θm)p∈P is not a ≺-ordered Morse decomposition
of Kεm,nm,θm relative to πεm,fnm,θm

.
For each m ∈ N, let Tεm,nm,θm denote the set of all full solutions of

πεm,fnm,θm
lying in N . It follows that

Mp,εm,nm,θm = InvTεm,nm,θm
(Vp), p ∈ P, m ∈ N,

Mεm,nm,θm(I) = InvTεm,nm,θm
(VI), I ∈ I(≺), m ∈ N.

We claim that

(4.5) Tεm,nm,θm → T as m→ ∞.

In fact, let (mk)k be an arbitrary sequence in N with mk → ∞ and for every
k ∈ N let (uk, vk) be a full solution of πεmk

,fnmk
,θmk

lying in N . Thus

sup
k∈N

sup
t∈R

‖(uk(t), vk(t))‖X1/2×X <∞

so, by Lemma 4.7, there is a subsequence of ((uk, vk))k, denoted again by
((uk, vk))k, and there is a full bounded solution u of π′ such that (uk, vk) →
(u, v) in X1/2 ×X, uniformly on compact subsets of R. Here, (u, v) = Γ ◦u.
Since N is closed in X1/2 × X, we see that (u, v) lies in N , so that (u, v)
actually lies in K. Thus (u, v) ∈ T and claim (4.5) is proved.

We also claim that

(4.6) T and Tεm,nm,θm , m ∈ N, are compact in C(R → X1/2 ×X), trans-

lation and cut-and-glue invariant.

Recall that

(4.7) Tεm,nm,θm = Tπεm,fnm,θm
,N for all m ∈ N.
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Now (4.7) and [4, Proposition 2.7] imply the part of claim (4.6) concerning
Tεm,nm,θm , m ∈ N.

In order to prove the compactness of T , let ((uκ, vκ))κ be an arbitrary
sequence in T . Thus, for every κ ∈ N, uκ is a full solution of π′ lying in K ′.
Now an application of [17, Theorem 4.6] (with fκ ≡ f) shows that there
is a sequence (κn)n in N with κn → ∞ and there is a full solution u of π′

lying in K ′ such that uκn → u in X1, uniformly on compact subsets of R.
Thus (uκn , vκn) → (u, v) in X1/2 ×X, uniformly on compact subsets of R,
where (u, v) = Γ ◦ u. It follows that (u, v) ∈ T and so T is compact in
C(R → X1/2 ×X), as claimed. The translation and cut-and-glue invariance
of T is obvious. This completes the proof of (4.6).

An application of [4, Theorem 3.3] together with (4.4)–(4.6) shows that
there is an m0 ∈ N such that for every m ≥ m0, the family (Mp,εm,nm,θm)p∈P

is a ≺-ordered Tεm,nm,θm-Morse decomposition. This is a contradiction. The
lemma is proved.

Lemma 4.9. Let n′ ∈ N and ε′ ∈ ]0,∞[ be as in Lemma 4.8. Then for

all n ≥ n′, ε ∈ ]0, ε′] and θ ∈ [0, 1],

H(πε,fn,θ
,Kε,n,θ, (Mp,ε,n,θ)p∈P ) ∼= H(πε,Kε, (Mp,ε)p∈P ).

Proof. Let n ≥ n′ and ε ∈ ]0, ε′] be fixed. Let (θk)k be a sequence in
[0, 1] such that θk → θ0 in [0, 1]. Then fn,θk

(u) → fn,θ0
(u) in X, locally

uniformly in u ∈ X1/2. This implies, by the results in [16], that πε,fn,θk
→

πε,fn,θ0
. Moreover, the results in [3] imply thatN is (πfn,θk

)k-admissible. Now

Lemma 4.8 and the abstract regular continuation principle [5, Theorem 3.7]
complete the proof.

Given ε ∈ ]0,∞[ and n ∈ N we consider the local semiflow πε,n generated
on the finite-dimensional space Xn := Pn(X1/2) × Pn(X) by the ordinary
differential equation

u̇ = v, v̇ = (1/ε)(−v −Au+ Pnf(Pnu)), (u, v) ∈ Xn.

The local semiflow πε,n is the n-Galerkin approximation of πε.
Moreover, let π′′ε,n be the semiflow generated on Wn := Qn(X1/2) ×

Qn(X) by the evolution equation

(4.8) u̇ = v, v̇ = (1/ε)(−v −Au), (u, v) ∈Wn.

By [17, Proposition 5.3 and its proof], the space Xn is positively invariant
relative to the local semiflow πε,fn,1 , and every bounded πε,fn,1-invariant set
is included in Xn and is πε,n-invariant. Moreover, every πε,n-invariant set is
πε,fn,1-invariant. Setting Kε,n := Kε,n,1 and Mp,ε,n := Mp,ε,n,1, p ∈ P , we
thus see that, whenever n ≥ n′, ε ∈ ]0, ε′], where n′ ∈ N and ε′ ∈ ]0,∞[ are
as in Lemma 4.8, then Kε,n is a compact πε,n-invariant set and (Mp,ε,n)p∈P

is a ≺-ordered Morse decomposition of Kε,n relative to πε,n. Furthermore:
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Lemma 4.10. Let n′ ∈ N and ε′ ∈ ]0,∞[ be as in Lemma 4.8. Then for

n ≥ n′ and ε ∈ ]0, ε′],

H(πε,n,Kε,n, (Mp,ε,n)p∈P ) ∼= H(πε,fn,1,Kε,n, (Mp,ε,n)p∈P ).

Proof. Fix ε ∈ ]0, ε′] and n ≥ n′. Let N ′
ε,n = (N ′

ε,n(I))I∈A(≺) be a
strongly πε,n-admissible index filtration for (πε,n,Kε,n, (Mp,ε,n)p∈P ). (Strong
πε,n-admissibility means, in this finite-dimensional case, simply thatN ′

ε,n(P )
is bounded in Xn.) Let B = Bn be the unit ball in Wn. Since |uπ′′ε,nt|Wn ≤

e−βnt|u|Wn for some βn ∈ ]0,∞[ and all u ∈ Wn and t ∈ [0,∞[ it follows
that, relative to π′′ε,n, B is an isolating block for {0} with empty exit set, so
in particular, B is positively invariant.

We define Nε,n(I) := N ′
ε,n(I) + B ∼= N ′

ε,n(I) × B, I ∈ A(≺). It is now
a simple exercise to show that Nε,n = (Nε,n(I))I∈A(≺) is a strongly πε,fn,1-
admissible index filtration for (πε,fn,1 ,Kε,n, (Mp,ε,n)p∈P ). We claim that

(4.9) H(πε,n,Kε,n, (Mp,ε,n)p∈P ) ∼= H(πε,fn,1,Kε,n, (Mp,ε,n)p∈P ).

In fact, let J ∈ I(≺) be arbitrary. Choose I,K ∈ A(≺) with (I, J) ∈ I2(≺)
and K = IJ . Let φ : N ′

ε,n(K)/N ′
ε,n(I) → Nε,n(K)/Nε,n(I) be inclusion

induced and ψ : Nε,n(K)/Nε,n(I) → N ′
ε,n(K)/N ′

ε,n(I) be induced by the

canonical projection y + z 7→ y of X1/2 × X = Xn ⊕Wn onto Xn. It fol-
lows that ψ ◦ φ is the identity on N ′

ε,n(K)/N ′
ε,n(I) while φ ◦ ψ is homotopic

to the identity on Nε,n(K)/Nε,n(I) via the homotopy Nε,n(K)/Nε,n(I) ×
[0, 1] → Nε,n(K)/Nε,n(I) induced by the homotopy (y + z, τ) 7→ y + τz on
X1/2 × X = Xn ⊕ Wn. The homotopy axiom for singular homology now
implies that the map

θN ′
ε,n,Nε,n(J) : H(πε,n,Mε,n(J)) → H(πε,fn,1,Mε,n(J))

induced by φ is an isomorphism. Claim (4.9) is proved, which in turn con-
cludes the proof of the lemma.

Now, Lemmas 4.9 and 4.10 imply the following proposition.

Proposition 4.11. Let n′ ∈ N and ε′ ∈ ]0,∞[ be as in Lemma 4.8.
Then for n≥n′ and ε ∈ ]0, ε′],

H(πε,n,Kε,n, (Mp,ε,n)p∈P ) ∼= H(πε,Kε, (Mp,ε)p∈P ).

Lemma 4.12. There exists an n1 ∈ N such that for every n ≥ n1, the

sets N and Vp, p ∈ P , are Tfn,1-isolating neighborhoods of Kn := Γfn,1(K
′
n)

and Mp,n := Γfn,1(M
′
p,n), p ∈ P , respectively , where N ′ and V ′

p , p ∈ P , are

as in Theorem 4.1.

Proof. This follows from [17, Theorem 4.11].

We can now give the proof of Theorem 4.2.
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Proof of Theorem 4.2. Let n0 ∈ N be as in Lemma 4.4, n′ ∈ N be as in
Lemma 4.8 and n1 ∈ N be as in Lemma 4.12. Define ñ := max{n0, n

′, n1}.
Fix n ≥ ñ arbitrarily. Proposition 4.6 implies that

(4.10) H(π′n,K
′
n, (M

′
p,n)p∈P ) ∼= H(π′,K ′, (M ′

p)p∈P ).

Notice that

K ′
n = Invπ′

fn,1
(N ′) = Invπ′

n
(N ′ ∩ Yn) ⊂ IntYn(N ′ ∩ Yn),

M ′
p,n = Invπ′

fn,1
(V ′

p) = Invπ′
n
(V ′

p ∩ Yn) ⊂ IntYn(V ′
p ∩ Yn), p ∈ P.

Moreover, with the notation introduced in Section 3, it follows from Lemma
4.12 that

InvTgn
(N ∩Xn) = InvTfn,1

(N) = Kn ⊂ IntX1/2×X(N),

InvTgn
(Vp ∩Xn) = InvTfn,1

(Vp) = Mp,n ⊂ IntX1/2×X(Vp), p ∈ P,

where gn : Yn → Yn is defined by

gn(u) = −Au+ Pn(φ̂(u) + γ), u ∈ Yn.

Hence
InvTgn

(N ∩Xn) ⊂ IntXn(N ∩Xn),

InvTgn
(Vp ∩Xn) ⊂ IntXn(Vp ∩Xn), p ∈ P.

It follows from Theorem 3.6 that there exists an ε̃0 ∈ ]0,∞[ such that for
all ε ∈ ]0, ε̃0], the family (Mp,ε,Γgn

)p∈P is a ≺-ordered Morse decomposition

of K̃ε,n and H(πε,n, K̃ε,n, (Mp,ε,Γgn
)p∈P ) ∼= H(π′n,K

′
n, (M

′
p,n)p∈P ), where

K̃ε,n = Invπε,n(N ∩Xn) = Invπε,fn,1
(N) = Kε,n,

Mp,ε,Γgn
= Invπε,n(Vp ∩Xn) = Invπε,fn,1

(Vp) = Mp,ε,n, p ∈ P.

Hence

(4.11) H(πε,n,Kε,n, (Mp,ε,n)p∈P ) ∼= H(π′n,K
′
n, (M

′
p,n)p∈P ), ε ∈ ]0, ε̃0].

Define ε0 := min{ε′, ε̃0}, where ε′ ∈ ]0,∞[ is as in Lemma 4.8, and let
ε ∈ ]0, ε0]. Proposition 4.11 implies that

(4.12) H(πε,n,Kε,n, (Mp,ε,n)p∈P ) ∼= H(πε,Kε, (Mp,ε)p∈P ).

Now (4.10)–(4.12) imply that

H(πε,Kε, (Mp,ε)p∈P ) ∼= H(π′,K ′, (M ′
p)p∈P ), ε ∈ ]0, ε0] ,

and the proof is complete.
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