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Stratified model categories

by

Jan Spaliński (Warszawa)

Abstract. The fourth axiom of a model category states that given a commutative
square of maps, say i : A → B, g : B → Y, f : A → X, and p : X → Y such that
gi = pf , if i is a cofibration, p a fibration and either i or p is a weak equivalence, then
a lifting (i.e. a map h : B → X such that ph = g and hi = f) exists. We show that for
many model categories the two conditions that either i or p above is a weak equivalence
can be embedded in an infinite number of conditions which imply the existence of a lifting
(roughly, the weak equivalence condition can be split between i and p). There is a similar
modification of the fifth axiom. We call such model categories “stratified” and show that
the simplest model categories have this property. Moreover, under some assumptions a
category associated to the category of simplicial sets by a family of adjoint functors has
this structure. Postnikov decompositions and n-types exist in any such category.

1. Introduction. In [10], Quillen introduced the notion of a model cate-
gory in order to single out “those categories in which one can do homotopy
theory”. A model category is just an ordinary category with three classes of
maps: weak equivalences, fibrations and cofibrations which are required to
satisfy some axioms patterned on the properties of topological spaces.

For example, the fourth axiom (see below) combines the extension prob-
lem and the lifting problem into a single question: given a CW-inclusion
A ↪→ B, a mapping X → Y , and a solid arrow diagram:

A X

B Y

//

�� ��
//

>>

�

�

�

does a dashed arrow exist making the diagram commute? When Y is a single
point this is the extension problem, and when A is the empty space this is
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the lifting problem. It is well known that many questions in topology can
be phrased as special cases of this problem.

Of the five axioms of a model category, the last two—MC4 and MC5—
play the most important role:

MC4. Suppose that in the diagram

(1.1)

A X

B Y

f //

i

��
p

��g //

the map i is a cofibration, p is a fibration, and either i or p is a weak
equivalence. Then a lifting exists (i.e. a map h : B → X such that ph = g
and hi = f).

MC5. Each map f : X → Y can be factored as

X
i→ Z

p→ Y

where i is a cofibration, p is a fibration, and moreover , we can choose either
i or p to be a weak equivalence.

It is natural to wonder whether a lifting in MC4 exists under some differ-
ent assumptions and whether some factorizations with different homotopy
properties than those in MC5 exist.

The main goal of this paper is to establish that for many categories
the answer to the above questions is “yes”. Specifically, we show that in
any stratified model category (see 3.8 for the definition) the condition that
either i or p is a weak equivalence in either statement above can be replaced
by any one of a countably infinite family of conditions which includes the
two above as special cases.

In [4], P. Hirschhorn described D. M. Kan’s notion of a cofibrantly gener-
ated model category. This is a model category in which there is a set of gen-
erating cofibrations and a set of generating acyclic cofibrations which permit
a very straightforward description of the model category structure. Many
cofibrantly generated model categories have some extra structure given by
the fact that a map is a weak equivalence iff it is an “n-equivalence” for
each nonnegative integer n. Moreover, a map is an n-equivalence iff it is an
“n-epimorphism” and an “n-monomorphism” (see 3.2 for details).

This way of looking at weak equivalences leads us to introduce the main
notion of this paper: a stratified model category, which is short for stratified
cofibrantly generated model category (3.8). Suppose C is a stratified model
category. In §4 we prove that the following more flexible versions of MC4
and MC5 hold.
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MC4′ (see 4.8). Suppose we have a commutative diagram in C of the
form 1.1, where i is a cofibration and p is a fibration. Suppose there is an n
such that

(1) i is an m-equivalence for m < n and an n-epimorphism.
(2) p is an m-equivalence for m > n and an n-monomorphism.

Then a lifting in 1.1 exists.

MC5′ (see 4.6). For every n, every map f : X → Y in C can be factored
as

X
i→ Z

p→ Y

where

(1) i is a cofibration, an m-equivalence for m < n and an n-epimorphism.
(2) p is a fibration, an m-equivalence for m>n and an n-monomorphism.

We recover the original conditions in MC4 and MC5 by taking n = ∞
and n = −1. The method of proof consists in an appropriate use of the small
object argument of Quillen [10].

Now the obvious question arises: which model categories are stratified?
We show that the basic model categories: topological spaces, simplicial sets
and nonnegative chain complexes over a ring all have this structure. More-
over, in §5 we show that under some conditions a category related to the
category of simplicial sets by a family of adjoint functors is a stratified model
category.

As an application of MC5′, in §6 we show that Postnikov type decompo-
sitions exist in an arbitrary stratified model category. Specifically, we show
that for each object X there exists a canonical tower of fibrations start-
ing with the terminal object, whose successive terms give better and better
homotopy approximations to X.

Since the n-skeleton of a CW-complex is not a homotopy invariant,
J. H. C. Whitehead introduced the n-type, which depends only on the
(n+ 1)-skeleton. As an application of MC4′ and MC5′, in §7 we show that
canonical n-types exist in an arbitrary stratified model category and have
the expected properties.

After the original version of the paper was submitted I have learned that
D. Isaksen [6] has independently established that MC4′ and MC5′ hold for
the specific case of simplicial sets. I thank Adam Przeździecki for drawing
my attention to this. I also thank the referee for a number of very helpful
comments.

2. Preliminary notions. We now recall some categorical notions which
will be useful later. Let C be an arbitrary category. We say that X is a
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retract of Y if there exists a map i : X → Y and a map r : Y → X such
that ri = idX . For example, in the category of modules one can show that
a module P is projective iff it is a retract of a free module.

Given a category C, the category of morphisms, Mor(C), is defined as
a category whose objects are morphisms in C, and the maps are defined as
follows. A morphism from f : X → Y to g : Z →W is a pair of morphisms
k : X → Z and l : Y →W making the following diagram commute:

X Z

Y W

k //

f

��
g

��
l //

We say that a map f is a retract of a map g if it is a retract in the
category Mor(C).

We assume that the reader is familiar with the notion of colimit and
limit in a category (these can be found in [8] or [3]).

A colimit of the diagram of the form

(2.1) B0 → B1 → B2 → . . .

is called a sequential colimit. An object A is called sequentially small with
respect to 2.1 if each map f : A → colimBi factors as A → Bn → colimBi
for some integer n.

Given a diagram

A0
f0→ A1

f1→ A2 → . . .

we say that the canonical mapA0 → colimAi has been obtained by sequential
colimits from the family {fi}.

2.2. We say that a map g is obtained from a map f (or that Y is obtained
from X) by cobase change along k if we have the following pushout diagram
in C:

A X

B Y

k //

f

��
g

��
//

i.e. the object Y above is the colimit of the diagram

B
f← A

k→ X.

We will also need the following definition:

2.3. Let F be a family of morphisms in C. By the closure of F we mean
the smallest class of morphisms in C which contains F and is closed under
cobase change, sequential colimits and retracts.
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Now, following Quillen [10], we recall the notion of the left lifting prop-
erty (LLP) and the right lifting property (RLP).

2.4. Definition. A map i : A → B is said to have the left lifting
property (LLP) with respect to another map p : X → Y and p is said to
have the right lifting property (RLP) with respect to i if for any choice of f
and g making the diagram

A X

B Y

f //

i

��
p

��g //

commute, a lifting exists.

The examples below show that the above notion is very common in
algebra and topology.

First, a very naive example. In the category of sets, injective functions
have the LLP with respect to surjective functions. (And hence surjective
functions have the RLP with respect to injective functions.)

Let’s move to algebra. Let R be a ring. An R-module P is projective iff
the map 0→ P has the LLP with respect to all epimorphisms of R-modules.
Dually, an R-module Q is injective iff the map Q → 0 has the RLP with
respect to all monomorphisms of R-modules.

Let’s return to topology. A map p : E → B is a Serre fibration if it has
the RLP with respect to all the inclusions X × 0 ↪→ X × I where X is a
CW-complex and I is the unit interval.

3. Stratified model categories. Let C be an arbitrary category. In
order to define a stratified model category, we start by introducing weak
equivalences and stratified weak equivalences.

3.1. Definition. A classW of morphisms in C is called a class of weak
equivalences if it has the following properties:

W1 W contains all isomorphisms and is closed under sequential colimits
and retracts.

W2 If f, g are morphisms in C such that gf is defined, and if two of
f, g, gf are in W, then so is the third.

3.2. Definition. A class W of weak equivalences is called stratified if
for each nonnegative integer n there exists a class Wn of weak equivalences
(the n-equivalences), and classes En (the n-epimorphisms) and Mn (the
n-monomorphisms) of morphisms such that:

SW1 f ∈ W if and only if f ∈ Wn for every nonnegative integer n.
SW2 f ∈ Wn if and only if f ∈ En and f ∈ Mn.



222 J. Spaliński

SW3 If h = gf then h ∈Mn implies f ∈ Mn and h ∈ En implies g ∈ En.
SW4 The classes En and Mn are closed under composition, sequential

colimits and arbitrary sums.

To simplify some statements which will appear later, we make the con-
vention that any morphism is an m-equivalence, m-monomorphism and m-
epimorphism for m < 0 (i.e. we assume that our “theory” has no negative
“invariants”).

3.3. Example. The weak homotopy equivalences of topological spaces
are a stratified family of weak equivalences in an obvious way: call a map f :
X → Y of topological spaces an n-equivalence (respectively n-epimorphism,
n-monomorphism) if it induces isomorphisms (respectively epimorphisms,
monomorphisms) on πn for every choice of basepoints.

In order to motivate the key axiom of a stratified model category, we
establish a certain elementary property of Serre fibrations.

3.4. Consider the following sets of inclusion maps:

{jn : ∂In → In | n ≥ 0}, {kn : In−1 × {0} → In | n ≥ 1}.
Here I0 is a single point and ∂I0 is the empty space.

It is not hard to check (see [5, Theorem 3.1, p. 63]) that a map is a Serre
fibration iff it has the RLP with respect to {kn | n ≥ 1}.

The following simple lemma is the main ingredient in obtaining MC4′ and
MC5′ from the introduction. Given a Serre fibration, the lemma describes
how close to a weak equivalence the fibration must be if it has the RLP with
respect to some jn.

3.5. Lemma. For every n ≥ 0 a Serre fibration p : E → B has the RLP
with respect to jn iff p is an n-epimorphism and (n− 1)-monomorphism.

Proof. The long homotopy sequence of the fibration shows that the
stated condition is equivalent to the vanishing of πn−1(F, e0):

. . .→ πn(E, e0)→ πn(B, b0)→ πn−1(F, e0)

→ πn−1(E, e0)→ πn−1(B, b0)→ . . .

It is clear that if p : E → B has the RLP with respect to jn, then
πn−1(F, e0) = 0.

Now suppose that πn−1(F, e0) = 0 and we wish to construct a lift in the
diagram

∂In E

In B

f //

jn

��
p

��g //
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First, let H : In× I→ B be the homotopy between g and the constant map
to b0, such that H(x, 0) = g and H(x, 1) = b0. So we have a diagram

∂In × {0} E

∂In × I B

f //

��
p

��H| //

where H| means the restriction of H to ∂In× I. Since p is a Serre fibration,
there exists a lift H̃ : ∂In × I→ E covering H|. In particular, H̃(x, 1) ∈ F .
This gives a map ∂In × {1} → F . By assumption, this map extends to a
map K : In × {1} → F . So we can form a diagram

∂In × Iq In × {1} E

In × I B

//

��
p

��
H //

Since p is a Serre fibration, a lift Ĥ : In×I→ E exists. Then h(x) = Ĥ(x, 0)
is the desired lift in the original diagram.

To recall the notion of a cofibrantly generated model category, we need
to recall the small object argument.

3.6. Definition. We say that a set F of maps permits the small object
argument if the domain of each map in F is sequentially small with respect
to sequential colimits involving diagrams where each object is obtained from
the previous one by cobase change along the maps in F .

Following [4], we recall D. M. Kan’s notion of a cofibrantly generated
model category.

3.7. Definition. A cofibrantly generated model category is a model
category C with arbitrary colimits such that:

(1) There exists a set I of generating cofibrations that permits the small
object argument and has the property that a map is an acyclic fibration if
and only if it has the RLP with respect to every generating cofibration.

(2) There exists a set J of generating acyclic cofibrations that permits the
small object argument and has the property that a map is a fibration if and
only if it has the RLP with respect to every generating acyclic cofibration.

We are now ready to define a stratified model category.

3.8. Definition. A stratified model category C is a cofibrantly gener-
ated model category with the following structure:

(1) A class W of stratified weak equivalences.
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(2) A set I of generating cofibrations such that I =
⋃∞
n=0 In and each

f ∈ In is an m-equivalence for all m < n− 1 and an (n− 1)-epimorphism.
(3) A class J of generating acyclic cofibrations. (Hence, in particular,

every element in the closure of J is a weak equivalence.)

These are required to satisfy the following axioms:

CC1 For every integer n ≥ 0, if p is a fibration, then p has the RLP with
respect to In if and only if p ∈ En and p ∈ Mn−1.

CC2 For every integer n ≥ −1, every map in the closure of J∪⋃∞m=n+1 Im
is an m-equivalence for all m < n and an n-epimorphism.

CC3 The set I ∪ J permits the small object argument.

3.9. Example (topological spaces). For m < 0 or m =∞ by πm(A) we
mean the trivial group. Here we take 3.3 as the stratified weak equivalences.
Moreover, we let

In = {jn : ∂In → In}, n ≥ 0,

J = {kn : In−1 × {0} → In | n = 1, 2, 3, . . .}.

These choices give the category Top of topological spaces the structure of a
stratified model category. CC1 follows from 3.5. For CC2, a map obtained
by cobase change from ∂In → In, n ≥ 1, is simply the inclusion of a space X
into X ′ = X ∪ In, that is, X with an n-cell attached via the boundary. Such
a map induces isomorphisms on πm for all m < n− 1 and an epimorphism
on πn−1. Now note that the set of m-equivalences is closed under sequential
colimits and retracts. CC3 follows from the compactness of In and ∂In.

3.10. Example (nonnegative chain complexes over a ring). Let R be a
commutative ring. Consider the category ChR of nonnegatively graded chain
complexes over a commutative ring R. Let 0 denote either the zero R-module
or the chain complex which has the zero R-module in every dimension.

The class of weak equivalences is the class of maps which induce isomor-
phisms in homology in every dimension. It is stratified in the obvious way: a
map is an n-equivalence (respectively n-epimorphism, n-monomorphism) if
it induces an isomorphism (resp. epimorphism, monomorphism) in homology
in dimension n.

For n ≥ 1, let Dn(R) denote the chain complex which has R in dimen-
sions n and n−1 and zeros elsewhere, with identity as the nonzero boundary
map. Finally, for n ≥ 1, let Sn−1(R) be the chain complex which has R in
dimension n−1 and zeros elsewhere. Moreover, let D0 = S0 and S−1 denote
the zero chain complex. We let jn : Sn−1(R)→ Dn(R) equal the identity in
(n− 1)-st grading and zero elsewhere. Finally, we let kn : 0→ Dn(R).
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We now let

In = {jn : Sn−1(R)→ Dn(R)}, n ≥ 0,

J = {kn : 0→ Dn(R) | n = 1, 2, 3, . . .}.
Below we prove CC1 for the category ChR. CC2 follows from the fact

that attaching copies of Dn(R) along Sn−1(R) does not alter homology in
dimensions below n − 1. Finally, CC3 follows because Sn−1(R) is finitely
generated. Therefore ChR is a stratified model category.

3.11. Lemma. Let p : X → Y in ChR be a fibration, and n be a
nonnegative integer. A lift exists in the diagram

(3.12)

Sn−1(R) X

Dn(R) Y

//

�� ��
p

��
//

if and only if p is an (n− 1)-monomorphism and n-epimorphism.

Proof. The result is immediate for n = 0 (recall that S−1(R) denotes
the complex consisting of zeros only, and D0(R) the complex with R in
dimension 0 and zeros elsewhere).

So assume that n ≥ 1. Note first that the diagrams above are in one-
to-one correspondence with sets of elements xn−1 ∈ Xn−1, yn ∈ Yn, and
yn−1 ∈ Yn−1 such that

(3.13)

xn−1 0

yn yn−1

dn−1 //

pn−1

��dn //

Finding a lift in the diagram 3.12 is equivalent to finding an element xn ∈ Xn

such that dn(xn) = xn−1 and pn(xn) = yn in the diagram above.
We will first show that if a lift exists then p is an n-epimorphism and

(n− 1)-monomorphism.
Suppose that σ ∈ Hn(Y ). So σ = [yn] for some yn ∈ Yn which is a

cycle. Consider the diagram 3.13 determined by the data: the yn which rep-
resents σ, yn−1 = 0 and xn−1 = 0. The lift determines an element xn ∈ Xn

such that pn(xn) = yn and dn(xn) = 0. So p∗ is an n-epimorphism.
Now suppose that τ ∈ Hn−1(X) and p∗(τ) = 0. Let τ = [xn−1] for some

xn−1 ∈ Xn−1 which is a cycle. Let yn−1 = pn−1(xn−1). Since p∗(τ) = 0,
there exists an element yn ∈ Yn such that dn(yn) = yn−1. Again, this
determines a diagram 3.13. The lift produces an element xn ∈ Xn such that
dn(xn) = xn−1. So in fact τ = 0.
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Now suppose that p∗ is an n-epimorphism and (n− 1)-monomorphism.
We wish to show that a lifting exists in diagram 3.12.

Note first that since p is a fibration, pn is onto. So, there exists an
zn ∈ Xn such that pn(zn) = yn. However, it is not necessarily true that
dn(zn) = xn−1. So let wn−1 = dn(zn) − xn−1. The above properties of
zn and xn−1 imply that pn−1(wn−1) = 0 and dn−1(wn−1) = 0. So wn−1

determines a homology class which lies in the kernel of p∗. But since p∗ is
an (n− 1)-monomorphism, this homology class must vanish. So there exists
an element un ∈ Xn such that dn(un) = wn−1. If pn(un) were equal to
zero, we could set xn = zn − un as our desired element. However, pn(un)
is not necessarily zero. Let vn = pn(un). Since dn(vn) = 0, vn represents a
homology class in Hn(Y ). But we assumed that p∗ is an n-epimorphism, so
there exists an element tn ∈ Xn such that dn(tn) = 0 and pn(tn) = vn. The
element xn = zn − un − tn has the desired properties.

3.14. Example (simplicial sets). Let ∆op be the simplicial category
(a good textbook reference is [9]), so that a simplicial set is a functor X :
∆op → Sets. The category of simplicial sets will be denoted by S. We now
describe a stratified model category structure on S.

For n ≥ 0, let ∆[n] be the standard n-simplex. Moreover, let ιn be the
nondegenerate simplex of dimension n in ∆[n]. Let ∆̇[n] be the simplicial
subset of ∆[n] generated by its nondegenerate simplices of dimension less
than n, and jn : ∆̇[n]→ ∆[n] be the boundary inclusion.

For n ≥ 1 and 0 ≤ m ≤ n let V [n,m] be the simplicial subset of ∆[n] gen-
erated by the simplices dq(ιn) for 0 ≤ q ≤ n, q 6= m, and kn,m : V [n,m]→
∆[n] be the natural inclusion.

We now let

In = {jn : ∆̇[n]→ ∆[n]}, n ≥ 0,

J = {kn,m : V [n,m]→ ∆[n] | n = 1, 2, . . . , m = 0, 1, . . . , n}.
A map f : X → Y of simplicial sets is an n-equivalence (n-epimorphism,

n-monomorphism) if |f | is an n-equivalence (n-epimorphism, n-monomor-
phism) of the geometric realizations in the sense of Example 3.9.

The verification of the axioms of a stratified model category is very
similar to the two examples considered earlier. Below we indicate the proof
of CC1.

3.15. Lemma. Let p : E → B be a Kan fibration. Then for each n ≥ 0
a lift exists in

∆̇[n] E

∆[n] B

//

��
p

��
//
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if and only if (p∗ : πn−1(E, e0)→ πn−1(B, b0)) ∈ Mn−1 and (p∗ : πn(E, e0)
→ πn(B, b0)) ∈ En for every choice of basepoints e0 ∈ E, b0 ∈ B such that
p(e0) = b0.

Proof. By Proposition 7.3 in [9], F = p−1(b0) is a Kan complex. The
portion

πn(F, e0)→ πn(E, e0)→ πn(B, b0)→ πn−1(F, e0)

→ πn−1(E, e0)→ πn−1(B, b0)

of the long exact sequence of the fibration p shows that the condition on the
map p∗ is equivalent to the vanishing of the group πn−1(F, e0). The proof is
now a simplicial argument which follows the topological case very closely.

In Section 5 we show that under certain conditions a category related to
the category of simplicial sets by a pair of adjoint functors has the structure
of a stratified model category.

4. Main theorems. The main goal of this section is to prove MC4′ and
MC5′ from the introduction.

We need the so-called infinite gluing construction, which is due to Quillen
[10]. The description below is based on [3].

4.1. The infinite gluing construction. Let F = {fλ : Aλ → Bλ}λ∈Λ be
a set of morphisms in C. (For F we will take the union of certain sets In
and J .) Suppose p : X → Y is a morphism in C; we want to factor p as
X → X ′ → Y where the first morphism is a cofibration and the second has
the RLP with respect to F .

For each λ ∈ Λ let S(λ) consist of all pairs (h, g) of maps making the
following diagram commute:

(4.2)

Aλ X

Bλ Y

g //

fλ

��
p

��
h //

We define the gluing construction G1(F , p) to be the object of C given
by the pushout diagram

∐
λ∈Λ

∐
(h,g)∈S(λ)Aλ X

∐
λ∈Λ

∐
(h,g)∈S(λ) Bλ G1(F , p)

//

∐
fλ

��
i1

��
//

As indicated, there is a natural map i1 : X → G1(F , p). By the uni-
versal property of colimits, the commutative diagram 4.2 induces a map
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p1 : G1(F , p) → Y such that p1i1 = p. Now repeat the process: for n > 1
define objects Gn(F , p) and maps pn : Gn(F , p)→ Y inductively by setting
Gn(F , p) = G1(F , pn−1) and pn = (pn−1)1. This gives an infinite commuta-
tive diagram

X G1(F , p) G2(F , p) . . . Gn(F , p) . . .

Y Y Y . . . Y . . .

i1 //

p

��

i2 //

p1

��

i3 //

p2

��

in // //

pn

��= // = // = // = // = //

Let G∞(F , p), the infinite gluing construction, denote the colimit of the
upper row in the above diagram; there are natural maps i∞ : X → G∞(F , p)
and p∞ : G∞(F , p)→ Y such that p∞i∞ = p. By construction, the map i∞
is in the closure of F .

4.3. Proposition. Suppose that for each λ ∈ Λ the object Aλ is sequen-
tially small with respect to the top row in the diagram above. Then the map
p∞ : G∞(F , p)→ Y has the RLP with respect to each map in the family F .

Proof. Suppose we want to find a lift in a commutative diagram

Aλ G∞(F , p)

Bλ Y

g //

fλ

��
p∞

��
h //

Since Aλ is sequentially small in the appropriate sense, there exists an
integer n such that the map g is the composition of a map g′ : Aλ →
Gn(F , p) with the natural map Gn(F , p) → G∞(F , p). Therefore, we can
enlarge the above diagram to

Aλ Gn(F , p) Gn+1(F , p) G∞(F , p)

Bλ Y Y Y

g′ //

fλ

��

in+1 //

pn

��

//

pn+1

��
p∞

��
h // = // = //

in which the composition of the maps in the top row is g. The pair (g′, h)
appears as an index in the construction of Gn+1(F , p) from Gn(F , p)—it
indexes the gluing of Bλ to Gn(F , p) along g′. By the universal properties of
colimits there exists a map Bλ → Gn+1(F , p) making the appropriate dia-
gram commute. Composing with the canonical mapGn+1(F , p)→ G∞(F , p)
gives a lifting in the original square.

To state our results it is useful to introduce the ordered set N defined
as follows:

(4.4) N = {n ∈ Z | n ≥ −1} ∪ {∞}.
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4.5. Definition. Let n ∈ N . We call a pair of maps i : A → B and
p : X → Y an n-admissible pair if

• i is a cofibration, an m-equivalence for all m<n and an n-epimorphism,
• p is a fibration, anm-equivalence for allm>n and an n-monomorphism.

4.6. Theorem. For every n ∈ N , every map p : X → Y can be factored
in a canonical way as

X
i∞−→ Z

p∞−→ Y

where (i∞, p∞) is an n-admissible pair , and moreover , every fibration which
is an m-equivalence for all m > n and an n-monomorphism has the RLP
with respect to i∞.

Proof. In 4.1, take for F the set

J ∪
∞⋃

m=n+1

Im.

Let i∞, p∞ and Z = G(F , p) be the result of making the infinite gluing
construction. By CC3, the domains of the maps in the family F are sequen-
tially small with respect to the particular sequential colimits that arise. By
definition, the map i∞ is a cofibration and by CC2 it is an m-equivalence
for m < n and an n-epimorphism. The map p∞ has the RLP with respect
to J by 4.3, hence it is a fibration. Moreover, again by 4.3, p∞ has the RLP
with respect to

⋃∞
m=n+1 Im. Therefore, by CC1, p∞ is an m-equivalence

for m > n and an n-monomorphism. The construction is canonical, as no
choices were made along the way.

Suppose that the map p is a fibration which is an m-equivalence for all
m > n and an n-monomorphism. As a fibration, it has the RLP with respect
to J . By CC1, it has the RLP with respect to

⋃∞
m=n+1 Im. Hence, by the

lemma below it has the RLP with respect to i∞.

4.7. Lemma. If a map p : X → Y has the RLP with respect to a family F
of morphisms, then it has the RLP with respect to the closure of F .

Proof. Suppose that p has the RLP with respect to f : A → B, and g
is obtained by cobase change from f . We wish to show that p has the RLP
with respect to g, i.e. that there is a lift h : D → X in the right hand square
of the diagram

A C X

B D Y

//

f

��

k //

g

��
p

��
i // j //

By assumption, there is a lift l : B → X in the rectangle ABYX. By the
universal property of pushouts, the maps l and k induce a map h : D → X.
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Immediately we have hg = k. Moreover, phi = pl = ji and phg = pk = jg,
hence, by the universal properties of pushouts, ph = j. So the map h is the
desired lift.

Let A0 → A1 → A2 → . . . be a family of morphisms in F . We need to
show that there is a lift in every commutative diagram of the form

A0 X

colimAλ Y

//

��
p

��
//

We can enlarge the above diagram to

A0 X

A1 colimAi Y

//

��
p

��
// //

Since A0 → A1 is an element of F , there is a lift A1 → X in the diagram
above. Using this lift we can form the diagram

A1 X

A2 colimAi Y

//

��
p

��
// //

The collection of such lifts for all integers n, by definition of colimit, deter-
mines a lift in the original diagram.

Suppose now that p : X → Y has the RLP with respect to i : A → B
and i′ : A′ → B′ is a retract of i. We want to construct a lift in the diagram

A′ X

B′ Y

f //

i′

��
p

��g //

Since i′ is a retract of i, we can enlarge the above diagram to

A′ A A′ X

B′ B B′ Y

//

i′

��

//

i

��

f //

i′

��
p

��
s // r // g //

By assumption there exists a lift h : B → X of the map gr : B → Y . The
composite map hs : B′ → X is a lift in the original diagram.
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4.8. Theorem. A lift exists in every commutative diagram of the form

A X

B Y

f //

i

��
p

��g //

where (i, p) is an n-admissible pair for some n ∈ N .

Proof. By 4.6, we can factor i : A→ B as

A
i∞−→ B′

p∞−→ B,

where (i∞, p∞) is an n-admissible pair and the map p∞ has the RLP with
respect to

⋃∞
m=n+1 Im. But since both i and i∞ are m-equivalences for all

m < n, it follows that p∞ is also an m-equivalence in that range. Moreover,
since i is an n-epimorphism, by SW3, so is p∞. Together, these properties
imply that p∞ is a weak equivalence. We can form a commutative diagram

A B′

B B

i∞ //

i

��
p∞

��Id //

Since p∞ is a fibration and a weak equivalence, it has the RLP with respect
to i. Let h : B → B′ be the lifting in the above diagram. The map h allows
us to express i as a retract of i∞:

A A A

B B′ B

Id //

i

��

Id //

i∞
��

i

��
h // p∞ //

We now turn to what we set out to prove. By 4.6, since p is an m-
equivalence for m > n and an n-monomorphism, it has the RLP with respect
to i∞. Hence, by 4.7, it has the RLP with respect to i.

5. A method for establishing stratified model category struc-
tures. In this section we show that a method for establishing model cate-
gory structures described in [11] can easily be extended to establish stratified
model category structures.

Let Λ be an arbitrary index set. Given a category D closed under co-
products and a family H = {(Ψλ, Φλ) : λ ∈ Λ} of adjoint functors

(5.1) Ψλ : S� D : Φλ, λ ∈ Λ,
under some mild hypotheses there is a natural way to define a stratified
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category structure on D. Before stating the theorem, we need some prelim-
inaries:

5.2. Definition. Let n ≥ 0, n ≥ m ≥ 0, and f be a map of simplicial
sets either of the form ∆̇[n] → ∆[n] or V [n,m] → ∆[n]. Moreover, let
Xf = Dm(f) and Yf = Rg(f). Let E be the set of elements (e, µ, f, g)
where e is an index, µ ∈ Λ and g : Ψµ(Xf ) → Z. A Ψ∗-regular pushout is a
pushout of the form

∐
(e,µ,f,g)∈E Ψµ(Xf ) Z

∐
(e,µ,f,g)∈E Ψµ(Yf ) W

∐
g //

∐
Ψµ(f)

��
h

��
//

The morphism h is said to be Ψ∗-induced.

5.3. Definition. An objectA of the category D is called Ψ∗-sequentially
small if HomD(A,−) commutes with sequential colimits of diagrams in
which all morphisms are Ψ∗-induced as above.

Consider the following assumptions on 5.1:

5.4. Assumptions. (1) D has finite limits and arbitrary small colimits.
(2) For every f : V [n,m] → ∆[n] and λ, µ ∈ Λ, ΦλΨµ(f) is an acyclic

cofibration of simplicial sets, and for every n ≥ 0, and boundary inclusion
f : ∆̇[n] → ∆[n], the morphism ΦλΨµ(f) is an m-equivalence for every
m < n− 1 and an (n− 1)-epimorphism.

(3) For X the domain of any f above and for each µ ∈ Λ, the object
Ψµ(X) is Ψ∗-sequentially small.

(4) For all λ ∈ Λ the functor Φλ: (a) preserves coproducts; (b) takes Ψ∗-
regular pushouts to homotopy pushout diagrams; (c) preserves sequential
colimits in D in which the morphisms are Ψ∗-induced.

5.5. Theorem. Suppose we have a category D and a family 5.1 of ad-
joint functors satisfying 5.4. The category D has the structure of a stratified
model category given as follows:

(1) A map g : X → Y is an n-equivalence (resp. n-epimorphism, n-
monomorphism) iff for all λ ∈ Λ the map Φλ(g) : Φλ(X) → Φλ(Y ) is an
n-equivalence (resp. n-epimorphism, n-monomorphism) in S.

(2) The set of generating cofibrations for D is given by In = {Ψλ(f) |
f : ∆̇[n]→ ∆[n], λ ∈ Λ}.

(3) The generating acyclic cofibrations for D are given by J = {Ψλ(f) |
f : V [n,m]→ ∆[n], n ≥ 1, 0 ≤ m ≤ n, λ ∈ Λ}.

Proof. The fact that the weak equivalences in D form a stratified family
follows directly from the definition. To prove CC1, consider a diagram of
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the form
Ψi(∆̇[n]) E

Ψi(∆[n]) B

//

��
p

��
//

Since the functors Ψλ, Φλ form an adjoint pair, such diagrams are in one-to-
one correspondence with

∆̇[n] Φλ(E)

∆[n] Φλ(B)

//

��
Φλ(p)

��
//

Now since the simplicial sets have the structure of a stratified model cate-
gory, a lift exists in the above diagram precisely when

Φλ(p) ∈ En, Φλ(p) ∈ Mn−1.

This in turn means that p is an n-epimorphism and (n−1)-monomorphism.
CC2 follows from assumptions (2) and (4). CC3 is just assumption (3).

5.6. Example. A cyclic set is a simplicial set with an extra structure
given by the action of the cyclic group of order n + 1 on the set of n-
simplices. The category of cyclic sets will be denoted by Sc. These objects
were introduced by A. Connes [1]; a good description for our purposes is
either in W. G. Dwyer et al. [2] or J. Jones [7].

There is a pair of adjoint functors relating the simplicial and cyclic cat-
egories

F : S� Sc : G.

The functor G is the forgetful functor. The functor F associates to a sim-
plicial set X the cyclic set obtained by replacing each ∆[n] by Λ[n] =
HomΛop(n,−) (the free cyclic set in dimension n) and performing the same
gluings as for X.

It is easy to see that the assumptions of the above theorem are satisfied.

5.7. Example. Let G be a compact Lie group, and let TopG be the
category of spaces with a G-action.

We have a family of adjoint functors:

G/H × |?| : S� TopG : S∗(?H),

where H denotes an arbitrary closed subgroup of G and S∗ is the singular
functor.

It is not hard to see that this family also satisfies the assumptions of the
above theorem.
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6. Postnikov type decompositions. In this section we show how
to introduce natural Postnikov type decompositions in a stratified model
category C. Let ∗ denote the terminal object in C.

6.1. Proposition. For any object X we have a natural diagram of
spaces and maps

. . . X X X X X

. . . Y2 Y1 Y0 Y−1 ∗

// = //

i2

��

= //

i1

��

= //

i0

��

= //

i−1

�� ��// p2 // p1 // p0 // p−1 //

such that (in, pn) is an n-admissible pair.

Proof. The result follows by iterative application of Theorem 4.6 to the
canonical map X → ∗. First, we apply 4.6 with n = −1 to obtain the
factorization

X
i−1−→ Y−1

p−1−→ ∗.
Next, we apply 4.6 with n = 0 to i−1. In general, for n ≥ 0, we apply 4.6
with n+ 1 to in.

The objects {Yn}∞n=−1 form a “homotopy approximation to X”. For
example, Y1 is 0-equivalent to X, Y2 is 0,1-equivalent to X, etc. On the
other hand, each Yn is not m-equivalent to ∗ only for finitely many m.

7. The homotopy category of n-types. It is natural to consider
the “homotopy type of a CW-complex up to dimension n”. The problem
is that the n-skeleton of a CW-complex is not a homotopy type invari-
ant. To overcome this, J. H. C. Whitehead introduced the n-type, which
is a homotopy type invariant of a CW-complex which depends only on the
(n+ 1)-skeleton. In this section we show that n-types exist for any stratified
model category.

First, we make a definition.

7.1. Definition. An object X in a stratified model category is called
connected if the canonical map X → ∗ (where ∗ is the terminal object) is a
0-equivalence.

Let C be a stratified model category and C0 be the full subcategory of
connected objects. Given any object X in C0 and integer n ≥ 1 apply 4.6
with n+ 1 to the morphism X → ∗ to obtain

X
i→ X ′

p→ ∗,
where (i, p) is an (n+ 1)-admissible pair of maps.

7.2. Definition. We call the object X ′ above the n-type of X and
denote it by Pn(X).
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The next result shows in what sense the n-type of X depends “only on
the homotopy of X up to dimension n+ 1”.

7.3. Theorem. Suppose a map f : X → Y in C0 is an m-equivalence
for m = 0, 1, . . . , n+ 1. Then there exists a map f̃ : Pn(X)→ Pn(Y ) which
is a weak equivalence.

Proof. Consider the commutative diagram

X Y Pn(Y )

Pn(X) ∗ ∗

f //

��

//

��// //

Since the outer vertical arrows form an (n + 1)-admissible pair, a lift f̃ :
Pn(X)→ Pn(Y ) exists by 4.8.

We can rewrite the above diagram in the form

X Pn(X) ∗

Y Pn(Y ) ∗

//

f

��

//

f̃

�� ��// //

Since the left vertical map is an m-equivalence for m = 0, 1, . . . , n, and the
left horizontal maps are m-equivalences for m = 0, 1, . . . , n, it follows that
the middle vertical map is an m-equivalence for m = 0, 1, . . . , n. Moreover,
since the left horizontal maps are (n + 1)-epimorphisms (and so is f), it
follows by SW3 that so is the middle vertical map. Applying an analogous
argument to the right hand square, we see that f̃ is an (n+1)-monomorphism
and m-equivalence for m > n+1. We conclude that it is a weak equivalence.

References

[1] A. Connes, Cyclic homology and functors Extn, C. R. Acad. Sci. Paris 296 (1983),
953–958.

[2] W. G. Dwyer, M. Hopkins and D. M. Kan, Homotopy theory of cyclic sets, Trans.
Amer. Math. Soc. 291 (1985), 281–289.
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