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Abstract. We are interested in deformations of Baker domains by a pinching process
in curves. In this paper we deform the Fatou function F (z) = z + 1 + e−z, depending on
the curves selected, to any map of the form Fp/q(z) = z + e−z + 2πip/q, p/q a rational
number. This process deforms a function with a doubly parabolic Baker domain into a
function with an infinite number of doubly parabolic periodic Baker domains if p = 0,
otherwise to a function with wandering domains. Finally, we show that certain attracting
domains can be deformed by a pinching process into doubly parabolic Baker domains.

1. Introduction. Given a holomorphic map f , the Fatou set Ω(f) ⊂ C
of f is the largest open set such that the iterates {fn}n≥0 form a normal
family. Its complement C−Ω(f) is the Julia set, denoted by J(f).

The Fatou function is the transcendental entire map F (z) = z+ 1 + e−z.
In this paper we study pinching deformations of the Fatou function and
the changes in their dynamics, specifically the Fatou and Julia sets. A de-
formation of an entire map f is an entire map g such that q−1 ◦ f ◦ q
= g, where q is a quasiconformal homeomorphism. For pinching defor-
mations the support of q is located in certain neighborhoods of invariant
curves in the Fatou set of f . Pinching deformation was introduced in it-
eration theory by Makienko [M2] in the context of the dynamics of ra-
tional maps and by Petersen [P] for quadratic maps. Several interesting
problems arise when deforming a given map f , like the convergence or di-
vergence of certain subsequences; see for instance [H], [HT] and [T]. The
pinching deformation in this paper will be carried out in Fatou domains
which do not exist for rational maps, otherwise the theory extends in the
same way.

The following different types of Fatou domains exist for transcendental
entire maps but do not exist for rational maps.
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Definition 1.1 (Baker domain). If V is a periodic component of the
Fatou set of period p such that for all z ∈ V , fnp(z)→∞ as n→∞, then
V is called a periodic Baker domain.

Definition 1.2 (Wandering domain). If V is a component of the Fatou
set such that fn(V ) 6⊂ V for all n > 0, then V is called a wandering domain.

As we will explain in Section 2, the Fatou function has a completely
invariant Baker domain that contains the curves y = (1 + 2k)πi, k ∈ Z,
which are invariant under the Fatou function F (z). We will pinch the Fatou
function along these curves, and in Section 3 we define the process of pinch-
ing; for completeness we state and prove an important lemma taken from
Tan Lei [T] (see Lemma 3.6) which shows that the diameter of the pinching
curves tends to zero under the process. We make a slight rearrangement
to fit the Tan Lei Lemma into the transcendental entire framework; more-
over, we introduce the concept of wandering admissible pairs that will be
necessary in the proof of the main theorems.

The Teichmüller space encodes the deformation of a map f by keeping
the information of a quasiconformal homeomorphism q compatible with the
dynamics of f (see Section 4). For a given transcendental entire map f , the
framework of the Teichmüller space of f , T (f), is taken from Harada and
Taniguchi [HaTa] in which they generalize the concepts in [MS] to the case
that the closure in C of the singular values is countable. Later on Fagella and
Henriksen [FH1], [FH2] completed the general case. The Fatou function in
this case was studied by Harada and Taniguchi. In Section 4, we define the
set Ef of all transcendental entire maps quasiconformally equivalent to f ,
and we consider the projection of the Teichmüller space into Ef by means
of the representation map ρ : T (f) → Ef . Now, pinching deformations are
paths in T (f) that project to paths in the image of the map ρ. We ask: for
a given map f , are limits of deformations in Ef? We show that for pinching
deformations (in certain curves) on the Fatou domain of the Fatou function,
the limits exist and we describe them. Our main results in Section 5 are
stated as follows.

Theorem 5.4. For c = 1− t, t ∈ [0, 1], the corresponding maps Fc(z) =
z+c+e−z can be regarded as a path in ρ(T (F )) of pinching deformations of
the Fatou function F (z) = F1(z) with limit the Baker–Domı́nguez function
G(z) = F0(z).

Theorem 5.5. There is a pinching process from the Fatou function F
to any of the functions Fp/q(z) = z + e−z + 2πip/q, p/q a rational number.
The Fatou domain of such functions has a wandering domain if p 6= 0.

We show in Proposition 5.6 that if p 6= 0, then dimT (Fp/q) =∞, hence
none of these functions are rigid, in contrast with G(z) = F0 which is rigid
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(see [FH1]). In Corollary 5.7, we show that the map Fp/q with p/q = n+ 1
has n wandering domains.

In the following theorem we show that there is another transcendental
entire function H(z) which has infinitely many attracting domains. After
applying a certain pinching process, the map H(z) ends in a function with
doubly parabolic domains.

Theorem 5.8. For c = (1/2)(t − 1), t ∈ [0, 1], the corresponding maps
Ht(z) = z + c + e−z can be regarded as a path in ρ(T (H)) of pinching
deformation of the function H0(z) with limit the Baker–Domı́nguez function
G(z) = F0(z) = H1(z).

The map H(z) = H0(z) is not rigid but the map G(z) is rigid.

2. The Fatou and Baker–Domı́nguez functions. In this section we
introduce the three main functions that will be used in Section 5. We state
some of their properties as well as the notation that we will be using along
the paper.

2.1. The Fatou function. The Fatou function F (z) = z + 1 + e−z is
a lift (under the map exp(−z)) of the map g : C∗ → C∗ given by g1/e(w) =
1
ewe

−w. The map g has 0 as an attractor and has a unique critical point
at w = 1 which necessarily is in B, the basin of attraction of 0. See [F]
and [BD, Section 7].

The lift of B is the Baker domain V of F and contains the right half-
plane. Baker proved that any multiply connected Fatou domain of a tran-
scendental entire map is a wandering domain, therefore periodic Baker do-
mains are simply connected (see [Ber2]). The function F |V is not univalent
since V contains all the critical points of F which are 2πik (k ∈ Z). The
function F is close to the function z 7→ z+1 in the right half-plane near infin-
ity, therefore V is classified as a doubly parabolic Baker domain, according
to the classification given in Section 2.4 below. The complexity of this kind
of domain is given by a theorem of Bergmann (see [Be]), who proved that
for ϕ : D→ V a conformal equivalence and Θ the sets of points ξ ∈ ∂D such
that limr→1(ϕ(rξ)) =∞, we have Θ = ∂D provided V is doubly parabolic.

2.2. The Baker–Domı́nguez function. Let us denote by G(z) =
z + e−z a lift of the map g1(w) = we−w. Baker and Domı́nguez [BD] show
that the Fatou set of G has a component V1 that contains the real axis
and for every z ∈ V1, Re(fn(z)) → ∞ as n → ∞. Moreover, since the
map commutes with the translations z + 2πik, k ∈ Z, the Julia set of G
contains the lines y = π(1 + 2k). In between these lines there is a uniquely
defined component Vk of the Fatou set and the set Θk is dense in ∂D, with
ϕk : D→ Vk a conformal equivalence for each k.
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The critical points of G are 2πik and each of them belongs to Vk. Each
Vk is a doubly parabolic Baker domain.

2.3. Another function. Let us denote by H(z) = z − 1/2 + e−z a
lift of the map ge1/2(w) = e1/2we−w under π(z) = exp(−z). For the map
ge1/2 , the origin is a repelling fixed point, w = 1/2 is an attracting fixed
point and w = 1 is the unique critical point which is contained in the basin
of attraction. The interval [0, 1/2] is in the basin of attraction and [−∞, 0]
belongs to the Julia set. By [Ber2] or [M1], π−1J(ge1/2) = J(H), therefore
H has the lines y = π(1+2k) in the Julia set. In between these lines there is
an attractor Wk with an attracting point at 1/2+2πik, k ∈ Z. By a theorem
of Kisaka, the boundary of Wk is disconnected, and by a result of Baker and
Domı́nguez [BD], Θ is dense in ∂D.

Clearly the Fatou map F and H are not topologically conjugate.

2.4. Baker domains and their classification. The classification of
Baker domains is as follows (see [FH1], [K]).

If f is transcendental entire and U is a Baker domain, then U/f is a
Riemann surface conformally equivalent to one of the following cylinders:

(1) {−s < Im(z) < s}/Z for some s > 0 and we call U hyperbolic.
(2) {Im(z) > 0}/Z and we call U simply parabolic.
(3) C/Z and we call U doubly parabolic. In this case, either f : U → U

is not proper, or it has degree at least 2.

Examples of Baker domains of higher period were given by Baker, Ko-
tus and Lü [BKL] (see the survey [Ber2] for some references). Baker do-
mains without singularities in their interior (univalent Baker domains) were
constructed by Bergweiler [Ber1], and later a classification of this kind of
domains was given by Barański and Fagella [BF] and Koning [K].

It was proved by Baker [B] that all Baker domains for transcendental
entire maps are simply connected. On the other hand, transcendental entire
functions of order less than 1/2 have bounded Fatou components, hence do
not have Baker domains (see [HM]).

There are functions with infinitely many cycles of p-invariant Baker do-
mains as proved by Rippon and Stallard [RS1]. In [RS2] it is shown that
there exist functions with p-cycles of univalent Baker domains.

3. Pinching process. For completeness we reproduce the definitions
as in Tan [T] with the addition of the concept of wandering admissible pairs
(see Definition 3.3). This treatment of the subject is more general than the
one in [M2] and suits our needs quite well.

Definition 3.1 (The model system). For l > 0, let Bl denote the hor-
izontal strip {x + iy : |y| < π/(2l)}, and Tσ(z) = z + σ. We consider the
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couple (Bl, Tσ) as a model dynamical system, with R as the central line.
For the system (Bl0 , T1) and for any z ∈ R, the distance dBl0 (z, T1(z)) coin-
cides with the hyperbolic length of the segment [z, T1(z)] and is exactly l0.
Therefore lBl0 (R, T1) = l0 and lBl0 (R, Tl/l0) = l0.

Definition 3.2 (The pinching model). For l0 > 0 and t ∈ [0, 1), let
t 7→ lt be a decreasing continuous function tending to 0 as t → 1−. Choose
a quasiconformal map St : Bl0 → Bl0 such that St(z) is a C1-function of
(t, z), St(R) = R and St conjugates (Bl0 , T1) to (Bl0 , Tl/l0). As t → 1−,
lt = lBl0 (R, Tl/l0)→ 0 and the quasiconformal constant of St tends to ∞.

Definition 3.3 (Admissible pairs). For f : C → C an entire map and
k ∈ N, an open arc γ ⊂ C together with a neighborhood U of γ is called
fk-admissible if:

1. Either γ is periodic admissible:

• fk(γ) = γ, fk(U) = U , fk|U is univalent and U , f(U), . . . , fk−1(U)
are mutually disjoint,

or γ is wandering admissible:

• fk|U is univalent and U , f(U), . . . , fk−1(U), . . . are mutually dis-
joint.

2. There is a conformal normalization Φ : (U, γ, fk) → (Bl0 ,R, T1) for
some l0 > 0.

Definition 3.4 (Pinching). Let (γ, U) be an admissible pair for f . Fix
a choice of St on Bl0 . Denote by Et|U the pulled back ellipse field of the
circle field in Bl0 by St ◦Ψ . With the help of f , generate an invariant ellipse
field Et conformal outside the grand orbit of U . Choose a quasiconformal
map ϕt : (Ĉ, Et)→ (Ĉ) integrating Et by the Ahlfors–Bers theorem and set
ft = ϕt ◦ f ◦ϕ−1t . We call (ϕt, ft)t∈[0,1) a path of pinching deformations of f
along (γ, U). Note that if ϕt is replaced by Ht ◦ ϕt, where Ht is a Möbius
transformation, then ft is replaced by Ht ◦ ft ◦H−1t .

Several results related to the convergence of the pinching process can be
found in [BH], [H] and [HT].

Let us denote by Ut the image of U under ht, a family of homeomor-
phisms; similarly γt is the image of γ and denote by diamσ(X) the spherical
diameter of the set X.

Definition 3.5 (Dynamical length [T]). For a map f , we say that a set
γ is f -invariant if f(γ) ⊂ γ. Furthermore, if γ ⊂ V ⊂ Ĉ, with V a hyperbolic
open set, we define the dynamical length lV (γ, f) relative to V to be

lV (γ, f) = sup
z∈γ

dV (z, f(z)),

where dV denotes the hyperbolic metric on V .
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Remark 1 in [T] shows that for a path of pinching deformations, the path
(γt, Ut) is ft-admissible and ϕt shrinks the corresponding dynamical length
to 0, in other words lUt(γt, ft) = lt → 0 as t→ 1.

The following proof taken from [T] (Lemma 2.1 and Proposition B) shows
that in the limit the diameter of the pinched curves shrinks to a point. We
follow the proof of Tan Lei with small changes suited to our situation.

To begin with, we write fn ⇒ g when fn converges uniformly to g on
compact subsets of C and for simplicity set γn = hn(γ).

Lemma 3.6. For f a transcendental entire map, let fn be a sequence of
entire maps topologically conjugate to f with hn as conjugacies. Assume that
lhnU (hn(γ), fkn)→ 0 and fn ⇒ g. Then limn→∞ diamσ hn(γ̄) = 0.

Proof. The proof is divided into four steps. Taking a subsequence if nec-
essary, we start by assuming that γ̄n → Y∞ ⊂ Ĉ in the Hausdorff topology on
compact sets and diamσ Y∞ > 0; since γn is connected, Y∞ is a continuum.

Normalization: Without loss of generality we can assume that all Un
are in C∗.

Inequalities (see [M, Appendix A.8]): Let us consider the following
inequalities: For any simply connected domain V ⊂ C∗, any z ∈ V , and for
λV (z) the coefficient function of the hyperbolic metric on V , we have

λV (z) ≥ 1

2dC(z, ∂V )
≥ 1

2|z|
.

Set η = 1/(2|z|). Let dη denote the euclidean metric on C∗ with η as
coefficient function. Then for any arc κ ⊂ V ⊂ C∗, we have lengthη(κ) ≤
lengthV (κ).

Claim. For any n and any z ∈ γn, we have dη(fn(z), z) ≤ lUn(γn, fn).

Proof. Let κ be the subarc of γn between fn(z) and z. Then

dη(fn(z), z) ≤ lengthη(κ) ≤ lengthUn(κ) = lUn(γn, fn)

by the assumption lUn(γn, fn)→ 0 as n→∞.

Contradiction: Note that fn ⇒ g. Let x ∈ Y∞
⋂
C∗ and K ⊂ C∗

some compact neighborhood of x in C∗. Now, choose a sequence xn ∈ γn
such that xn → x as n→∞. Since the convergence of fn to g is uniform in
compact subsets of the plane, it follows that for n large enough, xn is in K.
Then

dη(g(x), x) ≤ dη(g(x), g(xn))+dη(g(xn), fn(xn))+dη(fn(xn), xn)+dη(xn, x).

The right hand side converges to 0 as n → ∞, since g is continuous,
fn ⇒ g and dη(fn(xn), xn) ≤ lUn(γn, fn)→ 0.

Thus g(x) = x. Moreover, the equality g(x) = x holds for all x ∈ Y∞∩K.
This implies that g is the identity in Y∞ ∩ K, which by hypothesis is a
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nonempty continuum with diameter greater than zero; this is a contradiction
since g is a transcendental entire function.

4. Teichmüller space. Extending the work of Sullivan and McMullen
[MS] on rational maps, the study of deformations of transcendental entire
functions was carried out first by Harada and Taniguchi [HaTa] in the case
that the singular values are a discrete set in C. Then Fagella and Henrik-
sen [FH1], [FH2] generalized the results of Harada and Taniguchi without
restrictions. In this section we give the definitions of concepts that we will
use afterwards.

For a given function f defined on a domain A ⊂ C, we say that z, w ∈ A
are grand orbit equivalent if there are positive integers n,m such that fn(z) =
fm(w); the class of z is denoted by [z] and called the grand orbit of z. If
f : A→ A is a covering, then A/f denotes the set of grand orbits of f , with
the quotient topology. For a subset V of A, the set [V ]f = {w : w ∈ [z] for
some z ∈ V } is called the grand orbit of V . Typically, for a transcendental
entire map the domain A is taken to be equal to C, and V is a Fatou domain.

We say that two quasiconformal automorphisms ϕ1, ϕ2 of A are equiva-
lent if there exists a conformal automorphism ψ of A such that ϕ1 = ψ ◦ϕ2.

Definition 4.1. Let Def(f,A), the deformation space of f , be the set of
equivalence classes of quasiconformal automorphisms ϕ of A which satisfy
ϕ ◦ f = g ◦ ϕ for some holomorphic map g on A. We then say that g is
quasiconformally conjugate to f .

The measurable Riemann mapping theorem implies that Def(f,A) is
identified with the unit ball of the space of all invariant Beltrami differentials
for f (see [MS]). Then we identify the Beltrami differentials which induce
the same map:

Definition 4.2. Let QC0(A) be the set of all quasiconformal automor-
phisms h of A admitting a quasiconformal isotopy to the identity compatible
with f ; that is, there is a K and a homotopy ht, 0 ≤ t ≤ 1, such that

(a) h0(z) = z and h1 = h.
(b) ht is a K-quasiconformal map of A satisfying f ◦ ht = ht ◦ f .

The group QC0(A) acts on Def(f,A) by ω∗φ = φ ◦ ω−1.
Definition 4.3. The Teichmüller space of f in V , denoted by T (f, V ),

is the deformation space Def(f, V )/QC0(V ).

Theorem 4.4 ([HaTa], [MS]). Let f be an entire map and suppose that
Vα is a family of pairwise disjoint completely invariant open subsets of C.
Then

T
(
f,
⋃
Vα

)
'
∏

T (f, Vα).
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We denote by T (V ) the space T (id, V ).

Theorem 4.5 ([HaTa], [MS]). Suppose that every component of the one-
dimensional manifold V is hyperbolic, f : V → V is a holomorphic covering
map and the grand orbit relation of f is discrete. If V/f is connected, then
V/f is a Riemann surface and

T (f, V ) ' T (V/f).

Theorem 4.6 ([FH1]). Let V be a proper fixed Baker domain of the
entire function f , and [V ] its grand orbit. Denote by S the set of singular
values of f in [V ] and by [S] the closure of the grand orbit of S taken in [V ].
Then T (f, V ) is infinite-dimensional except when V is doubly parabolic and
the cardinality of [S]/f is finite. In that case the dimension of T (f, V ) is
equal to #[S]/f − 1.

The marked points consist of all periodic points of f together with the
singular values of the map. Denote by [S] the grand orbit of the closure of
the marked points, and set J = J∪[S] and B1(f, J) = {f -invariant Beltrami
forms in L∞(J)}.

Theorem 4.7 ([FH2], [HaTa]). Let f be a transcendental entire map. Let
[Vi] denote the collection of pairwise disjoint grand orbits of the connected
component of C− J . Then

T (f,C) = B1(f, J)×
∏
i

T (f, Vi).

The Teichmüller space of the map f realizes as the set of deformations
of a function in the following way:

For f a transcendental entire map, with critical points {c1, c2, . . .} and
critical and asymptotic values {v1, v2, . . .}, let Ef be the space of transcen-
dental entire maps quasiconformally equivalent to f . That is, a transcen-
dental entire map g is in Ef if there are quasiconformal maps q, q1 on the
sphere fixing three points, say {0, 1,∞}, such that the following diagram
commutes:

(1)

C
q1
��

f // C
q

��
C g // C

If {c′1, c′2, . . .} are the critical points of g, and {v′1, v′2, . . .} their critical
and asymptotic values, then q1(ci) = c′i and q(vi) = v′i.

On the other hand (see diagram (2)), given a quasiconformal map q,
we consider the pull back µ1 = q∗(µ0) of the conformal structure µ0 on C,
and denote by µ2 the pull back f∗(µ1). By the mesurable Ahlfors–Bers



Pinching deformations of the Fatou function 9

theorem (see [K]), there exists a quasiconformal map q1 realizing µ2, that
is, q∗1(µ0) = µ2.

(2)

C, µ2
q1
��

f // C, µ1
q

��
C, µ0

g // C, µ0
For f and q as above, this construction defines a map that assigns to

the quasiconformal map q, the map q ◦ f ◦ q−11 = g; since g respects the
conformal structure of C, it is a holomorphic map.

The space Ef is studied in [EL] in the case that the set of critical values
is finite.

Proposition 4.8. The map ρ : T (f)→ Ef defined by ρ([q]) = q◦f ◦q−1
= g is well defined.

Proof. If q1 ∈ [q], there is a homotopy ht of quasiconformal maps, with
h0 = id and h1 = h, such that f ◦ ht = ht ◦ f and q1 = q ◦ h−1. Therefore,
g = q ◦ f ◦ q−1 = q ◦h−1t ◦ f ◦ht ◦ q−1. Hence, for t = 1 we have q ◦ f ◦ q−1 =
q1 ◦ f ◦ q−11 .

We will use this map in what follows.

5. The results. The idea behind the results in this article is to consider
a pinching process on maps of the punctured plane and lift these pinchings to
their respective maps. The basic family of maps is gλ(w) = λwe−w, λ ∈ C∗,
which is a family of self-maps of C∗. Using exp(−z) we can lift these maps
to functions of the form f(z) = z− log(λ) + 2πik+ e−z, for some k ∈ Z. We
have g′λ(w) = λe−w(1 − w), so there is a unique critical point at w = 1. If
|λ| 6= 0, then gλ has a nonsuperattracting fixed point at 0. The next lemma
is the observation that any dynamical deformation of gλ that fixes 0, 1 and
∞ is within the family.

Lemma 5.1. If h is a homeomorphism that fixes {0, 1,∞} pointwise and
h−1◦gλ◦h = k is a holomorphic map, then k(w) = αwe−w for some α ∈ C∗.

Proof. Since h fixes {0, 1,∞} pointwise, k(w) is a self-map of C∗ and has
0 as a fixed point as well. Since under conjugation the qualitative dynamics
of the map does not change, k(w) has 0 as a fixed point and also a unique
critical point at 1.

Holomorphic self-maps of C∗ were classified by Bhattacharyya [Bh] and
are of the form k(w) = µwnea(w)+b(1/w), with a(w), b(w) entire functions.
Observe from the derivative of k(w) that for n ≥ 2, zero is superattracting,
which is not our case; also k(0) = 0 implies b(w) = b is a constant, therefore
k(w) = µwea(w)+b.
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Notice that the map gλ has two asymptotic values {∞, 0}, therefore k
must have the same asymptotic values. A result in [S, Remark 3.3] states
that if k is an entire function with finite asymptotic values and finite critical
points, then its derivative k′ is of the form P (w)eQ(w) with P and Q poly-
nomials. This is our case. Since k′(z) = µ(wa′(w) + 1)ea(w)+b, we see that
a(w) and a′(w) are polynomials. The condition that 1 is the only critical
point implies that wa′(w) + 1 = ±(w − 1)n.

The fact that g′′λ(1) = −λe−1 6= 0 implies that 1 is a branched point of
second order (like 0 in z2); the same is true for k′′ at 1. This implies that
k′′(1) 6= 0 iff (wa′(w) + 1)′(1) 6= 0, that is, ±n(w − 1)n−1 at 1 is different
from zero. Therefore, n = 1 and a′(w) = −1. Hence, k(w) = αwe−w+c for
some constant c, which implies that k(w) = αecwe−w, which is what we
wanted to prove.

Assume now that the homeomorphism h fixes {0, 1,∞} and it has a lift
to H, that is, exp(−z) ◦H(z) = h ◦ exp(−z).

Corollary 5.2. Let g(w) = λwe−w with |λ| < 1, and suppose that
H−1(z) ◦ G(z) ◦H(z) = K(z) is holomorphic, with G(z) a lift of g(z) and
H a lift of h. Then K(Z) = z + e−z + a.

Proof. Since H−1(z)◦G(z)◦H(z) = K(z) is holomorphic, it follows that
h−1◦g◦h = k is a holomorphic self-map of C∗. By Lemma 5.1, k(w) = αwe−z

and K(z) is a lift of k(w). Then K(z) = z + e−z − log(α) + 2πik, k ∈ Z, as
required.

In order to have a convergent sequence as in the hypothesis of Lemma 3.6,
we have to show that a sequence of maps that are uniformly convergent in
the punctured plane has lifts that are uniformly convergent as well; this is
shown in the next lemma. Recall that we are lifting with respect to e−z so
that f is a lift of g if exp(−f(z)) = g(exp(−z)); any two lifts differ by a
factor 2πik.

Lemma 5.3. Consider a sequence of maps gn : C∗ → C∗ of the form
gn(w) = λnwe

−z that converges uniformly on compact sets to a function
of the form g(w) = λwe−z, with λ 6= 0 and the numbers λn/λ being pos-
itive reals. Then, for each integer k, the family of respective lifts fn(z) =
−log(λn) + z + e−z + 2πik converges uniformly on compact sets to f(z) =
−log(λ)+z+e−z+2πik. Here log(λ) is the principal branch of the logarithm
function.

Proof. Observe that if K ⊂ C is a compact set, then its projection under
exp(−z) is a compact subset of C∗. Now since |fn(z)− f(z)| = |−log(λn) +
log(λ)| and |gλn(w)−gλ(w)| = |λn−λ| |we−z|, we see that {fn(z)} converges
uniformly on compact sets iff {gλn} does.
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In this section we will briefly write T (f) in place of T (f,C). For F the
Fatou function, observe that due to Theorem 4.6, dimT (F ) is ∞. Also note
that the families gλ(w) = λwe−w and gα(w) = αwew are conjugate by a
rotation of C∗.

Theorem 5.4. For c = 1 − t, t ∈ [0, 1], the maps Fc(z) = z + c + e−z

can be regarded as a path in ρ(T (F )) of pinching deformations of the Fatou
function F (z) with limit the Baker–Domı́nguez function G(z) = F0(z).

Proof. We split the proof into two steps.
1. Let C be the main cardioid of the Mandelbrot set of the quadratic

family z2+d, and ∆ the open unit disc. The map Ψ : ∆→ C given by Ψ(λ) =
(1− (1− λ)2)/4 is a biholomorphism. Now, the set of λ’s for which zero is
an attracting fixed point of gλ(w) = λwe−w coincides with ∆. Moreover, if
the multiplier of 0 is λ, then the map fΨ(λ)(z) = z2 +Ψ(λ) has an attracting
fixed point z0 with multiplier λ, and in addition, the attracting domain of 0
has the critical point w = 1 and the attracting domain of z0 has the critical
point z = 0. Since both functions have only one Fatou domain which is their
respective attracting domain, [V ]gλ and [V ]fΨ(λ)

, as defined at the beginning

of Section 4, are isomorphic one-punctured tori (see [MS]).
For Ψ(λ) = d, the condition λ ∈ [1/e, 1) corresponds to d ∈

[(1− (1− 1/e)2)/4, 1/4) ⊂ [0, 1/4). Then, from [T, Example 1], it can be
shown that for d ∈ [d0, 1/4], the corresponding z2 + d can be regarded as
a pinching deformation for a suitable admissible pair which converges to
z2 + 1/4, the admissible curve being the interval I in the reals from the
attracting fixed point to the repelling fixed point. Notice that the interval I
projects to a closed curve σ in [V ]fd , therefore this is equivalent to pinching
[V ]fd along σ as explained in [T].

We translate such pinching to our case by means of the equivalence be-
tween [V ]gλ and [V ]fΨ(λ)

. This implies that the curve I above becomes the

curve γ(s) = (1/e)s, 0 ≤ s ≤ 1, in B1/e and corresponds to the pinch-
ing curve. Let Γ be the grand orbit of γ(s) under g1/e, and let U be the
ε-neighborhood of γ(s) with respect to the hyperbolic metric in B1/e. Then
(γ, U) is an admissible pair for g1/e. Notice that since B1/e is the only Fatou
component of g1/e, the connected components of Γ are precisely the curves
in the grand orbit of γ(s), i.e., there are no closed curves in Γ .

Then, pinching along Γ deforms g1/e in such a way that the process stays
within the family gλ by Lemma 5.1. Therefore, it converges to g1 with the
attracting fixed point becoming a parabolic fixed point. The fixed point st
in the boundary of Bt satisfies st ∈ [−1, 0], 0 ≤ t ≤ 1.

2. Now, we lift the situation explained in 1 above. The fixed points st
lift to rt = −log(st); so for t = 0, the fixed points are r0 = πi + 2πik. The
curve γ lifts to the family of curves {γ̃k(s)}, where each curve γ̃k begins at
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πi+ 2πik, ends at infinity and is parallel to the real axis. Denote by Γ̃ the
grand orbit of these curves under F or equivalently the lifting of all curves
of Γ , and denote by Ũk the lifts of U , which are neighborhoods of γ̃k(s).
Then (γ̃k(s), Ũk) are admissible pairs for F1.

We can proceed with the pinching process which is a lift of the one in
item 1. Now, since the maps gλ of item 1 above converge through a path
inside the family, by Corollary 5.2, the process is lifted to the family Fc
which by Lemma 5.3 is convergent. Therefore, pinching F1 converges to F0,
as we wanted to prove. Moreover, under the pinching process, the points
r0 = πi+ 2πk move towards infinity (Lemma 3.6), and so the Baker domain
is decomposed into an infinite set of Baker domains separated by the lines
L̃k = x+πi+2πik (x ∈ R), k ∈ Z, which are lifts of the line L−1 and belong
to the Julia set of F0.

Theorem 5.5. There is a pinching process from the Fatou function F to
any of the functions Fp/q(z) = z+e−z+2πip/q, with p/q a rational number.
The Fatou domain of such functions has a wandering domain if p 6= 0.

Proof. For λ ∈ ∆, 0 is an attracting fixed point of gλ and the boundary
points of the form λ = e−2πip/q correspond to maps with a periodic parabolic
domain.

It is known that for the quadratic family fd(z) = z2 + d, the parabolic
points in the boundary of the main cardioid C are reached by a pinching
process from any map in C−{0}, therefore there are curves in the attracting
domain of some fd with d ∈ C which projects to a certain curve γ in the
torus [V ]fd (see [M2] or [T]). Again we find that the torus [V ]gλ is isomorphic
to [V ]fd with Ψ(λ) = d. So we translate the curve γ to [V ]gλ and consider the
curve in the attracting domain of gλ that projects to γ. Choosing λ = 1/e
we obtain in the Fatou domain of the map g1/e the admissible pairs we need.

As in the above theorem, we lift the admissible pairs of g1/e to obtain
the admissible pairs for the function F , and continue with the pinching
process which deforms it to the map Fp/q. The map Fp/q has infinitely many
connected Fatou domains coming from the lifts of the parabolic basin of the
map below, e−2πip/qze−z.

To show that there is a wandering domain, we follow the orbit of iπ;
notice that its projection is the point 1, which is the critical point of the
maps e−2πip/qze−z. Its iterations move it through the different components
of the parabolic domains, winding around the origin since p/q is nonzero.
Therefore the lift translates by 2πi the point iπ jumping from one component
to another, so it is not difficult to show that |Fn(iπ)| tends to infinity; this
implies that there is a wandering domain.

We state the following proposition on the dimension of the space of
deformations.
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Proposition 5.6. dim(T (Fp/q)) =∞ if p 6= 0.

Proof. Notice that for x ∈ R, between the lines x + 2πik and x +
2πi(k + 1), k ∈ Z, there are the lifts of the q parabolic components of
e−2πip/qze−z. Choose Vk to be any of those components such that Fp/q(Vk) =
Vk+1 and denote V =

⋃
kVk. Then the grand orbit relation of Fp/q on V −S

is discrete, thus the grand orbit relation of Fp/q in [V ] is discrete, with the
set of critical points {cj} belonging to different orbits as we show next.

Denote by c the critical point of e−2πip/qze−z, which is in the orbit of
the parabolic domain. Then the critial points of Fp/q, {cj} are the lifts of c.
If we denote by {c, z1, z2, . . .} the forward orbit of c, we know that zi 6= zj if
i 6= j. Therefore if we denote by {zik}k∈Z the lifts of zi, they are all different
and we have zik ∈ Vk. Therefore Fp/q(zik) = z(i+1)(k+1). This shows that the
critical points belong to different orbits.

Now, the uniformizing chart on each Vk with the map z 7→ z + 1 shows
that [V ]/Fp/q is biholomorphic to C − {ck}k∈Z, similar to Example 4 in
[FH2]. Therefore, dim(T (g)) =∞.

Corollary 5.7. For any integer n, there is a path in ρ(T (F )) which
defines a pinching process of the Fatou function that converges to a function
with n wandering domains.

Proof. Fix n and consider the function Fn+1(z) = G(z) + 2πi(n + 1),
which is one of the functions in Theorem 5.5 with p/q = n+ 1. Moreover, it
is a lift of g1. The Fatou set of Fn+1 is the same as the Fatou set of G(z), but
now the number 2πi(n+1) moves each component Vk to Vk+n+1. Therefore,
there are n orbits of wandering domains.

Observe that by Proposition 5.6, the maps Fn+1 are nonrigid.

Finally, in the next theorem we show that the map H in Section 2.3 can
be deformed by a pinching process to obtain the Baker–Domı́nguez function
F0 although F and H are not conjugate maps. In fact this is a pinching
from an attractor domain to a doubly parabolic domain.

Theorem 5.8. For c = (1/2)(t − 1), t ∈ [0, 1], the corresponding maps
Ht(z) = z + c + e−z can be regarded as a path in ρ(T (H)) of pinching
deformation of the function H0 with limit the Baker–Domı́nguez function
G(z) = F0(z) = H1(z).

Proof. 1. Observe that for |λ| > 1, the family gλ with |1 − log λ| < 1
has the property that w0 = 0 is a repelling fixed point and w1 = log(λ) is
an attracting fixed point; this corresponds to a second main cardioid made
of quadratic like maps. Define γ(s) = (1/2)(1 − s), 0 ≤ s ≤ 1, a curve
in the basin of attraction of ge(1/2)(w) = e(1/2)we−w that joins w1 = 1/2
to 0. We proceed as in the above theorem to construct the admissible pair
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(γ, U) and denote by Γ its grand orbit. By the same type of argument as in
Theorem 5.4, pinching along Γ deforms ge(1/2) to g1.

2. Now, we lift the above situation: the lift γ of the curve γ has infinitely
many connected components which are curves γk that connect the attracting
points log(2) + 2πik of H0 with infinity and are invariant under iteration.
As above, there are neighborhoods of γk such that all pairs (γk, Uk) are
admissible pairs and we can apply the pinching process which converges to
F0(z) by the same type of argument as in Theorem 5.4. The pinching process
moves the attracting points towards infinity, by Lemma 3.6. Hence, each of
the attracting domains Wk becomes the doubly parabolic Baker domain Vk
of F0.
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