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Selivanovski hard sets are hard

by

Janusz Pawlikowski (Wrocław)

Abstract. Let H ⊆ Z ⊆ 2ω. For n ≥ 2, we prove that if Selivanovski measurable
functions from 2ω to Z give as preimages of H all Σ1

n subsets of 2ω, then so do continuous
injections.

Let H ⊆ Z be subsets of the Cantor space C = 2ω. Say that (H,Z) is
Σ1
n-hard if for any Σ1

n set Q ⊆ C there is a continuous function f : C → Z
with Q = f−1[H].

Kechris [1] proved (1) that using here Borel rather than continuous func-
tions we get the same family of pairs. For n ≥ 2 Sabok [4] improved this by
replacing Borel functions with functions such that preimages of all sets from
the canonical subbasis of C are in Σ1

1 ∪Π1
1.

We show for n ≥ 2 that by changing in the definition of Σ1
n-hardness

“continuous” to “Selivanovski measurable” we do not get more pairs, and by
changing “continuous” to “continuous injective” we do not get fewer pairs.

Recall that a function is Selivanovski measurable if preimages of open
sets belong to the σ-field of Selivanovski sets (also called C-sets), which is
the least σ-field that contains all Borel sets and is closed under the Suslin
operation.

Kechris and Sabok use effective descriptive set theory, and Kechris asked
about a classical proof of his theorem. Our proof is classical and can be
adapted to give Kechris’s theorem (see [3] for a direct classical proof of
Kechris’s theorem).

Theorem. Let n ≥ 2 and H ⊆ Z ⊆ C. If Selivanovski measurable func-
tions from C to Z give as preimages of H all Σ1

n subsets of 2ω, then so do
continuous injections.
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(1) Kechris formulated his result for n = 1, but his proof works for any n ≥1.
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Note that since for any separable metrizable space S there exists a Borel
injection e : C → S whose inverse is continuous (e.g., e(s)(i) = 1 ⇔ s ∈ Oi,
where {Oi}i∈ω is a basis of S), and e can be chosen to be continuous if S is
zero-dimensional, we can change in the Theorem the range space Z to any
separable metrizable space and the domain space C to any zero-dimensional
uncountable Polish space.

Note also that the Theorem cannot be extended to n = 1: pick distinct
points z0 and z1 in C and let Z = {z0, z1}; if Q ⊆ C is Σ1

1, then the map
sending Q to z0 and C r Q to z1 is Selivanovski measurable; however, no
non-clopen Q ⊆ C is a continuous preimage of H = {z0}.

1. Spaces, pointclasses, functions. All our spaces are separable and
metrizable; let X, Y , and Z range over such spaces. We identify the Baire
space N = ωω with

{x ∈ C : ∀i ∃j > i x(j) = 1}.

For Q ⊆ X× Y , f : X× Y → Z, and x ∈ X, define the sections Qx ⊆ Y
and fx : Y → Z by y ∈ Qx ⇔ (x, y) ∈ Q and fx(y) = f(x, y).

A pointclass is a map Φ that assigns to any space X a family ΦX = Φ(X)
of subsets of X; we often drop X if context permits. Let ΦXY = Φ(X,Y )
be the family of all Φ measurable functions from X to Y , i.e., functions such
that preimages of open subsets of Y are in Φ(X).

Let B and S be the pointclasses of Borel and Selivanovski sets. Seli-
vanovski sets have the Baire property, and thus Selivanovski measurable
functions are Baire measurable.

We shall also use the pointclasesΣ1
n,Π

1
n, and∆1

n, n ≥ 1. For an arbitrary
space X, the families Σ1

n(X), Π1
n(X), and ∆1

n(X) are defined in the same
way as for a Polish space (see [2, 25.A]): the Π1

n(X) sets are the complements
of Σ1

n(X) sets, and the Σ1
n(X) sets are the projections of Π1

n−1(X × N )
sets, if n > 1, and of closed subsets of X × N , if n = 1; also, ∆1

n(X) =
Σ1
n(X) ∩Π1

n(X).
We have

B(X) ⊆∆1
1(X) ⊆ S(X) ⊆∆1

2(X);

if X is an uncountable Polish space, then the first inclusion is improper, and
the next two are proper (see [2]; for S 6= ∆1

2 see Section 4).

Lemma 1. Let Φ ∈ {B,S,Σ1
n,Π

1
n,∆

1
n}.

(1) If X ⊆ X ′, then:
(a) Q′ ∈ ΦX′ ⇒ X ∩Q′ ∈ ΦX ,
(b) Q ∈ ΦX ⇒ ∃Q′ ∈ ΦX′ Q = X ∩Q′, if Φ 6= ∆1

n,
(c) Q ∈ ΦX ∧X ∈ ΦX′ ⇒ Q ∈ ΦX′.
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(2) If Y is Σ1
n in a Polish space, then projections along Y of Σ1

n subsets
of X× Y are Σ1

n(X).
(3) Φ is closed under countable unions, countable intersections, and sec-

tions. The class of Φ measurable functions is closed under sections.
(4) If f0 : X0 → Y0 and f1 : X1 → Y1 are Φ measurable, then the Carte-

sian product function (x0, x1) 7→ (f0(x0), f1(x1)) is Φ measurable.
(5) A function is Φ measurable iff preimages of closed sets are Φ sets.

For any function, the notions of Σ1
n, Π

1
n, and ∆1

n measurability co-
incide.

(6) The graph of a Φ measurable function is a Φ set.
(7) Preimages of Φ sets under Φ measurable functions are Φ sets.
(8) If the domain of a ∆1

n measurable function is Σ1
n in a Polish space,

then images of Σ1
n sets are Σ1

n sets.
(9) If Y is Σ1

n in a Polish space and the graph of f : X → Y is Σ1
n, then

f ∈∆1
n(X,Y ).

Proof. (4) The open subsets of Y0×Y1 are the countable unions of prod-
ucts V0× V1, with V0 and V1 open; the preimage of V0× V1 is f−1

0 (V0)×
f−1

1 (V1) ∈ ΦX0×X1 .
(5) Closed sets are Gδ, and open sets are Fσ.
(6) If f ∈ ΦXY , then graph f is the preimage of the diagonal of Y 2 under

the Φ measurable function (x, y) 7→ (f(x), y).
(7) We give a proof for Φ = Σ1

n. Embed Y into a Polish space Y ′; given
any Q ∈ Σ1

n(Y ), get Q′ ∈ Σ1
n(Y ′) with Q′ ∩ Y = Q; then

f−1(Q) = {x ∈ X : ∃ y ∈ Y ′ y ∈ Q′ ∧ f(x) = y}

is the projection along Y ′ of the intersection of Σ1
n(X×Y ′) sets: X×Q′ and

graph f .
(8) For Q ⊆ X, f(Q) is the projection of (Q× Y ) ∩ graph f along X.
(9) For Q ⊆ Y , f−1(Q) is the projection of (X×Q)∩ graph f along Y .

Denote by P(X) the family of all Cantor (i.e., homeomorphic to C) sub-
sets of X endowed with the Vietoris topology. Note that if G is Gδ in X then
P(G) is Gδ in P(X). Also, if X is a perfect Polish space, then so is P(X),
and if G is comeager in such an X, then P(G) is comeager in P(X).

Recall that if g : X → Y is Baire measurable, then there is a comeager
set G ⊆ X such that g|G is continuous. So, if X is a perfect Polish space,
then g is continuous on comeagerly many p ∈ P(X) (on any p ∈ P(G)).
Equivalently, if sets Qn ⊆ X, n ∈ ω, have the Baire property, then there is
a comeager set G ⊆ X such that the sets G∩Qn, n ∈ ω, are clopen in G. So,
if X is a perfect Polish space, then for comeagerly many p ∈ P(X), the sets
p ∩Qn, n ∈ ω, are clopen in p.
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Let P = P(C), and let π : P× C → C be a continuous function such that
each section πp, p ∈ P, is a homeomorphism from C onto p (e.g., let πp be
induced by the unique bijection from 2<ω onto the split nodes of the tree
{s|l : s ∈ p, l ∈ ω} which preserves the lexicographic ordering).

For z ∈ C, define z∗ ∈ C by z∗(i) = z(2i), and write

Cx = {z ∈ C : z∗ = x}, Px = P(Cx), x ∈ C.
Fix also a list {In}n∈ω all of clopen subsets of C, with I0 = ∅.

Finally, the main notion: if n ≥ 1 and H ⊆ Z ⊆ C, we say that (H,Z) is

• Σ1
n-hard if ∀Q ∈ Σ1

n(C) ∃ continuous f : C → Z with Q = f−1[H],

• SΣ1
n-hard if ∀Q ∈ Σ1

n(C) ∃ Selivanovskimeasurable f : C → Z with
Q = f−1[H].

2. Injections. We first show how hardness can be realized via injections.

Lemma 2. Suppose that (H,Z) is Σ1
n-hard for some n ≥ 1. Then any

Σ1
n subset of C can be obtained as the preimage of H under a continuous

injection from C into Z.

Proof. Define c : N × C → C by

c(s, y)(i) = 1 ⇔ y ∈ Is(i).
Then c is continuous, and {cs}s∈N is the family of all continuous functions
from C to C.

Claim. ∃ p ∈ BNP ∀s ∈ N p(s) ⊆ Cs ∧ cs|p(s) is injective or constant.

Proof of Claim. Let

Q = {(s, p) ∈ N × P : p ⊆ Cs ∧ cs|p is injective or constant}.
We claim that (1) Q is Gδ, and (2) ∀s ∈ N Qs is nonmeager in Ps. Once
this is established, we can use the uniformization theorem for Borel sets with
“large sections” [2, 18.6] to get the desired p.

(1) Consider in N × C2 the open set ∇ and the closed set ∆ defined by

∇ = {(s, y0, y1) ∈ N × C2 : cs(y0) 6= cs(y1)},
∆ = {(s, y0, y1) ∈ N × C2 : y0 = y1}.

Note that (s, p) ∈ Q iff p ⊆ Cs and
{s}× p2 ⊆ ∇ ∪∆ ∨ {s}× p2 ⊆ (N × C2) r∇.

Now, “p ⊆ Cs” defines a closed set in N × P. The displayed line defines, in
turn, a Gδ set: the map (s, p) 7→ {s}× p2 is continuous, and the set

P(∇∪∆) ∪ P((N × C2) r∇)

is Gδ in P(N × C2) because the sets ∇ ∪ ∆ and (N × C2) r ∇ are Gδ in
N × C2.
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(2) Fix s ∈ N . Either cs is constant on a nonempty open set U ⊆ Cs —
then P(U) is nonempty open in Ps, and p2 ⊆ C2 r∇s for p ∈ P(U); or else
C2
s ∩ ∇s is dense open in C2

s —then there are comeagerly many p ∈ Ps with
p2 ⊆ ∇s ∪∆s by the Kuratowski–Mycielski theorem [2, 19.1]. Claim

Now, consider the following Borel injection from N × C into C:

h(s, y) = π(p(s), y).

If Q ∈ Σ1
n(C), then h[N × Q] ∈ Σ1

n(C). As (H,Z) is Σ1
n-hard, for some

continuous f : C → Z,
h[C×Q] = f−1[H].

Hence, since h is injective,

C×Q = h−1[f−1[H]].

Pick s with f = cs. Then

Q = h−1
s [c−1

s [H]] = (cshs)
−1[H].

But cshs is injective or constant, as hs is a bijection onto p(s), and cs|p(s)
is injective or constant.

If cshs is injective, we are done. Otherwise, it must be the case that Q ∈
{C,∅}. Then there is also a continuous injective g : C → Z with Q = g−1[H]
since both H and Z rH contain copies of C (2).

3. Suslin operation. For any set Λ, a set T ⊆ Λ<ω is a tree if it is closed
under initial segments. A tree T is well-founded if ¬∃t ∈ Λω ∀l ∈ ω t|l ∈ T .

Henceforth let A = ω<ω, and let E be the set of all nonempty well-founded
subtrees of A<ω. Identifying Pow(A<ω) with C, we view E as aΠ1

1 subset of C.
In the following:

◦ 〈 † 〉 is the one-term sequence consisting of †;
◦ i ∈ ω;
◦ σ, ς, τ ∈ A; θ, ϑ ∈ A<ω;

∅, resp. ∅, is the empty sequence in A, resp. A<ω;
◦ for θ 6= ∅, last θ = the last term of θ;
◦ ς σ̂ and ϑ θ̂ denote the concatenations of the respective sequences; but
σ î = σ 〈̂i〉 and ϑ σ̂ = ϑ 〈̂σ〉; so lastϑ ∅̂ = lastϑ and lastϑ ∅̂ = ∅;

◦ ε ∈ E ; θ ε̂ = {θ ϑ̂ : ϑ ∈ ε}; εθ = {ϑ : θ ϑ̂ ∈ ε};
◦ s, t ∈ N ; s ≤ t iff ∀l s(l) ≤ t(l).

(2) Fix G ∈ Gδ(C)rFσ(C). Let g : C → Z be continuous with G = g−1[H]. Then g[G]
is uncountable, as otherwise G = g−1[g[G]] would be Fσ. Being an uncountable Σ1

1 set,
g[G] contains a copy of C. The same argument works for g with Q = g−1[Z rH].
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We use the symbol (3)
∧

for the Suslin operation: given sets {Qσ}σ∈A,∧
σ

Qσ =
⋃
s

⋂
σ⊆s

Qσ.

Note that if a family F ⊆ Pow(X) is closed under the operation Xr
∧
σ Q

σ,
then F is a σ-field closed under the Suslin operation; so, if F also contains
a basis of X, then F ⊇ SX .

Lemma 3. Suppose that X is compact and {Qσ}σ∈A ⊆ Pow(X). If each∧
τ Q

σ̂ τ , σ ∈ A, is clopen, then there exists t ∈ N such that∧
σ

Qσ =
⋃
s≤t

⋂
σ⊆s

Qσ.

Proof. Let Q̃σ =
∧
τ Q

σ̂ τ . Note that Q̃∅ =
∧
σ Q

σ, and for each σ,

Q̃σ =
⋃
i∈ω

Q̃σ î.

Since the tilded sets above are compact and clopen, there exist kσ ∈ ω such
that if k ≥ kσ and if “i ∈ ω” is changed to “i ≤ k”, then the equality is
preserved. It follows that t ∈ N given by

t(`) = max{kσ : |σ| = ` ∧ ∀ l < ` σ(l) ≤ t(l)}
works.

4. Coding. We construct a ∆1
2 measurable function that is universal

for SCC . Define U θε ⊆ C by

U θε =

{
I|last θ|, θ /∈ ε,
C r

∧
σ U

θ σ̂
ε , θ ∈ ε,

and then define u : E × C → C by

u(ε, x)(i) = 1 ⇔ x ∈ U〈〈i〉〉ε .

Lemma 4. u ∈∆1
2(E × C, C) and {uε}ε∈E = SCC.

Proof. For the first part it is enough to see that x ∈ U θε is ∆1
2. We have

x ∈ U θε ⇔ ∃d ⊆ ε ϕ ∧ θ ∈ d ⇔ ∀d ⊆ ε ϕ⇒ θ ∈ d,
where ϕ is

∀θ
(
(θ /∈ ε⇒ x ∈ I|last θ|) ∧ (θ ∈ ε⇒ ¬∃s ∀σ ⊆ s θ σ̂ ∈ d)

)
.

For the second part it is enough to see that {U θε }ε∈E = SC whenever
θ = 〈〈i〉〉. In fact, this is true for any θ.

(3) \DeclareMathOperator∗{\suslin}{\vphantom{\bigwedge}\mathpalette\souslin\bigwedge}
\def\souslin#1#2{#1\overline{\smash{#2}}}

\suslin_{\sigma} Q {̂\sigma} 
∧
σ Q

σ,
∧
σ

Qσ.
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The ⊆ inclusion is clear. To see the ⊇ inclusion note first that U θ ϑ̂ε = Uϑεθ
for all θ and ϑ. Also, for any θ and any {εσ}σ∈A, if

ε = {θ|l : l ≤ |θ|} ∪
⋃
σ

(θ σ̂) ε̂σ,

then
U θε = C r

∧
σ

U θεσ .

It follows that {U θε }ε∈E is a σ-field closed under the Suslin operation.
We still need to see that {U θε }ε∈E contains a basis of C. First, if θ is

terminal in ε, then U θ ∅̂
ε = I|∅| = ∅, so

∧
σ U

θ σ̂
ε = ∅, hence U θε = C. Next,

given any n 6= 0, let
ε = {θ|l : l ≤ |θ|} ∪ {θ σ̂ : |σ| 6= n}.

Now, if |σ| 6= n then θ σ̂ is terminal in ε, so U θ σ̂ε = C, and if |σ| = n then
θ σ̂ /∈ ε, so U θ σ̂ε = I|σ| = In. Altogether this gives

∧
σ U

θ σ̂
ε = In, hence

U θε = C r In.

5. Uniformization

Lemma 5. There is p ∈∆1
2(E ,P) such that for each ε,

p(ε) ∈ Pε and uε|p(ε) is continuous.

Proof. The desired p is obtained by the Σ1
2 uniformization theorem ap-

plied to the set Q of all (ε, p) ∈ E × P with p ∈ Pε for which there exist
n̄ ∈ ωA<ω and s̄ ∈ NA<ω such that ∀θ /∈ ε |last θ| = n̄(θ) and

∀θ ∈ ε
(∧
σ

p ∩ In̄(θ σ̂) ⊆ pr In̄(θ) ⊆
⋃

s≤s̄(θ)

⋂
σ⊆s

p ∩ In̄(θ σ̂)

)
.

Note that uε is continuous on any p ∈ Qε since ∀θ p ∩ U θε = p ∩ In̄(θ).
We will show: (1) Q ∈ Σ1

2(E × P), and (2) ∀ε Qε 6= ∅.
(1) The conditions “p ∈ Pε” and “∀θ /∈ ε |last θ| = n̄(θ)” define closed sets

in E×P and E×ωA<ω. The displayed condition, in turn, defines a Π1
1 set in

E × P× ωA<ω×NA<ω .

Its first inclusion gives clearly a Π1
1 set in P×ωA<ω. Its second inclusion gives

a closed set in P× ωA<ω×NA<ω, as it says that the compact set pr In̄(θ) is
contained in the projection of the compact set

{(x, s) ∈ C×N : s ≤ s̄(θ) ∧ ∀σ ⊆ s x ∈ p ∩ In̄(θ σ̂)}.

(2) Since for any θ and ς, the set Cε ∩
∧
σ U

θ 〈̂ς σ̂〉
ε has the Baire property

in Cε, we can choose p ∈ Pε such that for any θ and ς, the set p ∩
∧
σ U

θ 〈̂ς σ̂〉
ε

is clopen in p. In particular, for any θ ∈ ε, the set p ∩ U θε = p r
∧
σ U

θ 〈̂∅ σ̂〉
ε

is clopen in p.
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To get n̄ ∈ ωA<ω, if θ /∈ ε then let n̄(θ) = |last θ|, and if θ ∈ ε then let
n̄(θ) be any n such that

p ∩ U θε = p ∩ In.
To get s̄ ∈ NA<ω, if θ /∈ ε then let s̄(θ) be any element of N , and if θ ∈ ε

then let s̄(θ) be the t of Lemma 3 applied to p and {p ∩ In̄(θ σ̂)}σ∈A so that∧
σ

p ∩ In̄(θ σ̂) =
⋃

s≤s̄(θ)

⋂
σ⊆s

p ∩ In̄(θ σ̂).

6. Proof of the Theorem. In view of Lemma 2, we just need to get
Σ1
n-hardness from SΣ1

n-hardness. Consider the following ∆1
2 measurable in-

jection from E × C to C:
g(ε, x) = π(p(ε), x),

where p is from Lemma 5. If Q ∈ Σ1
n(C), then g[E × Q] ∈ Σ1

n(C) by
Lemma 1(8). So, if (H,Z) is SΣ1

n-hard, then for some f ∈ SCZ ,

g[E ×Q] = f−1[H].

Hence, since g is injective,

E ×Q = g−1[f−1[H]].

Pick ε with f = uε. Then

Q = g−1
ε [u−1

ε [H]] = (uεgε)
−1[H].

But uεgε is continuous because gε is a homeomorphism onto p(ε) and uε|p(ε)
is continuous.

7. Kechris’s Theorem. Change A to ω, A<ω to ω<ω, S to B, Σ1
2 to

Σ1
1, ∆

1
2 to ∆1

1, and
∧

to
⋃
. So, E is now the set of all nonempty well-founded

subtrees of ω<ω, and u is ∆1
1 measurable.

In Lemma 5, let Qε consist of all p ∈ Pε on which uε is continuous. Then
Qε is comeager in Pε . Also, Q is Π1

1, since uε|p is continuous iff

∀n ∃m ∀x ∈ p x ∈ Im ⇔ u(ε, x) ∈ In,
and “u(ε, x) ∈ In” gives a ∆1

1(E×C×ω) set. To get p, use the uniformization
theorem for Π1

1 sets with “large sections” [1, 36.23] that provides here a
∆1

1 measurable uniformization. (The Π1
1 uniformization theorem may fail to

give a ∆1
1 measurable function.)

Now, if g is as in Section 6 and Q ∈ Σ1
1(C), then

g[E ×Q] = {z ∈ C : ∃y ∈ Q g(z∗, y) = z} ∈ Σ1
1(g[E × C]),

as we have here the projection along Q ∈ Σ1
1(C) of the ∆1

1(g[E × C]× C) set
given by the preimage of {(z, z) : z ∈ C} via the ∆1

1 measurable function

g[E × C]× C 3 (z, y) 7→ (g(z∗, y), z).
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So, for some ε, g[E × Q] = g[E × C] ∩ u−1
ε [H], hence E × Q = g−1[u−1

ε [H]],
and, as before, Q = (uεgε)

−1[H].
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