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Abstract. It was recently proved that every additive category has a unique maximal
exact structure, while it remained open whether the distinguished short exact sequences
of this canonical exact structure coincide with the stable short exact sequences. The
question is answered by a counterexample which shows that none of the steps to construct
the maximal exact structure can be dropped.

1. Introduction. Exact categories, preconceived by Heller [6] (see [1,
Appendix B]) and introduced by Quillen [13], provide a suitable framework
for K-theory [13], relative homological algebra [7, 2, 5], and derived cate-
gories [12, 10]. For an additive category A , a sequence of morphisms

(1) A
a
� B

b
� C

with a = ker b and b = cok a is said to be a short exact sequence in A . (In
what follows, we depict kernels of morphisms by � and cokernels by �.)
For a desciption of the unique maximal exact structure of an additive cate-
gory A , one-sided exact structures had to be introduced [15]. By definition,
a left exact structure on A is given by a class D ⊂ A of cokernels, called
deflations, satisfying:

(C) D is a subcategory with Ob D = Ob A .
(P) The pullback of any c ∈ D along an arbitrary morphism exists and

belongs to D .

(Q) If A
a→ B

b→ C belongs to D and b has a kernel, then b ∈ D .
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In particular, the pullback of a deflation b : B � C along 0 → C yields
its kernel a : A � B. Thus every deflation b gives rise to a short exact
sequence (1). We refer to such sequences as conflations. Dually, a class I
of kernels (called inflations) defines a right exact structure on A if I is a
left exact structure on A op. An exact category in the sense of Quillen [13]
is an additive category with conflations coming simultaneously from a left
and a right exact structure.

Every abelian category A has two extremal exact structures: the maxi-
mal one, which consists of all short exact sequences, and the minimal one,
which consists of the split short exact sequences. More generally, the split
short exact sequences of any additive category A determine the smallest
exact structure, but it was discovered only recently that A also admits a
unique maximal exact structure. For a triangulated category A , the two
extremal exact structures coincide. If A has kernels and cokernels, the ex-
istence of the maximal exact structure was first proved by Sieg and Weg-
ner [16]. Crivei [4] extended the result to additive categories for which every
split epimorphism has a kernel.

The general case was established in [15]. Using Quillen’s axiom (Q), the
“obscure axiom” [17] which is redundant for two-sided exact categories [9],
we proved first that any left exact structure of an additive category A can be
combined with any right exact structure to make A into an exact category
[15, Theorem 1]. Of course, every exact category arises in this way. The
existence of the maximal exact structure then follows from the more general
result that every additive category A admits a unique maximal left exact
structure [15, Corollary 1 to Theorem 2]. Its deflations are given explicitly
in terms of two operators P and Q on A which are defined as follows [15].

For a class D of morphisms in A , let PD denote the the class of mor-
phisms b : B → C such that for every f : C ′ → C in A , the pullback

(2)

B′
b′

→ C ′

B
↓
e

b
→ C
↓
f

exists and satisfies b′ ∈ D . The class QD consists of the morphisms b ∈ D
such that, for every pullback (2), the implication e ∈ D ⇒ f ∈ D is satisfied.
If C denotes the class of cokernels in A , then PC consists of the semistable
cokernels in the sense of Richman and Walker [14, 4]. Dually, a kernel in A
is said to be semistable if it is a semistable cokernel in A op. A short exact
sequence (1) with a semistable kernel a and a semistable cokernel b is said to
be stable. The main result of [15] states that the cokernels in PQPC define
a unique maximal left exact structure on A .
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While every conflation of the maximal exact structure of A is stable, it
remained open [15] whether every stable short exact sequence is a conflation.
Phrased in a one-sided way, this amounts to the question whether there exist
additive categories A for which the inclusionQPC ⊂ PC is proper. A positive
answer would imply that the “Quillen operator” Q figures in an essential way.

In this note, we show that this is indeed the case. Removing the generic
module from the module category of a discrete valuation domain R, we
obtain a category A with the proper inclusions

PQPC ( QPC ( PC ( C .

Our explicit description of the subcategories PQPC ⊂ QPC ⊂ PC shows
that the case differentiation in PC (Proposition 1) and QPC (Proposition 3)
disappears for the smaller subcategory PQPC which is given by a projective
structure [5, 11]. Namely, there is an indecomposable injective R-module T
such that a cokernel b : B � C belongs to PQPC if and only if every mor-
phism T → C factors through b (Theorem 1). In other words, the injective
R-module T becomes projective in the subcategory A and determines the
left exact structure of A . A similar result is proved for the subcategory of
inflations (Theorem 2). As a consequence, we obtain a simple description of
the maximal exact structure (Corollary 1) and exhibit a stable short exact
sequence which is not a conflation (Corollary 2).

2. The counterexample. Let R be a discrete valuation domain with
quotient field K. By Mod(R) we denote the category of all (left) R-modules.
We consider the standard torsion theory where an R-module is torsion if
it has no non-zero free submodules. The torsion-free R-modules are then
the submodules of K-vector spaces. Up to isomorphism, K is the unique
indecomposable torsion-free injective R-module. Equivalently, K belongs to
the unique isomorphism class of generic R-modules, that is, non-finitely pre-
sented indecomposable R-modules of finite length over their endomorphism
ring [3, 1.3]. Removing K from Mod(R), we obtain an additive category A .
There is a short exact sequence

(3) R ↪→ K
c
� K/R,

where R is a projective generator and K/R an injective cogenerator in
Mod(R). So the embedding A ↪→ Mod(R) respects kernels and coker-
nels of morphisms. As a full embedding, A ↪→Mod(R) also reflects kernels
and cokernels. Therefore, a sequence of morphisms A → B → C in A is
short exact in A if and only if it is a short exact sequence in Mod(R). The
simple R-module S relates R to K/R by homomorphisms

R
r
� S

s
� K/R,

which will be fixed in what follows.
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Lemma 1. Every non-split short exact sequence R � X � K/R of
R-modules is isomorphic to the total complex of a double complex

(4)

R ⊂
i
→ K

E

gg

e

⊂
j
→ K/R

gg

f

Proof. Since K is injective, we have a commutative diagram

R � � X �� K/R

R

wwwwww
⊂

i
→ K
g

p

c
�� K/R

g

q

As the upper row does not split, it follows that q 6= 0. Hence q is epic. So
the right-hand square is a pullback and pushout, which implies that p is
epic, too. Thus E := Ker p ∼= Ker q is isomorphic to a proper factor module

of R. By [8, Theorem 23], the short exact sequence E ↪→ X
p
� K splits.

So the short exact sequence R � X � K/R is the total complex of a
double complex (4) which is a pullback and pushout. Note that f is epic
since f 6= 0.

The semistable kernels and cokernels of A can be characterized as fol-
lows.

Proposition 1. Let A
a
� B

b
� C be a short exact sequence in A .

(a) The kernel a is semistable if and only if C ∼= K/R implies that, for
any R-linear map f : A→ R, the map rf : A→ S factors through a.

(b) The cokernel b is semistable if and only if A ∼= R implies that, for any
R-linear map g : K/R→ C, the map gs : S → C factors through b.

Proof. (a) The embedding A ↪→ Mod(R) respects and reflects kernels
and cokernels. Hence a is not semistable if and only if there is a pushout

A �
a
� B

b
�� C

D
g

f

� � K
g

�� C

wwwwww
in Mod(R) with D ∈ Ob A . Then C,D 6= 0, which implies that C ∼=
K/R and D ∼= R. So we can replace D by R, and then rf does not factor
through a. Conversely, assume that C ∼= K/R and there is an R-linear
map f : A → R such that rf does not factor through a. By Lemma 1, the
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pushout of a along f gives a non-split short exact sequence R
(i
e)
� K⊕E � C

with i : R ↪→ K and a non-invertible epimorphism e : R � E. If E 6= 0,
then r = pe for some p : E � S. Hence r = (0 p)

(
i
e

)
, and thus rf factors

through a, contrary to the assumption. Thus E = 0, which shows that a is
not semistable.

(b) The cokernel b is not semistable if and only if there is a pullback

A � � K �� D

A

wwwwww
�

a
� B
g b

�� C
g

g

in Mod(R) with D ∈ Ob A . Then A ∼= R and D ∼= K/R. So we can assume
that D = K/R, and then gs does not factor through b. Conversely, assume
that A ∼= R and there is an R-linear map g : K/R → C such that gs does
not factor through b. By Lemma 1, the pullback of b along g gives a non-split
short exact sequence A � K ⊕ E � K/R, and a similar argument to the
above shows that E = 0.

Lemma 2. Every cokernel b : B � K/R in A is semistable.

Proof. If b is a split epimorphism or Ker b 6∼= R, the cokernel b is semi-
stable by Proposition 1. Otherwise, Lemma 1 yields

b : B −→∼ K ⊕ E
(f j)
−→→ K/R

with an inclusion j : E ↪→ K/R and a finitely generated R-module E 6= 0.
Hence s : S � K/R factors through (f j). By Proposition 1, this implies
that b is semistable.

Proposition 1(b) allows a more succinct description. Let c : K � K/R
denote the natural map in (3).

Proposition 2. Let A
a
� B

b
� C be a short exact sequence in A . Then

b is not semistable if and only if b : B ∼= K ⊕D

( c 0
0 1 )
−→→ K/R ⊕D ∼= C with

D 6= 0.

Proof. Assume that b is not semistable. As in the proof of Proposition 1,
this implies that there is a pullback

R ⊂ → K
c
�� K/R

A
g
o

�
a
� B
g b

�� C
g
g
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If gs factors through b, then s factors through c, which is impossible. Thus
gs 6= 0, which shows that g is monic. So we obtain a commutative diagram

K � � B
p
�� D

K/R

gg

c

�
g
� C

gg

b

q
�� D

wwwwww
with exact rows. By Lemma 2, D 6= 0. As the upper row splits, there is a
morphism h : D → B with ph = 1. Thus q · bh = 1, which yields the desired
decomposition of b. The converse follows by Proposition 1.

Remark. There is no dual version of Proposition 2. Necessary condi-
tions for a to be non-semistable are C ∼= K/R, and that b has a factorization
b : B � K � C.

In what follows, let C denote the class of cokernels in A .

Proposition 3. Let A
a
� B

b
� C be a short exact sequence in A . The

cokernel b belongs to QPC if and only if one of the following is satisfied:

(a) C ∼= K/R.
(b) For any split epimorphism p : C � K/R the map pb is a split epi-

morphism.

Proof. If C ∼= K/R, Lemma 2 implies that b ∈ QPC . Assume that (b)
holds, and suppose that b is not semistable. By Proposition 2, we can assume

that b is of the form b : K ⊕D

( c 0
0 1

)
−→→ K/R⊕D. Condition (b) then yields a

map
(
i
j

)
: K/R→ K ⊕D with ci = (1 0)

(
c 0
0 1

)(
i
j

)
= 1, a contradiction. Thus

b ∈ PC .
Now let (2) be a pullback in A with e ∈ PC . Suppose that f /∈ PC .

By Proposition 2, we can assume that f : K⊕D

( c 0
0 1

)
−→→ K/R⊕D. Condition

(b) implies that the first component of b =
(
b1
b2

)
: B � K/R ⊕ D is a split

epimorphism. Hence there is an R-linear map g : K/R → B with b1g = 1.
By Proposition 1, gs = eh for some h : S → B′. So we get a commutative
diagram

S
h
� B′

b′

�� K ⊕D

K/R
g

g
s

g
� B

gg

e

b
�� K/R⊕D

gg

(
c 0
0 1

)

The first component of b′h is zero. Hence s = b1gs = 0, a contradiction.
Thus b ∈ QPC .
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Conversely, assume that b ∈ QPC and C 6∼= K/R. Suppose that (b) does
not hold. Then C = T ⊕ C ′ with T ∼= K/R such that the component b1 of
b =

(
b1
b2

)
: B � T ⊕ C ′ is not a split epimorphism. Consider the pullback

D
d
�� K ⊕ C ′

B

gg

e

b
�� T ⊕ C ′

gg

(
p 0
0 1

)

with p : K
c
� K/R −→∼ T . For any g : K/R→ B, the composition b1g is not

invertible. Hence b1gs = 0. Therefore, bgs factors through
(
p 0
0 1

)
. Thus, by

the pullback property, gs factors through e. By Proposition 1, this implies
that e ∈ PC . So we obtain

(
p 0
0 1

)
∈ PC , contrary to Proposition 1.

Now we can prove our first main result.

Theorem 1. Let A
a
� B

b
� C be a short exact sequence in A . Then b

is a deflation with respect to the maximal left exact structure of A if and
only if every R-linear map f : K/R→ C factors through b.

Proof. By [15, Theorem 2], the cokernel b is a deflation if and only if
b ∈ PQPC . Assume that b ∈ PQPC . For a given f : K/R → C, consider
the pullback

D
d
�� K/R

B
g

g

b
�� C
g

f

We add a second pullback

D ⊕R

(
d 0
0 1

)
�� K/R⊕R

D

gg

(1 0)

d
�� K/R

gg

(1 0)

Thus
(
d 0
0 1

)
: D ⊕ R → K/R ⊕ R belongs to QPC . By Proposition 3, the

map (d 0) = (1 0)
(
d 0
0 1

)
: D ⊕ R → K/R is a split epimorphism. Hence d is

a split epimorphism, and thus f factors through b.

Conversely, assume that every morphism K/R → C factors through b.
By Proposition 1, this implies that b ∈ PC . Let p : C � K/R be a split
epimorphism. Then pi = 1 for some i : K/R → C. Hence there exists an
R-linear map j : K/R → B with i = bj. Thus pbj = pi = 1. By Proposi-
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tion 3, it follows that b ∈ QPC . Finally, the condition of the theorem is
preserved under pullback. Hence b ∈ PQPC .

Remark. Proposition 3 and Theorem 1 show that none of the three
operators in PQPC can be dropped. In other words, there are proper in-
clusions

PQPC ( QPC ( PC ( C .

For example, the cokernel
(
c 0
0 1

)
: K ⊕R� K/R⊕R is not semistable, the

semistable cokernel
(
c 0
0 c

)
: K⊕K � K/R⊕K/R does not belong to QPC ,

and the cokernel (c 0) : K ⊕R� K/R in QPC is not a deflation.

Since Mod(R) is not self-dual, the proof of Theorem 1 cannot simply be
dualized. Nevertheless, the dual of Theorem 1 is true.

Theorem 2. Let A
a
� B

b
� C be a short exact sequence in A . Then a

is an inflation with respect to the maximal left exact structure of A if and
only if every R-linear map f : A→ R factors through a.

Proof. Let K be the class of kernels in A . Applying P,Q to A op, we
get operators P ′, Q′ on A . The dual of [15, Theorem 2] then implies that
P ′Q′P ′K is the class of inflations. Assume that a ∈ P ′Q′P ′K . For a given
f : A→ R, the pushout

A �
a

� B
b
�� C

PO

R
g
f

�
d

� D
g
g

�� C

wwwwww

R⊕K/R
g

g(
1
0

)
�
(
d 0
0 1

)
� D ⊕K/R

g

g(
1
0

)
�� C

wwwwww
of a along

(
f
0

)
yields a kernel

(
d 0
0 1

)
∈ Q′P ′K . Consider the pushout

R⊕K/R �
(
d 0
0 1

)
� D ⊕K/R

K ⊕K/R

↓

∩

�
(
e 0
0 1

)
� E ⊕K/R

↓

∩

By Proposition 1, the left-hand inclusion is not semistable. So there is a
morphism (p q) : D ⊕ K/R → R such that r(p q) does not factor through
D⊕K/R ↪→ E⊕K/R. Hence r(p q)

(
d 0
0 1

)
is non-zero on R, that is, rpd 6= 0.

Thus pd is an isomorphism, which implies that d is a split monomorphism.
Hence f factors through a.
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Conversely, assume that every morphism f : A → R factors through a.
Then Proposition 1 gives a ∈ P ′K . Consider a pushout

A �
a
� B

A′
g

g
u

�
a′

� B′
g

g
v

with v ∈ P ′K . To show that u ∈ P ′K , we apply Proposition 1. So we can
assume that Coku = Cok v = K/R. Let f : A → R be given. Then f = ga
for some g : B → R. Hence rg = hv for some h : B′ → S, which yields
rf = rga = hva = ha′u. This proves that a ∈ Q′P ′K . Finally, let

A �
a
� B

A′
g
f

�
a′

� B′
g
g

be any pushout in A . Then the pushout property implies that a′ satisfies
the condition of the theorem. Hence a ∈ P ′Q′P ′K .

Combining Theorems 1 and 2, we get the following explicit description
of the maximal exact structure on A .

Corollary 1. A short exact sequence A
a
� B

b
� C in A is a conflation

with respect to the maximal exact structure of A if and only if any R-linear
map A→ R factors through a and every K/R→ C factors through b.

Proof. This follows immediately by Theorems 1 and 2, and [15, Theo-
rem 1].

Corollary 2. Not every stable short exact sequence in A is a confla-
tion with respect to the maximal exact structure.

Proof. Consider a projective resolution

R(J) ↪→ R(I) � K ⊕K/R.

This short exact sequence is stable by Proposition 1. By Corollary 1, it fails
to be a conflation.
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