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The Gray filtration on phantom maps

by

Lê Minh Hà (Toledo, OH) and Jeffrey Strom (Hanover, NH)

Abstract. This paper is a study of the Gray index of phantom maps. We give a
new, tower theoretic, definition of the Gray index, which allows us to study the naturality
properties of the Gray index in some detail.

McGibbon and Roitberg have shown that if f∗ is surjective on rational cohomology,
then the induced map on phantom sets is also surjective. We show that if f∗ is surjective
just in dimension k, then f induces a surjection on a certain subquotient of the phantom
set. If the condition holds for all k, we recover McGibbon and Roitberg’s theorem. There
is a dual result, and a theorem on phantom maps into spheres which holds one dimension
at a time as well.

Finally, we examine the set of phantom maps whose Gray index is infinite. The main
theorem is a partial verification of our conjecture that if X and Y are nilpotent and of
finite type, then every phantom map f : X → Y must have finite index.

Introduction. A map f : X → Y from one CW complex to another is a
phantom map if its restriction to the k-skeleton of X, f |Xk , is nullhomotopic
for each k; this happens if and only if there are homotopy factorizations
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for each k. The map f is usually not uniquely determined in this diagram.
The Gray index G(f) of f is the least integer k for which the map f cannot
be chosen to be a phantom map. The Gray index gives rise to a filtration
on the set Ph(X,Y ) of phantom maps from X to Y , which we call the Gray
filtration. Explicitly, we set Phk(X,Y ) = {f ∈ Ph(X,Y ) | G(f) ≥ k}, so

Ph(X,Y ) = Ph1(X,Y ) ⊇ Ph2(X,Y ) ⊇ . . . ⊇ Phk(X,Y ) ⊇ . . .
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Our results concern this filtration and how it behaves under maps between
domains or targets. In the introduction, all spaces will be finite type do-
mains, or ranges as needed; see conventions at the end of this section.

Before summarizing the results of this paper, we provide some motiva-
tion. Brayton Gray observed in [3] that if there is an essential phantom map
f : X → Y , then there must be a dimension n in which both Hn(X;Q) 6= 0
and πn+1(Y )⊗Q 6= 0. The proof of this fact is entirely nonconstructive, so
it leaves open an interesting, if ill-posed, question: which of the dimensions
n in which Hn(X;Q) 6= 0 and πn+1(Y ) ⊗ Q 6= 0 can be deduced from (is
“relevant” to) a given phantom map f? We should expect two answers—if
dimension n is “relevant” to f in terms of the domain, then dimension n+1
should be “relevant” to f in terms of the target. The underlying intuitive
idea of this paper is that the least dimension which is “relevant” to f (in
terms of the domain) is its Gray index, G(f).

Now we illustrate how this intuitive idea suggests actual theorems. In [8],
McGibbon and Roitberg prove that if φ : A→ B induces surjections on ra-
tional cohomology in all dimensions, then the induced map on phantom sets

φ∗ : Ph(B,Y )→ Ph(A, Y )

is also surjective for any finite type target Y . A careful look at the proof
shows that the conclusion remains true if φ induces surjections just in
those dimensions n for which Gray’s algebraic condition Hn(X;Q) 6= 0 and
πn+1(Y )⊗Q 6= 0 holds. It seems reasonable to expect that if φ is surjective
only in those dimensions that are “relevant” to f , then f should be in the
image of φ∗ : Ph(B,Y ) → Ph(A, Y ). We actually prove a more delicate
statement in the following theorem.

Theorem 4. If φ : A→ B induces surjections

φ∗ : Hm(B;Q)→ Hm(A;Q)

in the range k ≤ m ≤ l and f ∈ Ph(A, Y ) with k ≤ G(f) ≤ l, then f is in
the image of φ∗ : Ph(B,Y )→ Ph(A, Y ), modulo Phl+1(A, Y ).

In particular, if φ induces a surjection in rational cohomology just in
dimension G(f), then f is in the image of φ∗ : Ph(B,Y ) → Ph(A, Y ),
modulo an indeterminacy which does not contain f . McGibbon and Roitberg
prove a dual result for maps between targets; our refinement also dualizes.

In Theorem 1 of [8], McGibbon and Roitberg show that for finite type
nilpotent X, the conditions

(a) Ph(X,Sk+1) = ∗ for all k,
(b) there is a map X

g−→ ∨
Snα such that

g∗ : H∗
(∨

Snα ;Q
)
→ H∗(X;Q)

is an isomorphism,
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(c) Ph(X,Y ) = ∗ for all finite type nilpotent Y ,

are equivalent. Using the Gray index, we show that this result is actually
a reflection of a feature of phantom maps that holds in one dimension at a
time.

Theorem 8. Let X be nilpotent and of finite type. Each of the following
statements implies the next :

(1) Ph(X,Sk+1) = ∗;
(2) there is a map X

g−→ ∏
ΩSk+1 such that

g∗ : Hk
(∏

ΩSk+1;Q
)
→ Hk(X;Q)

is surjective;
(3) Phk(X,Y ) = Phk+1(X,Y ) for all finite type nilpotent Y .

Again, our result dualizes.
In Section 4, we study phantom maps with infinite Gray index. If G(f) =

∞ then none of the dimensions in which Hn(X;Q) 6= 0 and πn+1(Y )⊗Q 6= 0
(whose existence is guaranteed by f) is “relevant” to f , which suggests the
following conjecture.

Conjecture. If X and Y are both nilpotent and of finite type, then
Ph∞(X,Y ) = ∗.

We do not prove this conjecture here. However, we do have some partial
results which show that, in many situations, the phantoms with infinite
index (if they exist) take care of themselves. Our main theorem in Section 4
is the following.

Theorem 10. Suppose X and Y are of finite type and that every phan-
tom map from X to Y has infinite index. Then Ph(X,Y ) = ∗.

Conventions. Finally, we quickly review some definitions and notation
that we will use throughout. All the spaces in this paper have the homotopy
type of CW complexes. The n-skeleton of a CW complex X is denoted by
Xn. We use X(n) to denote the nth Postnikov section of X, and X〈n〉 to
denote the nth connective cover of X. Thus, there are natural fibrations

X〈n〉 → X → X(n).

For many of the results in this paper we need to impose finiteness conditions
on our spaces. We follow McGibbon and Roitberg [8] in defining a finite type
domain to be a pointed connected CW complex whose integral homology
groups are finitely generated in each degree, and a finite type target to be a
pointed space each of whose homotopy groups is finitely generated.

Acknowledgements. Before we begin, we would like to express our
thanks to Chuck McGibbon for his help and encouragement as we have
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learned about phantom maps. We would also like to thank Kouyemon Iriye
for pointing out a mistake in one of our examples.

1. The Gray index. The Gray index was first defined by Gray in his
thesis [3]; it has also been studied by McGibbon and Strom in [10]. It is
important to note that our definition differs by one from Gray’s original
definition [3] (ours is bigger). Let f : X → Y be a phantom map. Then
f |Xk ' ∗ for each k, and so there are homotopy factorizations of f
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Generally, there will be many possible choices for f .

Definition. The Gray index of f is the least integer k such that the
map f cannot be chosen to be a phantom map; we write G(f) = k. If there
is no such integer, then G(f) =∞.

We denote the set of all phantom maps f : X → Y with G(f) ≥ k
by Phk(X,Y ). Thus, Phk+1(X,Y ) = Im(Ph(X/Xk, Y ) → Ph(X,Y )). It
follows from Proposition 1 below that this definition is independent of the
CW decomposition of X.

If f : X → Y is a phantom map, then the image of f must be contained
in the basepoint component of Y , or else the restriction of f to the 0-skeleton
of X will be essential. Also, f must remain phantom when restricted to each
component of X. If we give X a CW decomposition with one 0-cell in each
component, we see that f factors through a phantom map X/X0 → Y , and
so Ph(X,Y ) = Ph1(X,Y ).

There is a dual definition of phantom maps in terms of the connective
covers of the target. A map f : X → Y is phantom if and only if f factors
(up to homotopy) as in the diagram

Y 〈k〉

X Y
��

f̃

�
�

�
�

�
� ==

f //

for each k ≥ 0. We can then define a dual Gray index, G′(f), to be the least
integer k such that the map f̃ cannot be chosen to be a phantom map.

Intuitively, G′(f) is the least dimension “relevant” to f in terms of the
target. In view of Gray’s observation we expect that the least “relevant”
dimension for the target should be one more than the least “relevant” di-
mension for the domain. This is in fact the case.
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Proposition 1. If f : X→ Y is a phantom map, then G′(f) =G(f)+1.

Proofs will be given in the last section.
It follows that Phk(X,Y ) = Im(Ph(X,Y 〈k〉) → Ph(X,Y )). This re-

sult also shows that G(f) is independent of any choices that were made in
giving X a CW decomposition.

We will make essential use of the following alternative description of the
Gray index in terms of inverse towers. According to Bousfield and Kan ([1],
pages 254–255), Ph(X,Y ) is naturally isomorphic to a lim1 set:

Ph(X,Y ) ∼= lim1
n[X,ΩY (n)].

Observe that in the notation ΩY (n) the order of operations is ambiguous.
In this paper, as in most other papers about phantom maps, passing to the
loop space is the last step. Thus, ΩY (n) really means Ω(Y (n)). Let us write
Gn = [X,ΩY (n)] and

G
(n)
k = Im(Gn → Gk).

We have a commutative diagram of surjections of towers

{Gn} {G(n)
k }

{G(n)
k−1}

�
�

�
�

�
�

� ##

//

��

which induces a commutative diagram of surjections after taking lim1

lim1
nGn lim1

nG
(n)
k

lim1
nG

(n)
k−1

pk−1

�
�

�
�

�
�

�
�

� %%

pk //

jk

��

The maps pk define equivalence relations on Ph(X,Y ): say f ∼k g if and
only if pk(f) = pk(g). The commutativity of the diagram shows that f ∼k g
implies f ∼k−1 g, but the reverse need not be true. We interpret lim1

nG
(n)
k

as the set of ∼k-equivalence classes of Ph(X,Y ).

Theorem 2. Let f : X → Y be a phantom map. Then G′(f) is the least
integer k such that f 6∼k ∗, and G(f) is the greatest integer k such that
f ∼k ∗.

In other words, we have Phk(X,Y ) = Ker(pk). These sets give us a
natural filtration

Ph(X,Y ) = Ph1(X,Y ) ⊇ Ph2(X,Y ) ⊇ . . . ⊇ Phk(X,Y ) ⊇ . . .
which we call the Gray filtration.



256 Lê Minh Hà and J. Strom

Typically one studies a filtered group by examining the subquotients.
Unfortunately, the pointed set Ph(X,Y ) does not generally have a group
structure. Nevertheless, we can use the equivalence relations ∼k to make
sense of subquotients of this filtration. Write

Phk(X,Y )/Phl(X,Y ) = pl(Phk(X,Y )) ⊆ lim1
nG

(n)
l .

Clearly, this definition agrees with the usual notion whenever Ph(X,Y ) hap-
pens to be a group.

Our final result in this section is that the Gray filtration can only decrease
if Gray’s algebraic condition Hn(X;Q) 6= 0 and πn+1(Y )⊗Q 6= 0 is met.

Proposition 3. Assume X and Y are nilpotent spaces of finite type. If
either Hk(X;Q) = 0 or πk+1(Y )⊗Q = 0, then

Phk(X,Y ) = Phk+1(X,Y ).

This means that if either H∗(X;Q) is bounded above by n or π∗(Y )⊗Q
is bounded above by n+ 1, then the Gray filtration is finite. More precisely,
Phn(X,Y ) = Ph∞(X,Y ); we will see in Corollary 11 below that this implies
that Phn(X,Y ) = ∗. On the other hand, if eitherH∗(X;Q) is bounded below
by n or π∗(Y ) ⊗ Q is bounded below by n + 1, then every phantom map
f : X → Y has G(f) ≥ n.

Example. Consider the Gray index of phantom maps X → Sk+1. For
any k, we have

Ph(X,Sk+1) = Phk(X,Sk+1).

If k is even, then Sk+1 has only one nontrivial rational homotopy group,
and so

Phk+1(X,Sk+1) = ∗.
If k is odd, then there are two dimensions to consider, so

Phk+1(X,Sk+1) = Ph2k(X,Sk+1) and Ph2k+1(X,Sk+1) = ∗.

2. Maps subject to rational conditions. Now we turn our attention
to the problem of determining how the Gray filtration behaves with respect
to maps between targets or domains.

Theorem 4. Let A and B be finite type domains and Y a finite type
target. If φ : A→ B induces surjections φ∗ : Hm(B;Q)→ Hm(A;Q) in the
range k ≤ m ≤ l then

pl+1φ
∗(Phk(B,Y )) = Phk(A, Y )/Phl+1(A, Y ).

Suppose φ induces a rational cohomology surjection only in dimension k.
Then Theorem 4 says that if G(f) = k (so f 6∼k+1 ∗), then there is a
phantom map f ′ ∼k+1 f such that f ′ is in the image of φ∗. In particular,
the map φ∗ : [B,Y ]→ [A, Y ] is nontrivial. Here is a concrete example.
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Example. There are phantom maps CP∞ → S2∨S2 of every even Gray
index [10]. Therefore, if f : CP∞ → Y is a map which is nonzero in rational
cohomology, then our discussion applies, showing that the induced map

[Y, S2 ∨ S2]
f∗−→ [CP∞, S2 ∨ S2]

must be nontrivial.

The following example shows how Theorem 4 can be used to construct
exact sequences of phantom sets.

Example. Let f : X → S2n be an essential phantom map. If Σf 6' ∗,
then the composition

X
f−→S2n σ−→ΩS2n+1

is nontrivial, and it follows that G(f) = 2n − 1. If Σf ' ∗ then there is a
map f̃ : X → S2n〈4n− 2〉 lifting f as in the diagram

S2n〈4n− 2〉

X S2n
��

f̃
99

�

�

�

�

�

f //

In other words, there is an exact sequence of pointed sets

[X,S2n〈4n− 2〉]→ Ph(X,S2n)→ Ph(X,ΩS2n+1)→ ∗.
The surjectivity of Ph(X,S2n) → Ph(X,ΩS2n+1) follows from Theorem 4
and Corollary 11 below.

It should be expected that we will get a dual version of Theorem 4, and
we do.

Theorem 5. Let A be a finite type domain and Y and Z be finite type
targets. If φ : Y → Z induces surjections πm(Y )⊗ Q → πm(Z)⊗ Q in the
range k ≤ m ≤ l, then

plφ
∗(Phk−1(A, Y )) = Phk−1(A,Z)/Phl(A,Z).

In particular, if f : A → Z is a phantom map with G(f) = k (so
f 6∼k+1 ∗) and φ∗ is surjective in dimension k + 1, then there is f ′ ∼k+1 f
such that f ′ ∈ φ∗(Ph(A, Y )).

Fibrations and cofibrations do not give rise to exact sequences of phan-
tom maps. However, the composite of the maps induced by a cofibration or
a fibration must be trivial. This allows us to pass from Theorems 4 and 5,
which tell us how nearly surjective induced maps are, to Theorem 6, which
tells us how nearly trivial induced maps are.

Theorem 6. Let φ : A→ B be a map between finite type domains, and
Y a finite type target. Suppose that φ∗ : Hm(B;Q)→ Hm(A;Q) is zero for
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k ≤ m ≤ l. Then
φ∗(Phk(B,Y )) ⊆ Phl+1(A, Y ).

Dually , if φ : Y → Z and φ∗ : πm(Y ) ⊗ Q → πm(Z) ⊗ Q is zero for
k ≤ m ≤ l then

φ∗(Phk−1(A, Y )) ⊆ Phl(A,Z).

We conclude this section by using the Gray index to put a topology on
the set Ph(X,Y ).

Example 7. The sets Uk(f) = {g | g ∼k f} form the basis for a topology
on Ph(X,Y ). Observe that, in this topology, Ph∞(X,Y ) is precisely the
closure of the singleton set consisting of the trivial map. If Ph∞(X,Y ) = ∗,
then the topology is Hausdorff.

Since φl : X → X(l) is an (l − 1)-equivalence, Theorem 4 shows that

φ∗l (Ph(X(l), Y )) ∩ Ul(f) 6= ∅.
In other words, the union of the φ∗l (Ph(X(l), Y )) is dense in Ph(X,Y ).

Suppose that X is a finite type domain and that Y is a finite complex.
A theorem of Zabrodsky [13] shows that [X(l), Y ] = Ph(X(l), Y ). The com-
mutativity of the diagram

[X(l+1), Y ]

[X(l), Y ] Ph(X,Y ) ⊆ [X,Y ]

φl+1

�
�

�
�

�
�

�
�

�
�

�
� ((

OO

φl
//

gives us a map coliml[X(l), Y ] → Ph(X,Y ). The above discussion shows
that the image of this map is dense in Ph(X,Y ). Or, if we take the closure
of the image, we find that

Ph(X,Y ) = Im(coliml[X(l), Y ]).

3. Phantom maps into spheres. In Theorem 1 of [8], McGibbon and
Roitberg show that for finite type domains X, the conditions

(a) Ph(X,Sk+1) = ∗ for all k,
(b) there is a map X

g−→ ∨
Snα such that g∗ : H∗(

∨
Snα ;Q) →

H∗(X;Q) is an isomorphism,
(c) Ph(X,Y ) = ∗ for all finite type targets Y ,

are equivalent. This result is actually a reflection of a feature of phantom
maps that holds in one dimension at a time.

Theorem 8. Let X be a finite type domain. Each of the following state-
ments implies the next :

(1) Ph(X,Sk+1) = ∗;
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(2) there is a map X
g−→ ∏

ΩSk+1 such that g∗ : Hk(
∏
ΩSk+1;Q) →

Hk(X;Q) is surjective;
(3) Phk(X,Y ) = Phk+1(X,Y ) for all finite type targets Y .

It is reasonable to ask whether condition (3) implies condition (1) in our
theorem. If k is even, the answer is yes, because

Phk(X,Sk+1) = Phk+1(X,Sk+1) = ∗.
If k is odd, however, the implication is not generally true, because

Phk(X,Sk+1) = Ph2k(X,Sk+1),

which need not be trivial, as the next example shows.

Example. There are no essential phantom maps f : CP∞ → S4 with
G(f) = 3 (because H3(CP∞;Q) = 0). However, there are essential phantom
maps CP∞ → S4 with G(f) = 6, because, according to Zabrodsky [13],

Ph(CP∞, S4) = [CP∞, S4] ∼= [CP∞0 , S4] ∼= H6(CP∞;π7(S4)⊗ R) 6= 0,

where R is a rational vector space with the cardinality of the real numbers.

Theorem 8 implies Theorem 1 of [8]. If condition (1) is true for all k,
then we find that Ph(X,Y ) = Ph∞(X,Y ), which, by Theorem 10 below,
means that Ph(X,Y ) = ∗ for all finite type Y , which in turn implies that
condition (1) holds for all k. To recover the precise statement of McGibbon
and Roitberg’s result, suspend our map g to obtain a map

ΣX →
m∨

i=1

Sk+1 ∨
∨
Snα

which induces a surjection in Hk+1(−;Q). It is a simple matter to pinch off
the irrelevant spheres and so obtain a map ΣX → ∨

Sk+1 which induces an
isomorphism in Hk+1(−;Q).

We end this section with the dual to Theorem 8.

Theorem 9. Let Y be a finite type target. Each of the following state-
ments implies the next :

(1) Ph(K(Z, k), Y ) = ∗;
(2) there is a map

∨
ΣK(Z, k)

g−→Y such that

g∗ : πk+1

(∨
ΣK(Z, k)

)
⊗Q)→ πn+1(Y )⊗Q is surjective;

(3) Phk(X,Y ) = Phk+1(X,Y ) for all finite type domains X.

The deduction of McGibbon and Roitberg’s Theorem 1′ from this result
proceeds just as above.
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4. Maps with infinite Gray index. In his thesis [3], Gray claims that
G(f) < ∞ for every essential phantom map f . However, there is a flaw in
his argument; in fact, McGibbon and Strom [10] have shown that if X is of
finite type and its cohomology contains an element of infinite height under
the action of the Steenrod algebra, then there are essential phantom maps
out of X with infinite Gray index.

In these examples, even though the domains are of finite type, the targets
are definitely not. Thus, we make the following conjecture.

Conjecture. If X is a finite type domain and Y is a finite type target ,
then Ph∞(X,Y ) = ∗.

We have not been able to prove this conjecture, but we do have a useful
partial result. Let Gn = [X,ΩY (n)] as in Section 1, and recall that a map
f ∈ Ph(X,Y ) ∼= lim1

n Gn has infinite Gray index if and only if it is in the
kernel of each map pk : lim1

nGn → lim1
nG

(n)
k . The maps pk fit together

to give us a surjective map p∞ : Ph(X,Y ) → limk lim1
n G

(n)
k . Since f has

infinite Gray index if and only if it is in the kernel of p∞, we call the target
of this map Ph(X,Y )/Ph∞(X,Y ). We will also use the notation

Ph(X,Y ) = Ph(X,Y )/Ph∞(X,Y ).

Similarly, we will let Phk(X,Y ) = Phk(X,Y )/Ph∞(X,Y ). Thus our con-
jecture is that Ph(X,Y ) = Ph(X,Y ) whenever both X and Y are nilpotent
and of finite type.

Theorem 10. Let X be a finite type domain and Y a finite type target.
If Ph(X,Y ) = ∗, then Ph(X,Y ) = ∗.

In other words, the only way that Ph(X,Y ) can consist solely of phantom
maps with infinite Gray index is for Ph(X,Y ) = ∗.

Corollary 11. If Hm(X,Q) = 0 or πm+1(Y )⊗Q = 0 for m > k, then

Phk(X,Y ) = ∗.
We can say much more if the towers we are concerned with happen to

be towers of abelian groups.

Theorem 12. Let A and B be finite type domains and Y and Z be
finite type targets. A map φ : A→ B induces a surjection

φ∗ : Ph(B,ΩY )→ Ph(A,ΩY )

if and only if it induces a surjection φ∗ : Ph(B,ΩY )→ Ph(A,ΩY ). Dually ,
a map φ : Y → Z induces a surjection

φ∗ : Ph(ΣA,Y )→ Ph(ΣA,Z)

if and only if φ∗ : Ph(ΣA,Y )→ Ph(ΣA,Z) is surjective.
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This theorem, like Theorem 10, is really a topological interpretation of
an algebraic result on maps between towers. In our proof, we show that
the algebraic proposition underlying Theorem 10 applies to the tower {Cn},
where Cn is the cokernel of the map [ΣBn, ΩY ]→ [ΣAn, ΩY ]. In order to
do this, we need the tower {Cn} to be a tower of groups, which is why we
require the target to be a loop space.

Recently, Lê Minh Hà has succeeded in proving that a map between
“good” towers of groups induces a surjection on lim1 if and only if the
induced map on the abelianizations of the towers induces a surjection on
lim1 (see [5]). One application of this is a proof of Theorem 12 without the
assumption that the target be a loop space.

Finally, let us see what we can derive when we take l =∞ in Theorems 4
and 5.

Corollary 13. If φ induces surjections φ∗ : Hm(B;Q) → Hm(A;Q)
for all m ≥ k, then

Phk(A, Y ) = φ∗(Phk(B,Y )).

If Y = ΩY ′, then we may replace Ph with Ph. Dually , if φ : Y → Z induces
surjections πm(Y )⊗Q→ πm(Z)⊗Q in the range k ≤ m, then

Phk−1(A,Z) = φ∗(Phk−1(A, Y )).

If X = ΣX ′, then we may replace Ph with Ph.

If the conjecture were known to be true, we would recover Theorem 2
of [8] by setting k = 0 in this corollary. When Y is a loop space or X is a
suspension, we do not need to appeal to the conjecture.

Taking l = ∞ in Theorem 6, we find that if φ : A → B induces
trivial maps in rational cohomology in dimensions greater than k, then
φ∗(Phk(B,Y )) ⊆ Ph∞(A, Y ). In other words,

φ∗(Phk(B,Y )) = ∗ ⊆ Ph(A, Y ).

The (possibly) stronger conclusion φ∗(Ph(X,Y )) = ∗ is also true; it follows
from Theorem 2 of [8].

5. Proofs

Proof of Proposition 1. This proof uses the identification Ph(X,Y ) ∼=
lim1

n[X,ΩY (n)] discussed immediately following the statement of Proposi-
tion 1. First suppose that G(f) > k. This means that there is a phantom
map f : X/Xk → Y extending f . We will show that f lifts to a phantom
map f̃ : X/Xk → Y 〈k + 1〉. Indeed, the map of towers (with k fixed and n
variable)

{[X/Xk, ΩY
(n)〈k + 1〉]} → {[X/Xk, ΩY

(n)]}
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is surjective. Since lim1 is right exact [1], the induced map on phantom sets
is surjective as well.

To go in the other direction, observe that the map of towers

{[X/Xk, ΩY
(n)〈k + 1〉]} → {[X,ΩY (n)〈k + 1〉]}

is surjective.

Proof of Theorem 2. We have a fibration Y 〈k〉 → Y → Y (k). Taking
the nth Postnikov section and passing to loop spaces yields the following
fibration:

ΩY (n)〈k〉 → ΩY (n) → ΩY (k).

Applying [X,−], we obtain an exact sequence

[X,ΩY (n)〈k〉] [X,ΩY (n)] [X,ΩY (k)]

In G
(n)
k

//
�

�
�

�
�

�
�

�
� %%

//
�

�
�

�
�

�
�

� $$�
�

�
�

�
�

�
� ;;

�
�

�
�

�
�

�
� ::

in which In is the image of [X,ΩY (n)〈k〉] in [X,ΩY (n)]. When we take lim1,
we obtain

Ph(X,Y 〈k〉)

lim1
n In Ph(X,Y ) lim1

nG
(n)
k

�
�

�
�

�
�

�
�

�
� ''��

// pk //

in which the row is exact and the vertical map is surjective. This identifies
Ker(pk) with Im(Ph(X,Y 〈k〉) → Ph(X,Y )). Therefore f ∼k ∗ if and only
if G′(f) > k. This proves the first statement; the second statement follows
from Proposition 1.

Proof of Proposition 3. We have to show that the map jk : lim1
nG

(n)
k+1 →

lim1
nG

(n)
k is injective. Consider the short exact sequence of towers

0→ {Jn} → {G(n)
k+1} → {G

(n)
k } → ∗.

The fibration
K(πk+1Y, k)→ ΩY (k+1) → ΩY (k)

shows us that each Jn is a quotient of [X,K(πk+1Y, k)] ∼= Hk(X;πk+1Y ).
If Gray’s condition is not satisfied, then this is a finite group. Applying the
six-term lim-lim1 exact sequence, we obtain the exact sequence

lim1
n Jn → lim1

nG
(n)
k+1 → lim1 G

(n)
k → ∗.

Since a tower of finite groups has trivial lim1 the proof is complete.
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Proof of Theorem 4. According to [2], we can write A = colimLk where
each Lk is a subcomplex ofA such thatHm(Lk)→ Hm(A) is an isomorphism
for m ≤ k and Hm(Lk) = 0 for m > k. A careful examination of the proof
reveals that there are subcomplexes Lk−1 ⊆Mk ⊆ Lk so that

(1) Mk is a k-dimensional subcomplex of A,
(2) Hm(Mk;Q)

∼=−→Hm(X;Q) for m ≤ k.

It follows that A→ A/Mk induces an isomorphism in rational homology in
dimensions above k.

We see from the commutative diagram

A B

A/Mk−1 B/Bk−1

A/Ak−1

q

��

φ //

��
φ //

��

that Phk(A, Y ) ⊆ q∗(Ph(A/Mk−1, Y )). Observe also that φ induces surjec-
tions φ∗ : Hm(B/Bk−1;Q)→ Hm(A/Mk−1;Q) for m ≤ l.

The proof of Theorem 4 now reduces to the following lemma.

Lemma 4.1. If φ : A → B and φ∗ : Hm(B;Q) → Hm(A;Q) is surjec-
tive for each m ≤ l, then φ induces a surjection on ∼l+1-equivalence classes.

Proof. Write G(n)
k (A) = Im([A,ΩY (n)] → [A,ΩY (k)]) and similarly for

G
(n)
k (B). We have to show that φ induces a surjection lim1

nG
(n)
l+1(B) →

lim1
nG

(n)
l+1(A). To do this, we will show that each map G

(n)
l+1(B)→ G

(n)
l+1(A)

rationalizes to a surjection. Since these are finitely generated nilpotent
groups, it will follow from Lemma 1.3 of [8] that the images of these maps
have finite index. These towers also have the special property that each term
has finite index in the next (Proposition 0.1 of [9]). It is proved in Lemma
2.2 of [8] that a map of towers such as these in which the images have finite
index induces a surjection on lim1.

The map Gl+1(B) → Gl+1(A) is by definition φ∗ : [B,ΩY (l+1)] →
[A,ΩY (l+1)]. Since these groups only depend on finite skeleta of A and B,
the rationalization of this map can be identified with φ∗ : [B,ΩY (l+1)

0 ] →
[A,ΩY (l+1)

0 ]. Since φ induces a surjection on rational cohomology, and loop
spaces are rationally equivalent to products of Eilenberg–MacLane spaces,
this map is a surjection.
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Because of the finite index property of these towers, we know that each
map G

(n)
l+1 → Gl+1 is a rational isomorphism. It follows from the commuta-

tive diagram
G

(n)
l+1(B) G

(n)
l+1(A)

Gl+1(B) Gl+1(A)
��

//

��
//

that G(n)
l+1(B)→ G

(n)
l+1(A) rationalizes to a surjection, as desired.

Proof of Theorem 5. The proof of the dual to Theorem 4 is analogous.
The only difference is that the better naturality properties of the Postnikov
sections make it unnecessary to fiddle with dual versions of the Mk.

Proof of Theorem 6. Since Phl+1(A, Y ) = Ker(pl+1), we have to show
that pl+1φ

∗(Phk(B,Y )) = ∗. Let

A
φ−→B

θ−→C

be a cofiber sequence. Then θ∗ : Hm(C;Q) → Hm(B;Q) is surjective for
k ≤ m ≤ l. In the diagram

Phk(B,Y )

lim1
nG

(n)
l+1(C) lim1

nG
(n)
l+1(B) lim1

n G
(n)
l+1(A)

pl+1

��ww�
�

�

�

�

θ∗ // φ∗ //

the row is not exact, but the composition is trivial. By Theorem 4, θ∗ is
surjective, so φ∗ is trivial.

The proof of the dual result is similar.

Proof of Theorem 8. The groups in the tower {[X, (ΩSk+1)(m)]} are
each countable, and the image of each term in the next has finite index by
Theorem 0.1 of [9].

First we assume that

lim1
m [X,Ω(Sk+1)(m)] = Ph(X,Sk) = ∗.

By Theorem 2 of [7], the tower {[X, (ΩSk+1)(m)]} must be Mittag-Leffler.
By Lemma 3.2 of [7], this means that the index of

Im([X,ΩSk+1]→ [X, (ΩSk+1)(m)])

= Im(lim
m

[X,Ω(Sk+1)(m)]→ [X,Ω(Sk+1)(m)])

in [X,Ω(Sk+1)(m)] is finite for each m. Taking m = k + 1, we see that the
index of

Im([X,ΩSk+1]→ Hk(X;Z))
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in Hk(X;Z) is finite. Choose a basis u1, . . . , un of integral classes for
Hk(X;Q). Then there are maps gi : X → ΩSk+1 and constants λi such
that

λiui ∈ g∗i (Hk(ΩSk+1;Z)).

It follows that the map g : X → ∏n
i=1 ΩS

k+1, given by gi in the ith coordi-
nate, induces a surjection in rational cohomology.

Now assume that such a map g : X → ∏
ΩSk+1 is given, and let f ∈

Phk(X,Y ). Since g∗ induces a surjection in k-dimensional rational cohomol-
ogy, there is a phantom map f ′ ∼k+1 f such that f ′ ∈ g∗(Ph(

∏
ΩSk+1, Y )).

But it follows easily from Example 2.3 of [4] that Ph(
∏
ΩSk+1, Y ) = ∗,

which shows that f ∼k+1 ∗; in other words, f ∈ Phk+1(X,Y ).

Proof of Theorem 9. The proof that condition (1) implies condition (2)
is strictly dual to that of Theorem 8.

Now assume a map g :
∨
ΣK(Z, k) → Y is given which induces a sur-

jection g∗ : πk+1(
∨
ΣK(Z, k)) ⊗ Q → πk+1(Y ) ⊗ Q. Since the inclusion of

a wedge into the corresponding product has a section after suspending, we
can form the composite

∏
K(Z, k)→ ΩΣ

(∏
K(Z, k)

)
→ ΩΣ

(∨
K(Z, k)

)
Ωg−→ΩY.

This composite map, g, induces a surjection in πk(−)⊗Q.
Consider the diagram

G
(n)
k+1 Gk+1

[
X,
∏
K(Z, k)

]
[X,ΩY (n)〈k〉] [X,ΩY (k+1)〈k〉]

∏
πk

(∏
K(Z, k)

) ∏
πk(ΩY (k+1))

=

��

//

=

��
// //

∼=

OO

∏
g∗ //

∼=

OO

Since the image of
∏
g∗ has finite index, the index of G(n)

k+1 in Gk+1 has a

finite lower bound for all n. This implies that the tower {G(n)
k+1} is Mittag-

Leffler, and so
Ph(X,Y 〈k〉) = Phk+1(X,Y 〈k〉).

The calculation

Phk(X,Y ) = Ph(X,Y 〈k〉)) = Phk+1(X,Y 〈k〉)) ⊆ Phk+1(X,Y )

completes the proof.
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Proof of Theorem 10. Write Gn = [X,ΩY (n)], as above. Since Ph(X,Y )
∼= lim1

nGn and Ph(X,Y ) ∼= limk lim1
nG

(n)
k , Theorem 10 a direct consequence

of the following algebraic result.

Proposition 10.1. If {Gn} is a tower of finitely generated nilpotent
groups and limk lim1

nG
(n)
k = ∗, then lim1

nGn = ∗.

Proof. As we have seen, the tower {lim1
nG

(n)
k } is a tower of surjections.

Because limk lim1
nG

(n)
k = ∗, it must be that lim1

nG
(n)
k = ∗ for all large

values of k, say for k ≥ N .
By Theorem 0.1 of [9], each tower {G(n)

k } consists of finitely generated
nilpotent groups. Since Theorem 2 of [7] tells us that such a tower has trivial
lim1 if and only if it is Mittag-Leffler, we conclude that the tower {G(n)

k } is
Mittag-Leffler for k ≥ N . This does not quite imply that the tower {Gn} is
Mittag-Leffler; but it does show that the tower {G′n}, which is defined by
G′n = Gn for n ≥ N and G′n = 0 otherwise, is Mittag-Leffler. Since these
towers have isomorphic lim1, lim1

nGn = ∗, as desired.

Proof of Corollary 11. Write X = colimMk, where the Mk are as in the
proof of Theorem 4. To show that Phk+1(X,Y ) = ∗, recall that

Phk+1(X,Y ) ⊆ Im(Ph(X/Mk, Y )→ Ph(X,Y )).

Since X/Mk is rationally trivial, Proposition 3 shows that

Ph(X/Mk, Y ) = Ph∞(X/Mk, Y )

for every finite type nilpotent Y , and so Ph(X/Mk, Y ) = ∗ by Theorem 10.
The proof of the dual result is similar.

Proof of Theorem 12. In both cases, we have a map of towers of finitely
generated abelian groups which induces a surjection on limk lim1

n, and we
want to conclude that the map induces a surjection on lim1. This is a purely
algebraic statement which we prove below.

Proposition 12.1. If φ : {Bn} → {An} is a map of towers of finitely
generated abelian groups such that φ : limk lim1

nB
(n)
k → limk lim1

nA
(n)
k is

surjective, then φ : lim1
nBn → lim1

nAn is also surjective.

Proof. According to Bousfield and Kan ([1], pp. 254–255), for any tower
{Gn} there is a short exact sequence

∗ → lim1
k limnG

(n)
k → lim1

nGn → limk lim1
nG

(n)
k → ∗.

Let Cn be the cokernel of Bn → An. From the six-term exact sequence and
the Bousfield–Kan short exact sequence, we obtain the following diagram:
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∗ lim1
k limnB

(n)
k lim1

nBn limk lim1
nB

(n)
k

∗

∗ lim1
k limnA

(n)
k

lim1
nAn limk lim1

nA
(n)
k

∗

∗ lim1
k limn C

(n)
k

lim1
n Cn limk lim1

n C
(n)
k

∗

∗

��

//

��

//

��

//

��

//

��

��

//

��

//

��

//

∗
��

//

��// //

��

// //

in which the rows and the center column are exact, and each vertical
composite is trivial. We have to show that lim1

n Cn = ∗. Since the
maps

lim1
nAn → lim1

n Cn and limk lim1
nB

(n)
k → limk lim1

nA
(n)
k

are both surjective, Proposition 10.1 applies to the tower {Cn}.
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