
FUNDAMENTA

MATHEMATICAE

185 (2005)

Menger curvature and Lipschitz parametrizations
in metric spaces

by

Immo Hahlomaa (Jyväskylä)

Abstract. We show that pointwise bounds on the Menger curvature imply Lipschitz
parametrization for general compact metric spaces. We also give some estimates on the
optimal Lipschitz constants of the parametrizing maps for the metric spaces in Ω(ε), the
class of bounded metric spaces E such that the maximum angle for every triple in E is
at least π/2 + arcsin ε. Finally, we extend Peter Jones’s travelling salesman theorem to
general metric spaces.

1. Introduction. In this paper E is always a metric space and d :
E × E → R is a metric on E. We define

d(E) = sup{d(x, y) : x, y ∈ E},
and for x ∈ E and r > 0,

B(x, r) = {y ∈ E : d(y, x) ≤ r}.
Let {x, y, z} be three distinct points in a metric space and i an isometry

from {x, y, z} to R2. For {x, y, z} the angle at x, denoted by ^yxz, is the
angle at vertex i(x) of the planar triangle whose other vertices are i(y) and
i(z). Using the cosine formula we can write

^yxz = arccos
d(x, y)2 + d(x, z)2 − d(y, z)2

2d(x, y)d(x, z)
.

We also denote the maximum angle of {x, y, z} by max^{x, y, z}. The
Menger curvature of the triple {x, y, z}, denoted by c(x, y, z), is the inverse
of the radius of the circle passing through i(x), i(y) and i(z). By elementary
plane geometry

(1) c(x, y, z) =
2 sin^xyz
d(x, z)

,
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from which we easily get

c(x, y, z) =

√
(d1 + d2 + d3)(d1 + d2 − d3)(d1 − d2 + d3)(−d1 + d2 + d3)

d1d2d3
,

where d1 =d(x, y), d2 =d(y, z) and d3 =d(x, z). The condition c(x, y, z) = 0
means that the maximum distance in {x, y, z} is the same as the sum of the
other two distances.

Karl Menger introduced this definition of curvature in [10]. In his termi-
nology a metric space E has at a point p the curvature KM (p) if c(x, y, z)→
KM (p) as the distinct points x, y and z converge independently and simul-
taneously to p. He proved that a simple metric arc Γ such that KM (p) = 0
for all p ∈ Γ and such that each subset of four points of Γ is isometric with
a subset of R3 is isometric with a segment of R. Schoenberg showed in [12]
that the latter condition in this statement can be replaced by the weaker
condition that for any four points of Γ the so-called ptolemaic inequality is
satisfied.

Menger curvature has turned out to be a useful tool for studying relations
between rectifiability, Cauchy integral and analytic capacity. For z1, z2, z3

∈ C we have

c(z1, z2, z3)2 =
∑

σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
,(2)

where σ runs through all six permutations of {1, 2, 3}. This relation between
Menger curvature and the Cauchy kernel 1/z, z ∈ C, was found by Melnikov
in [8]. We say that F ⊂ C is 1-regular if there exists C < ∞ such that
C−1r ≤ H1(F ∩ B(x, r)) ≤ Cr whenever x ∈ F and r ∈ ]0, d(F )[, where
H1 is the 1-dimensional Hausdorff measure. In [7] Mattila, Melnikov and
Verdera proved that for a compact 1-regular set F ⊂ C the Cauchy singular
integral operator is bounded in L2(F ) with respect to the restriction of H1

to F if and only if F is contained in a 1-regular curve. They first proved, by
using earlier work of David and Semmes (see [4]) that the latter condition
is satisfied if and only if there exists M <∞ such that

�����

(F∩B)3

c(z1, z2, z3)2 dH1z1 dH1z2 dH1z3 ≤Md(B)

for every ball B in C. Using the identity (2) they obtained the final conclu-
sion.

David and Léger have proved that if F ⊂ C with H1(F ) <∞ and

�

F

�

F

�

F

c(z1, z2, z3)2 dH1z1 dH1z2 dH1z3 <∞,
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then there are rectifiable curves Γ1, Γ2, . . . such that

H1
(
F \

∞⋃

i=1

Γi

)
= 0.

We say that a set is a rectifiable curve if it is the image of a bounded interval
under a Lipschitz map. Léger’s proof can be found in [6]. David used this
theorem when he proved in [3] that if F ⊂ C is compact with H1(F ) < ∞
and H1(F ∩ Γ ) = 0 for every rectifiable curve Γ , then F is removable for
bounded analytic functions. This last conclusion means that for every open
set U containing F every bounded analytic function in U \F has an analytic
extension to U or, equivalently, every bounded analytic function in C \F is
constant. In [13] Tolsa proved that a compact set F ⊂ C is not removable
for bounded analytic functions if and only if F supports a positive Radon
measure µ such that µ(B) ≤ d(B) for every ball B in C and

�����
c(z1, z2, z3)2 dµz1 dµz2 dµz3 <∞.

We say that E has the complete property Ω if max^{x, y, z} > π/2 for
every triple {x, y, z} ⊂ E. If there is α > 0 such that max^{x, y, z} ≥
π/2 + α for every triple {x, y, z} ⊂ E, we say that E has the complete
property Ω∗ (with a constant α). This means that

d(x, z)2 ≥ d(x, y)2 + d(y, z)2 + 2d(x, y)d(y, z) sinα(3)

for {x, y, z} ⊂ E whenever d(x, z) = d({x, y, z}). We also denote by Ω(ε),
0 < ε ≤ 1, the set of bounded metric spaces which have the complete
property Ω∗ with the constant arcsin ε. We say that E has the property Ω∗

at a point x ∈ E if there exists δx > 0 such that B(x, δx) has the complete
property Ω∗. If E has the property Ω∗ at each of its points, we say that E
has the property Ω∗.

Compact connected metric spaces with properties Ω and Ω∗ have been
studied in [2]. In this paper we prove that pointwise bounds on the Men-
ger curvature imply Lipschitz parametrization for general compact metric
spaces. We also give rather sharp estimates on the Lipschitz constants of
the parametrizing maps. In Theorem 3.7 we show that for E ∈ Ω(ε) there
exist A ⊂ [0, 1] and a surjective map f : A→ E such that

d(E)
ε

2
|s− t| ≤ d(f(s), f(t)) ≤ d(E)

9

2ε
|s− t|

for all s, t ∈ A.
For F ⊂ Rn and a cube Q ⊂ Rn set

βF (Q) = inf
L
d(Q)−1 sup{d(y, L) : y ∈ F ∩ 3Q},

where the infimum is taken over all lines in Rn and 3Q is the cube with the
same center as Q and sides parallel to the sides of Q, but whose diameter
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is 3d(Q). A cube Q ⊂ Rn is dyadic if Q =
∏n
i=1[ki2

−k, (ki + 1)2−k], where
k ∈ Z and ki ∈ Z for i = 1, . . . n. P. W. Jones proved in [5] that a compact
F ⊂ Rn is contained in a rectifiable curve if

(4)
∑

Q

βF (Q)2d(Q) <∞,

where the sum is taken over all dyadic cubes in Rn. F. Ferrari, B. Franchi
and H. Pajot have extended this result to geodesic metric spaces of a certain
type. Theorem 5.3 is some kind of an analog in the setting of general metric
spaces.

In fact, Jones proved in the case n = 2 that for a compact F ⊂ Rn the
condition (4) is satisfied if and only if F lies in a rectifiable curve. In [11]
Okikiolu extended this result to general n ∈ N.

2. Order. We say that an injective map j : E → R is an order on E
if for all x, y, z ∈ E the condition j(x) < j(y) < j(z) implies that d(x, z) >
max{d(x, y), d(y, z)}.

If j : E → R is an order on E and E ′ ⊂ E, clearly the restriction
j|E′ : E′ → R is an order on E′. For A ⊂ R a function j : A→ R is an order
if and only if j is strictly increasing or decreasing. If j1 and j2 are orders on
E then j2 = s ◦ j1, where s = j2 ◦ j−1

1 : j1(E)→ R is an order on j1(E). On
the other hand, if j is an order on E and s : j(E)→ R is strictly increasing
or decreasing, then s◦j is also an order on E. If E has an order, by the next
proof we can construct one in the following way: Choose a, b ∈ E, a 6= b,
and set, for all x ∈ E,

(5) j(x) =

{−d(x, a) if d(x, b) > max{d(x, a), d(a, b)},
d(x, a) elsewhere.

For {x1, . . . , xn} ⊂ E, n ∈ N, we will use the notation x1x2 . . . xn if there
is an order j on {x1, . . . , xn} such that j(xi) < j(xi+1) for i = 1, . . . , n− 1.
In particular, xyz will symbolize the relation d(x, z) > max{d(x, y), d(y, z)}.

Proposition 2.1. Let E be a metric space such that each subset of E
of at most four points has an order. Then the whole space E has an order.

Proof. Choose a, b ∈ E, a 6= b, and define j : E → R by (5). We check
first that j is injective. Let x, y ∈ E with x 6= y. Clearly j(x) 6= 0 = j(a) for
x 6= a and j(x) 6= j(y) when d(x, a) 6= d(y, a). Hence we can assume that
x, y 6= a and d(x, a) = d(y, a). Let i be an order on {a, b, x, y} ⊂ E. Since
d(x, a) = d(y, a), we have either i(x) < i(a) < i(y) or i(y) < i(a) < i(x). We
can assume that i(x) < i(a) < i(y) is true. If now i(b) < i(a), then d(x, b) <
d({x, a, b}) and yab. Thus j(x) = d(x, a) 6= −d(x, a) = −d(y, a) = j(y). If
i(b) > i(a), we conclude similarly that j(x) < 0 and j(y) > 0.
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We next show that every subset of E which consists of five points has an
order. Let {x1, x2, x3, x4, x5} ⊂ E be such a set and let i : {x1, x2, x3, x4} →
R be an order such that i(xk) = k for k = 1, 2, 3, 4. Choose l,m ∈ {1, 2, 3, 4},
l < m, such that d(x5, xl) ≤ d(x5, xn) and d(x5, xm) ≤ d(x5, xn) for n ∈
{1, 2, 3, 4} \ {l,m}. Then m = l + 1. Indeed, otherwise l < n < m with
some integer n and xlxnxm. Therefore for any order i′ on {xl, xn, xm, x5}
either i′(xl) < i′(xn) < i′(xm) or i′(xm) < i′(xn) < i′(xl). Thus d(x5, xn) <
max{d(x5, xl), d(x5, xm)}, which contradicts the choice of l and m.

If x5xlxl+1, set p = l−1/2. If xlx5xl+1, set p = l+1/2. Finally, if x5xl+1xl,
set p = l + 3/2. Define h : {x1, x2, x3, x4, x5} → R by setting h(xk) = i(xk)
= k for k = 1, 2, 3, 4 and h(x5) = p. We claim that h is an order. Clearly h
is injective. We have to show that for every triple {k,m, n} ⊂ {1, 2, 3, 4, 5}
the condition h(xk) < h(xm) < h(xn) implies that xkxmxn. For {l, l + 1, 5}
this is true by the definition of h. Obviously, it suffices to check the triples
of indices which contain 5.

If l = 1, then h(x5) ≤ l + 3/2 < h(x3) < h(x4). Since i is an order
on {x1, x2, x3, x4}, we have x1x3x4. Thus for any order i′ on {x1, x3, x4, x5}
either i′(x1) < i′(x3) < i′(x4) or i′(x4) < i′(x3) < i′(x1). Since d(x5, x1) ≤
d(x5, x3) and i′ is an order, necessarily x5x3x4.

If l = 2, then h(x1) < l − 1/2 ≤ h(x5) ≤ l + 3/2 < h(x4). Since i
is an order on {x1, x2, x3, x4}, we have x1x2x4. Thus for any order i′ on
{x1, x2, x4, x5} either i′(x1) < i′(x2) < i′(x4) or i′(x4) < i′(x2) < i′(x1).
Since d(x5, x2) ≤ d(x5, x1) and d(x5, x2) ≤ d(x5, x4) and i′ is an order,
necessarily x1x5x4.

If l = 3, then h(x5) ≥ l − 1/2 > h(x2) > h(x1). Since i is an order
on {x1, x2, x3, x4}, we have x1x2x3. Thus for any order i′ on {x1, x2, x3, x5}
either i′(x1) < i′(x2) < i′(x3) or i′(x3) < i′(x2) < i′(x1). Since d(x5, x3) ≤
d(x5, x2) and i′ is an order, necessarily x5x2x1.

Suppose that l ≤ 2, k ∈ {l + 2, 4} and we have x5xlxl+1 or xlx5xl+1.
Then h(x5) ≤ l + 1/2 < h(xl+1) < h(xk). Since i is an order on {x1, x2,
x3, x4}, we have xlxl+1xk. Thus for any order i′ on {xl, xl+1, xk, x5} either
i′(xl) < i′(xl+1) < i′(xk) or i′(xk) < i′(xl+1) < i′(xl). Since d(x5, xl) <
d({x5, xl+1, xl}) and i′ is an order, necessarily x5xl+1xk.

Suppose that l ≤ 2, k ∈ {l + 2, 4} and we have xlx5xl+1 or x5xl+1xl.
Then h(xl) < l + 1/2 ≤ h(x5) ≤ l + 3/2 < h(xk). Since i is an order on
{x1, x2, x3, x4}, we have xlxl+1xk. Thus for any order i′ on {xl, xl+1, xk, x5}
either i′(xl) < i′(xl+1) < i′(xk) or i′(xk) < i′(xl+1) < i′(xl). Since d(x5, xl+1)
< d({x5, xl, xl+1}) and d(x5, xl+1) ≤ d(x5, xk) and i′ is an order, necessarily
xlx5xk.

Suppose that l ≤ 2, k ∈ {l + 2, 4} and x5xlxl+1. Then h(x5) < h(xl) <
h(xk). Since i is an order on {x1, x2, x3, x4}, we have xlxl+1xk. Thus for
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any order i′ on {xl, xl+1, xk, x5} either i′(xl) < i′(xl+1) < i′(xk) or i′(xk) <
i′(xl+1) < i′(xl). Since x5xlxl+1 and i′ is an order, necessarily x5xlxk.

Suppose that l ≤ 2, k ∈ {l+ 2, 4} and x5xl+1xl. Then h(xl+1) < h(x5) =
l + 3/2 < h(xk). Since i is an order on {x1, x2, x3, x4}, we have xlxl+1xk.
Thus for any order i′ on {xl, xl+1, xk, x5} either i′(xl) < i′(xl+1) < i′(xk) or
i′(xk) < i′(xl+1) < i′(xl). Since d(x5, xl+1) ≤ d(x5, xk), x5xl+1xl and i′ is an
order, necessarily xl+1x5xk.

Suppose that l ≥ 2, k ∈ {1, l − 1} and we have xlx5xl+1 or x5xl+1xl.
Then h(x5) ≥ l+1/2 > h(xl) > h(xk). Since i is an order on {x1, x2, x3, x4},
we have xkxlxl+1. Thus for any order i′ on {xk, xl, xl+1, x5} either
i′(xk) < i′(xl) < i′(xl+1) or i′(xl+1) < i′(xl) < i′(xk). Since d(x5, xl+1)
< d({x5, xl, xl+1}) and i′ is an order, necessarily x5xlxk.

Suppose that l ≥ 2, k ∈ {1, l − 1} and we have x5xlxl+1 or xlx5xl+1.
Then h(xl+1) > l + 1/2 ≥ h(x5) ≥ l − 1/2 > h(xk). Since i is an order on
{x1, x2, x3, x4}, we have xkxlxl+1. Thus for any order i′ on {xk, xl, xl+1, x5}
either i′(xk) < i′(xl) < i′(xl+1) or i′(xl+1) < i′(xl) < i′(xk). Since d(x5, xl)
< d(x5, xl+1, xl) and d(x5, xl) ≤ d(x5, xk) and i′ is an order, necessarily
xkx5xl+1.

Suppose that l ≥ 2, k ∈ {1, l−1} and x5xl+1xl. Then h(xk) < h(xl+1) <
h(x5). Since i is an order on {x1, x2, x3, x4}, we have xkxlxl+1. Thus for any
order i′ on {xk, xl, xl+1, x5} either i′(xk) < i′(xl) < i′(xl+1) or i′(xl+1) <
i′(xl) < i′(xk). Since x5xl+1xl and i′ is an order, necessarily x5xl+1xk.

Suppose that l ≥ 2, k ∈ {1, l − 1} and x5xlxl+1. Then h(xk) < h(x5) <
h(xl). Since i is an order on {x1, x2, x3, x4}, we have xkxlxl+1. Thus for any
order i′ on {xk, xl, xl+1, x5} either i′(xk) < i′(xl) < i′(xl+1) or i′(xl+1) <
i′(xl) < i′(xk). Since x5xlxl+1 and d(x5, xl) ≤ d(x5, xk) and i′ is an order,
necessarily xkx5xl.

So we have shown that every subset of E which consists of five points
has an order. Let now x1, x2, x3 ∈ E and 0 ≤ j(x1) < j(x2) < j(x3). Let
i be an order on {a, b, x1, x2, x3} such that i(a) < i(b). Since d(xk, b) ≤
max{d(xk, a), d(a, b)} for k = 1, 2, 3, necessarily i(xk) ≥ i(a) for k = 1, 2, 3.
Since d(x1, a) < d(x2, a) < d(x3, a), we further have i(x1) < i(x2) < i(x3).
This implies that x1x2x3.

Let next x1, x2, x3 ∈ E and j(x1) < 0 ≤ j(x2) < j(x3) and let i
be an order on {a, b, x1, x2, x3} such that i(a) < i(b). Since d(xk, b) ≤
max{d(xk, a), d(a, b)} for k = 2, 3, necessarily i(xk) ≥ i(a) for k = 2, 3.
Since d(x2, a) < d(x3, a), we have i(x2) < i(x3). Moreover, i(x1) < i(a),
because x1ab. So i(x1) < i(a) ≤ i(x2) < i(x3), which implies x1x2x3.

Let next x1, x2, x3 ∈ E and j(x1) < j(x2) < 0 ≤ j(x3) and let i be an
order on {a, b, x1, x2, x3} such that i(a) < i(b). Since xkab for k = 1, 2, nec-
essarily i(xk) < i(a) for k = 1, 2. Since d(x2, a) < d(x1, a), we have i(x1) <
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i(x2). Moreover i(x3) ≥ i(a), because d(x3, b) ≤ max{d(x3, a), d(a, b)}. So
i(x1) < i(x2) < i(a) ≤ i(x3), which implies x1x2x3.

Finally, let x1, x2, x3 ∈ E and j(x1) < j(x2) < j(x3) < 0 and let i be
an order on {a, b, x1, x2, x3} such that i(a) < i(b). Since xkab for k = 1, 2, 3,
necessarily i(xk) < i(a) for k = 1, 2, 3. Since d(x3, a) < d(x2, a) < d(x1, a),
we have i(x1) < i(x2) < i(x3). This implies x1x2x3.

The following two lemmas will be used in Section 5.

Lemma 2.2. Let K ≥ 1 and ε ≥ K/(K + 1). Suppose that E is a metric
space of four points such that d(x, y) < Kd(z, w) for all x, y, z, w ∈ E,
z 6= w, and d(x, z) ≥ d(x, y) + εd(y, z) whenever x, y, z ∈ E are such that
d(x, z) = d({x, y, z}). Then either E has an order or E = {x1, x2, x3, x4},
where x1x2x3, x2x1x4, x2x3x4, x1x4x3, εd(x1, x2) ≤ d(x3, x4) ≤ ε−1d(x1, x2)
and εd(x1, x4) ≤ d(x2, x3) ≤ ε−1d(x1, x4).

Proof. Let E = {x1, x2, x3, x4} be such that x1x2x3. We define δ =
d(E)/K and dij = d(xi, xj) for i, j = 1, . . . , 4. If xixjxk, we have dij ≤
dik − εdjk < δ(K − ε).

Suppose first that x1x2x4 and x1x3x4. Then d24−d23 ≥ d14−d12−d23 ≥
d13 + εd34 − d12 − d23 ≥ d12 + εd23 + εd34 − d12 − d23 > δ((ε − 1)K + ε)
≥ 0 and d24 − d34 ≥ d14 − d12 − (d14 − εd13) ≥ ε(d12 + εd23) − d12 >
δ((ε− 1)(K − ε) + ε2) = δ((ε− 1)K + ε) ≥ 0. Thus we have x1x2x3x4.

If x1x2x4 and x1x4x3, then d23− d24 ≥ d23− (d14− εd12) ≥ d23− (d12 +
d23 − εd34 − εd12) > δ((ε− 1)K + ε) ≥ 0 and d23 − d34 ≥ d23 − (d12 + d23 −
εd14) ≥ ε(d12 + εd24) − d12 > δ((ε − 1)(K − ε) + ε2) ≥ 0, which implies
x1x2x4x3.

If x1x4x2 and x1x4x3, then d34− d24 ≥ d12 + εd23− d14− (d12− εd14) >
δ((ε− 1)K + ε) ≥ 0 and d34 − d23 ≥ d12 + εd23 − d14 − d23 ≥ d14 + εd24 +
εd23 − d14 − d23 > δ((ε− 1)K + ε) ≥ 0, which implies x1x4x2x3.

If x2x1x4 and x3x1x4, then d34 − d24 ≥ d13 + εd14 − (d12 + d14) ≥
d12 + εd23 + εd14 − (d12 + d14) > δ((ε − 1)K + ε) ≥ 0 and d34 − d23 ≥
d12 + εd23 + εd14 − d23 > δ((ε− 1)K + 1 + ε) > 0, which implies x4x1x2x3.

Assume now that x2x1x4 and x1x4x3. Since d24+εd34−d23 ≥ d12+εd14+
ε(d12 +εd23−d14)−d23>δ((ε

2−1)K+1+ε)=δ((ε−1)K+1)(1+ε)>0 and
d24+εd23−d34 ≥ d12+εd14+εd23−(d12+d23−εd14) > δ((ε−1)K+2ε) > 0,
we must have x2x3x4. Now d24 = d34 + ε1d23 = d12 + ε2d14 and d34 =
d12 + ε4d23 − ε3d14 for some ε ≤ ε1, ε2, ε3, ε4 ≤ 1. This gives (ε2 + ε3)d14 =
(ε1 + ε4)d23, from which we get εd14 ≤ d23 ≤ ε−1d14.

No other alternatives are possible because of the triangle inequality.
Namely, x1x2x4 and x3x1x4 would imply d34 − d24 − d23 ≥ d12 + εd23 +
εd14 − (d14 − εd12) − d23 > δ(2(ε − 1)K + 1 + ε) ≥ 0. If x1x4x2 and
x1x3x4, then d23 − d24 − d34 ≥ d23 − (d12 − εd14)− (d14 − ε(d12 + εd23)) >
δ(2(ε − 1)K + 1 + ε2) ≥ 0. If x1x4x2 and x3x1x4, then d34 − d24 − d23 ≥
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d12 + εd23 + εd14− (d12− εd14)− d23 > δ((ε− 1)K + 2ε) > 0. If x2x1x4 and
x1x3x4, then d24 − d34 − d23 ≥ d14 + εd12 − (d14 − ε(d12 + εd23)) − d23 >
δ((ε2 − 1)K + 2ε) ≥ 0.

Lemma 2.3. Let K ≥ 1 and ε3 ≥ (4K − 1)/(4K + 1). Suppose that E is
a metric space such that #E 6= 4, d(x, y) < Kd(z, w) for all x, y, z, w ∈ E,
z 6= w, and d(x, z) ≥ d(x, y) + εd(y, z) whenever x, y, z ∈ E are such that
d(x, z) = d({x, y, z}). Then E has an order.

Proof. We assume that there are at least five points in E. We need to
show that every quadruple of E has an order. Suppose that this is not
true and let {x1, x2, x3, x4, x5} ⊂ E be a subset of five points such that
{x1, x2, x3, x4} has no order. By the previous lemma we can assume that
x1x2x3, x2x1x4, x2x3x4 and x1x4x3. We set δ = d(E)/K and dij = d(xi, xj)
for i, j = 1, . . . , 4. If xixjxk, we have dij ≤ dik − εdjk < δ(K − ε).

Applying the proof of Lemma 2.2 to the quadruples {x1, x2, x3, x5} and
{x1, x4, x3, x5}, we see that the following eight cases are not possible:

x1x2x5 and x3x1x5,

x1x5x2 and x1x3x5,

x1x5x2 and x3x1x5,

x2x1x5 and x1x3x5,

x1x4x5 and x3x1x5,

x1x5x4 and x1x3x5,

x1x5x4 and x3x1x5,

x4x1x5 and x1x3x5.

Furthermore, x2x1x5 and x1x5x3 implies εd15 ≤ d23 ≤ ε−1d15. Similarly, if
x4x1x5 and x1x5x3, we have εd15 ≤ d34 ≤ ε−1d15.

The next three alternatives are not possible by the triangle inequality:
If x1x5x2 and x1x5x4, then d24 − d25 − d45 ≥ d12 + εd14 − (d12 − εd15) −
(d14 − εd15) > δ((ε− 1)K + 2ε) > 0. Similarly, if x1x5x2 and x1x4x5, then
d24−d25−d45 ≥ d12+εd14−(d12−εd15)−(d15−εd14) > δ((ε−1)K+2ε) > 0
and if x1x2x5 and x1x5x4, we have d24 − d25 − d45 ≥ d14 + εd12 − (d15 −
εd12) − (d14 − εd15) > δ((ε − 1)K + 2ε) > 0. The alternative x2x1x5 and
x4x1x5 is impossible, because in that case d24 + εd25 − d45 ≥ d14 + εd12 +
ε(d15 + εd12) − (d14 + d15) > δ((ε − 1)K + ε + ε2) > 0, d24 + εd45 − d25 ≥
d12 + εd14 + ε(d15 + εd14) − (d12 + d15) > δ((ε − 1)K + ε + ε2) > 0 and
d25+εd45−d24 ≥ d12+εd15+ε(d14+εd15)−(d12+d14) > δ((ε−1)K+ε+ε2)
> 0.

By the above examination not more than the following six cases are
possible:
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x2x1x5, x1x5x3, x1x4x5,(6)

x2x1x5, x1x5x3, x1x5x4,(7)

x1x2x5, x1x5x3, x4x1x5,(8)

x1x5x2, x1x5x3, x4x1x5,(9)

x1x2x5, x1x3x5, x1x4x5,(10)

x1x2x5, x1x5x3, x1x4x5.(11)

From (6) it follows that d45 ≤ d15 − εd14 ≤ d15 − ε2d23 ≤ d15 − ε3d15 <
(1−ε3)(K−ε)δ ≤ δ, which is a contradiction. In the case (7) we would have
d45 ≤ d14 − εd15 ≤ d14 − ε2d23 ≤ d14 − ε3d14 < δ. Similarly, in the case (8),
d25 ≤ d15 − εd12 ≤ d15 − ε2d34 ≤ d15 − ε3d15 < δ, and (9) would imply
d25 ≤ d12 − εd15 ≤ d12 − ε2d34 ≤ d12 − ε3d12 < δ. Thus we must have (10)
or (11). Since d24 + εd25 − d45 ≥ d12 + εd14 + ε(d15 − d12)− (d15 − εd14) >
δ((ε− 1)K + 1 + ε) > 0 and d24 + εd45 − d25 ≥ d12 + εd14 + ε(d15 − d14)−
(d15 − εd12) > δ((ε − 1)K + 1 + ε) > 0, we further have x2x5x4. Thus
d12 + ε1d14 = d24 = d45 + ε2d25 = d15 − ε3d14 + ε2(d15 − ε4d12) for some
ε ≤ ε1, ε2, ε3, ε4 ≤ 1, from which we get

ε(d12 + d14) ≤ d15 ≤
2(d12 + d14)

1 + ε
.

Now it follows from (10) that d35 ≤ d15 − εd13 ≤ 2(1 + ε)−1(d12 + d14) −
ε(d12 + εd23) ≤ 2(1 + ε)−1(d12 + d14)− ε(d12 + ε2d14) < (4(1 + ε)−1− ε− ε3)
(K−ε)δ ≤ (4(1+ε)−1−2ε2)(K−ε)δ ≤ δ, and (11) yields d35 ≤ d13−εd15 ≤
d12 + d23− ε2(d12 + d14) ≤ d12 + d23− ε2(d12 + εd23) < (2− ε2− ε3)(K− ε)δ
≤ δ.

If c(x, y, z) = 0 for every triple {x, y, z} ⊂ E, we can apply the previous
lemmas to finite subsets of E. Further by using Proposition 2.1 we easily
get the following result.

Proposition 2.4. Let E be a metric space such that c(x, y, z) = 0 for
any pairwise distinct points x, y, z ∈ E. Then E is isometric with a subset
of R or , alternatively , for some positive numbers a and b, isometric with
a set {(0, 0), (a, 0), (0, b), (a, b)} ⊂ R2 equipped with the metric d1, where
d1(x, y) = |x1 − y1|+ |x2 − y2| for x = (x1, x2), y = (y1, y2).

In fact, Menger proved in [9] that a metric space of more than n + 3
points for which each of its subsets of n+2 points is isometric with a subset
of Rn, is isometric with a subset of Rn. He also showed that for each n there
is a metric space of n+ 3 points for which each of its subsets of n+ 2 points
is isometric with a subset of Rn, but which is not isometric with a subset
of Rn. For the proof see also [1].



152 I. Hahlomaa

3. Metric spaces with the property Ω∗. We will first show that a
compact metric space with the property Ω∗ is a Lipschitz image of a compact
set of real numbers.

Lemma 3.1. Let E be a metric space which has the complete property Ω∗

with a constant α > 0, and let

R =
d(E)

√
1 + sinα

2(
√

2 +
√

1 + sinα )
.

Then for all a ∈ E and r < R there exist A ⊂ [0, 1] and a bijection f : A→
B(a, r) such that

d(B(a, r))|s− t| ≤ d(f(s), f(t)) ≤ d(B(a, r))

sinα
|s− t|

for all s, t ∈ A.

Proof. Let a∈E, r<R and ε=sinα (>0). For every triple {x, y, z}⊂E
we have by the assumption d(x, y)2 ≥ d(x, z)2 + d(y, z)2 + 2εd(x, z)d(y, z)
whenever d(x, y) = d({x, z, y}). Set

d′ =
( √

2√
1 + ε

+ 1

)
r.

Since d′ < d(E)/2, there exists b ∈ E such that d(a, b) > d′. Define a
function

g : B(a, r)→ [d(a, b)− r, d(a, b) + r]

by setting g(x) = d(x, b). Let x, y ∈ B(a, r). Now

d(x, b)2 + d(y, b)2 + 2εd(x, b)d(y, b) ≥ 2(d(a, b)− r)2 + 2ε(d(a, b)− r)2

> 2(1 + ε)(d′ − r)2 = 4r2 ≥ d(x, y)2,

and thus d(x, y) < d({x, b, y}). Suppose d(x, b) ≥ d(y, b). Since

d(x, b)2 ≥ d(y, b)2 + d(x, y)2 + 2εd(y, b)d(x, y) ≥ (d(y, b) + εd(x, y))2,

we get

εd(x, y) ≤ d(x, b)− d(y, b) = |g(x)− g(y)| ≤ d(x, y)

and further for s, t ∈ g(B(a, r)),

|s− t| ≤ d(g−1(s), g−1(t)) ≤ 1

ε
|s− t|,

where g−1 : g(E) → E is the inverse of g. If B(a, r) contains at least two
points, we take A = h−1(g(B(a, r))) ⊂ [0, 1] and f = g−1 ◦ h : A→ B(a, r),
where h(s) = d(B(a, r))s+ inf g(B(a, r)).

Now we get immediately the following result.
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Proposition 3.2. Let E be a compact metric space with the property Ω∗.
Then there exist A ⊂ [0, 1] and a Lipschitz surjection f : A→ E. (Moreover ,
f and A can be chosen such that A =

⋃n
i=1Ai, where n ∈ N, the sets Ai are

compact and the restrictions f |Ai are bi-Lipschitz maps.)

By the proof of Lemma 3.1 it is clear that we do not have to suppose so
much in the previous proposition.

Proposition 3.3. Let E be a compact metric space and suppose that for
all a ∈ E there are r > 0, α > 0 and b ∈ E \ {a} such that max^{b, c, d} ≥
π/2 + α for all c, d ∈ B(a, r). Then there exist A ⊂ [0, 1] and a Lipschitz
surjection f : A→ E.

Further we get the following corollaries.

Corollary 3.4. Let E be a compact metric space and suppose that for
all a ∈ E there is r > 0 such that c(x, y, z)d(x, y) <

√
3 for x, y, z ∈ B(a, r).

Then there exist A ⊂ [0, 1] and a Lipschitz surjection f : A→ E.

Proof. By (1), the condition c(x, y, z)d(x, y) <
√

3 implies that sinα <√
3/2, where α is the angle at z for the triple {x, y, z}. So by the assumption,

for every a ∈ E there is r > 0 such that max^{x, y, z} > 2π/3 whenever
x, y, z ∈ B(a, r). Since E has the property Ω∗, the corollary follows from
Proposition 3.2.

Corollary 3.5. Let E be a compact metric space and suppose that
there is M ∈ R such that c(x, y, z) ≤M for all x, y, z ∈ E. Then there exist
A ⊂ [0, 1] and a Lipschitz surjection f : A→ E.

Now we are going to show that every bounded metric space with the
complete property Ω∗ is a Lipschitz image of a bounded set of real numbers.
We also try to estimate the optimal Lipschitz constant. For that purpose we
use the following lemma.

Lemma 3.6. Let E be a bounded metric space which has the complete
property Ω∗ with a constant α > 0, and let

R =
d(E)√

2
√

1 + sinα

and a ∈ E. Then d(x, y) < R for all x, y ∈ E \B(a,R).

Proof. Let a ∈ E and x, y ∈ E \B(a,R). Suppose d(x, y) ≥ R. Then

max{d(x, a), d(y, a), d(x, y)} >
√

2
√

1 + sinαR = d(E),

which is a contradiction.

Theorem 3.7. If a bounded metric space E has the complete property Ω∗

with a constant α > 0, then there exist A ⊂ [0, 1] and a bijective map
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f : A→ E such that

d(E)
sinα

2
|s− t| ≤ d(f(s), f(t)) ≤ d(E)

9

2 sinα
|s− t|

for all s, t ∈ A.

Proof. Let a ∈ E, d = d(E), ε = sinα and

λ = max

{
1√

1 + 4ε+ 2ε2
,

√
2√

3 + ε+ 2
√

2ε
√

1 + ε

}
,

R =
d√

2
√

1 + ε
.

For r > 0 define

Er = {x ∈ E : λr < d(x, a) ≤ r}, δr =
λr
√

1 + ε√
2

.

Let r > 0 and x1, x2, x3 ∈ Er. We shall first show that one of the distances
d(x1, x2), d(x1, x3) and d(x2, x3) must be less than δr. Set di = d(xi, a) and
dij = d(xi, xj) for i, j = 1, 2, 3, and suppose d1 ≤ d2 ≤ d3. Then at least one
in each of the following three pairs of inequalities is true:

d2
2 ≥ d2

1 + d2
12 + 2εd1d12,(12)

d2
12 ≥ d2

1 + d2
2 + 2εd1d2,(13)

d2
3 ≥ d2

1 + d2
13 + 2εd1d13,(14)

d2
13 ≥ d2

1 + d2
3 + 2εd1d3,(15)

d2
3 ≥ d2

2 + d2
23 + 2εd2d23,(16)

d2
23 ≥ d2

2 + d2
3 + 2εd2d3.(17)

At least one of inequalities (12), (14) and (16) must be true. Otherwise,
we would have (13), (15) and (17). In that case, the smallest distance in

{x1, x2, x3} would be at least
√
d2

1 + d2
2 + 2εd1d2 and another one at least√

d2
1 + d2

3 + 2εd1d3. The third distance is, of course, not more than d2 + d3.
Now we have

d2
1 + d2

2 + 2εd1d2 + d2
1 + d2

3 + 2εd1d3

+ 2ε
√
d2

1 + d2
2 + 2εd1d2

√
d2

1 + d2
3 + 2εd1d3 − (d2 + d3)2

= 2d2
1 + 2εd1d2 + 2εd1d3 + 2ε

√
d2

1 + d2
2 + 2εd1d2

√
d2

1 + d2
3 + 2εd1d3 − 2d2d3

> 2((λr)2 + 2ε(λr)2 + 2ε(1 + ε)(λr)2 − r2)

= 2r2((1 + 4ε+ 2ε2)λ2 − 1) ≥ 0,
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and thus we would have max^{x1, x2, x3} < π/2 + α, which is a contradic-
tion. If x, y ∈ Er are such that d(x, y) ≤ max{d(x, a), d(a, y)}, then

d(x, y) < r(
√

(ε2 − 1)λ2 + 1− ελ) ≤ λr
√

1 + ε√
2

by (3) and the choice of λ. Thus min{d12, d13, d23} < δr. If x, y ∈ Er are
such that d(x, y) = d({x, a, y}), then

d(x, y) ≥
√
d(x, a)2 + d(y, a)2 + 2εd(x, a)d(y, a) >

√
2(λr)2 + 2ε(λr)2

= λr
√

2
√

1 + ε.

This means that for all r > 0 and x, y ∈ Er either d(x, y)
> 2δr or d(x, y) < δr and in the latter case d(x, y) < min{d(x, a), d(y, a)}.
Further Er has a unique decomposition into two sets Ar and Br such that
d(Ar) ≤ δr, d(Br) ≤ δr and d(Ar, Br) ≥ 2δr. (If Er 6= ∅ we can choose
z ∈ Er and take Ar = {x ∈ Er : d(x, z) < δr} and Br = Er \ Ar.)

Set F−1 = E \ B(a,R) and G−1 = ∅. For all k define sets Fk and Gk
inductively as follows. Let k ∈ N and suppose that we have defined Fk−1

and Gk−1 such that Eλk−1R = Fk−1 ∪ Gk−1. Suppose first that there exists
λkR < rk < λk−1R such that Erk ∩Eλk−1R 6= ∅ and Erk ∩EλkR 6= ∅. Choose
zk−1 ∈ Erk ∩ Eλk−1R and wk ∈ Erk ∩ EλkR. Then we have the following
alternatives:

zk−1 ∈ Fk−1 and d(zk−1, wk) < δrk ,(18)

zk−1 ∈ Fk−1 and d(zk−1, wk) > 2δrk ,(19)

zk−1 ∈ Gk−1 and d(zk−1, wk) < δrk ,(20)

zk−1 ∈ Gk−1 and d(zk−1, wk) > 2δrk .(21)

If (18) or (21) is true, we set Fk = {x ∈ EλkR : d(x,wk) < δλkR} and
Gk = EλkR \Fk. Otherwise we put Gk = {x ∈ EλkR : d(x,wk) < δλkR} and
Fk = EλkR\Gk. IfEr∩Eλk−1R = ∅ or Er∩EλkR = ∅ for all λkR < r < λk−1R,
we define Fk and Gk arbitrarily so that EλkR = Fk ∪ Gk, d(Fk) ≤ δλkR,
d(Gk) ≤ δλkR and d(Fk, Gk) ≥ 2δλkR.

Set F =
⋃∞
k=−1 Fk and G =

⋃∞
k=0Gk. Then E = F ∪ G ∪ {a}. Define a

function g : E → [−R, d] by setting

g(x) =

{−d(x, a) for x ∈ G,

d(x, a) for x ∈ F ∪ {a}.
We now show that g is bi-Lipschitz.

If x, y ∈ Fk or x, y ∈ Gk for some k ∈ N, we have, by (3),

εd(x, y) ≤ |d(x, a)− d(y, a)| = |g(x)− g(y)| ≤ d(x, y),(22)
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because d(x, y) ≤ δλkR implies d(x, y) < d({x, a, y}). The same is true for
x, y ∈ F−1 by Lemma 3.6. If x ∈ Fk and y ∈ Gk for some k ∈ N, we have

1 ≤ d(x, a) + d(y, a)

d(x, y)
=
|g(x)− g(y)|

d(x, y)
≤ 2λkR

2δλkR
=

√
2

λ
√

1 + ε
.

From now on we suppose that x, y ∈ E are such that d(y, a) ≤ d(x, a) and
x 6= a.

If d(y, a) ≤ λd(x, a), then

1− λ
1 + λ

≤ d(x, a)− d(y, a)

d(x, a) + d(y, a)
≤ |g(x)− g(y)|

d(x, y)
≤ d(x, a) + d(y, a)

d(x, a)− d(y, a)
≤ 1 + λ

1− λ.

Suppose d(y, a) > λd(x, a). Then either x, y ∈ F−1 or x, y ∈ Eλk−1R ∪ EλkR
for some k ∈ N. We have to check the case x ∈ Eλk−1R and y ∈ EλkR for
some k. Since d(y, a) ≤ d(x, a) ≤ d(y, a)/λ, we have x ∈ Erk or y ∈ Erk . We
may assume that x ∈ Erk . Then x, y, wk ∈ Ed(x,a).

Suppose first that d(x, zk−1) < δλk−1R, d(y, wk) < δλkR and d(zk−1, wk)
< δrk . Then we have either x ∈ Fk−1, y ∈ Fk and (18), or x ∈ Gk−1, y ∈ Gk
and (20). Since δλk−1R < 2δrk , we have d(x, zk−1) < δrk . Thus d(x,wk) ≤
d(x, zk−1) + d(zk−1, wk) < 2δrk and so d(x,wk) < δrk , because x,wk ∈ Erk .
Since δrk < 2δd(x,a) and x,wk ∈ Ed(x,a), we further have d(x,wk) < δd(x,a).
Therefore d(x, y) ≤ d(x,wk) + d(y, wk) < δd(x,a) + δλkR < 2δd(x,a). Since
x, y ∈ Ed(x,a), we have d(x, y) < δd(x,a) and (22).

Suppose now that d(x, zk−1) < δλk−1R, d(y, wk) < δλkR and d(zk−1, wk)
> 2δrk . Then we have either x ∈ Fk−1, y ∈ Gk and (19), or x ∈ Gk−1,
y ∈ Fk and (21). Since δλk−1R < 2δrk , we have d(x, zk−1) < δrk . Thus
d(x,wk) ≥ d(wk, zk−1) − d(x, zk−1) > δrk and so d(x,wk) > 2δrk , because
x,wk ∈ Erk . Therefore d(x, y) ≥ d(x,wk)− d(y, wk) > 2δrk − δλkR > δd(x,a).
Since x, y ∈ Ed(x,a), we have d(x, y) > 2δd(x,a) and

1 ≤ d(x, a) + d(y, a)

d(x, y)
=
|g(x)− g(y)|

d(x, y)
≤ 2d(x, a)

2δd(x,a)
=

√
2

λ
√

1 + ε
.

The other cases can be treated similarly. The inequality

1− λ
1 + λ

≤ |g(x)− g(y)|
d(x, y)

≤ 1 + λ

1− λ
holds for all x, y ∈ E. Thus we get a set A ⊂ [0, 1] and a surjection f : A→ E
such that

d(E)
1 +
√

2
√

1 + ε√
2
√

1 + ε

1− λ
1 + λ

|s− t| ≤ d(f(s), f(t))

≤ d(E)
1 +
√

2
√

1 + ε√
2
√

1 + ε

1 + λ

1− λ |s− t|
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and further the estimate

d(E)
ε

2
|s− t| ≤ d(f(s), f(t)) ≤ d(E)

9

2ε
|s− t|

for all s, t ∈ A.

We now give an example of a compact and connected metric space which
has an order and the complete property Ω, but which is not a Lipschitz image
of a bounded set of real numbers.

Example 3.8. Let 1 < p < 2 and x ∈ `p \ `1, x = (xk)
∞
k=1, where xk ≥ 0

for every k. Set

E =
{ n∑

k=1

xkek + ten+1 : n ∈ N, t ∈ [0, xn+1]
}
∪ {x} ⊂ `p,

where {ek : k ∈ N} is the standard basis of `p. Now j : y 7→ ‖y‖p is an order
on E and maps E onto [x1, ‖x‖p]. We check that every triple in E contains
an obtuse angle. Let

a1 =

n1∑

k=1

xkek, a2 =

n2∑

k=1

xkek + ten2+1, a3 =

n3∑

k=1

xkek,

where ‖a1‖p < ‖a2‖p < ‖a3‖p, n1 ≤ n2 < n3 ≤ ∞, and t ∈ [0, xn2+1]. Set

A =

n2∑

k=n1+1

xpk, B =

n3∑

k=n2+2

xpk.

Now

d(a1, a3)2 − d(a1, a2)2 − d(a2, a3)2 = ‖a1 − a3‖2p − ‖a1 − a2‖2p − ‖a2 − a3‖2p
= (A+ xpn2+1 +B)2/p − (A+ tp)2/p − ((xn2+1 − t)p +B)2/p

≥ (A+ xpn2+1 +B)2/p − (A+ tp)2/p − (xpn2+1 − tp +B)2/p > 0,

because (a+b)s > as+bs for a, b > 0 and s > 1. So for {a1, a2, a3} the angle
at a2 is obtuse. However, even

E′ =
{ n∑

k=1

xkek : n ∈ N
}
⊂ E

cannot be a Lipschitz image of a bounded set of real numbers when x 6∈ `1.
Namely, if A ⊂ [0, 1] and f : A→ E ′ is a Lipschitz map such that

{ n∑

k=1

xkek : n = 1, . . . , n0

}
⊂ f(A),

the Lipschitz constant of f must be at least
∑n0

k=2 xk.
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4. Connected, ordered and ptolemaic spaces. LetM be the class
of all bounded metric spaces. For E ∈M we define

l(E) = inf{Lip(f) : f : A→ E is a surjection and A ⊂ [0, 1]},
where Lip(f) ∈ [0,∞] is the Lipschitz constant of f . For A ⊂M we set

L̃(A) = sup{l(E)/d(E) : E ∈ A}.
Further for 0 < ε ≤ 1 and A ⊂ M we put L(ε,A) = L̃(Ω(ε) ∩ A). Clearly
ε 7→ L(ε,A) is a decreasing function on ]0, 1] for fixedA ⊂M, and L(ε,A) ≤
L(ε,B) if A ⊂ B ⊂ M. By Proposition 2.4 we have L(1,M) = 3/2, and
L(ε,M) ≤ C/ε with some constant C > 0 by Theorem 3.7.

We denote by C the class of connected metric spaces, and by O the
class of metric spaces which have an order. We next show that L(ε, C) =
L(ε,O) = 1/ε for 0 < ε ≤ 1.

Lemma 4.1. Let E be a connected metric space such that max^{x, y, z}
≥ π/2 for every triple {x, y, z} ⊂ E. If f : E → R is a homeomorphism
onto its image, then f is an order.

Proof. We can of course assume that E contains more than one point.
Suppose that f is not an order. Then there exists {x, y, z} ⊂ E such that

f(x) < f(y) < f(z)(23)

and d(x, z) ≤ max{d(x, y), d(y, z)}. We can assume xzy, as max^{x, y, z}
≥ π/2. Define g : f(E)→ R by setting g(a) = d(x, f−1(a)), where f−1 is the
inverse of f . Now g is continuous. Since f(E) is connected, [f(x), f(y)] ⊂
f(E). Let b ∈ [f(x), f(y)] be such that g(b) = max{g(a) : a ∈ [f(x), f(y)]}.
Now b ∈ ]f(x), f(y)[ because of (23). Now

d(x, f−1(c)) = g(c) ↑ g(b) = d(x, f−1(b))

as c ↑ b and
d(x, f−1(e)) = g(e) ↑ g(b) = d(x, f−1(b))

as e ↓ b, where d(x, f−1(b)) > 0. Further by the continuity of f−1 we simul-
taneously have d(f−1(c), f−1(e)) ↓ 0. From this we conclude that E contains
a triple whose maximum angle is less than π/2, which is a contradiction.

Proposition 4.2. L(ε, C) = L(ε,O) = 1/ε for all ε ∈ ]0, 1].

Proof. Let 0 < ε ≤ 1. By Theorem 3.7 and Lemma 4.1 we have L(ε, C)
≤ L(ε,O). Clearly L(ε,O) ≤ 1/ε. Namely, if E ∈ Ω(ε) ∩ O, it follows from
Theorem 3.7 that the completion of E is compact. Since clearly also the
completion of E is in Ω(ε) ∩ O, we may assume that E is compact. Take
a, b ∈ E such that d(a, b) = d(E) and define g : E → [0, d(E)] by setting
g(x) = d(x, a). As before, we see by (3) that the inverse of g is 1/ε-Lipschitz
from d(E) to E.



Menger curvature and Lipschitz parametrizations 159

We are left to show L(ε, C) ≥ 1/ε. We define a metric d on an interval
[0, N ], N ∈ N, as follows: Define real numbers rk, k = 0, 1, . . . , by setting
r0 = 0 and

rk+1 =
√
r2
k + 1 + 2εrk.

Let x, y ∈ [0, N ] with x < y. If N ∩ [x, y] = ∅, we set d(x, y) = |x− y|. Else
we put m = inf(N∩ [x, y]), M = sup(N∩ [x, y]), s = min{y−M,m−x} and
t = max{y −M,m− x}. Then we set

d(x, y) =
√
u2 + s2 + 2εus,

where

u =
√
r2
M−m + t2 + 2εrM−mt.

Denote this metric space by EN . Then EN ∈ Ω(ε) ∩ C. Since rk+1 − rk → ε
as k →∞, we have

l(EN )

d(EN )
=

N

rN
→ 1

ε

as N →∞.

We say that a metric space E has the four-point property if any subset
of four points of E is isometric with some subset of R3. E is called ptolemaic
provided for all x, y, z, w ∈ E the inequality d(x, y)d(z, w)+d(x, z)d(y, w) ≥
d(x,w)d(y, z) is true. Denote the class of metric spaces with the four-point
property by F , and the class of ptolemaic metric spaces by P. Since R3 is
ptolemaic, we have F ⊂ P. It is easy to construct metric spaces which are
ptolemaic but which do not have the four-point property. For example we
can take a quadruple such that one distance between points equals 2 while
the other five distances are 1. Since F ∩ Ω(

√
3/2) ⊂ O, we have at least

L(ε,F) ≤ 1/ε for
√

3/2 ≤ ε ≤ 1. We now show that L(ε,P) ↓ 1 as ε ↑ 1.

Lemma 4.3. Let E be a ptolemaic metric space with the complete prop-
erty Ω. Then min{d(x, y), d(z, w)} < max{d(x, z), d(x,w), d(y, z), d(y, w)}
for any four pairwise distinct points x, y, z, w ∈ E.

Proof. Otherwise

d(x, y)2d(z, w)2 >
(d(x, z)2 + d(y, w)2 + d(x,w)2 + d(y, z)2)2

4

≥ (2d(x, z)d(y, w) + 2d(x,w)d(y, z))2

4

= (d(x, z)d(y, w) + d(x,w)d(y, z))2,

which means that E is not ptolemaic.

Proposition 4.4. L(ε,P) ↓ 1 as ε ↑ 1.
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Proof. LetE ∈ Ω(ε)∩P. It follows from Theorem 3.7 that the completion
of E is compact. Since clearly also the completion of E is in Ω(ε) ∩ P, we
can assume that E is compact. Let a, b ∈ E be such that d(a, b) = d(E). We
define g : E → [0, d(E)] by setting g(x) = d(x, a). Let x, y ∈ E \ {a, b}. If
d(x, y) ≤ max{d(x, a), d(a, y)}, then |g(x)−g(y)| ≥ εd(x, y) by (3). Suppose
xay. By the previous lemma, d(x, y) ≤ max{d(x, b), d(b, y)}. We may assume
that d(y, b) > d(x, b). Set d = d(E), p = d(x, a), q = d(y, a), r = d(x, y),
s = d(y, b) and t = d(x, b). Then d2 ≥ q2 + s2 + 2εqs, which gives

s ≤
√
d2 + (ε2 − 1)q2 − εq.

We also have t ≥ d− p and r2 ≥ q2 + p2 + 2εqp. Thus we get

s2 − t2 − r2

≤ d2 + (2ε2 − 1)q2 − 2εq
√
d2 + (ε2 − 1)q2 − d2 − p2 + 2dp− q2 − p2 − 2εqp

= 2[(ε2 − 1)q2 − p2 + dp− εqp− εq
√
d2 + (ε2 − 1)q2 ] ≤ 2p(d− p)

and further

ε ≤ s2 − t2 − r2

2rt
≤ p√

q2 + p2 + 2εqp
.

This yields p ≥ ε(εq + p), which gives q ≤ p(1− ε)/ε2. Thus

|g(x)− g(y)|
d(x, y)

=
p− q
r
≥ p− q
p+ q

≥ ε2 + ε− 1

ε2 − ε+ 1
,

and we get

L(ε,P) ≤ max

{
ε2 − ε+ 1

ε2 + ε− 1
,
1

ε

}
=
ε2 − ε+ 1

ε2 + ε− 1

when (
√

5− 1)/2 < ε ≤ 1. Therefore L(ε,P) ↓ 1 as ε ↑ 1.

5. Travelling salesman theorem. Let E be a bounded metric space
and let C1 ≥ C2 > 960. For any x ∈ E and t > 0 we set

β(x, t) = sup{c(z1, z2, z3) : z1, z2, z3 ∈ B(x, t), d(zi, zj) ≥ C−1
1 t ∀i 6= j}.

We say that an increasing sequence (∆k)k∈Z of subsets of E is a net of E if
for all k ∈ Z,

(i) for any distinct x, y ∈ ∆k, d(x, y) > 2−k,
(ii) for any x ∈ E there exists y ∈ ∆k such that d(x, y) ≤ 2−k.

Now we define

β(E) = inf
{∑

k∈Z

∑

x∈∆k
β(x,C22−k)2(2−k)3 : (∆k)k is a net of E

}
.

For a bounded set F ⊂ Rn the conditions β(F ) <∞ and (4) are equiv-
alent. We now sketch a proof for this. Let F be a bounded set in Rn. First,
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assume that β(F ) < ∞. Then, by Theorem 5.3 below, we find A ⊂ [0, 1]
and a Lipschitz surjection f : A → F such that Lip(f) ≤ C(β(F ) + d(F )),
where C > 0 is an absolute constant. By the Kirszbraun theorem f has an

extension f̃ : [0, 1] → Rn such that Lip(f̃) = Lip(f). Thus the result of
Okikiolu (see [11]) gives

∑

Q∈D
βF (Q)2d(Q) ≤ A1 Lip(f̃) ≤ A1C(β(F ) + d(F )),

where A1 is a constant depending on n and D is the set of all dyadic cubes
in Rn.

If Q ⊂ Rn is a cube and λ > 1, we define

βλF (Q) = inf
L
d(Q)−1 sup{d(y, L) : y ∈ F ∩ λQ},

where the infimum is taken over all lines in Rn and λQ is the cube with the
same center as Q and sides parallel to the sides of Q, but whose diameter is
λd(Q). It is not difficult to show that there exists a constant A2 = A2(n, λ)
such that

A−1
2

∑

Q∈D
βλF (Q)2d(Q) ≤

�

Rn

∞�

0

β∞(x, t, F )2 dt

tn
dLnx ≤ A2

∑

Q∈D
βλF (Q)2d(Q),

where Ln is the Lebesgue measure on Rn and

β∞(x, t, F ) = inf
L
t−1 sup{d(y, L) : y ∈ F ∩B(x, t)},

where the infimum is taken over all lines in Rn. In particular, for all λ1, λ2

> 1 there exists a constant A3 = A3(n, λ1, λ2) such that

(24)
∑

Q∈D
βλ1
F (Q)2d(Q) ≤ A3

∑

Q∈D
βλ2
F (Q)2d(Q).

For k ∈ Z let Dk be the set of all dyadic cubes in Rn of side length 2−k.
Choose A4 ∈ Z such that (2 log 2)A4 ≥ log n and define λ = C22A4+1 + 1.
Let (∆k)k be a net of F and fix k ∈ Z. Then #(Q ∩ ∆k) ≤ 1 for any
Q ∈ Dk+A4 . Fix x ∈ ∆k and let Q ∈ Dk+A4 be such that x ∈ Q. Further
let z1, z2, z3 ∈ B(x,C22−k) be such that d(zi, zj) ≥ C−1

1 C22−k for all i 6= j.

Since B(x,C22−k) ⊂ λQ, by using (1) and some plane geometry we get

c(z1, z2, z3)2(2−k)3 =
4d(z1, L)2(2−k)3

d(z1, z2)2d(z1, z3)2
≤ 4C4

1C
−4
2 d(z1, L)22k

≤ 4C4
1

√
n d(z1, L)2

C4
22A4d(Q)

≤ A5β
λ
F (Q)d(Q),

where L is the line passing through z2 and z3 and A5 = A5(n,C1, C2) is a
constant. Using (24), for some constant A6 depending on n, C1 and C2 we
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get

β(F ) ≤
∑

k∈Z

∑

x∈∆k
β(x,C22−k)2(2−k)3 ≤ A5

∑

k∈Z

∑

Q∈Dk+A3

βλF (Q)2d(Q)

≤ A6

∑

Q∈D
βF (Q)2d(Q).

Now we are going to show that for any bounded metric space E the
condition β(E) < ∞ implies that E is a Lipschitz image of a bounded set
of real numbers.

Lemma 5.1. Let x, y, z ∈ R2 be distinct points, Lyz the line passing
through y and z, and P : R2 → Lyz the orthogonal projection to Lyz. Set
dyx = |y−x|, dxz = |x−z| and dyz = |y−z|. If dyz = |y−P (x)|+ |P (x)−z|,
then

c(x, y, z)2

8
≤ dyx + dxz − dyz
dyxdxz(dyx + dxz)

≤ c(x, y, z)2

4
.

Proof. Define s = |y − P (x)|, t = |P (x)− z| and h = |x− P (x)|. By the
Pythagorean theorem

dyx + dxz − dyz = dyx − s+ dxz − t =
d2
yx − s2

dyx + s
+
d2
xz − t2
dxz + t

= h2

(
1

dyx + s
+

1

dxz + t

)

and by (1),

c(x, y, z) =
2h

dyxdxz
.

Hence

dyx + dxz − dyz =
c(x, y, z)2d2

yxd
2
xz

4

(
1

dyx + s
+

1

dxz + t

)
,

from which we get the conclusion.

Lemma 5.2. Let E be a bounded metric space. Suppose that there exist
L < ∞ and a dense subset D ⊂ E such that there exist U ⊂ [0, 1] and an
L-Lipschitz surjection g : U → F for every finite F ⊂ D. Then there exist
A ⊂ [0, 1] and an L-Lipschitz surjection f : A→ E.

Proof. We can assume that D is countable. Let D = {x1, x2, x3, . . . }
and define Dn = {x1, . . . , xn} and N1

n = Nn = {1, . . . , n} for n ∈ N.
By the hypothesis we have for every n a permutation σ1

n of Nn such that∑n−1
i=1 d(xσ1

n(i), xσ1
n(i+1)) ≤ L. Since for any n there are only a finite number

of permutations of Nn, we can inductively choose sequences (σmn : Nm
n →

Nm
n )n of permutations such that for every m ∈ N the sequence (σm+1

n )n is
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a subsequence of (σmn )n, Nm ⊂ Nm
1 and for every n ∈ N and i, j ∈ Nm the

condition (σm1 )−1(i) < (σm1 )−1(j) implies (σmn )−1(i) < (σmn )−1(j). For each
n let σn be the permutation of Nn such that for i, j ∈ Nn the condition
(σn)−1(i) < (σn)−1(j) implies (σnn)−1(i) < (σnn)−1(j).

For every n set An = {an1 , . . . , ann}, where ank =
∑k−1

i=1 d(xσn(i), xσn(i+1))
for k = 1, . . . , n. Define a 1-Lipschitz bijection fn : An → Dn by setting
fn(ank) = xσn(k) for k = 1, . . . , n. Note that An ⊂ [0, L] for every n and the
sequence (ann) is increasing. Now there exists a compact A ⊂ [0, L] such that
An → A in the Kuratowski sense:

(i) If a = limn→∞ amn for some subsequence (amn ) of a sequence (an)
such that an ∈ An for any n, then a ∈ A.

(ii) If a ∈ A, then there exists a sequence (an) such that an ∈ An for
any n and a = limn→∞ an.

Let a ∈ A and let (an) be a sequence such that an ∈ An for any n and an → a
as n→∞. Let m ≥ n ≥ 1. Then there is b ∈ Am such that fm(b) = fn(an)
and |an − b| ≤ amm − ann. Using this we get

d(fm(am), fn(an)) = d(fm(am), fm(b)) ≤ |am − b| ≤ |am − an|+ |an − b|
≤ |am − an|+ amm − ann.

So (fn(an)) is a Cauchy sequence in E. Thus we can define f : A → E,
where E is the completion of E, by setting, for a ∈ A,

f(a) = lim
n→∞

fn(an),

where (an) is a sequence such that an ∈ An for all n and an → a as n→∞.
Clearly f(a) does not depend on the choice of the sequence (an). Let a, b ∈ A
and let an → a and bn → b be such that an, bn ∈ An for all n. Then, since
fn is 1-Lipschitz for each n,

d(f(a), f(b)) ≤ d(f(a), fn(an)) + d(fn(an), fn(bn)) + d(fn(bn), f(b))

≤ d(f(a), fn(an)) + |an − bn|+ d(fn(bn), f(b))→ |a− b|
as n→∞. So f is 1-Lipschitz. It is also surjective. To check this let x ∈ Dk

for some k. Then we have a sequence (cn) such that cn ∈ An and fn(cn) = x
for any n ≥ k. Since the sequence (cn)n≥k is increasing and bounded, there
is c ∈ [0, L] such that cn → c. Then c ∈ A by (i) and x = limn→∞ fn(cn) =
f(c). Thus D ⊂ f(A). Since D ⊂ E is dense and f(A) is compact, we have
E ⊂ f(A) = E. Finally, we restrict f to f−1(E).

Theorem 5.3. Let E be a bounded metric space such that β(E) < ∞.
Then there exist A ⊂ [0, 1] and a Lipschitz surjection f : A→ E. Moreover ,
f can be chosen such that Lip(f) ≤ C(β(E) + d(E)), where C > 0 is an
absolute constant.
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Proof. Let (∆k)k∈Z be a net of E such that
∑

k

∑

x∈∆k
β(x,C22−k)2(2−k)3 <∞

and let C3, C4 and ε0 be positive constants with C3 ≥ 9, C4 > 24(1 + C3),
C2 ≥ 4C4 and 2C4(1 + 2C4)ε0 ≤

√
4C4 + 1.

Suppose that β(x,C22−k)2−k < ε ≤
√

3/4 for some x ∈ Dy,k, where

y ∈ E, k ∈ Z and Dy,k = B(y, 2−k+1) ∩ ∆k. Since C1 ≥ C2 ≥ 4, we have

d(z1, z2) ≥ C−1
1 C22−k for all z1, z2 ∈ Dy,k ⊂ B(x,C22−k). By (1),

sin^z1z2z3 ≤
d(Dy,k) sin^z1z2z3

d(z1, z3)
≤ d(Dy,k)

2
c(z1, z2, z3) < 2k−1d(Dy,k)ε

≤ 2ε ≤
√

3

2

for any triple {z1, z2, z3} ⊂ Dy,k. From this we concludeDy,k ∈ Ω(
√

1− 4ε2).
If now 289(1− 4ε2)3 ≥ 225, by Lemma 2.3 and Proposition 4.2 we have

(#Dy,k − 1)2−k ≤ d(Dy,k)√
1− 4ε2

≤ 2−k+2

√
1− 4ε2

,

from which we get #Dy,k ≤ 4/
√

1− 4ε2 + 1 < 6. In particular, ∆k is finite
for each k. Let ⋃

k∈Z
∆k = {x1, x2, x3, . . . }

so that for all k ∈ Z,

D#∆k = ∆k,

d(xj+1,Dj) = max{d(x,Dj) : x ∈ ∆k} for j = 1, . . . ,#∆k − 1,

where Dj = {x1, . . . , xj} for j ∈ N.
We are going to construct a sequence (Gj) of connected weighted graphs

with no cycles. For each j we denote by Vj and Ej the sets of vertices and
edges of Gj . For each j we will have Dj ⊂ Vj . For all x, y ∈ Dj such that
{x, y} ∈ Ej we will have wj({x, y}) = d(x, y), where wj : Ej → ]0,∞[ is the
weight function on the graph Gj . We define l(Gj) =

∑
e∈Ej wj(e) and for

y ∈ Dj we will use the notation

Nj(y) = {z ∈ Dj : {y, z} ∈ Ej}.
Each vertex in Vj \ Dj will have only one neighbour. Thus the subgraph
of Gj induced by Dj will also be connected. We will denote this graph
and the set of its edges by G∗j and E∗j . In our construction the number

l(G∗j) =
∑

e∈E∗j wj(e) will remain bounded, from which we get the final

conclusion.
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We define a graph G2 with 4 vertices and 3 edges as follows. Put V2 =
{x1, x2, b1, b2}, where {b1, b2} ∩ E = ∅, and set E2 = {{x1, x2}, {x1, b1},
{x2, b2}}, w2({x1, x2}) = d(x1, x2) and w2({xi, bi}) = C3d(x1, x2) for
i = 1, 2. Then

(25) l(G2) ≤ (1 + 2C3)d(E).

Let now j ≥ 2 and assume by induction that we have constructed a
graph Gj = (Vj, Ej), wj : Ej → ]0,∞[ such that Dj ⊂ Vj . We also assume
that Gj has the following property:

(∗) Let y ∈ Dj . If d(y, z1) < C4d(xj+1,Dj) and d(z1, z2) < d({z1, y, z2})
for all z1, z2 ∈ Nj(y), then there is b ∈ Vj \Dj such that {y, b} ∈ Ej .

We set x = xj+1. Let y be a nearest neighbour of x in Dj and let k be the
smallest integer such that x ∈ ∆k. In other words, #∆k−1 ≤ j < #∆k.

Case 1: β(x,C22−k)2−k ≥ ε0. We set Vj+1 = Vj ∪ {x, b}, where b 6∈
Vj ∪E, and define

Ej+1 = Ej ∪ {{y, x}, {x, b}}
and wj+1 : Ej+1 → ]0,∞[ by setting

wj+1(e) =





d(y, x) for e = {y, x},
C3d(y, x) for e = {x, b},
wj(e) for e ∈ Ej .

Now Gj+1 has the property (∗) and

l(Gj+1)− l(Gj) = (1 + C3)d(y, x) ≤ (1 + C3)2−(k−1)(26)

≤ 2(1 + C3)

ε2
0

β(x,C22−k)2(2−k)3.

For the remaining cases we assume that β(x,C22−k)2−k < ε0.

Case 2: There exists z ∈ Nj(y) such that C4d(y, x) ≤ d(y, z). We define
Gj+1 as in Case 1. Now

(27) l(Gj+1)− l(Gj) = (1 + C3)d(y, x) ≤ 1 + C3

C4
d(y, z).

By the construction {y, z} ∈ E∗m for all m ≥ j.
For the rest of the cases we assume that d(y, z) < C4d(y, x) for all

z ∈ Nj(y).

Case 3: There exists z ∈ Nj(y) such that d(x, z) ≤ d(y, z). We set
Vj+1 = Vj ∪ {x} and define

Ej+1 = (Ej \ {{y, z}}) ∪ {{y, x}, {x, z}}
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and wj+1 : Ej+1 → ]0,∞[ by setting

wj+1(e) =





d(y, x) for e = {y, x},
d(x, z) for e = {x, z},
wj(e) for e ∈ Ej \ {{y, z}}.

By Lemma 5.1,

l(Gj+1)− l(Gj) = d(y, x) + d(x, z)− d(y, z)(28)

≤ c(y, x, z)2

4
d(y, x)d(x, z)(d(y, x) + d(x, z))

≤ C4(1 + C4)

4
c(y, x, z)2(2−(k−1))3

≤ 2C4(1 + C4)β(x,C22−k)2(2−k)3.

The last inequality holds, because C1 ≥ C2 ≥ 2C4.
We next show that Gj+1 has the property (∗) at z. Suppose that {z, b} 6∈

Ej+1 for all b ∈ Vj+1\Dj+1, which implies that {z, b} 6∈ Ej for all b ∈ Vj\Dj.
Suppose further that d(z, v) < C4d(xj+2,Dj+1) for all v ∈ Nj+1(z). Then,
since d(y, z) < C4d(y, x), we have d(z, v) < C4d(xj+1,Dj) for all v ∈ Nj(z).
Thus by (∗) there exist y′, z′ ∈ Nj(z) for which d(y′, z′) = d({y′, z, z′}). If
y 6∈ {y′, z′}, then y′, z′ ∈ Nj+1(z) and the property (∗) is satisfied at z. Thus

we may assume y′ = y. Now 2−k < d(y, x) ≤ 2−(k−1), d(x, z) ≤ d(y, z) <
C4d(y, x) and max{d(y, z′), d(x, z′)} ≤ d(y, z) + d(z, z′) < 2C4d(y, x). Since
C1 ≥ C2 ≥ 4C4 and 4C4ε0 ≤

√
3, we have {y, x, z, z′} ∈ Ω(δ), where

δ ≥
√

1− 4C4ε
2
0 ≥

2C4

2C4 + 1
.

Since now yxz and yzz′, {y, x, z, z′} has an order by Lemma 2.2. Thus
d(x, z′) = d({x, z, z′}) and (∗) is satisfied at z. Similarly we see that it is
satisfied at y.

Case 4: d(y, z) < d(x, z) for all z ∈ Nj(y). We first show that there
exists b ∈ Vj \ Dj such that {y, b} ∈ Ej . Suppose this fails. Now d(y, v) <
C4d(y, x) = C4d(xj+1,Dj) for all v ∈ Nj(y). Thus by (∗) there are z1, z2 ∈
Nj(y) such that d(z1, z2) = d({z1, y, z2}). Since C1 ≥ C2 ≥ 2(1 + C4) and

4C4ε0 ≤
√

3, we have {z1, x, y, z2} ∈ Ω(δ), where

δ ≥
√

1− 4C2
4ε

2
0 ≥

2C4

2C4 + 1
.

Since now xyz1 and xyz2, it follows from Lemma 2.2 that yz1z2 or yz2z1,
which is a contradiction.

We set Vj+1 = Vj ∪ {x} and define

Ej+1 = (Ej \ {{y, b}}) ∪ {{y, x}, {x, b}}
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and wj+1 : Ej+1 → ]0,∞[ by setting

wj+1(e) =





d(y, x) for e = {y, x},
wj({y, b}) for e = {x, b},
wj(e) for e ∈ Ej \ {y, b}.

Now

(29) l(Gj+1)− l(Gj) = d(y, x) ≤ wj({y, b})
C3

.

Since d(x, z) = d({x, y, z}), the property (∗) is satisfied at y. For all m ≥ j
there is z ∈ Dm such that {z, b} ∈ Em and wm({z, b}) = wj({y, b}) by the
construction.

By iterating the above algorithm, we construct a sequence (Gj) of graphs.
Let n0 be the smallest integer such that #∆n0 ≥ 2. For all n ≥ n0 we define
Tn = G∗#∆n.

Since 289(1− 4ε2
0)3 ≥ 225, for any y ∈ E and k Case 2 applies at most

to four points in B(y, 2−k+1)∩∆k by the calculation at the beginning of the
proof. Thus by (27) and the remark after it,

∑

j∈Ym

∑

e∈Ej\Ej−1

wj(e) ≤ 2
(

1 +
∞∑

i=0

2−i
)4(1 + C3)

C4
l(G∗m)(30)

=
24(1 + C3)

C4
l(G∗m)

for all m ≥ 3, where Ym = {j ∈ {3, . . . ,m} : Case 2 applies to xj}.
We now show that for any fixed b ∈ ⋃j(Vj \ Dj) for all k Case 4 can

occur at most for three points in ∆k. Suppose this fails for some k and let
#∆k−1 < i1 < i2 < i3 < i4 ≤ #∆k and i0 < i1 be such that {xil , b} ∈ Eil
for l = 0, . . . , 4. Now xilxil+1

xil+2
for l = 0, 1, 2. Namely, if this is not true

for some l ∈ {0, 1, 2}, there exists a nonempty set {y1, . . . , yp} ⊂ Dil+2−1

such that ypxil+1
xil+2

, xily1xil+1
and yqyq+1xil+1

for q = 1, . . . , p− 1. Since

2−k < d(z1, z2) ≤ 2−k+3 for all z1, z2 ∈ {xi0 , xi1 , xi2 , xi3 , xi4 , y1, . . . , yp} ⊂
B(xi2 , 2

−k+2), β(xi2, C22−k)2−k < ε0, C1 ≥ C2 ≥ 4 and 8ε0 ≤
√

3, we

have {xi0 , xi1 , xi2 , xi3 , xi4 , y1, . . . , yp} ∈ Ω(δ), where δ ≥
√

1− 16ε2
0. Since

δ3 ≥ 31/33, {xi0 , xi1 , xi2 , xi3 , xi4 , y1, . . . , yp} has an order by Lemma 2.3,
from which we conclude xilxil+1

xil+2
. Since max{d(x,Di1−1) : x ∈ ∆k}

= d(xi1 , xi0) < d(xi2 , xi0), there is z ∈ Di1−1 \ {xi0} such that d(xi2 , z)
≤ d(xi1 , xi0). As above, {xi0 , xi1 , xi2 , xi3 , xi4 , z} has an order by Lem-
ma 2.3. Since d(xil , xil−1

) = d(xil ,Dil−1) for l = 1, . . . , 4, we must have
xi0xi1xi2xi3xi4z. From this we get d(xi2 , z) ≥ d(xi2 , xi3) + δd(xi3, xi4) +

δd(xi4 , z) > (1 + 2δ)2−k > 2−(k−1) ≥ d(xi1 , xi0), which is a contradiction.
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Thus by (29) and the remark after it,

∑

j∈Zm

∑

e∈Ej\Ej−1

wj(e) ≤
(

1 +
∞∑

i=0

2−i
) 3

C3
[l(Gm)− l(G∗m)](31)

=
9

C3
[l(Gm)− l(G∗m)]

for all m ≥ 3, where Zm = {j ∈ {3, . . . ,m} : Case 4 applies to xj}.
Using the estimates (25), (26), (28), (30) and (31), we get for all n ≥ n0,

l(Tn) ≤ (1 + 2C3)d(E)

+ max

{
2(1 + C3)

ε2
0

, 2C4(1 + C4)

} n∑

k=n0

∑

x∈∆k\∆k−1

β(x,C22−k)2(2−k)3

+
24(1 + C3)

C4
l(Tn) +

9

C3
[l(G#∆n)− l(Tn)]− [l(G#∆n)− l(Tn)].

Since C3 ≥ 9, C4 > 24(1 + C3) and the net (∆k)k is arbitrary, we have
an absolute constant C such that 2l(G∗j) ≤ C(β(E) + d(E)) for all j ≥ 2.
This means that for every j we have a 1-Lipschitz surjection from Aj to Dj,
where Aj ⊂ [0, C(β(E) + d(E))]. Using Lemma 5.2 we get the result.
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