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Extensions of Büchi’s problem: Questions of
decidability for addition and kth powers

by

Thanases Pheidas (Heraklion) and Xavier Vidaux (Concepción)

Abstract. We generalize a question of Büchi: Let R be an integral domain, C a
subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any
given system of polynomial equations, each of which is linear in the kth powers of the
unknowns, with coefficients in C?

We state a number-theoretical problem, depending on k, a positive answer to which
would imply a negative answer to the question for R = C = Z.

We reduce a negative answer for k = 2 and for R = F (t), the field of rational functions
over a field of zero characteristic, to the undecidability of the ring theory of F (t).

We address a similar question where we allow, along with the equations, also conditions
of the form “x is a constant” and “x takes the value 0 at t = 0”, for k = 3 and for function
fields R = F (t) of zero characteristic, with C = Z[t]. We prove that a negative answer to
this question would follow from a negative answer for a ring between Z and the extension
of Z by a primitive cube root of 1.

1. Introduction. Given any k = 2, 3, . . . , Büchi’s question for k (for
short Bq(k)) is the following:

Question 1.1 (Bq(k)). Does there exist an algorithm to determine,
given m,n ∈ N, A = (ai,j)i,j ∈ Mm,n(Z) and B = (bi) ∈ Mm,1(Z), whether
there exist x1, . . . , xn ∈ Z satisfying the equations

n∑

j=1

ai,jx
k
j = bi, i = 1, . . . ,m,

where, for any r ∈ N, Mm,r(Z) is the set of m × r matrices with entries
in Z?

J. Richard Büchi asked the question for k = 2 and this was made public
by L. Lipshitz in [7]. The problem was investigated by Joseph Lipman and
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Barry Mazur (cf. [9]). Paul Vojta in [17] proved that a conjecture of Serge
Lang implies a negative answer (we discuss this in Section 2).

It is obvious that, for any k, a negative answer to Bq(k) would be a strong
form of a negative answer to Hilbert’s Tenth Problem (cf. [8] and [1]). In
this paper:

• We show that for each odd k ≥ 3 a negative answer to Bq(k) would
follow from a positive answer to a number-theoretical problem (Prob-
lem 2.2); the similar problem for k = 2 was asked by Büchi. This is
Theorem 2.4.
• We generalize Question Bq(k) to any commutative ring R and for any

subring C of allowed coefficients of equations (in this section).
• We show, using results of Vojta, that for k = 2 the generalized problem

for R = F (t), the field of rational functions in the variable t with
coefficients in a field F of zero characteristic, and for C = Z[t], has a
negative answer if the existential ring theory of F (t) in the language
of rings augmented by t is undecidable. These results are stated in
Theorem 1.4 and Corollary 1.5 and their proofs are given in Section 3.
• We show that a question similar to 1.1 for k = 3, for fields of rational

functions of zero characteristic, will have a negative answer if Bq(3)
has a negative answer. The results are stated in Theorem 1.6 and
Corollary 1.7 and proved in Sections 4 and 5.

We generalize Bq(k) to arbitrary integral domains as follows: Assume
that R is a commutative ring with a multiplicative identity, C is a finitely
generated subring of R, k ∈ Z and k ≥ 2.

Question 1.2 (Bq(k,R,C)). Does there exist an algorithm to deter-
mine, given m,n ∈ N, A = (ai,j)i,j ∈ Mm,n(C), B = (bi) ∈ Mm,1(C) and
a subset J ⊂ {1, . . . , n}, whether there exist x1, . . . , xn ∈ R satisfying the
equations

n∑

j=1

ai,jxj = bi, i = 1, . . . ,m,

and subject to the conditions: for j ∈ J , xj ∈ {yk : y ∈ R} (for any r ∈ N,
Mm,r(C) is the set of m× r matrices with entries in C)?

If R = Z, it is trivial to see, using linear elimination, that Bq(k,Z,Z) is
equivalent to Bq(k).

We state Question 1.2 in the terminology of logic. For each k ∈ N we let
Lk,C denote the language which consists of the following symbols: (a) sym-
bols for the elements of the ring C, (b) the symbol + for addition, (c) the
predicate-symbol Pk for the relation “x is a kth power”, so Pk(x)↔ ∃y ∈ R
[x = yk], (d) for each c ∈ C, a symbol for the function of multiplication by
c : x 7→ cx. We adopt the convention that we will always interpret these
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symbols in the stated way. Obviously, a positive-quantifier-free formula of
Lk,C is a disjunction of systems of linear equations of the type occurring
in Question 1.2, together with conditions of the form Pk(xi). A positive-
existential formula of Lk,C is a formula of the form ∃y φ(x, y) where φ is
a positive-quantifier-free formula of Lk,C (x and y are tuples of variables
ranging in R). A subset of a power of R that can be defined by a positive-
existential formula is said to be positive-existentially definable. Since the
quantifier ∃ distributes over ∨ (the conjunction or) it is easy to see that
finite unions and finite intersections of positive-existential sets are positive-
existential. The positive-existential theory of R in the language Lk,R is the
set of all positive-existential formulas of Lk,C which are true over R. It is
trivial to see that Question 1.2 is equivalent to the following

Question 1.2(b). Is the positive-existential theory of R in the language
Lk,C decidable?

We will deal with the case in which R = F (t) is the field of rational
functions in the variable t, with coefficients in the field F . We will assume
throughout that F has characteristic zero, so that Z can be thought of as
a subring of F . Then Question 1.2 for R = F (t) and C = Z[t] becomes

Question 1.3. Is the positive-existential theory of F (t) in the language
Lk,Z[t] decidable?

In Section 3 we will show that for k = 2 a negative answer to Ques-
tion 1.3 follows from [17] for all fields F such that the positive-existential
ring theory of F (t), in the language of rings augmented by a symbol for t,
is undecidable. Such is the case, for example, for F = R, the field of reals
(see [2]), so Bq(2,R(t),Z[t]) has a negative answer. We remark that it is
unknown whether the ring theory of C(t) is undecidable (C is the field of
complex numbers). More accurately, we prove:

Theorem 1.4. Let F be a field of zero characteristic and let t be a vari-
able. Then multiplication in F (t) is positive-existentially definable in L2,Z[t].
Consequently , if the existential ring theory of F (t) in the language of rings
augmented by a symbol for t is undecidable, then the positive-existential
L2,Z[t]-theory of F (t) is undecidable.

By [2] we obtain:

Corollary 1.5. (a) Assume that F is a real-closed field. Then the sub-
set Z of F (t) is positive-existentially definable in the language L2,Z[t]

and the positive-existential theory of F (t) in the language L2,Z[t] is
undecidable.

(b) Assume that F is a real field. Then the positive-existential theory of
F (t) in the language L2,Z[t] is undecidable.
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We think it likely that our proof of Theorem 1.4 can be adjusted to any
function field of an elliptic curve over F in place of F (t).

For k ≥ 3 essentially nothing is known on Bq(k,R,C). Our guess is
that in some cases at least, if the positive-existential ring theory of R with
constants from C is undecidable then the positive-existential Lk,C-theory of
R is undecidable. Our next result is in this direction. In Section 5 we will
answer a question similar to Question 1.3, for k = 3, allowing additional
conditions such as “x ∈ F” and “x(0) = 0”, in the case that R is the field
F (t) of rational functions in the variable t, with coefficients in the field F ,
and for C = Z[t].

We introduce the necessary terminology. Let Lk,Z[t],Con,ord be the aug-
mentation of Lk,Z[t] by the predicate “Con” which is interpreted as

Con(x)↔ x ∈ F
and by the predicate “ord” which is interpreted as

ord(x)↔ x(0) = 0

(the value of the rational function x at t = 0 is 0). The languages Lk,Z[t],Con

and Lk,Z[t],ord are the restrictions of Lk,Z[t],Con,ord obtained by deleting the
obvious predicate symbols.

We prove:

Theorem 1.6. Let F be a field of zero characteristic, let t be a variable
and let ξ be a primitive cube root of 1 in an extension of F . Then

(a) The subset Z[ξ] ∩ F of F (t) is positive-existentially definable in the
language L3,Z[t],Con,ord. Consequently , if Bq(3,Z[ξ]∩F,Z) has a neg-

ative answer (for example, if Z[ξ]∩F = Z and Bq(3) has a negative
answer) then the positive-existential theory of F (t) in the language
L3,Z[t],Con,ord is undecidable.

(b) Assume that for some a, b ∈ Z, with ab 6= 0, F has a subset D such
that for all n ∈ Z[ξ] ∩ F there is a d ∈ D such that an3 + bd3 = 1.
Then the subset Z[ξ] ∩ F of F (t) is positive-existentially definable
in the language L3,Z[t],ord. Hence if Bq(3,Z[ξ]∩F,Z) has a negative
answer then the positive-existential theory of F (t) in the language
L3,Z[t],ord is undecidable.

The next corollary provides some examples where the hypothesis of (b)
of the Theorem holds.

Corollary 1.7. (a) Assume that F is a field containing the set of
algebraic numbers (over Q). Then the subset Z[ξ] of F (t) is
positive-existentially definable in the language L3,Z[t],ord. Hence if
Bq(3,Z[ξ],Z) has a negative answer then the positive-existential the-
ory of F (t) in the language L3,Z[t],ord is undecidable.
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(b) Assume that F is a real-closed field. Then the subset Z of F (t)
is positive-existentially definable in the language L3,Z[t],ord. Hence
if Bq(3) has a negative answer then the positive-existential theory
of F (t) in the language L3,Z[t],ord is undecidable. In particular , if
Bq(3) has a negative answer then the positive-existential theories of
Q(t) and R(t) in the language L3,Z[t],ord are undecidable.

Both statements are easy consequences of Theorem 1.6: (a) is obvious;
(b) follows from Theorem 1.6(b) by taking a = 1 = −b.

We present an outline of the proof of Theorem 1.6 in Section 4 and the
complete proof in Section 5.

It is obvious that Bq(k,R,C) is a subproblem of the decidability prob-
lem for the positive-existential theory of R with constant symbols for the
elements of C (sometimes called “diophantine problem for (R,C)”). Let
Lt be the language of rings, augmented by the constant-symbol t. Unde-
cidability is known for the positive-existential theories in Lt of rational
function fields F (t) whenever F is a real field or a finite field (see [2], [10]
and [16]). It is an open problem whether there exists an algebraically closed
field F for which the diophantine problem for (F (t),Z[t]) is undecidable.
But it is known that the positive-existential theory of any field F (t) in
the extension of Lt by a predicate for the elements of F and a predicate for
“ord(x)” is undecidable (cf. [20]). The question whether these predicates are
positive-existentially definable in Lt is open, except in some special cases like
F the field of real numbers or a finite field. This is the motivation behind
our choice to extend the languages Lk,Z[t] by the predicates Con and ord.

For more undecidability results and questions in this direction the reader
may consult [4], [13], [19] and the surveys in [11] and [14].

We remark that the method of proof of Theorem 1.6 does not give
a positive-existential definition of multiplication in L3,Z[t],Con,ord. Also the
method does not generalize to values of k greater than 3.

In Section 2 we present a number-theoretical problem, Problem 2.2,
which, if answered positively, will imply a negative answer to Bq(k). It is
a generalization of the “n squares problem” (or Büchi’s problem) of [7], [9]
and [17]. Our motivation for presenting it is that if one thinks that it is plau-
sible, then one will consider the undecidability statement of Theorem 1.6 at
least as likely.

Throughout, N is the set of natural numbers {1, 2, . . . } and Z the set of
rational integers.

Acknowledgements. The authors would like to thank the referee for
his comments. The computations that the referee advised us to carry out
in the proof of Lemma 5.1 turned out to be essential in the present form of
this lemma.



176 T. Pheidas and X. Vidaux

2. The “n kth powers problem”

Definition 2.1. Let y = (yi)i=0,...,n−1 be a sequence of complex num-
bers. The difference sequence of y is the sequence ∆(y) = (∆(y)(i))i=0,...,n−2

defined by ∆(y)(i) = yi+1 − yi. The `th difference of y, denoted

∆(`)(y) = (∆(`)(y)(i))i=0,...,n−`−1,

is defined recursively by ∆(1)(y) = ∆(y) and ∆(`+1)(y) = ∆(∆(`)(y)).

Let k ∈ Z, k ≥ 2. Let R be any integral domain of characteristic zero. It
is easy to see that for any x ∈ R, the `th difference

∆(`)((x+ i)ki=0,...,n−1)

for ` ≤ k is a sequence of the form

(p`,k(x), p`,k(x+ 1), . . . , p`,k(x+ n− `− 1))

where p`,k(x) is a polynomial in x, of degree k − `, with integer coefficients
which depend on k and `. Observe that pk,k(x) = k!.

We now formulate the n kth powers problem (or Büchi’s problem for k).

Problem 2.2. Let k be a rational integer with k ≥ 2.

(i) Is there a natural number n ≥ k such that any sequence of natural
numbers (xi)i=0,...,n−1 which satisfies

(2.2.1) ∆(k)((xki )i=0,...,n−1) = (k!)

(the sequence with n − k terms, each equal to k!) is necessarily a
sequence of successive numbers (that is, either xi = x0 + i for each i,
or xi = x0 − i for each i)?

(ii) Is there a natural number n ≥ k such that any sequence (xi)i=0,...,n−1

of rational numbers which satisfies (2.2.1) is such that ±xi+1 =
±xi+1 for each i = 0, . . . , n−1? (the ± do not have to correspond).
Moreover , if k is odd , is it true that , additionally , xi+1 = xi + 1?

It is obvious that a positive answer to (ii) of Problem 2.2 implies a
positive answer to (i).

For k = 2, (2.2.1) gives a system of n− 2 equations of the form

x2
i+2 − 2x2

i+1 + x2
i = 2

and for k = 3 it gives n− 3 equations of the form

x3
i+3 − 3x3

i+2 + 3x3
i+1 − x3

i = 6.

It is obvious from the above observations that if xi+1 = xi + 1 then relation
(2.2.1) holds. In fact for k = 2 more is known.

Lang’s Conjecture ([6, Conjecture 5.8]). Let X be a smooth projec-
tive algebraic variety of general type, defined over a number field M . Then
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there exists a proper Zariski-closed subset Z of X such that for all number
fields K containing M , X(K)− Z(K) is finite.

Define Xn to be the projective subvariety of Pn cut out by the homog-
enizations of equations (2.2.1) for k = 2 (see the first set of equations in
Section 3). Vojta proved:

Theorem 2.3 ([17, Theorem 0.5]). If Lang’s Conjecture holds for some
Xn(Q) then the n 2nd powers problem has a positive answer.

In fact Vojta’s proof shows that, assuming Lang’s Conjecture, equa-
tion (2.2.1) for k = 2 has only the solutions ±xi+1 + 1 = ±xi over Q. At
this point we have no further evidence in favor of a positive answer to Prob-
lem 2.2. In [7] it is shown that a positive answer to the n 2nd powers problem
implies a negative answer to Bq(2). We present a similar argument for kth
powers, for k odd.

Theorem 2.4. Let k ≥ 3 be an odd rational integer. If Problem 2.2(ii)
has a positive answer then the positive-existential theory of Z in the language
Lk,Z is undecidable, and thus Bq(k) has a negative answer.

Proof. Linear elimination proves the equivalence of the decidability of
the positive-existential theory of Z in the language Lk,Z and Bq(k) (the
details are left to the reader).

Assume that n is such that Problem 2.2(ii) (both statements) has a
positive answer for n. We will represent arbitrary integers as certain linear
combinations of kth powers and we will interpret multiplication of two inte-
gers in terms of the corresponding representations in a way that is positive-
existential in the language Lk,Z. Thus, if the positive-existential theory of Z
in Lk,Z were decidable, then the ring theory of Z would be decidable, which
would contradict the negative answer to Hilbert’s tenth problem given in [8].

The formula

φ(y0, . . . , yn−1) ≡ [∆(k)((yi)i=0,...,n−1) = (k!)]
∧

i=0,...,n

“yi is a kth power”

is a formula of the language Lk,Z. Having assumed a positive answer to

Problem 2.2(ii) we find that φ(y0, . . . , yn−1) implies that, setting yi = xki ,
we have

xi+1 = xi + 1.

Then, obviously, writing x = x0, we have

yi+1 − yi = p1,k(x+ i).

It is easy to see that

{Xk, (X + 1)k, . . . , (X + k)k}
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is a basis of the vector space of polynomials in the variable X of degree at
most k over Q. Hence both X and X2 can be written as Q-linear combina-
tions of elements of this basis, say

X =
∑

i

ci(X + i)k and X2 =
∑

i

di(X + i)k

for some fixed rational numbers (depending on k) ci and di. Write

h1(Y0, . . . , Yk) =
∑

i

ciYi and h2(Y0, . . . , Yk) =
∑

i

diYi.

We interpret arbitrary elements x of Z as the quantities x= h1(y0, . . . , yk)
for which

∃yk+1, . . . , yn−1 φ(y0, . . . , yk, . . . , yn)

is true. Then we have

x2 = h2(y0, . . . , yk),

hence we obtain a representation of the graph of the squaring function in Lk,Z
(in the end we will need to clear denominators of terms of the equations so
that only integers appear as coefficients). Finally, we interpret multiplication
using the equivalence

c = ab↔ (a+ b)2 = a2 + b2 + 2c.

Remark 2.5. If the n kth powers problem has a positive answer over Q
then one obtains a result similar to that of Theorem 2.4 for Q. But unde-
cidability does not follow from current knowledge: the analogue of Hilbert’s
tenth problem for Q is an open problem (cf. [11]).

Remark 2.6. It seems plausible that the “n kth powers problem” may
have a positive answer over any ring of integers of a number field, or in
any number field. Certainly it has a negative answer in any extension of the
ring of real algebraic integers. We cannot predict a characterization of the
extensions of Z where it holds.

3. Systems of squares. We consider Question 1.3 for k = 2 (that is,
Bq(2, F (t),Z[t]) of the Introduction) where F is a field of characteristic zero.
In what follows Xn is the projective subvariety of the projective n-space Pn,
over C, cut out by the equations (in projective coordinates (x, x1, . . . , xn))

x2
i + x2

i−2 = 2x2
i−1 + 2x2, i = 3, . . . , n.

In [17] P. Vojta observed that

Theorem 3.1. For n ≥ 6 the variety Xn is a surface of general type.

Then he showed
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Theorem 3.2 ([17, Theorem 3.1]). For n ≥ 8, the only curves on Xn of
geometric genus 0 or 1 are the “trivial” lines

±xi = ±x1 − (i− 1)x, i = 2, . . . , n.

This has as an immediate consequence the following:

Corollary 3.3. Let n ≥ 8. Assume that F is a field of zero character-
istic and that y1, . . . , yn ∈ F (t) are not all constant (i.e. in F ) and satisfy

y2
i + y2

i−2 = 2y2
i−1 + 2

for i = 3, . . . , n. Then for some ε = ±1 and for all i = 2, . . . , n we have

±yi = εy1 − (i− 1).

Proof. Assume that the yi are as in the hypothesis. They involve finitely
many coefficients. Embed the subring of F generated by those coefficients
into the field of complex numbers and observe that the hypothesis of the
corollary remains true with F replaced by C. So, without loss of generality,
we assume that F = C. Write yi = ai/b with ai, b ∈ F [t] such that the great-
est common divisor of the elements of the set (b, a1, . . . , an) is the unit ideal.
Homogenize simultaneously all the ai and b, that is, substitute t by t1/t0,
and find homogeneous polynomials B(t0, t1), A1(t0, t1), . . . , An(t0, t1) of the
form

B(t0, t1) = tr0b

(
t1
t0

)
and Ai(t0, t1) = tri0 ai

(
t1
t0

)

so that the only common zero of all B and Ai is (t0, t1) = (0, 0). Then the
correspondence

(t0, t1) 7→ (B(t0, t1), A1(t0, t1), . . . , An(t0, t1))

is a map from the projective line P(C) into Xn. By Hurwitz’s formula (cf. [3])
the image of that map is a projective curve of geometric genus 0, or, in other
words,

(x, x1, . . . , xn) = (B(t0, t1), A1(t0, t1), . . . , An(t0, t1))

is a parametrization of a curve on Xn of geometric genus 0. Hence, by
Theorem 3.2, we have

±xi = ±x1 − (i− 1)x.

The latter relation implies that for each i = 2, . . . , n we have

±yi = ±y1 − (i− 1).

Finally, we show that the ± correspond in the way stated in the conclu-
sion: Set ±y2 = εy1 − 1 for some ε = ±1 and assume that for some k ≥ 2
we have ±yi = εy1 − (i− 1) for i = 2, . . . , k but ±yk+1 = −εy1 − k. Then

y2
k+1 + y2

k−1 − 2y2
k = 2ε(k + 1)y1 + 2.
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On the other hand, by hypothesis, (yk−1, yk, yk+1) satisfies

y2
k+1 + y2

k−1 − 2y2
k = 2.

Equating the right hand sides of the last two equalities we obtain

ε(k + 1)y1 = 0.

Then all yi are in F , which contradicts the hypothesis. The conclusion fol-
lows.

Note. Corollary 3.3 also follows from Theorem 0.6 of [17] which states:

Let n ≥ 8 be an integer , and let f : C → Xn be a non-constant
holomorphic map. Then the image of f lies in one of the “trivial
lines”.

The proof of this theorem is by results of Vojta in Nevanlinna theory while
the proof of Theorem 3.2 is based on algebro-geometric tools.

The proof of Corollary 3.3 is the following (the authors thank Paul Vojta
for pointing this out): As in the above proof, assume without loss of gener-
ality that F = C. Then the array (y1, . . . , yn) of rational functions induces a
meromorphic map from C to Xn, which extends to a holomorphic map from
C to Xn, by the valuative criterion of properness (for the terminology and
the necessary facts see [18]). Then the latter theorem implies the conclusion.

Proof of Theorem 1.4. Let φ(z, w) denote the formula

∃w1, . . . , w8 ∈ F (t)
[
w = w1 ∧ 2z = w2 − w1 − 1

∧

i=3,...,8

wi + wi−2 = 2wi−1 + 2
∧

i=1,...,8

P2(wi)
]
.

Assume that w = z2. Then it is trivial to see that φ(z, w) holds true by
taking wi+1 = (z+ i)2 for i = 2, . . . , 7. Now assume that φ(z, w) is true. We
claim that then either w = z2 or w ∈ F . Assume that w /∈ F . Let wi satisfy
the quantifier-free part of φ. Set wi = y2

i for some yi ∈ F (t) (since φ is true
such yi exist). Then y1 6∈ F and by Corollary 3.3, for some ε = ±1 and for
all i = 2, . . . , n we have

±yi = εy1 − (i− 1).

Then w = y2
1 and

2z = (εy1 − 1)2 − y2
1 − 1,

hence z = −εy1 and w = z2.
It is then trivial to see that w = z2 is equivalent to

φ(z, w) ∧ φ(tz, t2w) ∧ φ(z + t, w + 2tz + t2) ∧ φ(t(z + t), t2(w + 2tz + t2)).

Thus squaring, and hence multiplication, is definable in L2,Z[t].
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It follows that for any field F of characteristic zero the positive-existential
L2,Z[t] theory of F (t) is decidable if and only if the existential ring theory
(in the language Lt of the Introduction) of F (t) is decidable.

4. The case k = 3 for fields of rational functions: Outline of
method. We consider the case k = 3. Let ξ be a primitive cube root of
unity. Consider the following equation:

(MD1) (1− t3)y3 = 1− x3

over F (t). The crucial fact for the proof of Theorem 1.6 is that for any
solution (x, y) of (MD1), the value of y at t = 1 is in Z[ξ]. This results from
the following analysis. Consider the elliptic curve E defined by the affine
equation

X3 + Y 3 = 1

(for the theory of elliptic curves the reader may consult [5] and [15]). It is
well known that E together with any point O on the line at infinity is an
elliptic curve over F . Fix an s such that t3 + s3 = 1. For each x, y ∈ F (t)
which satisfy (MD1) the rational function

(t, s) 7→ (x(t), sy(t))

defines a function from E into itself. By a theorem of Weil, any such function
is the translation (by some point of E , rational over F ) of an endomorphism
of E . We will show that in our situation the set of possible translations is
finite. So, modulo (in the group sense) a finite set, one can associate to each
solution of (MD1) an endomorphism of E . The ring of endomorphisms of E is
isomorphic to Z[ξ]. It turns out that, depending on the endomorphism [n],
three cases can occur: the function [n](t, s) can be of the form (xn, syn),
(sxn, yn) or

(
1
sxn,

1
syn
)
. Each of these cases gives an equation which is either

(MD1) or one of two similar equations ((MD2) and (MD0) of the next
section). Conversely, the rational maps which are defined by any of those
equations form a subset of the group RatF (E) of rational maps from E
to E over F . We will prove that this subset is actually a subgroup which
is isomorphic to the group EndF (E) ⊕ E3(F ), where EndF (E) denotes the
ring of endomorphisms on E , and E3(F ) the group of rational points of order
3 on E . Finally, we will show that any n ∈ Z[ξ] is the value of a rational
function (such as y) associated to some solution of one of the equations
(MDi), at t = 1. Thus we will obtain a definition of F ∩Z[ξ] over F (t) which
is positive-existential in L3,Z[t],Con,ord, and Theorem 1.6 will follow.

We note that elliptic curves of the form of equations (MDi) have been
studied first by Yu. Manin and J. Denef.
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5. Systems of cubes. Throughout this section F is a field of char-
acteristic zero. We consider the elliptic curve E defined by the projective
equation

X3 + Y 3 = Z3,

with the distinguished point being O = [1,−1, 0] on the “line at infinity”
Z = 0 (equations of this type have been studied in detail in [12]). Note
that there are two other points on the line at infinity, that is, [1,−ξ, 0]
and [−ξ, 1, 0], where ξ 6= 1 denotes a cube root of unity. The curve E
has complex multiplication, and its j-invariant is 0 (see [15, Chapter III,
Exercise 3.3, p. 104]). Therefore it has six automorphisms (see [15, Chap-
ter III, Theorem 10.1, p. 103]). Writing

x =
X

Z
and y =

Y

Z
we obtain the equation

x3 + y3 = 1

which defines the affine part Ea of the elliptic curve E . The six automor-
phisms are given by [1], [ξ], [ξ2] and their negatives, where [ξ] and [ξ2] are
defined by

[ξ](x, y) = (ξx, ξy) and [ξ2](x, y) = (ξ2x, ξ2y).

We will now describe the addition law on E . If P = (x0, y0) its negative is
given by

	P = (y0, x0).

Let Pi = (xi, yi), i = 1, 2, be two points on E . If

(x3, y3) = (x1, y1)⊕ (x2, y2)

then we find, by applying the method described in [15, Chapter III, §2,
pp. 55–59],

y3 =
−3λ2ν

1 + λ3
− x1 − x2,

which, if x1x2 6= 0, can be written

y3 =
1− ν3

(1 + λ3)x1x2

where λ and ν are given, if x1 6= x2, by

λ =
y2 − y1

x2 − x1
and ν =

y1x2 − y2x1

x2 − x1

and if x1 = x2 = x, by

λ = −x
2

y2
and ν =

1

y2
.

The first coordinate x3 is then given by x3 = λy3 + ν. But by symmetry,
x3 can also be obtained by exchanging x1 with y1, and x2 with y2, in y3. In
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particular, we obtain the “duplication formula” for the curve E :

2(x, y) =

(
y
x3 + 1

y3 − x3
, x

y3 + 1

x3 − y3

)
=

(
y
x3 + 1

1− 2x3
, x

x3 − 2

1− 2x3

)
.

In order to compute the order of the points at infinity, it is convenient to
write the formula also in projective coordinates:

2[T, S,R] = [S(T 3 +R3), T (T 3 − 2R3), R(R3 − 2T 3)].

We find

2[1,−ξ, 0] = [−ξ, 1, 0] = 	[1,−ξ, 0],

which implies that the points [1,−ξ, 0], as well as [−ξ, 1, 0], are of order 3.
We observe that the point [1, 0, 1] is also of order 3, since

2[1, 0, 1] = [0, 1, 1] = 	[1, 0, 1].

The images of this point under each of the six automorphisms give six new
points of order 3. So we found all the nine points of order 3 on E , remem-
bering that three of them (counting the neutral) are on the line at infinity
(see [15, Chapter 3, Corollary 6.4, p. 89]).

More generally, the addition formula is given in projective coordinates
by the following. If

[X1, Y1, Z1]⊕ [X2, Y2, Z2] = [X3, Y3, Z3]

then we can choose:

X3 = Z1Z2(Z2Y1 − Z1Y2) +X1X2(X1Y2 −X2Y1),

Y3 = Z1Z2(Z2X1 − Z1X2) + Y1Y2(X2Y1 −X1Y2),

Z3 = X1X2(X1Z2 −X2Z1) + Y1Y2(Y1Z2 − Y2Z1).

We deduce from this the “triplication formula” (note that by applying the
addition formula to 2(T, S,R)⊕ (T, S,R), all the coordinates X3, Y3 and Z3

have T +S as a common factor, and this simplifies much the computation):

3[T, S,R] = [−T 9 − 3R3T 6 + 6R6T 3 −R9,

T 9 − 6R3T 6 + 3R6T 3 +R9, TSR(3T 6 − 3R3T 3 + 3R6)].

If n = n1 + n2ξ ∈ Z[ξ] and i ∈ {0, 1, 2}, we will write n ∼ i if n1 + n2 is
congruent to i mod 3 (this corresponds to congruence modulo 1− ξ).

Lemma 5.1. (i) Let S, T , R be such that S3+T 3 = R3. For any n ∈ Z[ξ],
there exist homogeneous polynomials Fn, Gn, Hn in F [T 3, R3] such
that

n[T, S,R] =





[Fn, Gn, TSRHn] if n ∼ 0,

[TFn, SGn, RHn] if n ∼ 1,

[SFn, TGn, RHn] if n ∼ 2.
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(ii) For any n ∈ Z[ξ], the three coordinates of n[T, S,R] have the same
global degree dn in the variables T , S, R (not uniquely determined).

(iii) Let X, Y and Z be elements of F (T,R). Then (X,Y, SZ)⊕(T, S,R)
is of the form (X0, SY0, Z0), (X,SY,Z) ⊕ (T, S,R) is of the form
(SX1, Y1, Z1), and (SX, Y, Z)⊕(T, S,R) is of the form (X2, Y2, SZ2),
for some functions Xi, Yi and Zi in F (T,R).

(iv) Write s = S/R and t = T/R so that s3 + t3 = 1. For any n ∈ Z[ξ],
there exist homogeneous polynomials Xn, Yn, Zn in F [T,R], and , if
n 6= 0, rational functions xn, yn in F (t) such that

n[T, S,R] =





[Xn, Yn, SZn] if n ∼ 0,

[Xn, SYn, Zn] if n ∼ 1,

[SXn, Yn, Zn] if n ∼ 2,

and , on the affine part of E ,

n(t, s) =





(
1
sxn,

1
syn
)

if n ∼ 0,

(xn, syn) if n ∼ 1,

(sxn, yn) if n ∼ 2.

(v) We have

xn+a(1) =
yn(1)

a

1

y2
n(1)− axn(1)

for all n ∼ 2.

Proof. We prove (i) by induction in three steps. Observe that the asser-
tion is true for n = 0, 1, 2, 3. Let a = 1 or ξ.

1. First suppose that n ∼ 1. We apply the addition formula to

[TFn, SGn, RHn]⊕ [aT, aS,R]

and find polynomials U, V,W such that

U = S[R3Hn(Gn − aHn) + a2T 3Fn(Fn −Gn)],

V = T [R3Hn(Fn − aHn) + a2S3Gn(Gn − Fn)],

W = R[T 3Fn(aFn − a2Hn) + S3Gn(aGn − a2Hn)].

Choose Fn+a = U/S, Gn+a = V/T and Hn+a = W/R.
2. Now suppose that n ∼ 2. We apply the addition formula to

[SFn, TGn, RHn]⊕ [aT, aS,R]

and find polynomials

U = T (R3GnHn + a2S3F 2
n)− S(aR3H2

n + a2T 3FnGn),

V = S(R3FnHn + a2T 3G2
n)− T (aR3H2

n + a2S3FnGn),

W = aTSR[S(F 2
n − aGnHn) + T (G2

n − aFnHn)].
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In the formula for W , write A = F 2
n − aGnHn and B = G2

n− aFnHn. So we
have W = aTSR[SA + TB]. Note that

(SA+ TB)(S2A2 − STAB + T 2B2) = S3A3 + T 3B3.

By multiplying U , V and W by S2A2−STAB+T 2B2, and writing the new
quantities Xn+1, Yn+1 and Zn+1 respectively, we obtain new polynomials
U1, V1 and W1. The polynomials U1 and V1 can be written in the form

S3α+ S2Tβ + ST 2γ + T 3δ.

It happens that in both cases the polynomials β and γ are 0. The compu-
tation finally gives:

U1 = T 3(R3GnHn + a2S3F 2
n)(G2

n − aFnHn)2

− S3(aR3H2
n + a2T 3FnGn)(F 2

n − aGnHn)2,

V1 = S3(R3FnHn + a2T 3G2
n)(F 2

n − aGnHn)2

− T 3(aR3H2
n + a2S3FnGn)(G2

n − aFnHn)2,

W1 = aTSR[S3(F 2
n − aGnHn)3 + T 3(G2

n − aFnHn)3].

Choose Fn+a = U1, Gn+a = V1 and Hn+a = W1/TSR.
3. Suppose finally that n ∼ 0 and apply the addition formula to

[Fn, Gn, TSRHn]⊕ [aT, aS,R].

We find polynomials

U = T [S(R3GnHn + a2F 2
n)− T (aR3S3H2

n + a2FnGn)],

V = S[T (R3FnHn + a2G2
n)− S(aR3T 3H2

n + a2FnGn)],

W = aR[T (F 2
n − aS3GnHn) + S(G2

n − aT 3FnHn)].

We use the same technique as in the second step to obtain

U1 = T [S3(R3GnHn + a2F 2
n)(G2

n − aT 3FnHn)2

− T 3(aR3S3H2
n + a2FnGn)(F 2

n − aS3GnHn)2],

V1 = S[T 3(R3FnHn + a2G2
n)(F 2

n − aS3GnHn)2

− S3(aR3T 3H2
n + a2FnGn)(G2

n − aT 3FnHn)2],

W1 = aR[T 3(F 2
n − aS3GnHn)3 + S3(G2

n − aT 3FnHn)3].

Choose Fn+a = U1/T , Gn+a = V1/S and Hn+a = W1/R.
Note that we proved the first part of the lemma for all integers n1+n2ξ ∈

Z[ξ] such that n1 and n2 are non-negative. It follows obviously for all the
other integers in Z[ξ]. The details are left to the reader.

(ii) and (iii) are immediate consequences of the computations above.
(iv) The first part is a direct consequence of (i). The second part is a

consequence of (ii). The fact that dn is not uniquely determined by n (since
we are in projective coordinates) does not matter: we divide each coordinate
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of n[T, S,R] by Rdn in order to obtain new coordinates in the variables t
and s. The conclusion follows.

(v) Consider the second step of the proof of (i). In U1 and (1/S)W1,
replace T and R by 1, Fn by xn(1), Gn by yn(1) and Hn by 1. Observe that

S3 = R3 − T 3 must be replaced by 0. We get

xn+a(1) =
yn(1)

a

(y2
n(1)− axn(1))2

(y2
n(1)− axn(1))3

=
yn(1)

a

1

y2
n(1)− axn(1)

.

Lemma 5.2. For any [n] ∈ EndF (E), n 6= 0, we have

xn = y−n.

Proof. First consider n ∼ 1. Therefore −n ∼ 2. We have

(sx−n, y−n) = [−n](t, s) = 	[n](t, s) = 	(xn, syn) = (syn, xn)

using Lemma 5.1(iv). And we have(
1

s
x−n,

1

s
y−n

)
= [−n](t, s) = 	[n](t, s) = 	

(
1

s
xn,

1

s
yn

)
=

(
1

s
yn,

1

s
xn

)

for n ∼ 0.

Denote by RatF (E) the group of F -rational maps E → E , by EndF (E)
the ring of endomorphisms of E , and by E(F ) the group of F -rational points
of E . Write

R0 = {f ∈ RatF (E) | ∃X,Y,Z ∈ F [T,R], f([T, S,R]) = [X,Y, SZ])},
R1 = {f ∈ RatF (E) | ∃X,Y,Z ∈ F [T,R], f([T, S,R]) = [X,SY,Z])},
R2 = {f ∈ RatF (E) | ∃X,Y,Z ∈ F [T,R], f([T, S,R]) = [SX, Y, Z])}.
We will identify [T, S,R] with the identity map in RatF (E). Also we will

use the symbol ⊕ for the addition in RatF (E).

Lemma 5.3. Let i ∈ {0, 1, 2}. Denote by i the congruence class of i
mod 3. Then

Ri ⊕ [T, S,R] = Ri+1

and the union
⋃2
i=0Ri is a subgroup of RatF (E).

Proof. From Lemma 5.1(iii), we know that Ri ⊕ [T, S,R] ⊂ Ri+1. Actu-
ally this inclusion is an equality of sets:

R0 ⊂ R1 	 [T, S,R] ⊂ R2 	 2[T, S,R] ⊂ R0 	 3[T, S,R] = R0.

The last equality comes from the fact that 3[T, S,R] ∈ R0. So we have

2⋃

i=0

Ri = R0 ∪ (R0 ⊕ [T, S,R]) ∪ (R0 ⊕ 2[T, S,R]).

Therefore it suffices to prove that R0 is a subgroup of RatF (E). But this is
obvious from the addition formula.
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We consider the natural morphism of groups, which is an isomorphism
(see [15, Chapter III, §4, p. 75]):

Ψ : EndF (E)⊕ E(F )→ RatF (E).

There are actually two natural ways to define Ψ(P ) if P ∈ E(F ). We can
define it as the translation map by P or as the constant map. We will choose
the second way. Write E3(F ) for the set of points of order 3 of the curve E
(including the neutral). Write

P a1 = [a, 0, 1], P a2 = [0, a, 1], P a0 = [1,−a, 0],

where a denotes any of the three cube roots of unity. Write

Pi = {P ai | a = 1, ξ, ξ2}.
With the following lemma one can see how a point on E behaves after adding
a point of order 3.

Lemma 5.4. Let [U, V,W ] be a point on E , and a = 1, ξ or ξ2. Then

[U, V,W ]⊕ [1,−a, 0] = [aU, a2V,W ],

[U, V,W ]⊕ [0, a, 1] = [−aW,U,−a2V ],

[U, V,W ]⊕ [a, 0, 1] = [V,−aW,−a2U ].

Proof. To get the first and the second equalities we apply the addition
formula and multiply the three coordinates of the results respectively by

U2 − a2UV + aV 2

W 3

and
W 2 + a2VW + aV 2

U3
.

In order to find the third equality, observe that [a, 0, 1] is the negative of
[0, a, 1] and use the second equality.

If one does not like using the addition formula, one could observe that
the right hand sides of the equalities define morphisms without fixed points,
hence translations; the images of the origin under these translations give the
constants on the left hand sides.

Write

Ui = {[n]⊕ P aj | [n] ∈ EndF (E), n+ j ∼ i and a = 1, ξ or ξ2}.
Lemma 5.5. We have

Ψ−1
( 2⋃

i=0

Ri

)
= EndF (E)⊕ E3(F ).

More precisely , Ψ−1(Ri) = Ui.
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Proof. It is clear from Lemma 5.1(i) that

Ψ−1
( 2⋃

i=0

Ri

)
⊇ EndF (E) and Ψ−1

( 2⋃

i=0

Ri

)
⊇ E3(F ),

by observing that the points of order 3 have one coordinate 0. We prove the
other inclusion. Since

⋃2
i=0Ri is a group, it suffices to prove that the only

constant points in the image of
⋃2
i=0Ri under Ψ−1 are points of order 3. If

P = [X,Y,Z] is a point in

E(F ) ∩ Ψ−1
( 2⋃

i=0

Ri

)
,

then Ψ(P ) is just the constant map, and we know it belongs to some Ri. If
i = 1 then the coordinate Y must be 0 and so P ∈ P1; if i = 2 then X = 0
and so P ∈ P2; and if i = 0 then Z = 0 and so P ∈ P0. Therefore P is one
of the nine points of order 3. The first part of the lemma is proven.

We now prove the second part. From Lemma 5.1(i) we know that
Ψ({[n] ∈ EndF (E) | n ∼ i}) ⊆ Ri. It is clear from Lemma 5.4 that
Ψ(Ui) ⊆ Ri. This inclusion is actually an equality because the sets Ui form
a partition of EndF (E)⊕ E3(F ).

Consider the following equations:

(MD0) x3 + y3 = 1− t3,
(MD1) x3 + (1− t3)y3 = 1,

(MD2) (1− t3)x3 + y3 = 1,

and their analogues in projective coordinates

(pMD0) X3 + Y 3 = (1− t3)Z3,

(pMD1) X3 + (1− t3)Y 3 = Z3,

(pMD2) (1− t3)X3 + Y 3 = Z3.

Each equation (pMDi) defines an elliptic curve Ei over F (t). The point
[t, 1, 1] is obviously a solution of (pMD1). Observe that each set Pi is the
set of constant points of the curve Ei, and the points P ai are of order 3 on E ,
therefore also on the curves Ei. Denote by Ei(F (t)) the group of points of Ei
which are rational over F (t).

Theorem 5.6. The disjoint union
⋃2
i=0 Ei(F (t)) of sets has a natural

structure of a group, and

Ei(F (t)) = {[Xn, Yn, Zn]⊕ P aj | n+ j ∼ i and a = 1, ξ or ξ2}
for i = 0, 1, 2.
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Proof. Consider the map

Φ :

2⋃

i=0

Ei(F (t))→
2⋃

i=0

Ri

defined by

[X,Y,Z] 7→





f : [T, S,R]→ [X,Y, sZ] if [X,Y,Z] ∈ E0(F (t)),

f : [T, S,R]→ [X, sY, Z] if [X,Y,Z] ∈ E1(F (t)),

f : [T, S,R]→ [sX, Y, Z] if [X,Y,Z] ∈ E2(F (t)),

where t = T/R and s = S/R. This map is obviously a bijection of sets, and

therefore Φ−1 brings the group structure from
⋃2
i=0Ri onto

⋃2
i=0 Ei(F (t)).

The second assertion of the theorem is an immediate consequence of Lem-
ma 5.5: we have

Ei(F (t)) = Φ−1(Ri) = Φ−1 ◦ Ψ(Ui)

for i = 0, 1, 2.

Consider the elliptic curve E0 defined by its affine equation

y2 = 4x3 − 1.

The curve E0 is isomorphic to E through the following isomorphism:

τ : E0 → E , [X,Y,Z] 7→ [Y −
√

3Z,−Y −
√

3Z,−2
√

3X].

Denote by Q the Weierstrass function on E0 (the reader who is not familiar
with basic properties of the Weierstrass functions may consult [15]). Let
(P,R) denote the affine part of τ([Q,Q′, 1]). We write briefly

(P,R) = τ(Q,Q′).
If

n = a+ bξ ∈ EndF (E)

we will write
n = a+ bξ2

for the conjugate of n. We have

nn = a2 + b2 − ab ∈ Z
and for m,n ∈ EndF (E), the obvious relations

m+ n = m+ n and mn = mn.

Denote by Id the identity map.

Lemma 5.7. We have
P ′ = −

√
3R2

and for any [n] ∈ EndF (E),

[n](P,R) = (P,R) ◦ (n Id).
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Proof. First we compute the derivative of P. We get

P =
Q′ −

√
3

−2
√

3Q
and R =

Q′ +
√

3

2
√

3Q
from (P,R) = τ(Q,Q′). Hence

P ′ = −2
√

3Q′′Q+ 2
√

3(Q′ −
√

3)Q′
12Q2

= −
√

3
Q′′Q−Q′2 +

√
3Q′

6Q2
.

From Q′2 = 4Q3− 1 we get 2Q′′Q′ = 12Q′Q2, hence Q′′ = 6Q2. On the one
hand, we replace Q′′ and Q′2 in the expression of P ′ to obtain

P ′ = −
√

3
6Q3 − (4Q3 − 1) +

√
3Q′

6Q2
= −
√

3
2Q3 + 1 +

√
3Q′

6Q2
,

and on the other hand we have

−
√

3R2 = −
√

3

(Q′ +
√

3

2
√

3Q

)2

= −
√

3
Q′2 + 2

√
3Q′ + 3

12Q2
;

hence

−
√

3R2 = −
√

3
4Q3 − 1 + 2

√
3Q′ + 3

12Q2
= −
√

3
2Q3 +

√
3Q′ + 1

6Q2
,

which proves the first assertion of the lemma.
Concerning the second assertion, it is known that for any [n]0∈EndF (E0),

we have
[n]0(Q,Q′) = (Q,Q′) ◦ (n Id)

(by construction of the Weierstrass function, see for example [15]). For a = 1,
ξ, or ξ′, write [a]0 for the automorphism on E0 defined by

[a]0[X,Y,Z] = [aX, Y, Z]

(note the difference with the case of E). It is easy to see that

[ξ] ◦ τ = τ ◦ [ξ2]0.

Therefore, if n = p+ qξ, we have

[n] ◦ τ = [p+ qξ] ◦ τ := ([p]⊕ [q] ◦ [ξ]) ◦ τ
= [p] ◦ τ ⊕ [q] ◦ (τ ◦ [ξ2]0)

= τ ◦ [p]0 ⊕ τ ◦ [q]0 ◦ [ξ2]0 = τ ◦ [n]0.

Combining the two equalities above, we find

[n](P,R) = [n] ◦ τ(Q,Q′) = τ ◦ [n]0(Q,Q′)
= τ ◦ (Q,Q′) ◦ (n Id) = (P,R) ◦ (n Id).

Lemma 5.8. If n ∼ 1, then

x′n
y2
n

= n.
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Proof. Since n ∼ 1, we know from Lemma 5.1(iv) and Lemma 5.7 that

(P,R) ◦ (n Id) = [n](P,R) = (xn ◦ P,Ryn ◦ P).

Therefore

x′n ◦ P =
1

P ′ (xn ◦ P)′ =
1

−
√

3R2
(P ◦ n Id)′

=
1

−
√

3R2
nP ′ ◦ n Id = n

R2 ◦ n Id

R2
.

Since R2 ◦ n Id = R2y2
n ◦ P, we have x′n ◦ P = ny2

n ◦ P. The lemma follows
because (P,R), seen as a map C → E , is a global parametrization of the
curve E (by construction of the Weierstrass function, see [15]).

Theorem 5.9. Let n ∈ Z[ξ]. Then

x3
n(1) =





1/n3 if n ∼ 0,

1 if n ∼ 1,

−n3 if n ∼ 2,

y3
n(1) =





−1/n3 if n ∼ 0,

n3 if n ∼ 1,

1 if n ∼ 2.

Proof. Because of Lemma 5.2, it suffices to prove the statement for
the yn’s. The proof is in two steps. Observe that if x, y ∈ F (t) satisfy the
equation x3 + (1− t3)y3 = 1, then y cannot have a pole at 1: suppose it had
a pole of order n at 1; then (1− t3)y3 would have a pole at 1 of order 3n−1,
which would also be the order of x3 at 1, but this is impossible since 3n− 1
is not a multiple of 3.

Suppose that n ∼ 1. From Lemma 5.1(iv), we know that

x3
n + (1− t3)y3

n = 1.

This implies that x3
n(1) = 1 = y3

−n(1). We get

3x′nx
2
n − 3t2y3

n + 3(1− t3)y′ny
2
n = 0

by differentiating both sides of (MD1). By Lemma 5.8 we know that x′n =
ny2

n. The equation becomes

nx2
n − t2yn + (1− t3)y′n = 0

after canceling the term 3y2
n. Evaluating at t = 1, we find

yn(1) = nx2
n(1)

and therefore

y3
n(1) = n3x6

n(1) = n3.

Observe that for n ∼ 2 we have xn(1) = −ny2
n(1).

Suppose now that n ∼ 0 and write n = m+a, where a is equal to 1 or ξ.
Since m ∼ 2 we get

xm+a(1) =
ym(1)

a

1

y2
m(1)− axm(1)
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from Lemma 5.1(v). Also we know from the previous step that

xm(1) = −my2
m(1).

Therefore the equation above becomes

xm+a(1) =
ym(1)

a

1

y2
m(1) + amy2

m(1)
=

1

aym(1)

1

1 + am

=
a

ym(1)

1

a2 +m
=

a

ym(1)

1

a+m
.

We know from the previous step that ym(1)3 = 1, and therefore

x3
n(1) = x3

m+a(1) =
1

(a+m)3
=

1

n3 .

We obtain y3
n(1) from Lemma 5.2.

For n+ i ∼ 1, write (see the definition of P ai before Lemma 5.4)

(xn⊕Pai (t), syn⊕Pai (t)) = [n](t, s)⊕ P ai .

Corollary 5.10. For any [n] ∈ EndF (E) and i = 0, 1, 2 such that
n+ i ∼ 1 we have

y3
n⊕Pai (1) = n3.

Proof. From Lemma 5.4, we find

yn⊕Pa0 = a2yn, yn⊕Pa1 = a2 1

xn
, yn⊕Pa2 = −a xn

yn
.

We conclude by applying Theorem 5.9.

Proof of Theorem 1.6. (a) Consider the following formula Ψ0(z), in the
language L3,Z[t],Con,ord:

∃x, y (P3(x) ∧ P3(y) ∧ [1− (t+ 1)3]y = 1− x ∧ Con(z) ∧ ord(y − z)).

Apply Corollary 5.10 with t replaced by t+1 to see that Ψ0(z) is equivalent to
“z ∈ Z[ξ]∩F and z is a cube”. The second difference of the three successive
cubes q − 1, q and q + 1 is

[(q + 1)3 − q3]− [q3 − (q − 1)3] = 6q.

Then the formula Ψ1(z), given by

∃z1, z2, z3 [Ψ0(z1) ∧ Ψ0(z2) ∧ Ψ0(z3) ∧ z = (z3 − z2)− (z2 − z1)]

defines a set

U = {z ∈ F (t) | Ψ1(z)}
which satisfies

6Z[ξ] ∩ F ⊂ U ⊂ Z[ξ] ∩ F.
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Finally, we get a positive-existential definition of Z[ξ] ∩ F :

z ∈ Z[ξ] ∩ F ⇔
5∨

i=0

∃w Ψ1(w) ∧ z = w + i.

(b) Assume that for some a, b ∈ Z with ab 6= 0, F has a subset D such
that for all n ∈ Z[ξ] ∩ F , there is a d ∈ D such that

an3 + bd3 = 1.

Replace each occurrence of Con(z) in the proof of (a) by the formula

θ(z) : ∃w [P3(z) ∧ P3(w) ∧ az + bw = 1].

Then the proof of (a) still works. This is, first, because the curve

aX3 + bY 3 = 1

is of genus 1 and does not admit a rational parametrization (by Hurwitz’s
formula, see [3]), hence any z satisfying θ(z) must be in F , and secondly
because, by assumption, for any n ∈ Z[ξ] ∩ F , θ(n3) holds.
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