The Covering Principle for Darboux Baire 1 functions

by

Piotr Szuca (Gdańsk)

Abstract. We show that the Covering Principle known for continuous maps of the real line also holds for functions whose graph is a connected $G_δ$ subset of the plane. As an application we find an example of an approximately continuous (hence Darboux Baire 1) function $f : [0,1] \to [0,1]$ such that any closed subset of $[0,1]$ can be translated so as to become an $ω$-limit set of f. This solves a problem posed by Bruckner, Ceder and Pearson [Real Anal. Exchange 15 (1989/90)].

1. Introduction. For $f \in \mathbb{R}^R$, f^0 is the identity function, and for any integer $n > 0$, the nth iterate of f is defined by $f^n = f \circ f^{n-1}$.

We say that for a given function $f : \mathbb{R} \to \mathbb{R}$ a compact interval $I_1 f$-covers a compact interval I_2 if $f(I_1) \supset I_2$. We then write $I_1 \to_f I_2$ (or $I_1 \to I_2$ if f is clear from the context).

It is easy to see that if f is continuous and

$$I_1 \to I_2 \to I_3 \to \cdots$$

for a sequence $\{I_i\}_{i \in \mathbb{N}}$ of compact intervals then there is an $x \in I_1$ such that $f^i(x) \in I_{i+1}$ for each i. This fact, known as the Covering Principle (or Itinerary Lemma), is widely used in one-dimensional dynamics (see e.g. [6]). We generalize it to the class of real functions with connected $G_δ$ graph in the following

THEOREM 1.1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a connected $G_δ$ function and there exists a sequence of compact intervals

$$I_1 \to I_2 \to I_3 \to \cdots$$

Then there exists an $x \in I_1$ such that $f^i(x) \in I_{i+1}$ for each $i \in \mathbb{N}$.

2000 Mathematics Subject Classification: Primary 26A18; Secondary 26A15, 26A21, 37E05, 54C30.

Key words and phrases: connectivity functions, Darboux functions, Baire 1 functions, Borel measurable functions, Covering Principle, Itinerary Lemma, sequences of intervals, $ω$-limit sets, attractors, f-cover.
Recall that in [10] we have proved Sharkovskii’s theorem for connected G_δ real functions using the following dual (“cycle”) version of Theorem 1.1.

Theorem 1.2 ([10]). Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a connected G_δ function and there exists a cycle of compact intervals

$$I_1 \to I_2 \to \cdots \to I_N \to I_1.$$

Then there exists an $x \in I_1$ such that $f^N(x) = x$ and $f^i(x) \in I_{i+1}$ for each $i \in \{0, \ldots, N-1\}$.

We give a proof of Theorem 1.1 in Section 3. In Section 4 we show how it can be used to solve a problem from [3] regarding ω-limit sets of Darboux Baire 1 functions (see definitions below).

2. Preliminaries. We denote by $[a, b]$ the compact interval (possibly degenerate) with endpoints a and b. We do not assume $a < b$ unless explicitly stated.

A set H is said to be τ_d-open if H has inner density 1 at every point $x \in H$. These sets form a completely regular (but not normal) topology τ_d (see e.g. [7]).

We identify every function with its graph. We consider the following classes of functions f from \mathbb{R} into \mathbb{R} (or $[0, 1]$ into $[0, 1]$, after obvious modifications):

- f is approximately continuous ($f \in \mathcal{A}$) if $f^{-1}(U) \in \tau_d$ for every open set $U \subset [0, 1]$.
- f is connected or a connectivity function ($f \in \text{Conn}$) if f is a connected subset of \mathbb{R}^2;
- f is Darboux ($f \in \mathcal{D}$) if f has the intermediate value property, i.e. $f(I)$ is an interval for every interval $I \subset \mathbb{R}$;
- f is Baire class 1 ($f \in \mathcal{B}_1$) if f is a pointwise limit of a sequence of continuous functions; this is equivalent to $f^{-1}(G)$ being an F_σ subset of \mathbb{R} for every open $G \subset \mathbb{R}$, and to $f|_K$ having a point of continuity for every non-empty closed set $K \subset \mathbb{R}$;
- f is Darboux Baire 1 ($f \in \mathcal{DB}_1$) if f is Darboux and Baire 1;
- $f \in G_\delta$ if f is a G_δ subset of \mathbb{R}^2, i.e. $f = \bigcap_{n \in \mathbb{N}} G_n$, where all $G_n \subset \mathbb{R}^2$ are open.

For properties of these and other Darboux-like classes of functions see e.g. the survey [4]. In particular, it is known that

$$\text{Conn} \subset \mathcal{D} \quad \text{and} \quad \mathcal{A} \subset \mathcal{DB}_1 \subset \text{Conn} \cap G_\delta,$$

and all these inclusions are proper. It follows that $\text{Conn} = \mathcal{D}$ within the class of Baire 1 functions. Moreover, every bounded approximately continuous
function is a derivative, and every derivative belongs to the class DB\(_1\) (see e.g. [2]).

A set \(W \subset \mathbb{R}\) is called an \(\omega\)-limit set for \(f\) if there is an \(x \in \mathbb{R}\) such that \(W\) is the cluster set of the sequence \(\{f^n(x)\} \ (n \in \mathbb{N})\), i.e.
\[
W = \bigcap_{i \in \mathbb{N}} \{f^j(x) : j > i\}.
\]
Denote this set by \(\omega_f(x)\) and let \(\Omega_f\) be the class of all \(\omega\)-limit sets of \(f\), i.e. \(\Omega_f = \{\omega_f(x) : x \in \mathbb{R}\}\). Clearly each element of \(\Omega_f\) is closed.

Agronsky, Bruckner, Ceder and Pearson have given in [1] the following characterization of \(\omega\)-limit sets: a non-empty closed set \(W \subset [0, 1]\) is an \(\omega\)-limit set of a continuous map \(f : [0, 1] \rightarrow [0, 1]\) if \(W\) is either a finite collection of nondegenerate closed intervals or is nowhere dense (the necessity of this condition was proved earlier by Sharkovskii in [9]).

The characterization of \(\omega\)-limit sets for a DB\(_1\) function was given by Bruckner, Ceder and Pearson in [3]: every non-empty closed subset of \([0, 1]\) is an \(\omega\)-limit set of a function \(f \in \text{DB}_1([0, 1])\). In Section 4 we show that there exists an approximately continuous (hence DB\(_1\)) function having a translation of every closed set as an \(\omega\)-limit set.

3. Proof of Theorem 1.1. Fix a Darboux function \(f : \mathbb{R} \rightarrow \mathbb{R}\). Suppose that there exist sequences \(\{a_i\}_{i \in \mathbb{N}}, \{b_i\}_{i \in \mathbb{N}}\) such that \(a_i < b_i\) and \([f(a_i), f(b_i)] \supset [a_{i+1}, b_{i+1}]\) for each \(i \in \mathbb{N}\). Clearly
\[
[a_1, b_1] \rightarrow [a_2, b_2] \rightarrow [a_3, b_3] \rightarrow \ldots .
\]
For every \(x \in \mathbb{R}\) and \(i \geq 1\) let
\[
\delta_i(x) = \begin{cases}
 a_i & \text{if } x \leq a_i, \\
 b_i & \text{if } x \geq b_i, \\
 x & \text{if } x \in (a_i, b_i),
\end{cases}
\]
and \(\Delta_i = \delta_i \circ f \circ \delta_{i-1} \circ f \circ \delta_{i-2} \circ \cdots \circ \delta_2 \circ f \circ \delta_1\).

With every \(y \in \mathbb{R}\) we associate a sequence of symbols
\[
\alpha(y) = \alpha_1(y)\alpha_2(y)\alpha_3(y)\ldots
\]
with \(\alpha_i(y)\) being one of the symbols “\(L\)” , “\(U\)” or “\(C\)” given by the formula
\[
\alpha_i(x) = \begin{cases}
 L & \text{if } \Delta_i(x) = a_i, \\
 U & \text{if } \Delta_i(x) = b_i, \\
 C & \text{otherwise.}
\end{cases}
\]
Clearly \(\alpha_i(a_1), \alpha_i(b_1) \in \{L, U\}\), and the sequence \(\alpha(a_1)\) differs from \(\alpha(b_1)\) at every position.

Notice that by definition, for any interval \(I\) and for every \(i \in \mathbb{N}\), either \(\delta_i(I) = \{a_i\}\), or \(\delta_i(I) = \{b_i\}\), or \(\delta_i(I) \subset I\). Consequently, for any \(x_1, x_2 \in \mathbb{R}\)
either the sequences $\alpha(x_1)$ and $\alpha(x_2)$ agree for sufficiently large indices, or

$$[\Delta_n(x_1), \Delta_n(x_2)] \rightarrow [\Delta_{n+1}(x_1), \Delta_{n+1}(x_2)]$$

for each n. So, we have the following

Remark 3.1. If $x_1, x_2 \in \mathbb{R}$ and the sequence $\alpha(x_1)$ differs from $\alpha(x_2)$ at infinitely many positions then

$$[\Delta_1(x_1), \Delta_1(x_2)] \rightarrow [\Delta_2(x_1), \Delta_2(x_2)] \rightarrow [\Delta_3(x_1), \Delta_3(x_2)] \rightarrow \cdots$$

Lemma 3.2. Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$ is connected and there exists a sequence of compact intervals

$$I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \cdots$$

Then there exists an $x \in I_1$ such that for every open neighbourhood G of $\langle x, f(x) \rangle$ there exists a sequence of compact intervals

$$I'_1 \rightarrow I'_2 \rightarrow I'_3 \rightarrow \cdots$$

such that $I'_1 \times I'_2 \subset G$ and $I'_i \subset I_i$ for each $i \geq 1$.

Proof. Note that if I_n is degenerate for some $n \in \mathbb{N}$, then there exists an $x \in I_1$ such that $f^i(x) \in I_{i+1}$ for $i = 1, \ldots, n-1$ and the family $\{I'_i\}_{i \in \mathbb{N}}$ of degenerate intervals $I'_i = \{f^{i-1}(x)\}$ is as desired. So, we assume that all intervals I_n are non-degenerate.

First we claim that there exist sequences $\{a_i\}_{i \in \mathbb{N}}$ and $\{b_i\}_{i \in \mathbb{N}}$ such that for each $i \in \mathbb{N}$, $a_i < b_i$, $[a_i, b_i] \subset I_i$ and

$$[a_{i+1}, b_{i+1}] \subset [f(a_i), f(b_i)].$$

Indeed, by the intermediate value property of f, for each i there exist $p_i, q_i \in I_i$ such that $f(p_i) = \inf I_{i+1}$ and $f(q_i) = \sup I_{i+1}$. Clearly the sequences of points

$$a_i = \min\{p_i, q_i\} \quad \text{and} \quad b_i = \max\{p_i, q_i\}$$

are as desired.

For any $x, y \in [a_1, b_1]$ let

$$\text{diff}(x, y) = \{n \in \mathbb{N} : \alpha_n(x) \neq \alpha_n(y)\}.$$

Let

$$A = \{\langle x, f(x) \rangle \in f|[a_1, b_1] : \text{diff}(a_1, x) \text{ is finite}\},$$

$$B = \{\langle x, f(x) \rangle \in f|[a_1, b_1] : \text{diff}(a_1, x) \text{ is infinite}\}.$$

Since $\langle a_1, f(a_1) \rangle \in A$, and $\alpha(a_1)$ differs from $\alpha(b_1)$ at every position, both sets are non-empty. Clearly $f|[a_1, b_1] = A \cup B$ and $A \cap B = \emptyset$. Since $f|[a_1, b_1]$ is connected, there is an $\langle x_0, f(x_0) \rangle$ in $(A \cap B) \cup (\overline{A} \cap B)$.

If G is an open neighbourhood of $\langle x_0, f(x_0) \rangle$ then there exist $x_1, x_2 \in [a_1, b_1]$ with $\alpha(x_1)$ and $\alpha(x_2)$ differing at infinitely many positions and

$$[x_1, x_2] \times [f(x_1), f(x_2)] \subset G.$$
If we set \(I'_i = [\Delta_i(x_1), \Delta_i(x_2)] \) then \(I'_1 \times I'_2 \subset G \), \(I'_i \subset [a_i, b_i] \subset I_i \) for each \(i \), and by Remark 3.1,
\[
I'_1 \to I'_2 \to I'_3 \to \cdots. \quad \blacksquare
\]

Lemma 3.3. Suppose that \(f: \mathbb{R} \to \mathbb{R} \) is connected, \(f \subset G \) for an open set \(G \subset \mathbb{R} \times \mathbb{R} \) and there exists a sequence of compact intervals
\[
I_1 \to I_2 \to I_3 \to \cdots.
\]
Then there exists a sequence of compact intervals
\[
J_1 \to J_2 \to J_3 \to \cdots
\]
such that \(J_i \subset I_i \) and \(J_i \times J_{i+1} \subset G \) for each \(i \in \mathbb{N} \).

Proof. By Lemma 3.2 we can find a sequence \(\{I'_i\}_{i \geq 1} \) of compact intervals such that:

- \(I'_i \subset I_i \) for each \(i \geq 1 \);
- \(I'_1 \times I'_2 \subset G \);
- \(I'_1 \to I'_2 \to I'_3 \to \cdots \).

Continuing inductively (using Lemma 3.2 for the sequence \(\{I'^{n+1}_i\}_{i \geq n+1} \)) we can build a sequence \(\{I'^{n+1}_i\}_{i \geq n+1} \) of compact intervals such that for every \(n > 1 \):

- \(I'^{n+1}_i \subset I'_i \) for each \(i \geq n+1 \);
- \(I'^{n+1}_i \times I'^{n+1}_{i+1} \subset G \);
- \(I'^{n+1}_i \to I'^{n+1}_{i+2} \to I'^{n+1}_{i+3} \to \cdots \).

The assertion of the lemma follows from a diagonal argument, since:

- \(I'^n_i \subset I_i \) for each \(n \geq 1 \);
- \(I'^n_i \times I'^{n+1}_{i+1} \subset G \) for each \(n \geq 1 \);
- \(I'^1_1 \to I'^2_1 \to I'^3_1 \to \cdots \).

Proof of Theorem 1.1. Since \(f \) is \(G_\delta \) there exists a sequence \(\{G_n\}_{n \in \mathbb{N}} \) of open subsets of \(\mathbb{R}^2 \) such that \(f = \bigcap_{n \in \mathbb{N}} G_n \). Using Lemma 3.3 we can find a sequence \(\{J^1_i\}_{i \geq 1} \) of compact intervals such that:

- \(J^1_i \subset I_i \) for each \(i \);
- \(J^1_i \times J^1_{i+1} \subset G_1 \) for each \(i \);
- \(J^1_1 \to J^1_2 \to J^1_3 \to \cdots \).

Continuing inductively for every \(n \geq 2 \) we can define a sequence \(\{J^n_i\}_{i \in \mathbb{N}} \) of compact intervals such that:

1. \(J^n_i \subset J^{n-1}_i \subset I_i \) for each \(i \geq 1 \);
2. \(J^n_i \times J^{n+1}_{i+1} \subset G_n \) for each \(i \geq 1 \);
3. \(J^n_1 \to J^n_2 \to J^n_3 \to \cdots \).
It follows that for every $i \in \mathbb{N}$ there exists an $x_i \in \bigcap_{n \in \mathbb{N}} J^n_i$. By (1), $x_i \in I_i$ for each i. By (2),

$$\langle x_i, x_{i+1} \rangle \in \bigcap_{n \in \mathbb{N}} J^n_i \times J^n_{i+1} \subset \bigcap_{n \in \mathbb{N}} G_n = f,$$

so $x_{i+1} = f(x_i)$ for each i. Therefore $f^i(x_1) \in I_{i+1}$ for every $i \in \mathbb{N}$.

Remark 3.4. Using a technique similar to that in [11] we can prove a generalization of Theorem 1.1 to the class of all finite compositions of connected G_δ functions (in [10] we have constructed an example of a connected G_δ function f such that $f^2 \notin G_\delta$.)

4. A “universal” dynamical system generated by a Darboux Baire 1 map of the interval. The authors of [1] formulated the problem of existence of a “universal” continuous function, i.e. they asked if there exists a continuous function $f : [0,1] \to [0,1]$ such that Ω_f contains a homeomorphic copy of every ω-limit set possible for continuous functions. An affirmative answer was given by Pokluda and Šmítal in [8].

The related problem for Darboux Baire 1 functions was formulated in [3], where Bruckner, Ceder and Pearson constructed a DB$_1$ function f with Ω_f containing a homeomorphic copy of every ω-limit set possible for continuous functions, and asked if there exists a DB$_1$ function g such that Ω_g contains a homeomorphic copy of every non-empty closed set. (Recall that in [5] Keller gives a simple example of a function $f : [0,1] \to [0,1]$ continuous everywhere except for a single point such that any nowhere dense compact set $W \subset [0,1]$ has a homeomorphic copy in Ω_f.) In Corollary 1 we answer this question in the affirmative. Moreover, we show that a “universal” Darboux Baire 1 function can be approximately continuous and bounded (hence a derivative).

In this section we prove the following

Theorem 4.1. There exists an approximately continuous function $f : [0,1] \to [0,1]$ such that every closed set $F \subset [0,1]$ with $0 \in F$ is an ω-limit set for f.

The above theorem has a somewhat surprising

Corollary 1. There exists an approximately continuous function $f : [0,1] \to [0,1]$ such that any non-empty closed set $F \subset [0,1]$ can be translated so as to become an ω-limit set for f.

To prove Theorem 4.1 we need the following lemma. Recall that a set H is of type M_5 if H is F_σ and τ_4-open.
Lemma 4.2 ([12]). If $E \subset H \subset [0, 1]$, E is closed and H is of type M_5, then there exists an approximately continuous function $f: [0, 1] \to [0, 1]$ such that
\[
\begin{cases}
 f(x) = 0 & \text{if } x \notin H, \\
 f(x) = 1 & \text{if } x \in E, \\
 0 < f(x) < 1 & \text{otherwise}.
\end{cases}
\]

Proof of Theorem 4.1. Let $E = \{0\}$ and H be any τ_d-open subset of $[0, 1]$ of type F_σ containing zero such that H and $[0, 1] \setminus H$ are dense in $[0, 1]$. By Lemma 4.2 there exists an approximately continuous function $f: [0, 1] \to [0, 1]$ with $f(0) = 1$ and with both sets
\[
\{x : f(x) = 0\} \text{ and } \{x : f(x) > 0\}
\]
being dense in $[0, 1]$. Observe that for such an f and for every $x_1 \neq x_2$ there exists an arbitrarily small $\tau > 0$ such that
\[
(\star) \quad [x_1, x_2] \to [0, \tau] \to [0, 1].
\]
Let F be a closed subset of $[0, 1]$ with $0 \in F$. Let $D = \{d_i : i \in \mathbb{N}\}$ be such that F is the cluster set of D, and $\{D_i\}_{i \in \mathbb{N}}$ be a sequence of non-degenerate compact intervals such that $d_i \in D_i \subset [0, 1]$ and the diameter of D_i is less than i^{-1} for each $i > 0$. By (\star), for every $i > 0$ there exists a $\tau_i \in (0, i^{-1})$ such that
\[
D_i \to_f [0, \tau_i] \to_f D_{i+1}.
\]
By Theorem 1.1 there exists an $x_0 \in [0, 1]$ such that $f^{2i}(x_0) \in D_i$ and $f^{2i+1}(x_0) \in [0, \tau_i]$. Thus
\[
\omega_f(x_0) = \bigcap_{i \in \mathbb{N}} \{f^{2j}(x_0) : j > i\} \cup \bigcap_{i \in \mathbb{N}} \{f^{2j+1}(x_0) : j > i\}
= \bigcap_{i \in \mathbb{N}} D_i \cup \bigcap_{i \in \mathbb{N}} [0, \tau_i] = F \cup \{0\} = F.
\]

The next argument (borrowed from [5]) shows that the “up to translation” part cannot be omitted in Corollary 1. Indeed, suppose that
\[
\{\{0, p\}, \{p, 1\} : p \in \mathbb{Q}\} \subset \Omega_f,
\]
where \mathbb{Q} denotes the set of all rationals in $[0, 1]$. Then for every $p \in \mathbb{Q}$ and open $U_0 \ni 0, \ U_1 \ni 1, \ V \ni p, \ f(V) \cap U_0 \neq \emptyset \ \text{and} \ f(V) \cap U_1 \neq \emptyset,$
so the oscillation of f is 1 at each point of \mathbb{Q}. Thus f is nowhere continuous, hence not Baire 1.

Acknowledgments. We would like to thank the referee for valuable remarks, especially for simplified arguments for Remark 3.1.
References

Department of Mathematics
Gdańsk University
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: pszuca@radix.com.pl

Received 20 June 2005;
in revised form 28 September 2006