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The Covering Principle for Darboux Baire 1 functions

by

Piotr Szuca (Gdańsk)

Abstract. We show that the Covering Principle known for continuous maps of the
real line also holds for functions whose graph is a connected Gδ subset of the plane. As an
application we find an example of an approximately continuous (hence Darboux Baire 1)
function f : [0, 1] → [0, 1] such that any closed subset of [0, 1] can be translated so as to
become an ω-limit set of f . This solves a problem posed by Bruckner, Ceder and Pearson
[Real Anal. Exchange 15 (1989/90)].

1. Introduction. For f ∈ RR, f0 is the identity function, and for any
integer n > 0, the nth iterate of f is defined by fn = f ◦ fn−1.

We say that for a given function f : R → R a compact interval I1 f -covers

a compact interval I2 if f(I1) ⊃ I2. We then write I1 →f I2 (or I1 → I2 if f

is clear from the context).

It is easy to see that if f is continuous and

I1 → I2 → I3 → · · ·

for a sequence {Ii}i∈N of compact intervals then there is an x ∈ I1 such
that f i(x) ∈ Ii+1 for each i. This fact, known as the Covering Principle (or
Itinerary Lemma), is widely used in one-dimensional dynamics (see e.g. [6]).
We generalize it to the class of real functions with connected Gδ graph in
the following

Theorem 1.1. Suppose that f : R → R is a connected Gδ function and

there exists a sequence of compact intervals

I1 → I2 → I3 → · · · .

Then there exists an x ∈ I1 such that f i(x) ∈ Ii+1 for each i ∈ N.
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Recall that in [10] we have proved Sharkovskĭı’s theorem for connected
Gδ real functions using the following dual (“cycle”) version of Theorem 1.1.

Theorem 1.2 ([10]). Suppose that f : R → R is a connected Gδ function

and there exists a cycle of compact intervals

I1 → I2 → · · · → IN → I1.

Then there exists an x ∈ I1 such that fN (x) = x and f i(x) ∈ Ii+1 for each

i ∈ {0, . . . , N − 1}.

We give a proof of Theorem 1.1 in Section 3. In Section 4 we show how
it can be used to solve a problem from [3] regarding ω-limit sets of Darboux
Baire 1 functions (see definitions below).

2. Preliminaries. We denote by [a, b] the compact interval (possibly
degenerate) with endpoints a and b. We do not assume a < b unless explicitly
stated.

A set H is said to be τd-open if H has inner density 1 at every point
x ∈ H. These sets form a completely regular (but not normal) topology τd

(see e.g. [7]).

We identify every function with its graph. We consider the following
classes of functions f from R into R (or [0, 1] into [0, 1], after obvious mod-
ifications):

• f is approximately continuous (f ∈ A) if f−1(U) ∈ τd for every open
set U ⊂ [0, 1].

• f is connected or a connectivity function (f ∈ Conn) if f is a connected
subset of R2;

• f is Darboux (f ∈ D) if f has the intermediate value property, i.e. f(I)
is an interval for every interval I ⊂ R;

• f is Baire class 1 (f ∈ B1) if f is a pointwise limit of a sequence of
continuous functions; this is equivalent to f−1(G) being an Fσ subset
of R for every open G ⊂ R, and to f↾K having a point of continuity
for every non-empty closed set K ⊂ R;

• f is Darboux Baire 1 (f ∈ DB1) if f is Darboux and Baire 1;
• f ∈ Gδ if f is a Gδ subset of R2, i.e. f =

⋂

n∈N
Gn, where all Gn ⊂ R2

are open.

For properties of these and other Darboux-like classes of functions see e.g.
the survey [4]. In particular, it is known that

Conn ⊂ D and A ⊂ DB1 ⊂ Conn ∩ Gδ,

and all these inclusions are proper. It follows that Conn = D within the class
of Baire 1 functions. Moreover, every bounded approximately continuous
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function is a derivative, and every derivative belongs to the class DB1 (see
e.g. [2]).

A set W ⊂ R is called an ω-limit set for f if there is an x ∈ R such that
W is the cluster set of the sequence {fn(x)} (n ∈ N), i.e.

W =
⋂

i∈N

{f j(x) : j > i}.

Denote this set by ωf (x) and let Ωf be the class of all ω-limit sets of f ,
i.e. Ωf = {ωf (x) : x ∈ R}. Clearly each element of Ωf is closed.

Agronsky, Bruckner, Ceder and Pearson have given in [1] the following
characterization of ω-limit sets: a non-empty closed set W ⊂ [0, 1] is an ω-
limit set of a continuous map f : [0, 1] → [0, 1] if W is either a finite collection
of nondegenerate closed intervals or is nowhere dense (the necessity of this
condition was proved earlier by Sharkovskĭı in [9]).

The characterization of ω-limit sets for a DB1 function was given by
Bruckner, Ceder and Pearson in [3]: every non-empty closed subset of [0, 1]
is an ω-limit set of a function f ∈ DB1([0, 1]). In Section 4 we show that
there exists an approximately continuous (hence DB1) function having a
translation of every closed set as an ω-limit set.

3. Proof of Theorem 1.1. Fix a Darboux function f : R → R. Sup-
pose that there exist sequences {ai}i∈N, {bi}i∈N such that ai < bi and
[f(ai), f(bi)] ⊃ [ai+1, bi+1] for each i ∈ N. Clearly

[a1, b1] → [a2, b2] → [a3, b3] → · · · .

For every x ∈ R and i ≥ 1 let

δi(x) =







ai if x ≤ ai,

bi if x ≥ bi,

x if x ∈ (ai, bi),

and ∆i = δi ◦ f ◦ δi−1 ◦ f ◦ δi−2 ◦ · · · ◦ δ2 ◦ f ◦ δ1.
With every y ∈ R we associate a sequence of symbols

α(y) = α1(y)α2(y)α3(y) . . .

with αi(y) being one of the symbols “L”, “U” or “C” given by the formula

αi(x) =







L if ∆i(x) = ai,

U if ∆i(x) = bi,

C otherwise.

Clearly αi(a1), αi(b1) ∈ {L, U}, and the sequence α(a1) differs from α(b1)
at every position.

Notice that by definition, for any interval I and for every i ∈ N, either
δi(I) = {ai}, or δi(I) = {bi}, or δi(I) ⊂ I. Consequently, for any x1, x2 ∈ R
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either the sequences α(x1) and α(x2) agree for sufficiently large indices, or

[∆n(x1), ∆n(x2)] → [∆n+1(x1), ∆n+1(x2)]

for each n. So, we have the following

Remark 3.1. If x1, x2 ∈ R and the sequence α(x1) differs from α(x2)
at infinitely many positions then

[∆1(x1), ∆1(x2)] → [∆2(x1), ∆2(x2)] → [∆3(x1), ∆3(x2)] → · · · .

Lemma 3.2. Suppose that f : R → R is connected and there exists a

sequence of compact intervals

I1 → I2 → I3 → · · · .

Then there exists an x ∈ I1 such that for every open neighbourhood G of

〈x, f(x)〉 there exists a sequence of compact intervals

I ′1 → I ′2 → I ′3 → · · ·

such that I ′1 × I ′2 ⊂ G and I ′i ⊂ Ii for each i ≥ 1.

Proof. Note that if In is degenerate for some n ∈ N, then there exists
an x ∈ I1 such that f i(x) ∈ Ii+1 for i = 1, . . . , n − 1 and the family {I ′i}i∈N

of degenerate intervals I ′i = {f i−1(x)} is as desired. So, we assume that all
intervals In are non-degenerate.

First we claim that there exist sequences {ai}i∈N and {bi}i∈N such that
for each i ∈ N, ai < bi, [ai, bi] ⊂ Ii and

[ai+1, bi+1] ⊂ [f(ai), f(bi)].

Indeed, by the intermediate value property of f , for each i there exist pi, qi ∈
Ii such that f(pi) = inf Ii+1 and f(qi) = sup Ii+1. Clearly the sequences of
points

ai = min{pi, qi} and bi = max{pi, qi}

are as desired.
For any x, y ∈ [a1, b1] let

diff(x, y) = {n ∈ N : αn(x) 6= αn(y)}.

Let
A = {〈x, f(x)〉 ∈ f↾[a1, b1] : diff(a1, x) is finite},

B = {〈x, f(x)〉 ∈ f↾[a1, b1] : diff(a1, x) is infinite}.

Since 〈a1, f(a1)〉 ∈ A, and α(a1) differs from α(b1) at every position, both
sets are non-empty. Clearly f↾[a1, b1] = A∪B and A∩B = ∅. Since f↾[a1, b1]
is connected, there is an 〈x0, f(x0)〉 in (A ∩ B) ∪ (A ∩ B).

If G is an open neighbourhood of 〈x0, f(x0)〉 then there exist x1, x2 ∈
[a1, b1] with α(x1) and α(x2) differing at infinitely many positions and

[x1, x2] × [f(x1), f(x2)] ⊂ G.
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If we set I ′i = [∆i(x1), ∆i(x2)] then I ′1 × I ′2 ⊂ G, I ′i ⊂ [ai, bi] ⊂ Ii for each i,
and by Remark 3.1,

I ′1 → I ′2 → I ′3 → · · · .

Lemma 3.3. Suppose that f : R → R is connected , f ⊂ G for an open

set G ⊂ R × R and there exists a sequence of compact intervals

I1 → I2 → I3 → · · · .

Then there exists a sequence of compact intervals

J1 → J2 → J3 → · · ·

such that Ji ⊂ Ii and Ji × Ji+1 ⊂ G for each i ∈ N.

Proof. By Lemma 3.2 we can find a sequence {I1
i }i≥1 of compact inter-

vals such that:

• I1
i ⊂ Ii for each i ≥ 1;

• I1
1 × I1

2 ⊂ G;
• I1

1 → I1
2 → I1

3 → · · · .

Continuing inductively (using Lemma 3.2 for the sequence {In
i }i≥n+1) we

can build a sequence {In+1
i }i≥n+1 of compact intervals such that for every

n > 1:

• In+1
i ⊂ In

i for each i ≥ n + 1;
• In+1

n+1 × In+1
n+2 ⊂ G;

• In+1
n+1 → In+1

n+2 → In+1
n+3 → · · · .

The assertion of the lemma follows from a diagonal argument, since:

• In
n ⊂ In for each n ≥ 1;

• In
n × In+1

n+1 ⊂ G for each n ≥ 1;
• I1

1 → I2
2 → I3

3 → · · · .

Proof of Theorem 1.1. Since f is Gδ there exists a sequence {Gn}n∈N of
open subsets of R2 such that f =

⋂

n∈N
Gn. Using Lemma 3.3 we can find a

sequence {J1
i }i≥1 of compact intervals such that:

• J1
i ⊂ Ii for each i;

• J1
i × J1

i+1 ⊂ G1 for each i;

• J1
1 → J1

2 → J1
3 → · · · .

Continuing inductively for every n ≥ 2 we can define a sequence {Jn
i }i∈N of

compact intervals such that:

(1) Jn
i ⊂ Jn−1

i ⊂ Ii for each i ≥ 1;
(2) Jn

i × Jn
i+1 ⊂ Gn for each i ≥ 1;

(3) Jn
1 → Jn

2 → Jn
3 → · · · .
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It follows that for every i ∈ N there exists an xi ∈
⋂

n∈N
Jn

i . By (1), xi ∈ Ii

for each i. By (2),

〈xi, xi+1〉 ∈
⋂

n∈N

Jn
i × Jn

i+1 ⊂
⋂

n∈N

Gn = f,

so xi+1 = f(xi) for each i. Therefore f i(x1) ∈ Ii+1 for every i ∈ N.

Remark 3.4. Using a technique similar to that in [11] we can prove a
generalization of Theorem 1.1 to the class of all finite compositions of con-
nected Gδ functions (in [10] we have constructed an example of a connected
Gδ function f such that f2 6∈ Gδ.)

4. A “universal” dynamical system generated by a Darboux

Baire 1 map of the interval. The authors of [1] formulated the problem of
existence of a “universal” continuous function, i.e. they asked if there exists a
continuous function f : [0, 1] → [0, 1] such that Ωf contains a homeomorphic
copy of every ω-limit set possible for continuous functions. An affirmative
answer was given by Pokluda and Smı́tal in [8].

The related problem for Darboux Baire 1 functions was formulated in [3],
where Bruckner, Ceder and Pearson constructed a DB1 function f with Ωf

containing a homeomorphic copy of every ω-limit set possible for continuous
functions, and asked if there exists a DB1 function g such that Ωg contains a
homeomorphic copy of every non-empty closed set. (Recall that in [5] Keller
gives a simple example of a function f : [0, 1] → [0, 1] continuous every-
where except for a single point such that any nowhere dense compact set
W ⊂ [0, 1] has a homeomorphic copy in Ωf .) In Corollary 1 we answer this
question in the affirmative. Moreover, we show that a “universal” Darboux
Baire 1 function can be approximately continuous and bounded (hence a
derivative).

In this section we prove the following

Theorem 4.1. There exists an approximately continuous function f :
[0, 1] → [0, 1] such that every closed set F ⊂ [0, 1] with 0 ∈ F is an ω-limit

set for f .

The above theorem has a somewhat surprising

Corollary 1. There exists an approximately continuous function f :
[0, 1] → [0, 1] such that any non-empty closed set F ⊂ [0, 1] can be translated

so as to become an ω-limit set for f .

To prove Theorem 4.1 we need the following lemma. Recall that a set H

is of type M5 if H is Fσ and τd-open.
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Lemma 4.2 ([12]). If E ⊂ H ⊂ [0, 1], E is closed and H is of type M5,
then there exists an approximately continuous function f : [0, 1] → [0, 1] such

that






f(x) = 0 if x 6∈ H,

f(x) = 1 if x ∈ E,

0 < f(x) < 1 otherwise.

Proof of Theorem 4.1. Let E = {0} and H be any τd-open subset of [0, 1]
of type Fσ containing zero such that H and [0, 1] \H are dense in [0, 1]. By
Lemma 4.2 there exists an approximately continuous function f : [0, 1] →
[0, 1] with f(0) = 1 and with both sets

{x : f(x) = 0} and {x : f(x) > 0}

being dense in [0, 1]. Observe that for such an f and for every x1 6= x2 there
exists an arbitrarily small τ > 0 such that

(⋆) [x1, x2] → [0, τ ] → [0, 1].

Let F be a closed subset of [0, 1] with 0 ∈ F . Let D = {di : i ∈ N} be such
that F is the cluster set of D, and {Di}i∈N be a sequence of non-degenerate
compact intervals such that di ∈ Di ⊂ [0, 1] and the diameter of Di is less
than i−1 for each i > 0. By (⋆), for every i > 0 there exists a τi ∈ (0, i−1)
such that

Di →f [0, τi] →f Di+1.

By Theorem 1.1 there exists an x0 ∈ [0, 1] such that f2i(x0) ∈ Di and
f2i+1(x0) ∈ [0, τi]. Thus

ωf (x0) =
⋂

i∈N

{f2j(x0) : j > i} ∪
⋂

i∈N

{f2j+1(x0) : j > i}

=
⋂

i∈N

⋃

j>i

Dj ∪
⋂

i∈N

⋃

j>i

[0, τj ] = F ∪ {0} = F.

The next argument (borrowed from [5]) shows that the “up to transla-
tion” part cannot be omitted in Corollary 1. Indeed, suppose that

{{0, p}, {p, 1} : p ∈ Q} ⊂ Ωf ,

where Q denotes the set of all rationals in [0, 1]. Then for every p ∈ Q and
open U0 ∋ 0, U1 ∋ 1, V ∋ p,

f(V ) ∩ U0 6= ∅ and f(V ) ∩ U1 6= ∅,

so the oscillation of f is 1 at each point of Q. Thus f is nowhere continuous,
hence not Baire 1.
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[6] J. Kennedy, S. Koçak, and J. A. Yorke, A chaos lemma, Amer. Math. Monthly 108

(2001), 411–423.
[7] J. C. Oxtoby, Measure and Category, 2nd ed., Grad. Texts in Math. 2, Springer,

New York, 1980.
[8] D. Pokluda and J. Smı́tal, A “universal” dynamical system generated by a continu-

ous map of the interval, Proc. Amer. Math. Soc. 128 (2000), 3047–3056.
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