The Covering Principle for Darboux Baire 1 functions

by

Piotr Szuca (Gdańsk)

Abstract. We show that the Covering Principle known for continuous maps of the real line also holds for functions whose graph is a connected G_{δ} subset of the plane. As an application we find an example of an approximately continuous (hence Darboux Baire 1) function $f: [0,1] \to [0,1]$ such that any closed subset of [0,1] can be translated so as to become an ω -limit set of f. This solves a problem posed by Bruckner, Ceder and Pearson [Real Anal. Exchange 15 (1989/90)].

1. Introduction. For $f \in \mathbb{R}^{\mathbb{R}}$, f^0 is the identity function, and for any integer n > 0, the *n*th iterate of f is defined by $f^n = f \circ f^{n-1}$.

We say that for a given function $f: \mathbb{R} \to \mathbb{R}$ a compact interval I_1 f-covers a compact interval I_2 if $f(I_1) \supset I_2$. We then write $I_1 \to_f I_2$ (or $I_1 \to I_2$ if f is clear from the context).

It is easy to see that if f is continuous and

$$I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \cdots$$

for a sequence $\{I_i\}_{i\in\mathbb{N}}$ of compact intervals then there is an $x\in I_1$ such that $f^i(x)\in I_{i+1}$ for each i. This fact, known as the *Covering Principle* (or *Itinerary Lemma*), is widely used in one-dimensional dynamics (see e.g. [6]). We generalize it to the class of real functions with connected G_{δ} graph in the following

THEOREM 1.1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a connected G_{δ} function and there exists a sequence of compact intervals

$$I_1 \to I_2 \to I_3 \to \cdots$$
.

Then there exists an $x \in I_1$ such that $f^i(x) \in I_{i+1}$ for each $i \in \mathbb{N}$.

 $^{2000\} Mathematics\ Subject\ Classification:$ Primary 26A18; Secondary 26A15, 26A21, 37E05, 54C30.

Key words and phrases: connectivity functions, Darboux functions, Baire 1 functions, Borel measurable functions, Covering Principle, Itinerary Lemma, sequences of intervals, ω -limit sets, attractors, f-cover.

Recall that in [10] we have proved Sharkovskii's theorem for connected G_{δ} real functions using the following dual ("cycle") version of Theorem 1.1.

THEOREM 1.2 ([10]). Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a connected G_{δ} function and there exists a cycle of compact intervals

$$I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_N \rightarrow I_1$$
.

Then there exists an $x \in I_1$ such that $f^N(x) = x$ and $f^i(x) \in I_{i+1}$ for each $i \in \{0, ..., N-1\}$.

We give a proof of Theorem 1.1 in Section 3. In Section 4 we show how it can be used to solve a problem from [3] regarding ω -limit sets of Darboux Baire 1 functions (see definitions below).

2. Preliminaries. We denote by [a, b] the compact interval (possibly degenerate) with endpoints a and b. We do not assume a < b unless explicitly stated.

A set H is said to be τ_{d} -open if H has inner density 1 at every point $x \in H$. These sets form a completely regular (but not normal) topology τ_{d} (see e.g. [7]).

We identify every function with its graph. We consider the following classes of functions f from \mathbb{R} into \mathbb{R} (or [0,1] into [0,1], after obvious modifications):

- f is approximately continuous $(f \in \mathcal{A})$ if $f^{-1}(U) \in \tau_d$ for every open set $U \subset [0, 1]$.
- f is connected or a connectivity function ($f \in \text{Conn}$) if f is a connected subset of \mathbb{R}^2 ;
- f is Darboux ($f \in D$) if f has the intermediate value property, i.e. f(I) is an interval for every interval $I \subset \mathbb{R}$;
- f is Baire class 1 ($f \in B_1$) if f is a pointwise limit of a sequence of continuous functions; this is equivalent to $f^{-1}(G)$ being an F_{σ} subset of \mathbb{R} for every open $G \subset \mathbb{R}$, and to $f \upharpoonright K$ having a point of continuity for every non-empty closed set $K \subset \mathbb{R}$;
- f is $Darboux\ Baire\ 1\ (f \in DB_1)$ if f is $Darboux\ and\ Baire\ 1$;
- $f \in G_{\delta}$ if f is a G_{δ} subset of \mathbb{R}^2 , i.e. $f = \bigcap_{n \in \mathbb{N}} G_n$, where all $G_n \subset \mathbb{R}^2$ are open.

For properties of these and other Darboux-like classes of functions see e.g. the survey [4]. In particular, it is known that

Conn
$$\subset$$
 D and $\mathcal{A} \subset DB_1 \subset Conn \cap G_{\delta}$,

and all these inclusions are proper. It follows that Conn = D within the class of Baire 1 functions. Moreover, every bounded approximately continuous

function is a derivative, and every derivative belongs to the class DB_1 (see e.g. [2]).

A set $W \subset \mathbb{R}$ is called an ω -limit set for f if there is an $x \in \mathbb{R}$ such that W is the cluster set of the sequence $\{f^n(x)\}\ (n \in \mathbb{N})$, i.e.

$$W = \bigcap_{i \in \mathbb{N}} \overline{\{f^j(x) : j > i\}}.$$

Denote this set by $\omega_f(x)$ and let Ω_f be the class of all ω -limit sets of f, i.e. $\Omega_f = \{\omega_f(x) : x \in \mathbb{R}\}$. Clearly each element of Ω_f is closed.

Agronsky, Bruckner, Ceder and Pearson have given in [1] the following characterization of ω -limit sets: a non-empty closed set $W \subset [0,1]$ is an ω -limit set of a continuous map $f: [0,1] \to [0,1]$ if W is either a finite collection of nondegenerate closed intervals or is nowhere dense (the necessity of this condition was proved earlier by Sharkovskiĭ in [9]).

The characterization of ω -limit sets for a DB₁ function was given by Bruckner, Ceder and Pearson in [3]: every non-empty closed subset of [0, 1] is an ω -limit set of a function $f \in \mathrm{DB}_1([0,1])$. In Section 4 we show that there exists an approximately continuous (hence DB₁) function having a translation of every closed set as an ω -limit set.

3. Proof of Theorem 1.1. Fix a Darboux function $f: \mathbb{R} \to \mathbb{R}$. Suppose that there exist sequences $\{a_i\}_{i\in\mathbb{N}}$, $\{b_i\}_{i\in\mathbb{N}}$ such that $a_i < b_i$ and $[f(a_i), f(b_i)] \supset [a_{i+1}, b_{i+1}]$ for each $i \in \mathbb{N}$. Clearly

$$[a_1,b_1] \to [a_2,b_2] \to [a_3,b_3] \to \cdots$$

For every $x \in \mathbb{R}$ and $i \geq 1$ let

$$\delta_i(x) = \begin{cases} a_i & \text{if } x \le a_i, \\ b_i & \text{if } x \ge b_i, \\ x & \text{if } x \in (a_i, b_i), \end{cases}$$

and $\Delta_i = \delta_i \circ f \circ \delta_{i-1} \circ f \circ \delta_{i-2} \circ \cdots \circ \delta_2 \circ f \circ \delta_1$.

With every $y \in \mathbb{R}$ we associate a sequence of symbols

$$\alpha(y) = \alpha_1(y)\alpha_2(y)\alpha_3(y)\dots$$

with $\alpha_i(y)$ being one of the symbols "L", "U" or "C" given by the formula

$$\alpha_i(x) = \begin{cases} L & \text{if } \Delta_i(x) = a_i, \\ U & \text{if } \Delta_i(x) = b_i, \\ C & \text{otherwise.} \end{cases}$$

Clearly $\alpha_i(a_1), \alpha_i(b_1) \in \{L, U\}$, and the sequence $\alpha(a_1)$ differs from $\alpha(b_1)$ at every position.

Notice that by definition, for any interval I and for every $i \in \mathbb{N}$, either $\delta_i(I) = \{a_i\}$, or $\delta_i(I) = \{b_i\}$, or $\delta_i(I) \subset I$. Consequently, for any $x_1, x_2 \in \mathbb{R}$

either the sequences $\alpha(x_1)$ and $\alpha(x_2)$ agree for sufficiently large indices, or

$$[\Delta_n(x_1), \Delta_n(x_2)] \to [\Delta_{n+1}(x_1), \Delta_{n+1}(x_2)]$$

for each n. So, we have the following

REMARK 3.1. If $x_1, x_2 \in \mathbb{R}$ and the sequence $\alpha(x_1)$ differs from $\alpha(x_2)$ at infinitely many positions then

$$[\Delta_1(x_1), \Delta_1(x_2)] \rightarrow [\Delta_2(x_1), \Delta_2(x_2)] \rightarrow [\Delta_3(x_1), \Delta_3(x_2)] \rightarrow \cdots$$

Lemma 3.2. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is connected and there exists a sequence of compact intervals

$$I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \cdots$$
.

Then there exists an $x \in I_1$ such that for every open neighbourhood G of $\langle x, f(x) \rangle$ there exists a sequence of compact intervals

$$I_1' \to I_2' \to I_3' \to \cdots$$

such that $I'_1 \times I'_2 \subset G$ and $I'_i \subset I_i$ for each $i \geq 1$.

Proof. Note that if I_n is degenerate for some $n \in \mathbb{N}$, then there exists an $x \in I_1$ such that $f^i(x) \in I_{i+1}$ for $i = 1, \ldots, n-1$ and the family $\{I'_i\}_{i \in \mathbb{N}}$ of degenerate intervals $I'_i = \{f^{i-1}(x)\}$ is as desired. So, we assume that all intervals I_n are non-degenerate.

First we claim that there exist sequences $\{a_i\}_{i\in\mathbb{N}}$ and $\{b_i\}_{i\in\mathbb{N}}$ such that for each $i\in\mathbb{N}, a_i< b_i, [a_i,b_i]\subset I_i$ and

$$[a_{i+1}, b_{i+1}] \subset [f(a_i), f(b_i)].$$

Indeed, by the intermediate value property of f, for each i there exist $p_i, q_i \in I_i$ such that $f(p_i) = \inf I_{i+1}$ and $f(q_i) = \sup I_{i+1}$. Clearly the sequences of points

$$a_i = \min\{p_i, q_i\}$$
 and $b_i = \max\{p_i, q_i\}$

are as desired.

For any $x, y \in [a_1, b_1]$ let

$$\operatorname{diff}(x,y) = \{ n \in \mathbb{N} : \alpha_n(x) \neq \alpha_n(y) \}.$$

Let

$$A = \{ \langle x, f(x) \rangle \in f \upharpoonright [a_1, b_1] : \text{diff}(a_1, x) \text{ is finite} \},$$

$$B = \{ \langle x, f(x) \rangle \in f \upharpoonright [a_1, b_1] : \text{diff}(a_1, x) \text{ is infinite} \}.$$

Since $\langle a_1, f(a_1) \rangle \in A$, and $\alpha(a_1)$ differs from $\alpha(b_1)$ at every position, both sets are non-empty. Clearly $f \upharpoonright [a_1, b_1] = A \cup B$ and $A \cap B = \emptyset$. Since $f \upharpoonright [a_1, b_1]$ is connected, there is an $\langle x_0, f(x_0) \rangle$ in $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.

If G is an open neighbourhood of $\langle x_0, f(x_0) \rangle$ then there exist $x_1, x_2 \in [a_1, b_1]$ with $\alpha(x_1)$ and $\alpha(x_2)$ differing at infinitely many positions and

$$[x_1, x_2] \times [f(x_1), f(x_2)] \subset G.$$

If we set $I_i' = [\Delta_i(x_1), \Delta_i(x_2)]$ then $I_1' \times I_2' \subset G$, $I_i' \subset [a_i, b_i] \subset I_i$ for each i, and by Remark 3.1,

$$I_1' \rightarrow I_2' \rightarrow I_3' \rightarrow \cdots$$
.

Lemma 3.3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is connected, $f \subset G$ for an open set $G \subset \mathbb{R} \times \mathbb{R}$ and there exists a sequence of compact intervals

$$I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \cdots$$

Then there exists a sequence of compact intervals

$$J_1 \rightarrow J_2 \rightarrow J_3 \rightarrow \cdots$$

such that $J_i \subset I_i$ and $J_i \times J_{i+1} \subset G$ for each $i \in \mathbb{N}$.

Proof. By Lemma 3.2 we can find a sequence $\{I_i^1\}_{i>1}$ of compact intervals such that:

- $I_i^1 \subset I_i$ for each $i \ge 1$; $I_1^1 \times I_2^1 \subset G$; $I_1^1 \to I_2^1 \to I_3^1 \to \cdots$.

Continuing inductively (using Lemma 3.2 for the sequence $\{I_i^n\}_{i\geq n+1}$) we can build a sequence $\{I_i^{n+1}\}_{i\geq n+1}$ of compact intervals such that for every n > 1:

- $I_i^{n+1} \subset I_i^n$ for each $i \ge n+1$; $I_{n+1}^{n+1} \times I_{n+2}^{n+1} \subset G$; $I_{n+1}^{n+1} \to I_{n+2}^{n+1} \to I_{n+3}^{n+1} \to \cdots$.

The assertion of the lemma follows from a diagonal argument, since:

- $I_n^n \subset I_n$ for each $n \ge 1$; $I_n^n \times I_{n+1}^{n+1} \subset G$ for each $n \ge 1$; $I_1^1 \to I_2^2 \to I_3^3 \to \cdots$.

Proof of Theorem 1.1. Since f is G_{δ} there exists a sequence $\{G_n\}_{n\in\mathbb{N}}$ of open subsets of \mathbb{R}^2 such that $f = \bigcap_{n \in \mathbb{N}} G_n$. Using Lemma 3.3 we can find a sequence $\{J_i^1\}_{i\geq 1}$ of compact intervals such that:

- $J_i^1 \subset I_i$ for each i;
- $J_i^1 \times J_{i+1}^1 \subset G_1$ for each i;
- \bullet $J_1^1 \rightarrow J_2^1 \rightarrow J_3^1 \rightarrow \cdots$.

Continuing inductively for every $n \geq 2$ we can define a sequence $\{J_i^n\}_{i \in \mathbb{N}}$ of compact intervals such that:

- (1) $J_i^n \subset J_i^{n-1} \subset I_i$ for each $i \geq 1$;
- (2) $J_i^n \times J_{i+1}^n \subset G_n$ for each $i \geq 1$;
- (3) $J_1^n \to J_2^n \to J_3^n \to \cdots$

It follows that for every $i \in \mathbb{N}$ there exists an $x_i \in \bigcap_{n \in \mathbb{N}} J_i^n$. By (1), $x_i \in I_i$ for each i. By (2),

$$\langle x_i, x_{i+1} \rangle \in \bigcap_{n \in \mathbb{N}} J_i^n \times J_{i+1}^n \subset \bigcap_{n \in \mathbb{N}} G_n = f,$$

so $x_{i+1} = f(x_i)$ for each i. Therefore $f^i(x_1) \in I_{i+1}$ for every $i \in \mathbb{N}$.

REMARK 3.4. Using a technique similar to that in [11] we can prove a generalization of Theorem 1.1 to the class of all finite compositions of connected G_{δ} functions (in [10] we have constructed an example of a connected G_{δ} function f such that $f^2 \notin G_{\delta}$.)

4. A "universal" dynamical system generated by a Darboux Baire 1 map of the interval. The authors of [1] formulated the problem of existence of a "universal" continuous function, i.e. they asked if there exists a continuous function $f: [0,1] \to [0,1]$ such that Ω_f contains a homeomorphic copy of every ω -limit set possible for continuous functions. An affirmative answer was given by Pokluda and Smítal in [8].

The related problem for Darboux Baire 1 functions was formulated in [3], where Bruckner, Ceder and Pearson constructed a DB₁ function f with Ω_f containing a homeomorphic copy of every ω -limit set possible for continuous functions, and asked if there exists a DB₁ function g such that Ω_g contains a homeomorphic copy of every non-empty closed set. (Recall that in [5] Keller gives a simple example of a function $f: [0,1] \to [0,1]$ continuous everywhere except for a single point such that any nowhere dense compact set $W \subset [0,1]$ has a homeomorphic copy in Ω_f .) In Corollary 1 we answer this question in the affirmative. Moreover, we show that a "universal" Darboux Baire 1 function can be approximately continuous and bounded (hence a derivative).

In this section we prove the following

THEOREM 4.1. There exists an approximately continuous function f: $[0,1] \rightarrow [0,1]$ such that every closed set $F \subset [0,1]$ with $0 \in F$ is an ω -limit set for f.

The above theorem has a somewhat surprising

COROLLARY 1. There exists an approximately continuous function f: $[0,1] \rightarrow [0,1]$ such that any non-empty closed set $F \subset [0,1]$ can be translated so as to become an ω -limit set for f.

To prove Theorem 4.1 we need the following lemma. Recall that a set H is of $type\ M_5$ if H is F_{σ} and $\tau_{\rm d}$ -open.

LEMMA 4.2 ([12]). If $E \subset H \subset [0,1]$, E is closed and H is of type M_5 , then there exists an approximately continuous function $f: [0,1] \to [0,1]$ such that

$$\begin{cases} f(x) = 0 & \text{if } x \notin H, \\ f(x) = 1 & \text{if } x \in E, \\ 0 < f(x) < 1 & \text{otherwise.} \end{cases}$$

Proof of Theorem 4.1. Let $E = \{0\}$ and H be any τ_d -open subset of [0, 1] of type F_{σ} containing zero such that H and $[0, 1] \setminus H$ are dense in [0, 1]. By Lemma 4.2 there exists an approximately continuous function $f: [0, 1] \to [0, 1]$ with f(0) = 1 and with both sets

$${x: f(x) = 0}$$
 and ${x: f(x) > 0}$

being dense in [0, 1]. Observe that for such an f and for every $x_1 \neq x_2$ there exists an arbitrarily small $\tau > 0$ such that

$$[x_1, x_2] \to [0, \tau] \to [0, 1].$$

Let F be a closed subset of [0,1] with $0 \in F$. Let $D = \{d_i : i \in \mathbb{N}\}$ be such that F is the cluster set of D, and $\{D_i\}_{i\in\mathbb{N}}$ be a sequence of non-degenerate compact intervals such that $d_i \in D_i \subset [0,1]$ and the diameter of D_i is less than i^{-1} for each i > 0. By (\star) , for every i > 0 there exists a $\tau_i \in (0, i^{-1})$ such that

$$D_i \to_f [0, \tau_i] \to_f D_{i+1}.$$

By Theorem 1.1 there exists an $x_0 \in [0,1]$ such that $f^{2i}(x_0) \in D_i$ and $f^{2i+1}(x_0) \in [0,\tau_i]$. Thus

$$\omega_f(x_0) = \bigcap_{i \in \mathbb{N}} \overline{\{f^{2j}(x_0) : j > i\}} \cup \bigcap_{i \in \mathbb{N}} \overline{\{f^{2j+1}(x_0) : j > i\}}$$
$$= \bigcap_{i \in \mathbb{N}} \overline{\bigcup_{j > i} D_j} \cup \bigcap_{i \in \mathbb{N}} \overline{\bigcup_{j > i} [0, \tau_j]} = F \cup \{0\} = F. \blacksquare$$

The next argument (borrowed from [5]) shows that the "up to translation" part cannot be omitted in Corollary 1. Indeed, suppose that

$$\{\{0,p\},\{p,1\}:p\in\mathbb{Q}\}\subset\Omega_f,$$

where \mathbb{Q} denotes the set of all rationals in [0,1]. Then for every $p \in \mathbb{Q}$ and open $U_0 \ni 0, U_1 \ni 1, V \ni p$,

$$f(V) \cap U_0 \neq \emptyset$$
 and $f(V) \cap U_1 \neq \emptyset$,

so the oscillation of f is 1 at each point of \mathbb{Q} . Thus f is nowhere continuous, hence not Baire 1.

Acknowledgments. We would like to thank the referee for valuable remarks, especially for simplified arguments for Remark 3.1.

References

- S. J. Agronsky, A. M. Bruckner, J. G. Ceder, and T. L. Pearson, The structure of ω-limit sets for continuous functions, Real Anal. Exchange 15 (1989/90), 483–510.
- [2] A. Bruckner, Differentiation of Real Functions, 2nd ed., CRM Monogr. Ser. 5, Amer. Math. Soc., Providence, RI, 1994.
- [3] A. M. Bruckner, J. G. Ceder, and T. L. Pearson, On ω-limit sets for various classes of functions, Real Anal. Exchange 15 (1989/90), 592–604.
- [4] R. G. Gibson and T. Natkaniec, Darboux like functions, ibid. 22 (1996/97), 492–533.
- [5] P. S. Keller, Chaotic behavior of Newton's method, ibid. 18 (1992/93), 490–507.
- [6] J. Kennedy, S. Koçak, and J. A. Yorke, A chaos lemma, Amer. Math. Monthly 108 (2001), 411–423.
- [7] J. C. Oxtoby, Measure and Category, 2nd ed., Grad. Texts in Math. 2, Springer, New York, 1980.
- [8] D. Pokluda and J. Smítal, A "universal" dynamical system generated by a continuous map of the interval, Proc. Amer. Math. Soc. 128 (2000), 3047–3056.
- [9] O. M. Šarkovskiĭ, On attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036–1038 (in Russian).
- [10] P. Szuca, Sharkovskii's theorem holds for some discontinuous functions, Fund. Math. 179 (2003), 27–41.
- [11] —, Loops of intervals and Darboux Baire 1 fixed point problem, Real Anal. Exchange 29 (2003/04), 205–209.
- [12] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54.

Department of Mathematics Gdańsk University Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: pszuca@radix.com.pl

> Received 20 June 2005; in revised form 28 September 2006