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A characterization of Ext(G,Z) assuming (V = L)
by

Saharon Shelah (Jerusalem and New Brunswick, NJ) and
Lutz Striingmann (Essen and Honolulu)

Abstract. We complete the characterization of Ext(G, Z) for any torsion-free abelian
group G assuming Godel’s axiom of constructibility plus there is no weakly compact
cardinal. In particular, we prove in (V' = L) that, for a singular cardinal v of uncountable
cofinality which is less than the first weakly compact cardinal and for every sequence
(vp : p € II) of cardinals satisfying v, < 2" (where IT is the set of all primes), there is
a torsion-free abelian group G of size v such that v, equals the p-rank of Ext(G,Z) for
every prime p and 2" is the torsion-free rank of Ext(G,Z).

1. Introduction. Since the first author solved the well known White-
head problem in 1977 (see [Sh1], [Sh2]) the structure of Ext(G, Z) for torsion-
free abelian groups G has received much attention. Easy arguments show that
Ext(G, Z) is always a divisible group for every torsion-free group G. Hence
it is of the form

Ext(G, Z) = ) Z(r™) ™) & Q)
pell
for some cardinals vy, (p € II) which are uniquely determined (and II
is the set of all prime numbers). Thus, the obvious question that arises is
which sequences (1,7, : p € II) can appear as the cardinal invariants of
Ext(G,Z) for some (which) torsion-free abelian group? On the one hand,
there are a few results about possible sequences (vy,v, : p € II) provable
in ZFC. For instance, the trivial sequence consisting of zero entries only
can be realized by any free abelian group. On the other hand, assuming
Godel’s constructible universe (V' = L) plus there is no weakly compact car-
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dinal it has been shown that almost all sequences (with natural restrictions)
can be the cardinal invariants of Ext(G,Z) for some torsion-free abelian
group G whenever the size of the group G is not a singular cardinal of un-
countable cofinality (see Section 2 for details and [EkHu|, [EkSh], [GrShl],
[GrSh2]|, [HiHuSh]|, [MeRoSh]|, [SaSh1], and [SaSh2] for references). However,
the question of which sequences (v, v, : p € IT) can occur is independent of
ZFC. It is the purpose of this paper to deal with the remaining case, namely
torsion-free abelian groups of cardinality v where v is singular of cofinality
cf(r) > Ny. The idea is to use the construction principle from [MeRoSh]|
which holds under (V' = L) and to apply the main theorem from [MeRoSh]
in our construction.

Our notation is standard and we write maps from the left. If H is a pure
subgroup of the abelian group G, then we shall write H C, G. For further
details on abelian groups we refer to [Fu| and for set-theoretic methods to
|[EkMe], |Je| or [Ku].

2. The structure of Ext(G,Z). In this section we recall the basic re-
sults on the structure of Ext(G,Z) for torsion-free G. It is easy to see that
Ext(G,Z) is divisible for torsion-free G, hence it is of the form

Ext(G,Z) @Z ) @ Qo)
pell

for some cardinals v, (p € II). Since the cardinals v, (p € IT) and 1y
completely determine the structure of Ext(G,Z) we introduce the following
terminology. We denote by 7((G) the torsion-free rank vy of Ext(G,Z), which
is the dimension of Q ® Ext(G,Z), and by rj,(G) the p-rank v, of Ext(G,Z),
which is the dimension of Ext(G,Z)[p| as a vector space over Z/pZ for any
prime number p € II. There are only a few results provable in ZFC when G
is uncountable, but assuming G&del’s universe an almost complete charac-
terization is known (if there is no weakly compact cardinal). The aim of this
paper is to fill the remaining gap.

We first justify our restriction to torsion-free GG. Let A be any abelian
group and t(A) its torsion subgroup. Then Hom(¢(A),Z) = 0 and hence we
obtain the short exact sequence

0 — Ext(A/t(A),Z) — Ext(A,Z) — Ext(t(A),Z) — 0
which must split since Ext(A/t(A),Z) is divisible. Thus
Ext(A,Z) = Ext(A/t(A),Z) @ Ext(t(A),Z).

Since the structure of Ext(t(A),Z) =[], ;; Hom(A4, Z(p>)) is well known in
ZFC it is reasonable to assume that A is torsion-free and, of course, non-free.
Using Pontryagin’s theorem one proves
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LEMMA 2.1. Suppose G is a countable torsion-free group which is not
free. Then r§(G) = 2%,

Proof. See [EkMe, Theorem XII 4.1]. w

Similarly, for the p-ranks of G we have the following result due to C. U.
Jensen.

LEMMA 2.2. If G is a countable torsion-free group, then for any prime p,

either v,(G) is finite or %o,

Proof. See [EkMe, Theorem XII 4.7]. w

This clarifies the structure of Ext(G,Z) for countable torsion-free groups
G since the existence of groups as in Lemmas 2.1 and 2.2 follows from Lemma
2.8 below. We now turn our attention to uncountable groups and assume
Godel’s axiom of constructibility. The following is due to Hiller, Huber and

Shelah.

LEMMA 2.3. (V = L) Suppose G is a torsion-free non-free group and
let B be a subgroup of A of minimum cardinality v such that A/B is free.
Then r§(G) = 2¥. In particular, v$(G) is uncountable and r$(G) = 2/C1 if
G* = Hom(G,Z) = 0.

Proof. See [EkMe, Theorem XII 4.4, Corollary XII 4.5]. =

Note that the above lemma is not true in ZFC since for any countable
divisible group D it is consistent that there exists an uncountable torsion-free
group G with Ext(G,Z) = D, hence r§(G) = 1 is possible by taking D = Q
(see Shelah [Sh3]).

Again we turn to p-ranks. There is a useful characterization of r,(G)
using the exact sequence

0—-22%72—7/pZ— 0.

The induced sequence

Hom(G, Z) % Hom(G, Z/pZ) — Ext(G,Z) 2 Ext(G, Z)
shows that the dimension of
Hom(G,Z/pZ)/Hom(G,Z)pP
as a vector space over Z/pZ is exactly r;(G).
The following result due to Mekler, Rostanowski and Shelah shows that

under the assumption of (V' = L) almost all possibilities for r;(G) can appear
if the group is of regular cardinality.

LEMMA 2.4. (V = L) Letv be an uncountable reqular cardinal less than
the first weakly compact cardinal. Suppose that (v, : p € II) is a sequence
of cardinals such that for each p, 0 < v, < 2¥. Then there is an almost-free
group G of cardinality v such that r§(G) = 2" and for all p, r,(G) = vp.
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Proof. See [MeRoSh, Main Theorem 3.9]. m

On the other hand, if the cardinality of G is singular, then the following
holds, which was proved by Grossberg and Shelah.

LEMMA 2.5. If v is a singular strong limit cardinal of cofinality w, then
there is no torsion-free group G of cardinality v such that rg(G) = v for any
prime p.

Proof. See [GrSh1, Theorem 1.0]. m

Note that Lemma 2.4 shows that the restriction in Lemma 2.5 is the
only restriction for singular strong limit cardinals v of cofinality w. Namely,
if o < v choose a regular cardinal ¢ < ¢’ < v and apply Lemma 2.4 to obtain
a torsion-free group G’ with 75(G’) = ¢ and |G'| = ¢'. Since Ext(—,Z) is a
multiplicative functor we can now easily get a torsion-free group G from G’
with |G| = v and r5,(G) = o.

Also the case of weakly compact cardinality was dealt with in [SaSh1] by
Sageev and Shelah.

LEMMA 2.6. If G is a torsion-free group of weakly compact cardinality v

and T’S(G) > v for some prime p, then T;(G) =2"

Proof. See [SaSh1l, Main Theorem]. =

The above results show that under the assumption of (V' = L) the struc-
ture of Ext(G, Z) for torsion-free groups G of cardinality v is clarified for all
cardinals v except when v is singular but not of cofinality w. This will be
the subject of the next section.

However, in a particular case, namely when G* = Hom(G,Z) = 0, a
complete characterization of Ext(G,Z) is known in Godel’s universe if there
is no weakly compact cardinal. The following is due to Hiller-Huber-Shelah.

LEMMA 2.7. If G is torsion-free such that Hom(G,Z) = 0, then for all
primes p, r,(G) is finite or of the form 2#¢ for some infinite cardinal p, <|G|.
Proof. See [EkMe, Lemma XII 5.2|. =

Together with Lemma 2.3 and the next result due to Hiller, Huber and
Shelah the characterization is complete if Hom(G,Z) = 0.

LEMMA 2.8. For any cardinal vy of the form vy = 2H0 for some infinite
po and any sequence (vp = p € II) of cardinals less than or equal to vy such
that each v, is either finite or of the form 2F» for some infinite u, there is a
torsion-free group G such that Hom(G,Z) = 0 and r5(G) = vo, ,(G) = vp
for all primes p € I1.

Proof. See [HiHuSh, Theorem 3(b)|. m
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3. The singular case. In this section we prove our main theorem
which completes the characterization of Ext(G,Z) for torsion-free groups
G under the assumption of Gdédel’s axiom of constructibility plus there
is no weakly compact cardinal. The idea of the proof is as follows: For a
singular cardinal v of uncountable cofinality we shall construct a torsion-
free abelian group G, of size v, as the union of pure subgroups G, such
that G has prescribed values for r§(G) and r,(G) (p € IT). Together with
the G,’s we also build homomorphisms fJ for v < 75(G) such that no
non-trivial combination }°,_, a;f}, € Hom(G,Z/pZ) can be factored by
the canonical homomorphism ¢? : Hom(G,Z) — Hom(G,Z/pZ) to a ho-
momorphism in Hom(G,Z). This is a typical application of the diamond
principle which holds under (V' = L) for every regular uncountable cardi-
nal. On the other hand, we also need that for every f € Hom(G,Z/pZ)
there are f1 = >, a;f%, € Hom(G,Z/pZ) and f, € Hom(G,Z) such that
f— fi = ¢P(f2). The two demands seem to be hard to go together but the
principle from [MeRoSh] allows us to carry out the construction.

THEOREM 3.1. (V. = L) Let v be an uncountable singular cardinal of
cofinality cf(v) > Vo which is less than the first weakly compact cardinal. If
(vp : p € II) is a sequence of cardinals less than or equal to 2V, then there
exists a torsion-free group G such that

(i) |G| =v;
(i) r5(G) =27

(iii) 7,(G) = vp for all p € II.

Proof. First we note that by Lemma 2.8 for every prime p € II there is a
torsion-free group G, such that Hom(G,,Z) =0, |G| = v, r§(G,) = 2 and
ro(Gp) = 2¥ = vt but r$(Gy) = 0 for all ¢ # p. Since Ext(—,Z) commutes
with direct sums it therefore suffices to assume v, < v for all p € II. Let

k = cf(v). Choose a continuous increasing sequence (p, : @ < k) such that

o limycy fho = V;
e if a is a successor ordinal, then i, = Al for some strong limit singular
cardinal A\, > k such that cf(\y) = g and Ag+1 > pa-

Now, let S C {a < k : cf(a) = g} be stationary. Inductively we shall con-
struct a torsion-free group G = |J,_,. G such that the following conditions
are satisfied:

a<k

(i) |Gal = pa and G4 is po-free; moreover, there is no G' C G, of
cardinality less than pu, such that G, /G’ is free.
(ii) Gg Ci G4 if B <
(iii) Hom(Ga,Z/pZ) = LY ® Kg such that flg, € K¢ for all f € Kj,
a < f.



146 S. Shelah and L. Striingmann

(iv) There are bases By of K as vector spaces over Z/pZ and functions
T, : By — Hom(G,,Z) such that

(a) flg, € B forall f € By, a < f;

(b) ¢PT = idpg, where ¢? is the canonical map ¢ : Hom(Gq, Z)
— Hom(Gy, Z/pZ);

(c) ifa < Band f e By, then Tu(fle,) = Ts(f)lc,

(v) There are bases (fy"" 1y < vp N pa) of Ly and M, C Hom(Gq,Z)
(for av # 0) such that

(a) f3F C fff’p for all v < vp N pia, @ < G

(b) Mo = D<irpa, sclarn) Zh::g and ﬁhf’;:{s = fyP for all § €
[, k), where D is the canonical map p : Z — Z/pZ;

c) fora<pf<i<kandy<y ﬂ,uawehaveh ’pCh’BP,

p o)

(d) if « € S and ¢ € Hom(Ga41,Z) and pg € Lo‘“\{O} then
g € Mu1;

(e) if upNpte < ¥ < VpNitat, then f7P 10 =0and S5 1o =0
for all o € [ + 1, k).

We first show that it is sufficient to carry out the inductive construction of
Go (a0 < k). Assume that the torsion-free groups G, (o < k) are constructed
satisfying conditions (i) to (v). Put G = |J,., Ga- Then G is a torsion-free
group of cardinality v. Moreover, r§(G) = 2" follows from Lemma 2.3 and
property (i). It remains to prove that r;(G) = v}, for all p € II. Let p € II
and a < v,. We define

fr =P vy € [0arm)}

where J, = min{d < s : pus > a}. By condition (v)(a) the function f5*
a well defined homomorphism f3* € Hom(G,Z/pZ) for every a < v,. We
shall show that

e {fa?:a <} are linearly independent as elements of Hom (G, Z/pZ);

e {fa? : a < vp} are linearly independent in Hom(G,Z/pZ) modulo
Hom(G, Z)¢P, i.e. no linear combination of them can be factored by p
to a homomorphism from G to Z;

o {fa?:a <} together with Hom(G,Z)¢P generate Hom(G, Z/pZ).

Assume first that

Z Zafa? =0

aclk
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for some finite subset E' C 1, and elements z, € Z/pZ. Then there exists [
such that o < v, N pg and ff’p = fa’ [Gg # 0 for all @ € E. Hence

S it = (5 w0fi?)ig, =0

ack a€cFE

But <f§’p ta < vpNpg) is a basis of Lg and thus z, = 0 for all @ € E.
Therefore, the f3*’s (a < v,) are linearly independent.

Now, assume that there exists a finite linear combination 0# " .y Zafa™
which can be factored by D (0 # 2, € Z/pZ for all a € E). Hence there is
0 # g € Hom(G,Z) such that

> afs? =7

acl
Since F is finite, there exists 3 <  such that o < v, N pug for all o € E.

Therefore,
Pola, = > 2afiPlc, = Y Zald”
acl aclk

for every v € [3, k). By the linear independence of the f4’s we may assume

without loss of generality that pg| 72 0 for all v € [, k) since otherwise
we sufficiently enlarge (3 so that f re 5 # 0 for all a € E. We conclude

that pglg ., € Ly ™\{0} for all v > 3 and condition (v)(d) implies that
9l GMW_H forally e S, v> 3. Let § =+ 1 for some v € S5, v > (.

Then
_ 510,p
=N wn’t
Ik
k<ks

with b € Z\{0} and af < v, N ps, 50 € [4, k). Since the hg’ﬁ, form a basis of
M, this representation is unique.

By a pigeon hole argument we may assume that ks = kg and bi = b, for
arbitrarily large 6 = v+ 1, 6 <~ € S. Let 79 € S be sufficiently large such
that kg = /{750 with dg = 9 + 1. Thus

g[Géo Z b h506,39 50 = Z b ( h5,p )

k<ko k<ko

forall 0 =v+1, 90 <~ € S. By condition (v)(e) and the two compatibility
conditions (v)(c) and (v)(d) it easily follows that the following holds for all
€ < K:

(v)(€') if vpNpa <y < VpN pier1, then FErhpy I, = 0 and hStP lg. =0
for all p € [e + 1, k).

Thus, if o > v, N ps, (and also @ < v, N ), then (v)(e’) implies that
Zg,jg rGéo = 0. Note that § = y+1 for some 79 < v € S. Hence ai < vpMNpg,
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for all k£ < k¢ and therefore

op bo,p
B )
of.g 16 = o 37

for all j,‘g. However, by uniqueness it follows that
(a0 k < ko} = {af : k < ko}
and also
Uk < ko = {33 + k < ko}

for all § large enough. This contradicts the fact that j9 € [6, k) for all k < ko
and . Therefore we obtain v, < r5(G) for all p € I1.

It remains to prove that 7,(G) = v, for all p € II. For this it suffices

to show that (fa? : @ < 1) generate Hom(G,Z/pZ) modulo Hom(G, Z)¢P.
Hence, let 0 # g € Hom(G,Z/pZ). We have to prove that there is a finite
linear combination »° . p Zafa” with E C v, and 0 # z, € Z/pZ such that

g — Z Zafgp =Dph
acl

for some h € Hom(G,Z). Let go = gl¢,, for all a < k. Hence, by (iii), there
exist ko, € K5 and I, € L% such that g, = ke + [, for every o < k since
9o € Hom(G,,Z/pZ). Thus

m > S
BEE

for some finite subset Eq C vp N pq and 0 # 25 € Z/pZ. Since this repre-
sentation is unique we may assume by a pigeon hole argument that 2§ = z

and E, = E are independent of o < x. Note that f3™" [ , = fﬁo‘/’p if o/ <«
and 3 < vp N p1er and 0 otherwise by (v)(e’). We conclude that

h=g=> zf5"
BeEE

satisfies h|q, = kq for all o < k. Since By forms a basis of Ky for all @ < k
there is a finite subset F,, C Bg and 0 # wy' € Z/pZ for b € F,, such that

lo =Y wid
beF,

for all @ < k. Again, a pigeon hole argument allows us to assume that w;, =
wy' and F' = F,, are independent of o by uniqueness. Note that b[, 5 € Bg
if b € By and a > (3. Putting

h=> w, | Ta(d)

beF a<k
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it follows that h € Hom(G,Z) is well defined by (iv) and hence ph = h.
Therefore, g— Y cp zafa’ = h has a lifting to h € Hom(G, Z). This finishes
the proof and it remains to show that we can carry on the induction as
claimed, i.e. we have to construct groups G, (o < k) such that (i)-(v) are
satisfied. We shall distinguish four cases.

CASE A: a = 0. Let Gy = ,,, Z. Moreover, put L) = {0} and KJ) =
Hom(Gy, Z/pZ). Since Gy is free, the existence of Ty is obvious and if we
choose My = {0}, all conditions (i)—(v) are satisfied for Gj.

CASE B: « is a limit ordinal. Then we let Go = Jg., G- As before we
define §y = min{d < a : s > v} for v < v, N p and let

fer =56, <B<a}
and similarly for 0 € [o, k) and v < v, N po we let
Wt = {28 60 < B < a}.
By the continuity conditions (v)(a) and (v)(c) this is well defined. Hence,

also M, C Hom(Gq,Z) and Ly C Hom(Ga,Z/pZ) are defined canonically.
Finally, (iii) and the definition of L} induce K, as

K;al ={f € Hom(Gq,Z/pZ) : ffgﬁ € Kg for all 5 < a}.

The corresponding set By ={f € Hom(Ga,Z/pZ) : flq, € Bg for all f < o}
is a basis for K’ and the continuity condition (iv)(c) allows us to define
To = Up<, Tp- 1t is easy to check that (i)—(v) are now satisfied.

Case C: =B +1and B¢ S. Then welet Go = G D, Z. In the
obvious way we define Ly, K, By, Tq, 3P for v < vp N g, My, and h;“’g
for v < v, N e and 6 € [a, K).

CASE D: o = f+ 1 and B € S. Here we imitate the proof of Main
Theorem 3.9 of [MeRoSh|. We would like to avoid repeating the technical
and lengthy construction from [MeRoSh| but instead point out the main
changes for the convenience of the reader. It is then straightforward to modify
the proof of Main Theorem 3.9 and its main ingredient Theorem 3.4 from
[MeRoSh| and to adapt both to our setting.

We are in the following situation: A\, is a strong limit singular cardinal
strictly greater than x = cf(v). Moreover, pq = A\}f = 2%+ is a regular cardi-
nal, cf(Ay) = Ro and Ao = Ag41 > pg (1a plays the role of A in [MeRoSh]|, so
it is the successor of a strong limit singular cardinal). Since we are assuming
(V' = L) the prediction principle from [MeRoSh]| holds. In Main Theorem 3.9
from [MeRoSh] it is proved that we can find a torsion-free group G (denoted

by G there) which has prescribed values 7, for r5(G). The construction is

very similar to ours, i.e. homomorphisms f? € Hom(G, Z/pZ) (v < Up) are
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constructed (denoted by ff’g there) which cannot be factorized by p (see the
proof of Main Theorem 3.9 in [MeRoSh, p. 346]). The main tool is Theo-
rem 3.4 from [MeRoSh| which can be seen as a Step Lemma since it deals
with the “killing” of only one undesired homomorphism. However, we are at
stage a of our construction, hence we do not want that our homomorphisms
ff’?’p (v < vp N pg) which we have dealt with so far have no extension to
Gy, i.e. cannot be factorized by p, but we just require that there are only
some extensions, namely a set of extensions of f3"" which is assigned to each
f3°P. The role of this set is played by {hJ : 0 € [, %)} (see (v)(b)). Thus
the proof of Theorem 3.4 from [MeRoSh]| carries over to our situation (for
the case of successor cardinal of a strong limit singular cardinal of cofinality
Np). Since the role of A in [MeRoSh, Theorem 3.4| is played by e in our
setting only cases B and C in the proof of Theorem 3.4 remain. As usual
one guesses the undesirable factorizations and kills them without affecting
the work towards lifting that has already been done. The only difference is
that we do not require that there is no lifting but we allow only the assigned
ones. Now the adjusted version of Theorem 3.4 from [MeRoSh]| is used in
Main Theorem 3.9 from [MeRoSh| in the case of A being a successor of a
strong limit cardinal. The resulting group serves as our G,. =

REMARK 3.2. We would like to remark that the only reason for the choice
of 11, as successor of a strong limit singular cardinal of cofinality ¥ (if « is a
successor ordinal) is that this is the easiest situation in the proof of [MeRoSh,
Main Theorem 3.9]. However, the strategy described in Case D of the above
proof of Theorem 3.1 (i.e. not killing all extensions of a homomorphism
but allowing some of them to survive) works for every regular uncountable
cardinal which is not weakly compact, e.g. X;. For instance it follows easily
for 8y from [EkMe, Theorem XII 4.10] using [EkMe, Lemmas XII 4.8 and
XII 4.9].
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