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Homotopy and dynamics for homeomorphisms of solenoids
and Knaster continua

by

Jarosław Kwapisz (Bozeman, MT)

Abstract. We describe the homotopy classes of self-homeomorphisms of solenoids
and Knaster continua. In particular, we demonstrate that homeomorphisms within one
homotopy class have the same (explicitly given) topological entropy and that they are
actually semi-conjugate to an algebraic homeomorphism in the case when the entropy is
positive.

1. Introduction. A solenoid goes back to [20, 5] and is an indecompos-
able continuum that can be visualized as intersection of a nested sequence of
progressively thinner solid tori that are each wrapped into the previous one
a number of times as suggested by Figure 1.1. Any radial cross section of a
solenoid is a Cantor set each point of which belongs to a densely immersed
line, called a composant. The wrapping numbers may vary from one torus
to another; we shall record their sequence by P = {p1, p2, . . .}, and we shall
refer to the associated solenoid as the P-adic solenoid , denoted by SP . No
generality is lost in assuming that all pi’s are prime.

For the sequence P, we also have the associated P-adic Knaster contin-
uum KP that is the intersection of a nested sequence of disks each traversing
the previous one in a snake-like fashion a number of times indicated by the
corresponding term in P (see Figure 1.2). KP is related to SP by a 2-1
branched cover SP → KP (see Section 9 and [3]).

In dynamics, which serves as our main motivation, one usually encoun-
ters SP and KP for periodic sequences P, P = {n, n, . . .}. Particularly, for
n = 2 we get two classical attractors: Smale’s Solenoid and Smale’s Horse-
shoe (see e.g. [11]). These are basic examples among a bewildering variety
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Fig. 1.1. Two tori—one wrapped into another 3 times—and an approximation to the
(3, 2, 2, . . .)-adic solenoid

Fig. 1.2. Two embedded disks and an approximation to the (3, 2, 2, . . .)-adic Knaster con-
tinuum

of complicated continua that are observed in chaotic systems. One naturally
wonders to what extent the rich structure of such sets determines the un-
derlying dynamics. We solve this problem in the simplest setting of SP and
KP by classifying all their homeomorphisms. Let us describe our results for
SP now; analogous theorems hold for KP (see Section 9).
SP has the structure of a topological group (see Section 2 or [10]). Its

translations roughly turn SP axially and may fix or permute its composants.
Besides translations and the involution r : z 7→ z−1, the simplest maps of
SP are the Frobenius homomorphisms gb : SP → SP , z 7→ zb, where b ∈ N.
(The action of gb roughly wraps SP longitudinally b times onto itself.) We
shall prove that gb is a homeomorphism iff b is P-recurrent (i.e. every prime
dividing b repeats infinitely many times in P). In that case, we can also form
the maps ga/b := g−1

b ◦ ga. The compositions s ◦ ga/b and r ◦ s ◦ ga/b where s
is a translation and a, b ∈ N are co-prime and P-recurrent form a group of
affine homeomorphisms of SP .

Theorem 1 (1). Suppose that P is an infinite sequence of prime num-
bers and f : SP → SP is a homeomorphism of the P-adic solenoid. Then
there are unique P-recurrent and co-prime natural numbers a, b ∈ N such
that f is isotopic to the affine map g = s ◦ ga/b or g = r ◦ s ◦ ga/b.

(1) This result is hardly new; see the comments at the end of this introduction.
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We note that g is determined uniquely up to a translation that fixes the
composants of SP so that there are actually uncountably many homotopy
classes for homeomorphisms of SP ; each class is determined by the winding
ratio a/b and the composant that contains the image f(e) of the neutral
element e ∈ SP .

Our second theorem assures that the topological entropy is constant
across any fixed homotopy class.

Theorem 2. In the context of Theorem 1, the topological entropies of f
and g coincide and are given by

h(f) = h(g) = log max{a, b}.
In particular, if f is homotopic to a translation then the entropy is zero.
Finally, our third theorem shows that if h(f) > 0, then f is conjugate to

g after perhaps collapsing some arcs in SP to points.

Theorem 3. In the context of Theorem 1, if a/b 6= 1, then f is semi-
conjugate to g; namely , there is a surjective continuous map h : SP → SP
such that h◦f = g◦h. Moreover , h−1(z) is a point or an arc for any z ∈ SP .

It is easy to see that the semi-conjugacy does not in general exist when
a/b = 1 (cf. [13]).

Let us mention that the above results show that the set of entropies
exhibited by homeomorphisms of SP determines all the P-recurrent primes
and that this already determines SP up to a homeomorphism in the dy-
namically interesting case when P is a periodic sequence. Indeed, in [15,
1], it is shown that two solenoids SP and SP̃ are homeomorphic iff, after
perhaps removing a finite number of terms, P and P̃ contain each prime the
same number of times. In general, however, non-homeomorphic solenoids
may exhibit the same entropies as exemplified by the pair S(2,3,5,7,...) and
S(2,2,3,3,5,5,7,7,...)—both solenoids admit only self-homeomorphisms of zero
entropy.

The proofs of the three theorems hinge on constructing for an arbitrary
homeomorphism of SP its lift to ΛP × R where ΛP is a cross section of
SP . The lift, although generally no longer a homeomorphism, is a skew
product over the base ΛP because it has to permute the composants {ω}×R.
Moreover, the base map on ΛP is purely algebraic and universal across each
homotopy class.

To indicate other ingredients of our arguments, we outline the contents
of the sections to follow. In Section 2, we give a formal definition of SP
and recall the standard identification of the cross section ΛP of SP with an
adding machine. Section 3 collects number-theoretical facts about ΛP used
in Section 4 to classify the algebraic homeomorphisms of SP . Theorem 1 is
shown in Section 5 by using “small cross sections” of SP to lift an arbitrary
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homeomorphism of SP to ΛP × R. A short Section 6 combines the results
of Sections 4 and 5 to provide an explicit formula for such a lift. Section 7
establishes Theorem 2 by computing the entropy in ΛP × R as the sum of
the entropies in the fibers and in the base. This requires a suitable version of
Bowen’s formula from [4], which we prove in the appendix. Section 8 mimics
Handel’s [9] to implement Katok’s idea of global shadowing in order to show
Theorem 3. Finally, Section 9 develops the analogues of Theorems 1–3 for
Knaster continua by lifting the homeomorphisms from KP to SP .

To end, let us put our results into perspective (2). Solenoids are old and
we inevitably included some known material hoping to make the presen-
tation accessible even to a novice. The author’s initial thrust came from
conversations with Marcy Barge. In [3], a special case of Theorem 2 was
established for P = {n, n, . . .} and f homotopic to a power of the very
Frobenius homomorphism gn. [3] also shows the formula for h(ga/b) for all
a, b, which, however, goes back to [2] and belongs to a long line of works
as cited in [14]. Theorem 1, in turn, is not original: it belongs to “folklore”
among topologists and can be extracted from any of [15, 18, 12, 16, 7]; in
particular, its version for maps fixing the unit element can be found on
page 45 of [7]. A quick proof amounts to observing that a homeomorphism
of a solenoid must permute the components according to its cohomological
action on the dual group. Nevertheless, to present all three results from a
unified point of view, we supply a careful elementary argument. Also, we
should add that the analogue of Theorem 1 for KP with periodic P has
been attributed in [3] to W. T. Watkins (3) and it follows from Lemma 9.5
of [6]. Theorem 3 seems genuinely new although it relies on tested tools
of hyperbolic dynamics and is a natural extension of the classical result in
[8, 9]. We mention that our result complements [12], where the group of
homeomorphisms of a solenoid was studied as a topological space. Finally,
non-locally connected coverings like ΛP × R → SP were used in [17]; how-
ever, our approach to homeomorphisms of SP via their (non-invertible) lifts
to ΛP × R seems original and is the key idea of this paper.

2. Preliminaries. We fix a sequence P = {p0, p1, p2, . . .} where pk > 1
for k ≥ 1 are prime numbers, and p0 = 1 is added for convenience. We define
the P-adic solenoid SP as the inverse limit space of the mappings z 7→ zpk ,
k = 1, 2, . . . , on the complex unit circle S := {z ∈ C : |z| = 1}; namely,

SP = lim←−(z 7→ zpk) := {(zk)∞k=0 : zk−1 = zpkk , k ≥ 1}.

(2) The author was greatly aided by feedback from the preliminary circulation of
the manuscript and is especially grateful to M. Barge, L. Block, J. Keesling, P. Minc,
V. Ssembatya, and the anonymous referee.

(3) Although we could not locate a written account.
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(This SP is homeomorphic to the geometric model discussed in the intro-
duction, which justifies the abuse of notation.) Being a closed subgroup of
the product

∏∞
k=0 S, SP is a compact abelian topological group (cf. §10 in

Chapter II of [10]); we write z · z̃ for the product in SP and e for the neutral
element (1, 1, 1, . . .). SP is also a solenoidal group, meaning that there is a
homomorphism Γ : R→ SP with dense image, Γ (R) = SP . Explicitly,

Γ (t) := (exp(2πit/(p0 . . . pk)))∞k=0, t ∈ R.
Γ generates a translation flow T : R× SP → SP , T tz := Γ (t) · z, which has
an obvious cross section with return time 1 along a subgroup given by

ΛP := {z = (zk)∞k=0 ∈ SP : z0 = 1}, T 1(ΛP) = ΛP

(i.e. there is t ≥ 0 with T tz ∈ ΛP for any z ∈ SP and {t ∈ R : T tz ∈ ΛP}
= Z for z ∈ ΛP). The return map is the translation by γ := Γ (1),

T := T 1|ΛP : ΛP → ΛP , Tω := γ · ω;

and SP is homeomorphic to the suspension manifold of T , SP ∼= ΛP×[0, 1]/∼
where (ω, 1) ∼ (Tω, 0) for ω ∈ ΛP . Equivalently, SP is the orbit space of Z
acting (discretely) on ΛP × R so that k ∈ Z is assigned the map

Dk : (ω, x) 7→ (T kω, x− k).

We denote by π the associated natural projection

π : ΛP × R→ ΛP × R/Z ∼= SP ,
which is a covering and a homomorphism of topological groups (4) (cf. [17]).
Being a covering, π has the unique path lifting property and the homotopy
lifting property (see Sec. 2, Chap. 2 in [19]); however, unlike in the usual set-
ting, ΛP × R is neither connected nor locally connected so that the standard
lifting theorems do not apply. In particular, if κ : ΛP → Z is any continuous
function, then the map

Dκ(·) : ΛP × R→ ΛP × R, Dκ(·) : (ω, x) 7→ (T κ(ω)ω, x− κ(ω)),

is clearly a covering transformation (i.e. π ◦ Dκ(·) = π), yet Dκ(·) is not
invertible for non-constant κ. This (along with other features of T ) is made
transparent by viewing T as an “adding machine”, which we recall below.

Topologically, ΛP is a P-adic Cantor set: it is homeomorphic to CP :=∏∞
k=1{0, . . . , pk − 1} via

CP 3 (dk)∞k=1 7→

(zk)∞k=0 := exp
(

2πi
d1 + d2p1 + d3p1p2 + . . .+ dkp1 . . . pk−1

p0p1 . . . pk

)
.

(4) SP = ΛP × R/I where I is the subgroup I = {(γk, x− k) : k ∈ Z}.
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Here, we recognize the sequences [d1 . . . dk] as the P-adic representations of
the integers

(2.1) sk := d1 + d2p1 + d3p1p2 + . . .+ dkp1 . . . pk−1,

and the group operation on ΛP corresponds to the addition with carry per-
formed on [d1 . . . dk]’s. More formally, the correspondence (zk)∞k=0 7→ (sk)∞k=1
is an isomorphism of ΛP as a topological group with the inverse limit of (ad-
ditive) cyclic groups,

ΛP ∼= lim←−Zp1,...,pk ,

where the bonding maps Zp1...pk → Zp1...pk−1 are given by

s (mod p1 . . . pk) 7→ s (mod p1 . . . pk−1), k > 1.

The action of T corresponds to the addition with carry of [1000. . . ] and is
given on s ∈ lim←−Zp1,...,pk simply by

T : (sk) 7→ (sk + 1).

It follows easily that the orbits of T are dense in ΛP ; in particular, ΛP =
{γk : k ∈ N} and SP = {T te : t ∈ R}.

To compute the entropy in Section 7, we shall use the metric dΛP on ΛP
given in terms of the P-adic representations by

dΛP ([dk]∞k=1, [d̃k]∞k=1) := exp(−min{k ≥ 1 : dk 6= d̃k;∞}).
Note that dΛP is induced by a norm, ‖[dk]‖ΛP := exp(−min{k : dk 6= 0}),
and therefore dΛP is an invariant metric, i.e. the translations of ΛP are
isometries. On ΛP × R and SP , we put the corresponding invariant metrics:

dΛP×R((ω, x), (ω̃, x̃)) := max{dΛP (ω, ω̃), |x− x̃|}
and

dSP (z, z̃) := min{dΛP×R((ω, x), (ω̃, x̃)) : π(ω, x) = z, π(ω̃, x̃) = z̃}.
In this way, the deck map D : ΛP × R→ ΛP × R becomes an isometry, and
the covering projection π : ΛP × R→ SP becomes a local isometry.

3. Self-similarity of ΛP . Let a sequence P of primes be fixed as in the
previous section. For determination of possible types of homeomorphisms of
SP in Section 4, it matters how the number theory of P correlates with “self-
similarity of ΛP”. Precisely: for a ∈ N, we have the associated Frobenius
endomorphism

φa : ΛP → ΛP , φa : ω 7→ ωa;

and we want to know that φa is a monomorphism onto a subgroup of index
a exactly when a is P-recurrent (i.e. any prime that divides a appears in P
infinitely many times). In fact, we shall need a bit more, which necessitates
the following definitions.
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Let P be the set of all prime numbers, and let αP : P→ {0, 1, 2, . . . ,∞}
be the function that counts primes in P,

αP(p) := #{i ∈ N : pi = p}, p ∈ P.
For a ∈ N, we have an analogous count of primes dividing a, αa : P →
{0, 1, . . .},

αa(p) := max{k ≥ 0 : pk divides a}, p ∈ P.
The product a =

∏
p∈P p

αa(p) can be decomposed according to the number
of times p appears in P: the primes p that repeat in P infinitely many times
contribute

aP,∞ :=
∏

αP(p)=∞
pαa(p);

the primes p that repeat in P finitely many times contribute

aP,+ :=
∏

0≤αP(p)<∞
pmin{αa(p),αP(p)};

and there are primes p that do not occur in P or occur in P fewer times
than in a,

aP,− :=
∏

0≤αP (p)<∞
pαa(p)−min{αa(p),αP(p)}.

The number
aP := aP,∞ aP,+

is the greatest common divisor of a and the (infinite) product
∏
pi∈P pi. We

have
a = aPaP,− = aP,∞ aP,+ aP,−;

and a ∈ N is P-recurrent iff a = aP,∞.

Fact 3.1. For a ∈ N, the kernel of φa has cardinality |ker(φa)| = aP,+.
In particular , φa is a monomorphism iff a = aP,∞aP,−, i.e. every prime in
P that divides a repeats in P infinitely many times.

We shall argue for the representation of φa on lim←−Zp1,...,pk ≡ ΛP (see
Section 2) given by

ψa : lim←−Zp1,...,pk → lim←−Zp1,...,pk , ψa : s = (sk)∞k=1 7→ as := (ask)∞k=1.

Proof of Fact 3.1. Let k0 be large enough so that aP divides p1 . . . pk0

and no prime pk divides aP,+ for k > k0. In particular, aP,− and p1 . . . pk/aP
are co-prime for k > k0. Consider s ∈ ker(ψa). We have

ask = aP,− aP sk ≡ 0 (mod p1 . . . pk), k ≥ 1.

Thus, for k > k0, aP,− sk ≡ 0 (mod p1 . . . pk/aP) and, by the choice of k0,

(3.1) sk ≡ 0 (mod p1 . . . pk/aP).
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Also, for a fixed k > k0 and l > k large enough, aP,∞ divides pk+1 . . . pl
so that p1 . . . pk/aP,+ divides p1 . . . pl/aP . The congruence (3.1) (applied
for k = l) yields that sl ≡ 0 (mod p1 . . . pk/aP,+) and thus sk ≡ sl ≡ 0
(mod p1 . . . pk/aP,+) since s ∈ lim←−Zp1,...,pk . This shows that an arbitrary
s ∈ ker(ψa) is of the form

sk = xkp1 . . . pk/aP,+ ∈ Zp1...pk , k > k0,

where xk ∈ ZaP,+ . As a result there are at most aP,+ = |ZaP,+ | elements in
ker(ψa) (because they would all have to differ on some fixed coordinate sk
for sufficiently large k).

To see that |ker(ψa)| = aP,+, for any xk0 ∈ ZaP,+ we exhibit s ∈ ker(ψa)
with sk0 = xk0p1 . . . pk0/aP,+. For k < k0, set sk := sk0 (mod p1 . . . pk).
For k ≥ k0, since pk+1 is co-prime aP,+ by the choice of k0, we can solve
recursively for xk’s the equations

xk+1pk+1 ≡ xk (mod aP,+), k ≥ k0;

and we can set sk := xkp1 . . . pk/aP,+. The recurrence (3.2) guarantees that
sk+1 ≡ sk (mod p1 . . . pk) for all k ≥ 1, i.e. that s ∈ lim←−Zp1,...,pk . It is also
immediate that ψa(s) = 0.

Fact 3.2. For a ∈ N, the image φa(ΛP) = ΛaP ⊂ ΛP is a subgroup of
index

[ΛP : ΛaP ] = aP = aP,∞ aP,+.

In particular , φa is an epimorphism iff a = aP,−, i.e. no prime in P di-
vides a.

Proof. As before, take k0 large enough so that aP divides p1 . . . pk0 .
Note that aP,− and p1 . . . pk/aP are co-prime for k > k0. Consider a ho-
momorphism h : lim←−Zp1,...,pk → ZaP given by h : s 7→ sk0 (mod aP).
This is an epimorphism because, given x ∈ ZaP , we clearly have h(s) = x
for s = (sk)∞k=1 := (x (mod p1 . . . pk))∞k=1. It follows that [lim←−Zp1,...,pk :
ker(h)] = aP . To finish the proof, we show that ker(h) = ψa(lim←−Zp1,...,pk).

If s ∈ ψa(lim←−Zp1,...,pk), then s ∈ ker(h) because sk0 ≡ 0 (mod a). For
the other inclusion, observe that if h(s) = 0, then sk0 ≡ 0 (mod aP); and
sk ≡ 0 (mod aP) for k ≥ k0 because sk ≡ sk0 (mod p1 . . . pk0) and aP divides
p1 . . . pk0 . Hence, sk = xkaP (mod p1 . . . pk) for some xk ∈ Zp1...pk/aP , k ≥
k0. Because aP,− and p1 . . . pk/aP are co-prime for k > k0, we can solve the
equations aP,− yk ≡ xk (mod p1 . . . pk/aP) for yk ∈ Zp1...pk/aP , k ≥ k0. It
follows that aP,− aP yk ≡ aP xk ≡ sk (mod p1 . . . pk) so that ψa(y) = s, i.e.
s ∈ ψa(lim←−Zp1,...,pk).

4. Algebraic homeomorphisms. In this section, we list the self-ho-
meomorphisms of solenoids that are to serve as the representatives of the
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homotopy classes. (We shall proceed in a completely elementary fashion that
avoids Pontryagin’s duality.)

The inverse. Taking inverse with respect to the group operation in SP
yields a homeomorphism

r : SP → SP , r : z 7→ z−1.

The corresponding map on the cover,

R : ΛP × R→ ΛP × R, R : (ω, x) 7→ (ω−1,−x),

is a lift of r.

Translations. For w ∈ SP , the translation by w yields a homeomorphism

sw : SP → SP , z 7→ w · z.
If (σ, t) ∈ ΛP × R is a lift of w, π(σ, t) = w, then

S(σ,t) : ΛP × R→ ΛP × R, S(σ,t) : (ω, x) 7→ (ω · σ, x+ t),

is a lift of sw.

Frobenius automorphisms. For a ∈ N, we have the Frobenius endomor-
phism

ga : SP → SP , ga : z 7→ za,

which lifts to the corresponding Frobenius endomorphism on ΛP × R,

Ga : ΛP × R→ ΛP × R, Ga : (ω, x) 7→ (φa(ω), ax).

(φa : ΛP → ΛP , φa(ω) = ωa was discussed in Section 3.)

Lemma 4.1. The Frobenius endomorphism ga is a homeomorphism of
SP iff a is P-recurrent , i.e. a = aP,∞.

The idea is that ga is a homeomorphism exactly when φa is 1-1 and
[ΛP : φa(ΛP)] = a, which will translate to a = aP,∞ by the results of the
previous section. The first condition is clear because φa = ga|ΛP , and the
second condition is to prevent the fundamental domain ΛP × [0, 1] from
overlapping in the image of Ga.

Proof of Lemma 4.1. Observe that ga is surjective for any a ∈ N because
ga(Γ (t)) = Γ (at) for t ∈ R and Γ (aR) = SP .

Suppose that a = aP,∞. We first prove that ga is a homeomorphism by
deriving an explicit formula for its (lifted) inverse. (This may not be the
shortest route but the formula will be crucial in all subsequent sections.)
From Fact 3.2, ΛP decomposes into a disjoint union of a clopen cosets

(4.1) ΛP = ΛaP ∪ γ · ΛaP ∪ . . . ∪ γa−1 · ΛaP .
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Let Ia : ΛP → Za ' ΛP/ΛaP be the natural projection so that ω ∈ γIa(ω)ΛaP
for ω ∈ ΛP . Define G1/a : ΛP × R→ ΛP × R by the formula

(4.2) G1/a : (ω, x) 7→
(
φ−1
a (γ−Ia(ω) · ω),

x+ Ia(ω)
a

)
.

G1/a is manifestly continuous; and we claim that G1/a descends to a
continuous map g1/a : SP → SP . It suffices to see that, given (ω, x) ∈
ΛP × R, G1/a ◦D(ω, x) = Dk ◦G1/a(ω, x) for some k ∈ N:

If Ia(ω) < a− 1, so that Ia(γ · ω) = Ia(ω) + 1, then

G1/a ◦D(ω, x) = G1/a(γ · ω, x− 1)

=
(
φ−1
a (γ−Ia(γ·ω) · γ · ω),

x− 1 + Ia(γ · ω)
a

)

=
(
φ−1
a (γ−Ia(ω) · ω),

x+ Ia(ω)
a

)
= G1/a(ω, x).

If Ia(ω) = a− 1, so that γ · ω ∈ ΛP , then

G1/a ◦D(ω, x) = G1/a(γ · ω, x− 1) =
(
φ−1
a (γ · ω),

x− 1
a

)

coincides with

D ◦G1/a(ω, x) =
(
γ · φ−1

a (γ−a+1 · ω),
x+ a− 1

a
− 1
)

=
(
γ · φ−1

a (γ−a+1 · ω),
x− 1
a

)

because γ · φ−1
a (γ−a+1 · ω) = φ−1

a (γ · ω), which is easily verified by applying
φa to both sides and simplifying. Thus, indeed, g1/a is well defined.

Note that G1/a is a left inverse of Ga, G1/a ◦ Ga = IdΛP×R. Therefore,
since ga is surjective (unlike Ga), g1/a is the (two-sided) inverse of ga, which
makes ga a homeomorphism.

To prove the other implication, suppose that ga is a homeomorphism. If
a = q1 . . . qm is the prime decomposition of a, then ga = gq1 ◦ . . .◦gqm where
the gqi ’s are homeomorphisms as well. Consider a single homeomorphism
gq for a prime q = qi. If q appears in P, then q must be P-recurrent since
otherwise φq = gq|ΛP is not 1-1 by Fact 3.1. If q does not appear in P, then
Facts 3.2 and 3.1 imply that φq : ΛP → ΛP is a homeomorphism and so are
the restrictions

gq|π(ΛP×{k/q}) : π(ΛP × {k/q})→ ΛP , k = 0, . . . , q − 1.

Therefore, each point of ΛP has (exactly) q preimages, which contradicts gq
being a homeomorphism. This shows that any prime factor qi, and thus a,
is P-recurrent.
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By combining the Frobenius automorphisms, their inverses, translations,
and possibly the inverse involution we arrive at the affine homeomorphisms
of SP—among which those that map ΛP to itself we shall call normalized
affine homeomorphisms.

Definition 4.1. Suppose that σ ∈ ΛP and a, b ∈ N are co-prime and
P-recurrent. We define a homeomorphism

ga/b,σ : SP → SP
to be the factor of Ga/b,σ : ΛP × R→ ΛP × R given by

(4.3) Ga/b,σ : (ω, x) 7→
(
σ · φa/b(ω),

a(x+ Ib(ω))
b

)

where

(4.4) φa/b(ω) := φa ◦ φ−1
b (γ−Ib(ω) · ω)

and Ib : ΛP → Zb is determined by γ−Ib(ω) · ω ∈ ΛbP .
A map g : SP → SP is called a normalized affine homeomorphism if

g = ga/b,σ or g = r ◦ ga/b,σ for some a, b, σ as above.
A map g : SP → SP is called an affine homeomorphism if g = T t ◦ ga/b,σ

or g = r ◦ T t ◦ ga/b,σ for some a, b, σ as above and t ∈ R.

Note that ga and gb commute so that ga/b,σ = sσ ◦ga◦g−1
b = sσ ◦g−1

b ◦ga.
Also, if ã and b̃ fail to be co-prime, one may define gã/b̃,σ := ga/b,σ where

a/b = ã/b̃ is the reduced fraction—which allows one to write (5)

(4.5) tga1/b1,σ1◦ga2/b2,σ2 = ga1/b1·a2/b2,σ1·φa1/b1 (σ2), g−1
a/b, σ = gb/a, φb/a(σ).

At the same time, keep in mind that if b 6= 1, then Ga/b,σ = Sσ ◦Ga ◦G1/b 6=
Sσ ◦G1/b ◦Ga, and Ga/b,σ is neither 1-1 nor surjective.

Remark 4.1. The formula (4.4) takes on a more friendly appearance
when interpreted on lim←−Zp1,...,pk

∼= ΛP . Namely, if w ∈ lim←−Zp1,...,pk cor-
responds to σ ∈ ΛP , a, b ∈ N are co-prime and b is P-recurrent, then
σ · φa/b : ΛP → ΛP is conjugate to w + ψa/b : lim←−Zp1,...,pk → lim←−Zp1,...,pk

given by

(w + ψa/b)(s)k = wk + a(sk ÷ b) (mod p1 . . . pk), s ∈ lim←−Zp1,...,pk ,

valid for k large enough to guarantee that b divides p1 . . . pk. (Here the
symbol ÷ stands for integer division.)

We finish by classifying the affine homeomorphisms with respect to ho-
motopy.

(5) That is, the affine homeomorphisms are a skew product of the group of P-adic
fractions and SP .
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Lemma 4.2. Two normalized affine homeomorphisms ga/b,σ and
ga1/b1,σ1 are homotopic iff a = a1, b = b1, and Tnσ = σ1 for some n ∈ Z.

Proof. To prove necessity, it suffices to argue for a1 = b1 = 1 and σ1 = e
(by (4.5)). Suppose that ft : SP → SP , t ∈ [0, 1], is a homotopy such that
f0 = ga/b,σ and f1 = Id. Being a covering, π has the homotopy lifting
property so that there is a homotopy Ft : ΛP × R → ΛP × R, t ∈ [0, 1],
covering ft and such that F0 = Ga/b,σ. Being a lift of f1 = Id, F1 must
be a covering transformation, i.e. F1 = Dκ(·) for some continuous function
κ : ΛP → Z (cf. Section 2). Now, if prR : ΛP × R → R is the projection on
the second factor, then the compactness of ΛP implies that ft has a bounded
displacement; namely,

|prR(F0(ω, x))− prR(F1(ω, x))| = |a(x+ Ib(ω))/b− (x− κ(ω))| < C

for some C > 0 independent of x ∈ R and ω ∈ ΛP . It follows (by considering
x → ∞) that a/b = 1, i.e. a = 1 and b = 1. Moreover—ΛP being totally
disconnected—Ft must permute the leaves ω × R in ΛP × R, which is to
say that the projection prΛP (Ft(ω, x)) onto ΛP is constant over the range
(t, x) ∈ [0, 1]×R, i.e. σ · ω = γκ(ω) · ω for all ω ∈ ΛP . In this way, κ(·) must
be constant and σ = γκ, which finishes the proof of necessity.

For sufficiency, observe that the flow T t provides isotopies from ga/b,σ to
ga/b,γk·σ and backwards.

5. Homotopy classes (proof of Theorem 1). In this section, we fix
a homeomorphism f : SP → SP and construct an isotopy of f to an affine
homeomorphism g of SP in order to prove Theorem 1.

We first record the simple fact that f is an orbit equivalence between
the flow T t and itself or T t and its inverse, T−t. (This suggests that the
homotopy type of f is solely determined by the way f permutes the orbits
of T t.)

Fact 5.3. For every z ∈ SP , there is a homeomorphism τ : R→ R such
that

f ◦ T tz = T τ(t) ◦ f(z), t ∈ R.
Depending on whether τ(t) is increasing or decreasing we shall call f

orientation preserving or orientation reversing (which z is used is irrelevant
because {T t(z) : t ∈ R} winds densely in SP). At the expense of replacing
f with r ◦ f , we may assume that f is orientation preserving.

Proof of Fact 5.3. Fix z ∈ SP . By path lifting, we have α : R→ ΛP × R
such that π ◦ α(t) = f ◦ T tz for t ∈ R. Because ΛP is totally disconnected,
prΛP ◦ α is constant and so α(t) = (ω, τ(t)) for some τ : R → R and some
ω ∈ ΛP . Now, τ is 1-1 because f is 1-1. Also, τ(R) = R because otherwise
π({(ω, τ(t)) : ±t > 0}) = {f ◦ T tz : ±t > 0} would not be dense in SP .
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In order to lift f to a map of ΛP × R, we shall use “small cross sections
of T t”. For N ∈ N, let c := p1 . . . pN . Clearly, c = cP so that [ΛP : ΛcP ] = c
by Fact 3.2. Hence, ΛcP is a cross section of the flow T t with constant return
time c. Moreover, since ΛcP = {ω ∈ ΛP : ωi = 1, ∀0 ≤ i ≤ N}, we see
that limN→∞ diam(ΛcP) = 0 (with respect to any compatible metric). In
this way, we can find N ∈ N, ε, δ ∈ (0, 1/4), and x0 ∈ (0, 1) such that

f ◦ π(ΛcP × (−δ, δ)) ⊂ π(ΛP × (x0 − ε, x0 + ε)),(5.1)

diam(pr0 ◦ f−1 ◦ π(ω × (x0 − ε, x0 + ε))) < 1/2, ω ∈ ΛP ,(5.2)

(5.3) dist(pr0 ◦ f(z1),pr0 ◦ f(z2)) < 1/4 for z1 · z−1
2 ∈ ΛcP , z1, z2 ∈ SP ,

where pr0 : SP → S is the projection on the zeroth coordinate, pr0((zi)∞i=0)
= z0, and the metric on S is induced from R via the exponential t 7→
exp(2πit).

In particular, ΛcP is chosen to be a small enough cross section so that
a localized isotopy will easily “straighten” f(ΛcP) and put it into a fiber of
pr0 : SP → S, which can then be further isotoped into ΛP via T t. This is
formalized in the first step below.

Step 1: Construct an isotopy of f to f such that f(ΛcP) ⊂ ΛP .

Construction. From (5.1), f(ΛcP) is evenly covered by π; in particular,
we have a well defined and continuous ξ := prΛP ◦ π̃−1 ◦ f |ΛcP : ΛcP → ΛP
and θ = prR ◦ π̃−1 ◦ f |ΛcP : ΛcP → R where π̃ := π|ΛP×(x0−ε,x0+ε). Clearly,
f |ΛcP (ω) = π(ξ(ω), θ(ω)). Observe that ξ is 1-1. Indeed, if ω = ξ(ω1) = ξ(ω2)
for ω1, ω2 ∈ ΛcP , then (5.1) implies that both ω1 and ω2 are contained in
f−1 ◦π(ω× (x0− ε, x0 + ε)), which intersects ΛP only once by (5.2)—hence,
ω1 = ω2.

Thus we can invert ξ, and θ ◦ ξ−1|ξ(ΛcP) is a continuous function. Let

θ̂ : ΛP → R be its continuous extension to ΛP . To construct a homotopy
hλ : SP → SP , λ ∈ [0, 1], supported on π(ΛP× [x0−2ε, x0 +2ε]), fix a vector
field X supported on [x0−2ε, x0 +2ε] and such that X = 1 on [x0−ε, x0 +ε].
Denote by Xt the flow of X. For z ∈ π(ΛP × (x0 − 2ε, x0 + 2ε)), set

hλ(z) = π(ω,Xλ[x0−θ̂(ω)]x)

where (ω, x) ∈ ΛP × (x0 − 2ε, x0 + 2ε) is the (unique) lift of z. Extend
hλ by identity to the whole SP . This definition assures that h0 = Id and
h1 ◦ f(ΛcP) = π ◦ (ξ(ΛcP)× x0). Moreover, hλ is a homeomorphism for each
λ ∈ [0, 1]: it is manifestly surjective, and it is 1-1 because it preserves the
composants π(ω × R) and solves an ODE on each of them. In this way, the
isotopy given by T−λx0 ◦ hλ ◦ f , λ ∈ [0, 1], deforms f to f := T−x0 ◦ h1 ◦ f
such that f(ΛcP) ⊂ ΛP , as required.
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Step 2: Adjust f by translation so that the neutral element e is a fixed
point; namely, define

f̂ := sf(e)−1 ◦ f

so that f̂(e) = e.

Fact 5.4. f̂(ΛcP) is a cross section of T t with some constant return time
d ∈ N.

Proof. Fix ω0 ∈ ΛcP and set α(t) := f̂ ◦ T t(ω0) for t ∈ R. By Fact 5.3,
α(t) = T τ(t)ω for some ω ∈ ΛP and τ : R → R an increasing homeomor-
phism (since we assumed that f preserved orientation). Because α(0), α(c) ∈
f̂(ΛcP) ⊂ ΛP , the winding number of the curve pr0 ◦ α|[0,c] into the zeroth
circle is well defined; denote it by d ∈ N. Since c is the first return time of
ω0 to ΛcP and f̂ is an orbit equivalence, d is the first return time of f̂(ω0) to
f̂(ΛcP). The condition (5.3) assures that d does not depend on ω0 because, as
we vary ω0 ∈ ScP , the different curves pr0◦α(t) never depart from each other
farther than by 1/4, i.e. dist(pr0 ◦α(t),pr0 ◦ α̃(t)) ≤ 1/4 if α̃(t) := f̂ ◦T t(ω̃0)
for some ω̃0 ∈ ΛcP .

Set φ := f̂ |ΛcP . Observe that φ(γcn) = γdn for n ∈ Z because the first
return to ΛcP corresponds via f̂ to the first return to f̂(ΛP) after time d (see
Fact 5.4). Since {γn : n ∈ N} = ΛP , we conclude that

(5.4) φ ◦ φc = φd.

(Here φk(ω) = ωk, see Section 3.) In particular, f̂(ΛcP) = ΛdP .

Fact 5.5. The return times c and d are products of primes in P, i.e.
c = cP and d = dP . Moreover , c/d = cP,∞/dP,∞.

Proof. From Fact 3.2, the return time to ΛdP equals [ΛP : ΛdP ] = dP ,
which shows that d = dP . That c = cP follows from the definition of c.
For the “moreover” part, note that φ is 1-1 so that |ker(φc)| = |ker(φd)| by
(5.4), which translates into cP,+ = dP,+ via Fact 3.1. Hence, c/d = cP/dP =
(cP,+cP,∞)/(dP,+dP,∞) = cP,∞/dP,∞.

Step 3: There is an isotopy of f̂ to the affine homomorphism gcP,∞/dP,∞
:= gcP,∞ ◦ g−1

dP,∞
.

The idea is that (5.4) forces f̂ to agree with gc/d on ΛcP , and this agree-
ment can be easily spread onto the whole SP by “ironing out” the non-
linearities along the fibers ω × R.

Construction. We only produce a homotopy and leave derivation of for-
mulas for an isotopy as an exercise. Because f̂(ΛcP) = ΛdP we can cut SP
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along the cross sections ΛcP and ΛdP and lift g to g̃ as in the diagram below:

ΛcP × [0, c] ΛdP × [0, d]

SP SP

g̃ //

�� ��g //

where the vertical arrows realize the boundary identifications (ω, c) ∼
(T cω, 0) and (ω, d) ∼ (T dω, 0).

Since f̂ preserves the flow lines of T , (5.4) implies that g̃(ωc, x) :=
(ωd, h(ωc, x)), (ωc, x) ∈ ΛcP × [0, c], for some h : ΛcP × [0, c] → [0, d] that
maps ΛcP × {0, c} to {0, d}. (Note that ωd is well defined in terms of ωc

because ker(φd) = ker(φc) by (5.4).) We write a homotopy g̃λ : ΛcP× [0, c]→
ΛdP × [0, d], λ ∈ [0, 1],

g̃λ(ωc, x) := (ωd, (d/c) · x+ (1− λ) · (h(ωc, x)− (d/c) · x)).

Observe that g̃ respects the identifications on ΛcP × {0, c} and ΛdP × {0, d}
so that it descends to a homotopy ĝλ : SP → SP . Clearly, ĝ0 = f̂ and we
claim that ĝ1 = gcP,∞/dP,∞ . Indeed, given z ∈ SP , we take its lift (ωc, x) ∈
ΛcP × [0, c] and see that c/d = cP,∞/dP,∞ implies that

g̃1(ωccP,∞ , cP,∞x) = (ωdcP,∞ , (d/c) · cP,∞x) = (ωcdP,∞ , dP,∞x),

which shows that ĝ1(zcP,∞) = zdP,∞ for all z ∈ SP , i.e. ĝ1 = gcP,∞/dP,∞ .

Conclusion of the proof of Theorem 1. The progression of the three steps
above shows that if f : SP → SP is a homeomorphism, then gcP,∞/dP,∞ is
isotopic to sω−1 ◦ f in the orientation preserving case or to sω−1 ◦ r ◦ f
in the orientation reversing case. (Here ω := f(e).) Thus f is isotopic to
gcP,∞/dP,∞,ω or to r ◦ gcP,∞/dP,∞,ω.

6. General form of homeomorphism. The results of the previous
two sections yield a very explicit description of homeomorphisms of SP :

Corollary 6.1. If f : SP → SP is an orientation preserving homeo-
morphism, then f has a lift F : ΛP × R→ ΛP × R of the form

(6.1) F : (ω, x) 7→
(
σ · φa/b(ω),

a(x+ Ib(ω))
b

+ δ(ω, x)
)

where a and b are co-prime P-recurrent , σ ∈ ΛP , and δ : ΛP × R→ R is a
bounded continuous function invariant under the deck map: δ ◦D = δ, i.e.
δ(γ ·ω, x−1) = δ(ω, x) for all (ω, x) ∈ ΛP × R. If f : SP → SP is orientation
reversing , then it has a lift of the form R ◦ F (where, recall , R(ω, x) =
(ω−1,−x)). Moreover , the numbers a and b are uniquely determined by the
homotopy type of f .
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Observe that F ◦D = Dκ(·) ◦ F where κ(ω, x) = 0 if Ib(ω) < b − 1 and
κ(ω, x) = a if Ib(ω) = b− 1 (cf. the proof of Lemma 4.1).

Proof of Corollary 6.1. Theorem 1 supplies a homotopy fλ : SP → SP ,
λ ∈ [0, 1], that connects f = f1 to an affine homeomorphism g = f0. Let
Fλ : ΛP × R → ΛP × R, λ ∈ [0, 1], be a lift of this homotopy such that F0

is the lift Ga/b,σ of the affine homeomorphism (see Definition 4.1). Recall
that, since π is a covering, Fλ(ω, x) is obtained by unique path lifting of
the path [0, 1] 3 λ 7→ fλ(z), z = π(ω, x), starting at a point (µ, y) :=
Ga/b,σ(ω, x). Total disconnectedness of ΛP forces the lifted path to have a
constant projection onto ΛP , i.e. to be of the form (µ, y + δ̃(ω, x, λ)) for
some continuous δ̃ : ΛP × R × [0, 1] → R. Thus the assertion holds with
δ(ω, x) := δ̃(ω, x, 1). The equivariance of δ is immediate from the uniqueness
of path lifting. The uniqueness of a and b is a consequence of Lemma 4.2.

7. Entropy (proof of Theorem 2). To determine the entropy of an
arbitrary homeomorphism f : SP → SP and prove Theorem 2, we shall pass
to the lift F of f given by (6.1), compute the entropies generated by F on the
base ΛP and in the individual fibers ω ×R, and apply a version of Bowen’s
formula for the entropy of skew products (as shown in the appendix). The
references [4] and [21] may be consulted for the definition of topological
entropy. All the entropies are computed with respect to the metrics on ΛP ,
SP , and ΛP × R constructed in Section 2.

Lemma 7.3. For a map F as in Corollary 6.1, a compact segment I ⊂ R,
and ω ∈ ΛP , the entropy of the compact set ω× I with respect to F and the
metric dΛP×R satisfies

h(F, ω × I) ≤ max{0, log(a/b)}.
The lemma hinges on the well known basic fact that, given two partitions

of a line segment: one into p subsegments {Ii} and another into q subseg-
ments {Jj}, their refinement {Ii} ∨ {Jj} := {Ii ∩ Jj}i,j can have at most
p + q − 1 non-empty elements. This indicates that the entropy is produced
solely by exponential stretching, which is controlled by a/b. (Thus, in fact,
hdΛP×R(F, ω × R) = max{0, log(a/b)}.)

Proof of Lemma 7.3. Fix arbitrary ε, λ > 0 such that λ > max{1, |a/b|}.
Set ωk := prΛP ◦ F k(ω × I) and Ik := prR ◦ F k(ω × I), k ≥ 0. It is easy to
see from (6.1) that there is C > 0 such that |Ik| ≤ Cλk for k ≥ 0. Let Ak
be a partition of ωk × Ik into closed segments of equal length % ∈ [ε/2, ε]
so that the cardinality #Ak ≤ 2Cλk/ε. The partition An := A0 ∨F−1A1 ∨
. . . ∨ F−n+1An−1 has cardinality #An ≤ (2C/ε) · (1 + λ + . . . + λn + n).
Since any selector set of An is an (ε, n)-spanning set in ω × I, we obtain
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hdΛP×R(F, ω× I) ≤ log λ after letting n→∞ and then ε→∞. We are done
by the arbitrariness of λ.

Lemma 7.4. For a, b ∈ N co-prime with b P-recurrent , the topological
entropy of the map σ · φa/b : ΛP → ΛP is

h(σ · φa/b) = log b.

Proof. It is more convenient to argue for ψ := w+ψa/b : lim←−Zp1,...,pk →
lim←−Zp1,...,pk that is conjugate to σ · φa/b (as explained in Remark 4.1). Let
(kn)∞n=1 be a non-decreasing sequence such that p1 . . . pkn is divisible by
bn, n ∈ N; and set ε := exp(−k1). We claim that if s, s̃ ∈ lim←−Zp1,...,pk

are such that sk 6≡ s̃k (mod bn) for some k ≥ kn, then s and s̃ are (n, ε)-
separated. This yields h(ψ) ≥ log b because, by using the natural embedding
κ : N → lim←−Zp1,...,pk such that (κ(n)k)∞k=1 := (n (mod p1 . . . pk))∞k=1, we
exhibit an (n, ε)-separated set Sn := κ({0, . . . , bn − 1}) ⊂ lim←−Zp1,...,pk and
#Sn = bn.

We verify the claim by induction on n. For n = 1, the P-adic expansions
[dk] and [d̃k] of s and s̃ (see (2.1)) must differ on some digit dk∗ 6= d̃k∗ for
k∗ ≤ k1 since otherwise s̃k−sk would be divisible by b. Thus dΛP (s, s̃ ) ≥ ε by
the definitions of ε and the distance dΛP (Section 2). Now, for the induction
step, assume that the claim holds for n−1 and that sk 6≡ s̃k (mod bn). Unless
dΛP (s, s̃) ≥ ε (when there is nothing to show), we have sk ≡ s̃k (mod b) for
k ≥ k1 by what we have already shown. Hence, sk ÷ b 6≡ s̃k ÷ b (mod bn−1).
Since a is co-prime to b, it follows that

ψ(s)k = wk + a(sk ÷ b) 6≡ wk + a(s̃k ÷ b) = ψ(s̃)k (mod bn−1),

and we conclude that ψ(s) and ψ(s) are (n−1, ε)-separated by the induction
hypothesis. This makes s and s̃ (n, ε)-separated.

To prove h(ψ) ≤ log b, it suffices to show that if s, s̃ ∈ lim←−Zp1,...,pk are
such that sk ≡ s̃k (mod p1 . . . pk1b

n) for some k > k1 large enough so that
p1 . . . pk1b

n divides p1 . . . pk, then s and s̃ are (n, ε)-close. Indeed, S̃n :=
κ({0, . . . , p1 . . . pk1b

n − 1}) is then an (n, ε)-spanning set with cardinality
p1 . . . pk1b

n, and ε can be made arbitrarily small by increasing k1. Thus,
suppose that sk ≡ s̃k (mod p1 . . . pk1b

n). Then sk ≡ s̃k (mod p1 . . . pk1) and
so dΛP (s, s̃) ≤ ε. Also, sk ÷ b ≡ s̃k ÷ b (mod p1 . . . pk1b

n−1) so that

ψ(s)k = wk + a(sk ÷ b) ≡ wk + a(s̃k ÷ b) = ψ(s̃)k (mod p1 . . . pk1b
n−1),

which shows that dΛP (ψ(s), ψ(s̃ )) ≤ ε. By repeating the argument, ψi(s)k ≡
ψi(s̃ )k (mod p1 . . . pk1b

n−i) so that dΛP (ψi(s), ψi(s̃)) ≤ ε for i = 0, . . . ,
n− 1.

Our Theorem 2 amounts to the following proposition.
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Proposition 7.1. The topological entropy h(f) of a homeomorphism f :
SP → SP is given by

h(f) = max{0, log(a/b)}+ log b = log max{a, b}
where a and b are as in Corollary 6.1.

Proof. It suffices to argue for f that is orientation preserving (otherwise,
consider f2). First, note that h(f) = h(F,K) for K := ΛP× [−M,M ] where
M ≥ 1 (cf. Theorem 8.12 of [21]). To see that, fix 1/4 > r > 0 so that
π|B(p,r) : B(p, r) → B(π(p), r) is a surjective isometry for all p ∈ ΛP × R
(where B(p, r) = {z : d(z, p) < r}). Consider any ε ∈ (0, r) small enough
that d(F (p), F (q)) < r if d(p, q) < ε. One can verify that if E is (n, ε)-
spanning for SP , then Ẽ := π−1(E) ∩ {p ∈ K : d(p,K) ≤ ε} is (n, ε)-
spanning for K; and #Ẽ ≤ (2M + 1)#E, which implies h(F,K) ≤ h(f).
Also, if Ẽ is (n, ε)-spanning for K, then E := π(Ẽ) is (n, ε)-spanning for
SP , which implies h(f) ≤ h(F,K).

Since passing to f−1 interchanges the roles of a and b (cf. (4.5)) and
h(f) = h(f−1), we may assume that a/b ≤ 1. Suppose first that a/b < 1.
For some large M > 1, K = ΛP×[−M,M ] is invariant under F , F (K) ⊂ K.
The projection K → ΛP factors F |K to σ · φa/b : ΛP → ΛP . Since entropy
cannot increase under factoring, h(F |K) ≥ h(σ · φa/b) = log b, where we
also used Lemma 7.4. Bowen’s theorem (Theorem 17 of [4], cf. Theorem 5),
combined with Lemma 7.3, yields

h(F |K) ≤ h(σ · φa/b) + sup
ω∈ΛP

h(F, ω × [−M,M ]) = log b+ 0.

Thus h(f) = h(F,K) = h(F |K) = log b, and we are done for a/b 6= 1.
Suppose now a/b = 1, that is, a = b = 1. One easily checks that The-

orem 5 (formulated and shown in the appendix) can be applied to X :=
ΛP × R with G := Z acting as described in Section 2 and K := ΛP× [−1, 1],
Y := ΛP , T := F , and S := σ · φ1. Therefore, we obtain

h(f) = h(F,K) ≤ h(σ · φ1) + sup
ω∈ΛP

h(F, ω × [−1, 1]) = log 1 + 0 = 0.

8. Global shadowing (proof of Theorem 3). In this section, we
prove Theorem 3, that is, we fix a homeomorphism f : SP → SP with
winding ratio a/b 6= 1 and show that f is semi-conjugate to the affine hom-
eomorphism g : SP → SP isotopic to f provided by Theorem 1 (i.e. we
construct a continuous surjective map h : SP → G such that h ◦ f = g ◦ h).
As before, we argue mostly at the level of lifts F,G : ΛP × R → ΛP × R of
f and g. By Corollary 6.1, these exist as a pair of equivariantly homotopic
maps of the form

F (ω, x) = (φ(ω), λx+ δ(ω, x)), G(ω, x) = (φ(ω), λx+∆(ω)),
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where λ = ±a/b according as f is orientation preserving or not, and ∆(·) =
a/b · Ib(·). Note that we may assume that |λ| > 1 by passing to f−1 if
necessary. We also fix µ ∈ (1, |λ|) and set C := (sup |δ|+ sup |∆|)/(|λ| − µ)
<∞.

Fix (for a moment) points (ω, x), (ω, y) ∈ ΛP × R together with the
sequences

xn := prR(Fn(ω, x)) and yn := prR(Gn(ω, y)), n ≥ 0.

Adopting Katok’s notion of global shadowing and by emulating [9], we say
that (ω, x) is C-shadowed by (ω, y), and write (ω, x) (ω, y), if |xn−yn| ≤
C for all n ≥ 0. The following proposition shows that H : ΛP × R→ ΛP × R
that associates to (ω, x) its C-shadow (ω, y) is well defined and factors to
the required semi-conjugacy h.

Proposition 8.2. (i) For any (ω, x) ∈ ΛP × R, there is a unique (ω, y)
that C-shadows (ω, x), i.e. (ω, x) (ω, y).

(ii) H : ΛP × R→ ΛP × R, (ω, x) (ω, y), is continuous.
(iii) D◦H = H◦D so that H factors to a map h : SP → SP , π◦H = h◦π.
(iv) H ◦ F = G ◦H and h ◦ f = g ◦ h.
(v) h is surjective.

Proof. (i) Fix (ω, x) ∈ ΛP × R. Let % = 1 if f is orientation preserving
and % = −1 otherwise (so that λ = % · a/b). Consider the open sets

E− := {y ∈ R : %nyn < %nxn − C for some n ≥ 0},
E+ := {y ∈ R : %nyn > %nxn + C for some n ≥ 0}.

We have to show that R \ (E− ∪ E+) is a single point as this is the set of
y’s for which (ω, x) (ω, y). The choice of the constant C guarantees that,
given k ≥ 0,

%kyk > %kxk + C implies %nyn > %nxn + µn−kC for n ≥ k,
%kyk < %kxk − C implies %nyn < %nxn − µn−kC for n ≥ k.

Hence E− and E+ are disjoint. The monotonicity of the maps x 7→ λx +
δ(ω, x) and x 7→ λx+∆(ω) implies that E− contains with each y all points
in (−∞, y], i.e. E− is an infinite segment E− = (−∞, y−) for some y− ∈ R.
Similarly, E+ = (y+,∞) for some y+ ∈ R. Since y−, y+ 6∈ E−∪E+, we have
(ω, x)  (ω, y−) and (ω, x)  (ω, y+); however, y+

n − y−n = λn(y+ − y−)
and thus necessarily y+ = y−, which ends the proof of (i).

(ii) Fix an arbitrary ε > 0. Pick n ∈ N so that 3C/|λ|n ≤ ε. Consider
(ω, x), (ω̃, x̃) ∈ ΛP × R. Take δ > 0 such that dΛP×R((ω, x), (ω̃, x̃)) < δ
forces |x̃k − xk| ≤ C and ∆(φk(ω)) = ∆(φk(ω̃)) for k = 0, . . . , n; note that
∆ is locally constant. For (ω, y) := H(ω, x) and (ω̃, ỹ) := H(ω̃, x̃), we see
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then that

|ỹn − yn| ≤ |ỹn − x̃n|+ |x̃n − xn|+ |yn − xn| ≤ 3C

and
|ỹn − yn| = |λ|n|ỹ − y|,

which combine to yield |ỹ − y| ≤ 3C/|λ|n ≤ ε. This establishes continuity
of H.

(iii) Since F is a lift, for all (ω, x) ∈ ΛP × R we have F ◦ D(ω, x) =
Dk(ω) ◦ F , where k : ΛP → Z. Because G is equivariantly homotopic to F ,
unique path lifting forces that G ◦ D(ω, x) = Dk(ω) ◦ G with the same k.
It follows that if (ω, x)  (ω, y) then D(ω, x)  D(ω, y). This establishes
equivariance of H and secures the existence of the factor h.

(iv) is a simple consequence of the definition of C-shadowing.
(v) Fix (ω, y) ∈ ΛP × R. We can reverse the roles of f and g in the proof

of part (i) and conclude that the orbit of (ω, y) under G is C-shadowed by
the orbit under F of some (ω, x) ∈ ΛP × R. (Uniqueness of (ω, x) may be
lost due to non-linearities in F , cf. Remark 8.2 below.)

Remark 8.2. The fibers of the semi-conjugacy h are arcs of the form
h−1(z) = π(ω× (x−, x+)). In particular, h is guaranteed to be 1-1, and thus
a conjugacy if “f is C1-close enough to g” so that F expands the fibers.
This happens for example when x 7→ λx+ δ(ω, x) has Lipschitz inverse with
a constant L < 1 that is uniform in ω.

Remark 8.3. Because h−1(z)’s are arcs, the fiber entropy is zero in
Bowen’s Theorem 17 of [4]; and we conclude h(f) = h(g). This leads to
an alternative proof of Theorem 2 for f with winding ratio a/b 6= 1.

9. Knaster continua. Knaster continua can be realized by identifying
each point of a solenoid with its inverse, i.e. we have Z2 acting via the
involution r : SP → SP , r : z 7→ z−1, and the P-adic Knaster continuum is

KP := SP/Z2.

We denote by µ : SP → KP the natural projection. Observe that the re-
striction to SP of the product of the circle flattening maps,

∏∞
k=0 S →∏∞

k=0[−1, 1] where (eiθk)∞k=0 7→ (cos θk)∞k=0, establishes a homeomorphism
of KP and the inverse limit of interval maps

KP ∼= lim←−(Ppk : [−1, 1]→ [−1, 1])

where Pp(cos θ) = cosp θ is the Chebyshev polynomial and has exactly p
monotonic laps each of which is surjective. One can now verify that the
KP thus defined is homeomorphic to the Knaster continuum pictured in the
introduction.
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The projection µ fails to be a cover at the fixed points of r, and it is easy
to verify that we have two cases:

Even Case: P contains infinitely many 2’s—then the neutral element
e is the only fixed point of r.

Odd Case: P contains only finitely many 2’s—then, besides e, there
is exactly one more fixed point e∗ = (1, . . . , 1,−1,−1,−1, . . .) where the
number of the leading 1’s equals the maximal k for which pk = 2 (or there
are no 1’s if all pk’s are odd). In the “odd case”, e∗ · e∗ = e ; and the two
points e and e∗ are interchanged by the translation s∗e : z 7→ e∗ · z, which
factors to an involution ŝ : KP → KP .

We distinguish a class of standard homeomorphisms of KP (cf. [3]) that
are the factors (through µ) of the affine homeomorphisms of SP . Since ga/b,σ◦
r = r ◦ ga/b,r(σ), an affine homeomorphism ga/b,σ commutes with r iff r(σ)
= σ, i.e. σ ∈ {e, e∗}. The standard homeomorphisms come then in two kinds:
those fixing µ(e),

ĝa/b,+ : KP → KP , µ ◦ ga/b,e = ĝa/b,+ ◦ µ,
and those interchanging e and e∗,

ĝa/b,− : KP → KP , µ ◦ ga/b,e∗ = ĝa/b,− ◦ µ;

the latter are well defined only in the “odd case”. As before, a, b run over
pairs of P-recurrent co-prime natural numbers. Clearly, ĝa/b,− = ŝ ◦ ĝa/b,+.

Theorem 4. If f̂ : KP → KP is a homeomorphism, then

(i) there are P-recurrent and co-prime a, b ∈ N such that f̂ is isotopic
to a standard homeomorphism g, g = ĝa/b,− or g = ĝa/b,+;

(ii) f̂ is semi-conjugate to g provided a/b 6= 1;
(iii) f̂ has topological entropy h(f̂) = h(g) = log max{a, b}.
We shall reduce the theorem to our results for SP via the following

proposition.

Proposition 9.3. For any homeomorphism f̂ : KP → KP , there exists
a unique orientation preserving homeomorphism f : SP → SP that is a lift
of f̂ , µ ◦ f = f̂ ◦ µ.

It follows that r ◦ f is the only other lift of f̂ . Before starting the proof,
we define a metric dKP on KP by dKP (u, v) := min{dSP (w, z) : µ(w) = u,
µ(z) = v, w, z ∈ SP} for u, v ∈ KP . We mention that, by using the P-adic
representation of ΛP , it is easy to verify that ω 7→ ω−1 is an isometry of
ΛP and that Z2 acts on SP isometrically so that µ is a local isometry at
all points except e and e∗. We will use the following lemma which expresses
the idea that the points z and z−1 in SP can be distinguished by looking at
the “orientation” of their composants projected to KP .
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Lemma 9.5. There exists % > 0 such that if ε < %, and τ : [0,∞) →
[0,∞) is a homeomorphism, and

dKP (µ(T tz), µ(T−τ(t)z)) < ε for all t ≥ 0,

then
dSP (z, z−1) < 2ε.

Proof. Since π : ΛP × R → SP is a local isometry, there is % > 0 such
that dSP (T tz, T−τ(t)z) = t+ τ(t) for t, τ(t) ∈ [0, %]. Our hypothesis,

dKP (µ(T tz), µ(T−τ(t)z))

= min{dSP (T tz, T−τ(t)z), dSP (T tz, (T−τ(t)z)−1)} < ε < %,

applied at the instance when t + τ(t) = ε, yields dKP (µ(T tz), µ(T−τ(t)z))
= dSP (T tz, (T−τ(t)z)−1) < ε. By the triangle inequality,

dSP (z, z−1) ≤ dSP (z, T tz) + dSP (T tz, T τ(t)(z−1)) + dSP (T τ(t)(z−1), z−1)

< t+ ε+ τ(t) = 2ε.

Under the projection η := µ◦π : ΛP × R→ KP , the lines ω×R map onto
the composants of KP , which are all immersed R’s except for the composants
of µ(e) and µ(e∗) which are immersed half-lines [0,∞). We shall use the
immersion iSP : R→ SP , iSP (t) = π(e, t), and the immersion iKP : [0,∞)→
KP , iKP = µ ◦ iSP |[0,∞).

Proof of Proposition 9.3. Fix a homeomorphism f̂ : KP → KP . We may
assume that f̂ fixes µ(e); otherwise ŝ◦f̂ fixes µ(e), and if f is its lift then s∗e◦f
is the lift of f̂ . We have a homeomorphism ν : [0,∞)→ [0,∞) given by ν :=
i−1
KP ◦ f̂ ◦ iSP , which we use to define a map f0 : iSP ([0,∞)) → iSP ([0,∞))

on a dense subset of SP by f0(iSP (t)) = iSP ◦ ν(t), t ≥ 0. We claim that
f0 is uniformly continuous so that it uniquely extends to a continuous map
f1 : SP → SP . Note that then f1 is a lift of f̂ and that any such lift that
preserves the orientation of the composant through e must coincide with f1.
Also f1 must be a homeomorphism: an analogous reasoning applied to f−1

yields the inverse of f1.
To prove the claim, fix ε > 0 such that ε/2 < % where % is as in Lemma

9.5. There is δ > 0 such that dKP (f̂(u), f̂(v)) < ε/8 when dKP (u, v) < δ,
u, v ∈ KP . Suppose that dSP (iSP (x1), iSP (x2)) < δ. We shall show that
dSP (f0 ◦ iSP (x1), f0 ◦ iSP (x2)) < ε. Because translations are isometries of
SP , we have dSP (iSP (x1 + t), iSP (x2 + t)) < δ; hence also dKP (iKP (x1 + t),
iKP (x2 + t)) < δ for all t ≥ 0. Since we assumed that f̂(µ(e)) = µ(e), the
composant of e is mapped onto itself, so (cf. Fact 5.3)

f̂ ◦ iKP (xi + t) = iKP (yi + τi(t))
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where yi = ν(xi) and τi : [0,∞)→ [0,∞) is a homeomorphism, i = 1, 2. By
the choice of δ,

(9.1) dKP (iKP (y1 + τ1(t)), iKP (y2 + τ2(t))) < ε/8, t ≥ 0.

If dSP (iSP (y1), iSP (y2)) < ε/8, we are done. Otherwise, dSP (iSP (y1),
iSP (−y2)) < ε/8 from the definition of dKP and (9.1) at t = 0. There-
fore, dSP (iSP (y1 + t), iSP (−y2 + t)) < ε/8 and hence dKP (µ ◦ iSP (y1 + t),
µ ◦ iSP (−y2 + t)) < ε/8, for all t ≥ 0. Together with (9.1), this yields

dKP (µ ◦ iSP (y2 + τ(t)), µ ◦ iSP (−y2 + t)) < ε/8 + ε/8 = ε/4

where τ := τ2 ◦ τ−1
1 and t ≥ 0. From Lemma 9.5, dSP (iSP (y2), iSP (−y2)) <

2ε/4 = ε/2, and so dSP (iSP (y1), iSP (y2)) < 2ε/2 = ε.

Proof of Theorem 4. (i) By Proposition 9.3, f̂ lifts to a homeomorphism
f : SP → SP . As before, we may suppose that f̂(µ(e)) = µ(e) and f(e) =
e, as otherwise one can consider ŝ ◦ f̂ . Corollary 6.1 supplies a lift F :
ΛP × R→ ΛP × R of f , and a suitable adjustment by a deck transformation
assures that F (e, 0) = (e, 0), i.e. σ = e in (6.1). We define a homotopy
Ft : ΛP × R→ ΛP × R, t ∈ [0, 1], by

Ft(ω, x) =
(
φa/b(ω),

a(x+ Ib(ω))
b

+ t · δ(ω, x)
)

where a, b are co-prime P-recurrent and δ is continuous and equivariant,
δ ◦D = δ. We claim that Ft factors through µ ◦ π to a homotopy f̂t : KP →
KP which connects f̂ to the standard map ĝa/b,+. To prove the claim, we
have to show that there is κ : ΛP → Z such that

(9.2) Ft ◦R = Dκ(·) ◦R ◦ Ft
for all t ∈ [0, 1]. The above equation, explicitly written, amounts to the
following two identities imposed for all (ω, t) ∈ ΛP × R:

(9.3) φa/b(ω
−1) = γk(ω) · (φa/b(ω))−1

and

(9.4) (a/b) · Ib(ω−1,−x) + (a/b) · Ib(ω, x) + k(ω)

= −t · (δ(ω−1,−x) + δ(ω, x)).

Both F0 and F1 factor to a map of KP : F0 covers ĝa/b,+ and F1 covers f̂ .
Thus (9.2) is satisfied for t = 0, 1, with the same κ determined uniquely by
(9.3). Moreover, inspection of (9.4) at t = 0 and t = 1 yields δ ◦R = −δ. It
follows that (9.4), and thus (9.2), holds for all t ∈ [0, 1].

(ii) Let F0 and F1 be as in the proof of (i) above. Suppose that H :
ΛP × R→ ΛP × R is the semi-conjugacy, H ◦ F1 = H ◦ F0 between F1 and
F0 obtained via global shadowing as in Proposition 8.2. From (9.2), if (ω, y)
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shadows (ω, x) then R(ω, y) shadows R(ω, x), i.e. H ◦R = R ◦H. It follows
that H descends to a semi-conjugacy h : KP → KP such that h◦ f̂1 = h◦ f̂0.

(iii) Because µ is finite-to-one, the entropy of f̂ coincides with that of its
lift f : SP → SP by Theorem 17 of [4] (cf. Section 10). Theorem 2 completes
the proof.

10. Appendix: Bowen’s Theorem. The following result generalizes
Theorem 17 of [4], which can be obtained as the special case when X = K
is compact and G is a trivial group.

Theorem 5. Suppose the following hypotheses are satisfied :

(i) (X, d) and (Y, e) are metric spaces, Y is compact , and π : X → Y
is continuous and surjective;

(ii) a group G acts on X and Y by isometries (on the left), and g ◦ π =
π ◦ g for all g ∈ G;

(iii) K ⊂ X is a compact set intersecting every orbit of G and there are
η, b > 0 with #{g ∈ G : g(A)∩K 6= ∅} ≤ b for all A ⊂ X with diam(A) ≤ η;

(iv) T : X → X and S : Y → Y are continuous and π ◦ T = S ◦ π;
(v) for every g ∈ G there exists h ∈ G such that T ◦ g = h ◦ T .

Then we have the following inequality for topological entropies:

(10.1) h(T,K) ≤ h(S) + sup
y∈Y

h(T, π−1(y) ∩K).

In applications, the natural projection πG : X → X/G is typically a
covering onto a compact Hausdorff space, and then (iii) is satisfied by any
compact K ⊂ X with πG(K) = X/G. For t : X/G→ X/G obtained as the
quotient of T by G, (10.1) then yields

(10.2) h(t) ≤ h(S) + sup
y∈Y

h(T, π−1(y))

because h(T, π−1(y) ∩ K) ≤ h(T, π−1(y)) and h(t) ≤ h(T,K). (In fact,
h(t) = h(T,K).)

Example. Fix ω, γ ∈ R with γ irrational and let φ be a Z2-periodic
function on R2, e.g. φ(x1, x2) = 1

4 (sin(2πx1) + sin(2πx2) + 5). Let X =
R/Z × R and T (x1, x2) := (x1, x2) + (ω, 0) + φ(x1, x2)(1, γ) where x1 is
taken mod 1. Set Y = R/Z and S(x1) = x1 + ω so that π ◦ T = S ◦ π for
π(x1, x2) = x1 − x2/γ. Finally, let the action of G = Z on X be generated
by (x1, x2) 7→ (x1, x2 + 1) and take K = R/Z × [0, 1]. Taking the quotient
of T by G yields t : R2/Z2 → R2/Z2 that is a torus map homotopic to the
identity that permutes leaves of a dense foliation. If t is a homeomorphism,
then h(T, π−1(y)) = 0 (cf. Lemma 7.3), and (10.2) implies that h(t) = 0.
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Question. Is the rotation set of t a single point in the case when t is a
homeomorphism and ω, γ, and 1 are rationally independent?

In the rationally dependent case, the answer can be extracted from [13].

Proof of Theorem 5. The argument is an extension of that of Bowen
and we use many definitions and notations from [4]. In particular, en(x, y)
:= maxn−1

i=0 e(S
i(x), Si(y)) and Bn(z, r, T ) := {x ∈ X : d(T i(x), T i(z)) < r,

0 ≤ i < n}.
Set a := supy∈Y h(T, π−1(y)∩K). Let α,M>0 be arbitrary and let ε>0

be arbitrary yet small enough so that d(T (x), T (x̃)) ≤ η/2 if d(x, x̃) < 2ε.
For each y ∈ Y , pick an (m(y), ε)-spanning set Ey ⊂ X for π−1(y) ∩K so
that

(10.3) m(y) ≥M, a+ α ≥ h(T, π−1(y) ∩K) ≥ 1
m(y)

log #Ey.

Set Uy :=
⋃
z∈Ey Bm(y)(z, 2ε, T ). Observe that π−1(y) ∩K ⊂ Uy; and com-

pactness of K assures that

(10.4) ∃γ=γ(y)>0 π−1(B(y, γ)) ∩K ⊂ Uy,
where B(y, γ) is the ball of radius γ about y. Fix y1, . . . , yr so that
{B(yi, γ(yi))}ri=1 is a covering of Y , and let δ > 0 be the Lebesgue number
of this covering.

Consider an arbitrary n ∈ N, and let En be an (n, δ)-spanning set for Y .
Fix x ∈ En. Consider also an arbitrary (n, 4ε)-separated subset F ⊂ X ∩K.
We estimate the cardinality of the set Fx := {p ∈ F : en(π(p), x) ≤ δ}. To
this end, we assign to each p ∈ Fx a sequence (g, z) = (g0, . . . , gq; z0, . . . , zq)
where q = q(p) depends on p, gj ∈ G, and zij ∈ Eyij for some ij ∈ {1, . . . , r},
j = 0, . . . , q. We refer to (g, z) as the code of p. Fix p ∈ Fx. We proceed
recursively.

Step 0: Define t0 := 0, p0 := p, and x0 := x. Set g0 = e where e is
the neutral element of G, and select i0 so that B(x, δ) ⊂ B(yi0 , γ(yi0)). By
(10.4), we can pick z0 ∈ Eyi0 with

(10.5) dm(yi0)(z0, p0) < 2ε.

Step s+1: Suppose that (g0, . . . , gs; z0, . . . , zs) are already defined, and
so are (i0, . . . , is). If

(10.6) ts+1 := ts +m(yis) = m(yi0) + . . .+m(yis) ≥ n,
we stop, set q = s, and (g, z) = (g0, . . . , gq; z0, . . . , zq) is the code of p.
Otherwise, when ts+1 < n, we define ps+1 = Tm(yis )(ps) = T ts+1(p), xs+1 =
Sm(yis )(xs) = Sts+1(x), and proceed as follows. Pick gs+1 ∈ G so that
gs+1(ps+1) ∈ K. Select is+1 so that B(gs+1(xs+1), δ) ⊂ B(yis+1 , γ(yis+1)).
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From en(π(p), x) ≤ δ, e(Sts+1 ◦ π(p), Sts+1(x)) ≤ δ; and

e(Sts+1 ◦ π(p), Sts+1(x)) = e(gs+1 ◦ Sts+1 ◦ π(p), gs+1 ◦ Sts+1(x))

= e(gs+1 ◦ π ◦ T ts+1(p), gs+1(xs+1))

= e(π ◦ gs+1(ps+1), gs+1(xs+1))

by hypotheses (ii) and (iv). Therefore,

(10.7) e(π ◦ gs+1(ps+1), gs+1(xs+1)) ≤ δ.
By (10.7), the choice of is+1, and (10.4), we can pick zs+1 ∈ Eyis+1

with

(10.8) dm(yis+1 )(zs+1, gs+1(ps+1)) < 2ε.

This ends the iteration step.

Claim 1. If p, p̃ ∈ Fx have the same code (g, z) = (g0, . . . , gq; z0, . . . , zq),
then p = p̃.

Indeed, for s = 0, . . . , q, we have dm(yis )(zs, gs(ps)) < 2ε (cf. (10.5)
and (10.8)), that is, d(T k(zs), T k ◦ gs(ps)) < 2ε for k = 0, . . . ,m(yis) − 1.
Hypothesis (v) supplies hs,k ∈ G, 0 ≤ s ≤ q, 0 ≤ k < m(yis), with T k ◦ gs =
hs,k ◦ T k; and we obtain

(10.9) d(h−1
s,k ◦ T k(zs), T k(ps)) = d(T k(zs), hs,k ◦ T k(ps)) < 2ε,

since G acts by isometries (hypothesis (ii)). From (10.9) and its analogue
for p̃, d(T i(p), T i(p̃)) < 4ε for i = 0, . . . , tq+1 − 1. Since tq+1 − 1 ≥ n− 1 by
(10.6), and p, p̃ ∈ F , we must have p = p̃, which proves the claim.

Set µ := maxri=1 m(yi).

Claim 2. #{(g, z) : (g, z) is a code of some p∈Fx}≤bn/Me(a+α)(n+µ).

Note that the two claims put together imply #F ≤ ∑
x∈En #Fx ≤

#En · bn/Me(a+α)(n+µ). Since n, ε, F and En were arbitrary, we conclude
that h(T,K) ≤ h(S) + (log b)/M + (a + α) so that (10.1) follows from
arbitrariness of M,α > 0.

It remains to demonstrate Claim 2. To ease the exposition, we build
a weighted graph as follows. For vertices we take all (g, z) = (g0, . . . , gs;
z0, . . . , zs) that are initial segments of a code, i.e. (g0, . . . , gq; z0, . . . , zq) with
q ≥ s is a code of some p ∈ Fx for certain gs+1, . . . , gq and zs+1, . . . , zq.
We also attach to each such vertex a weight equal to m(yis) and call s the
level of the vertex. Then we place a directed edge from (g, z) = (g0, . . . , gs;
z0, . . . , zs) to (g̃, z̃) = (g̃0, . . . , g̃s+1; z̃0, . . . , z̃s+1) iff gi = g̃i and zi = z̃i for
0 ≤ i ≤ s; and we say that (g̃, z̃) follows (g, z). The resulting graph G is
clearly a collection of directed trees.

Claim 3. Fix a vertex (g, z) = (g0, . . . , gs; z0, . . . , zs) and consider the
set V of all vertices (g̃, z̃) = (g0, . . . , gs+1; z0, . . . , zs+1) following (g, z).
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There are at most b different gs+1 ∈ G that appear in V . Moreover , for
g ∈ G, all vertices in Vg := {(g̃, z̃) ∈ V : gs+1 = g} have the same weight
equal to some m and #Vg ≤ e(a+α)m.

For the proof, let B collect all p ∈ Fx with an initial segment of their
code coinciding with (g, z). Setting k = m(yis)− 1 in (10.9) yields d(h−1

s,k ◦
T k(zs), T ts+1−1(p)) < 2ε for all p ∈ B. By the choice of ε, d(T ◦ h−1

s,k ◦
T k(zs), T ts+1(p)) < η/2 for p ∈ B so that diam(A) ≤ η for A := T ts+1(B).
Any gs+1 appearing in V has p ∈ B with gs+1(ps+1) ∈ K so that gs+1(A)∩
K 6= ∅. Hypothesis (iii) allows then for at most b possibilities for gs+1. Once
gs+1 is fixed so is is+1 and there are at most #Eyis+1

≤ e(a+α)m(yis+1)

possibilities for zs+1 ∈ Eyis+1
. Also, all the vertices in Vgs+1 have the same

weight m(yis+1). This ends the proof of Claim 3.

Each code (g, z) = (g0, . . . , gq; z0, . . . , zq) of p ∈ Fx determines a unique
maximal path in G starting at some root (a level-0 vertex). The weight of
that path is tq+1 = m(yi0) + . . .+m(yiq) = tq +m(yiq) < n+ µ. Claim 2 is
then a consequence of Claim 3 and the following general lemma.

Lemma 10.6. Suppose that G is a collection of trees with weighted ver-
tices and there are b,M,A > 0 so that

(a) no vertex is lighter than M ;
(b) there is m0 so that there are at most eAm0 roots and each root is

heavier than m0;
(c) for any vertex , all vertices following it can be grouped into sets

U1, . . . , Ub̃, b̃ ≤ b, so that #Ui ≤ eAmi and each vertex in Ui is heavier
than mi for some mi ≥ 0, i = 1, . . . , b̃.

If no path in G is heavier than N , then the number of different maximal
paths (starting at a root) does not exceed bN/MeAN .

Proof. We proceed by induction on the height h defined as the maximal
level of a vertex in G. If h = 0, then G has only roots; their number does
not exceed eAm0 where N ≥ m0 by (b). If h > 0, for any fixed root R that
is followed by some level-1 vertices, we group those vertices into U1, . . . , Ub̃,
b̃ ≤ b, as stipulated by hypothesis (c). For every maximal path P in G
starting at R, there is a unique i ∈ {1, . . . , b̃} so that P passes through some
W ∈ Ui; let Q be the maximal subpath of P that starts at W . There are at
most b(N−M)/MeA(N−m0) possibilities for Q for any fixed i since, by (c), the
induction hypothesis applies to the collection Gi of the maximal subtrees of
G that are rooted at the vertices in Ui. By summing over all roots and all i,
we see that the number of possibilities for P cannot exceed

eAm0 · b · bN/(N−M)eA(n−m0) = bn/MeAn.
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