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Abstract. For a continuous map f on a compact metric space (X, d), a set D ⊂ X
is internally chain transitive if for every x, y ∈ D and every δ > 0 there is a sequence of
points 〈x = x0, x1, . . . , xn = y〉 such that d(f(xi), xi+1) < δ for 0 ≤ i < n. In this paper,
we prove that for tent maps with periodic critical point, every closed, internally chain
transitive set is necessarily an ω-limit set. Furthermore, we show that there are at least
countably many tent maps with non-recurrent critical point for which there is a closed,
internally chain transitive set which is not an ω-limit set. Together, these results lead us
to conjecture that for tent maps with shadowing, the ω-limit sets are precisely those sets
having internal chain transitivity.

1. Introduction. In a compact metric space X with metric d, suppose
f : X → X is a continuous map. The ω-limit set ω(x, f) of a point x ∈ X
is given by

ω(x, f) :=
⋂
n∈N
{fk(x) : k ≥ n},

where we may drop the dependence on the map f if there is no ambiguity.
So ω(x, f) is the set of accumulation points of the orbit Orb(x) = Orb(x, f)
of x. It is known that ω-limit sets are non-empty, closed and invariant (by
which we mean that f(ω(x)) = ω(x)). They have been studied extensively,
with particular focus on the ω-limit sets of interval maps [1, 4–7, 9–11, 14,
15, 20–23.

In many recent texts, tent maps are cited as examples of simple maps
with complicated and interesting dynamics [3, 12, 16, 18]. Furthermore, they
have been the subject of many research articles, often in relation to their
ω-limit sets [6, 20–23]. In this paper we make several important observations

2010 Mathematics Subject Classification: 37B10, 37C50, 37E05, 54C05, 54H20.
Key words and phrases: internal chain transitivity, internally chain transitive, omega-limit
set, ω-limit set, pseudo-orbit tracing property, shadowing, tent map, weak incompressibil-
ity.

DOI: 10.4064/fm217-1-4 [35] c© Instytut Matematyczny PAN, 2012



36 A. D. Barwell et al.

about the behaviour of tent maps, allowing us to prove new results about
the nature of their ω-limit sets in relation to certain well-known dynamical
properties.

For δ > 0, a δ-pseudo-orbit is a finite or infinite sequence of points
〈x0, x1, . . .〉 such that d(f(xi), xi+1) < δ for every i ≥ 0, and an asymptotic
pseudo-orbit is a sequence of points 〈x0, x1, . . .〉 for which d(f(xi), xi+1)→ 0
as i→∞. A set A ⊂ X is said to be internally chain transitive (or to have
internal chain transitivity) if for any x, y ∈ A and any δ > 0 there is a
δ-pseudo-orbit 〈x = x0, x1, . . . , xn = y〉 ⊂ A. Chain transitivity has been
studied as a dynamical property in its own right [2, 10, 19, 30], and also in
connection with biological systems, concerning in particular the properties
of persistence and permanence [25, 31]. One of the first papers to link ω-
limit sets to the property of internal chain transitivity was [25], in which
Hirsch et al. show that every ω-limit set is internally chain transitive, and
furthermore every compact, internally chain transitive set is the ω-limit set
of some asymptotic pseudo-orbit. We have followed up this work in several
articles: in [6] we show that for shifts of finite type, all closed, internally
chain transitive sets are ω-limit sets; in [5] we show that for interval maps
containing no homtervals (i.e. maps whose pre-critical points are dense in the
interval, such as tent maps), all closed, internally chain transitive sets that
do not contain the image of a critical point are ω-limit sets; in [7] we show
that for the full tent map (that with slope equal to 2), all internally chain
transitive sets are ω-limit sets. This leads us to the following conjecture:

Conjecture 1.1. For a tent map T : [0, 1] → [0, 1], a closed set L ⊂
[0, 1] is internally chain transitive if and only if L = ω(x, T ) for some x ∈
[0, 1].

A map f : X → X has the pseudo-orbit tracing property, or shadowing, if
for every ε > 0 there is a δ > 0 such that for every δ-pseudo-orbit 〈x0, x1, . . .〉
there is a point y ∈ X such that d(f i(y), xi) < ε for every i ≥ 0; f has limit
shadowing if for every asymptotic pseudo-orbit 〈x0, x1, . . .〉 there is a point
z ∈ X such that d(f i(z), xi) → 0 as i → ∞. There is much evidence to
suggest a link between maps with shadowing and maps for which internally
chain transitive sets are necessarily ω-limit sets: shifts of finite type are
known to have shadowing, as is the full tent map. Furthermore we show in
[7] that for maps on general compact metric spaces with limit shadowing,
every internally chain transitive set is an ω-limit set.

The first main result in this paper is the following:

Theorem 3.2. For infinitely many values λ ∈ (
√

2, 2) there is a tent
map T : I → I with slope λ for which there exists a closed, internally chain
transitive set L which is not the ω-limit set for any point in I.



ω-limit sets of tent maps 37

These maps do not have shadowing as the critical point is not recur-
rent [17]. Thus we suggest the following revision of Conjecture 1.1:

Conjecture 1.2. For a tent map T : [0, 1] → [0, 1] with shadowing, a
closed set L ⊂ [0, 1] is internally chain transitive if and only if L = ω(x, T )
for some x ∈ [0, 1].

Conjecture 1.2 has the following, more general formulation, to which we
know of no counter-example:

Conjecture 1.3. For a compact metric space X and a continuous map
f : X → X with shadowing, a closed set L ⊂ X is internally chain transitive
if and only if L = ω(x, f) for some x ∈ X.

We believe that this conjecture would be of interest if true, despite the
fact that we already know it holds for limit shadowing as opposed to shad-
owing [7], because the two properties are not equivalent [28], and shadowing
is a well-studied property that is simple to test for (Coven et al. in [17] recall
a test for shadowing).

In [29], Sharkovskĭı defines a property of invariant sets called weak incom-
pressibility (Definition 4.5 below), and proves that it is an inherent property
of all ω-limit sets. In [7] we show that in compact metric spaces, weak in-
compressibility is equivalent to internal chain transitivity, allowing us to
formulate many results in this paper in terms of both properties.

In addressing Conjecture 1.2, the second main result in this paper is:

Theorem 4.11. Suppose that T : I → I is a tent map with periodic
critical point. For a closed set D ⊂ I the following are equivalent:

(1) D is internally chain transitive;
(2) D is weakly incompressible;
(3) D = ω(y, T ) for some y ∈ I.

Notice that tent maps for which the critical point is periodic have shad-
owing [17]. Whilst Brucks and Misiurewicz prove in [13] that for (Lebesgue-)
almost every λ ∈ (1, 2), the tent map with slope λ does not have a periodic
critical point, we note that there are nevertheless infinitely many tent maps
which do. Furthermore, following Theorem 4.11 we show that for infinitely
many tent maps with periodic critical point there is a non-trivial internally
chain transitive set, i.e. one which is infinite (thus not the orbit of the critical
point) but which is also not the entire invariant interval (Example 4.12).

Many recent results on ω-limit sets of interval maps have used symbolic
dynamics and kneading theory (see [5, 6, 22, 23] for examples). In this paper
we also use results and techniques from symbolic dynamics and kneading
theory, together with conventional analysis of interval maps, extending the
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theory in both areas where necessary. We use the standard terminology, as
found for example in [8, 16, 26].

2. A review of symbolic dynamics for tent maps. We begin with
a summary of symbolic dynamics and kneading theory for tent maps, devel-
oped by several authors [16, 26, 24, 27], which we will rely upon throughout
this paper. We use I to denote the compact interval [0, 1].

Let Ω = {0, 1, C} and Tλ : I → I be a tent map with slope λ ∈ (1, 2)
defined as usual:

Tλ(x) =

{
λx for x ∈ [0, 1/2],

λ(1− x) for x ∈ [1/2, 1].

We define the symbolic dynamics for Tλ with critical point c = 1/2,
including the address map A : I → Ω, itinerary map It : I → ΩN and parity
lexicographic ordering ≺ as follows. For x ∈ I define

A(x) =


0 for x ∈ [0, c),

C for x = c,

1 for x ∈ (c, 1],
and

It(x) = (A(x)A(Tλ(x))A(T 2
λ (x)) . . .).

Any finite sequence r of symbols from Ω will be referred to as a word,
and we will denote the length of the word r by |r|. If a word r with |r| = k
appears as the initial k symbols in s, where s is either another word or
an infinite sequence in ΩN, we say that r is an initial k-segment of s, and
if r appears in an arbitrary place in s we say that r is simply a k-segment
of s; in either case we may drop the dependence upon k if the length of r
is unknown. Furthermore, we say that a word r is even if it contains an
even number of 1’s and odd otherwise. We use the symbol a to represent
the concatenation of sequences (either finite or infinite).

For two sequences s = (s0s1 . . .) and t = (t0t1 . . .) in ΩN (or two words
s = (s0s1 . . . sn−1) and t = (t0t1 . . . tn−1) in Ωn for some n ∈ N), let s�k =
s0s1 . . . sk−1; then the discrepancy of s and t is k if s�k = t�k and sk 6= tk.
Assign a metric d to ΩN such that d(s, t) = 1/2k where the discrepancy
between s and t is k. For two sequences s and t with discrepancy k, define
the parity lexicographic ordering, ≺, on ΩN (equally Ωn for any n ∈ N) by
declaring 0 < C < 1, then s ≺ t provided either

(1) s�k−1 = t�k−1 is even, and sk < tk, or
(2) s�k−1 = t�k−1 is odd, and sk > tk.

If we let the discrete topology on Ω be denoted T then the metric d
generates the Tikhonov product of T on the shift space ΩN. The following
lemma is well-known.
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Lemma 2.1. For a tent map T with critical point c, the itinerary map is
continuous at x if and only if fk(x) 6= c for all k ≥ 0.

We can now define the upper- and lower-limit itineraries It+ and It−

respectively as

It+(x) = lim
y↓x

It(y) and It−(x) = lim
y↑x

It(y),

where the limit is taken in the space ΩN. Limit itineraries never contain
the symbol C, so the limit itinerary of a point whose itinerary contains no
instance of a C will coincide with its itinerary [5].

For a tent map T : I → I, the kneading sequence KT is defined by

KT = σ(It+(c)) = It−(T (c)),

where we may drop the subscript T in KT if there is no ambiguity as to
which map we are referring to. Notice that points in a neighbourhood of c are
mapped below T (c), so the above definition is consistent. By Lemma 2.1, the
itinerary map is continuous at points whose itineraries contain no instance
of a C, so when the critical point is not periodic we see that K = It(T (c)).

In some texts, the kneading sequence is actually defined as the itinerary
of T (c). We use the definition as stated here since it makes the admissibility
conditions below easier to specify in the case of maps with periodic critical
point.

The following conditions are well-known (see [5, 16, 26, 27]) and tell us
when a sequence s ∈ ΩN (or a word s ∈ Ωk) is actually the itinerary (or
initial k-segment of the itinerary) of some point x ∈ I.

For a tent map T : I → I with kneading sequence K, suppose that the
sequence s satisfies the following condition:

either σi(s) ≺ K for every i ≥ 0,

or for some n ∈ N,

σn(s) = It(c) and σi(s) ≺ K for every 0 ≤ i < n.

Then there is an x ∈ [0, T (c)] for which s = It(x) (we say that s is admis-
sible). Furthermore, if s = It(x) for some x ∈ [0, T (c)], then

either σi(s) � K for every i ≥ 0,

or for some n ∈ N,

σn(s) = It(c) and σi(s) � K for every 0 ≤ i < n.

We say that in this case s does not violate admissibility.

We can treat finite words in a similar way. Namely, a word s of any
length k for which
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either σi(s) ≺ K�k−i for every 0 ≤ i < k,

or for some n < k,

σn(s) = It(c)�k−n and σi(s) ≺ K�n−i for every 0 ≤ i < n

is such that s = It(x)�k for some x ∈ [0, T (c)], and s is said to be admissible.
Finally, if s = It(x)�k for some x ∈ [0, T (c)], then

either σi(s) � K�k−i for every 0 ≤ i < k,

or for some n < k,

σn(s) = It(c)�k−n and σi(s) ≺ K�n−i for every 0 ≤ i < n.

Again, s is said not to violate admissibility.

Definition 2.2. The conditions above are known as admissibility con-
ditions for sequences s.

Remark 2.3. The only points which do not follow the admissibility
rule of Definition 2.2 are the points x ∈ (T (c), 1] (whenever this is a non-
degenerate interval). Indeed, since every point in (T (c), 1] is mapped imme-
diately into [0, T (c)], points in (T (c), 1] have itinerary 1as, where s is an
infinite sequence which does not violate admissibility. We omit these points
from the formal description of admissibility because we will not be concerned
with the itineraries of points in (T (c), 1], since every ω-limit set must be a
subset of the maximal invariant interval [T 2(c), T (c)].

For an interval map f : I → I, a subinterval J ⊂ I is called a homterval
if c /∈ fn(J) for every n ≥ 0 and any local extremum c. Notice that tent
maps T with slope λ ∈ (1, 2] have no homterval, since every subinterval
expands under T until eventually it contains the critical point c.

Lemmas 2.4–2.6 are well-known [5, 6, 16, 26]. We state them here as they
will be of use in what follows.

Lemma 2.4. For a continuous, piecewise monotone map f : I → I and
for x, y ∈ I, It(x) ≺ It(y) implies that x < y.

Due to the fact that tent maps with slope λ ∈ (1, 2] have no homterval,
every point has a unique itinerary, and thus Lemma 2.4 can be strengthened
in the following way:

Lemma 2.5. For a tent map Tλ with slope λ ∈ (1, 2] the itinerary map
is injective. Thus for x, y ∈ I, x < y if and only if It(x) ≺ It(y).

For x ∈ I and N ∈ N, define IN (x) := {y ∈ I : It(y)�N = It(x)�N}.

Lemma 2.6. For a tent map Tλ with slope λ ∈ (1, 2], let x ∈ I and
N ∈ N. Then IN (x) is an interval in I. Moreover if fn(x) = c for some
n ≤ N , then IN (x) = {x}, otherwise IN (x) is an open interval.
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The following two results are technical observations about the relation-
ship between sequences in ΩN and itineraries of points.

Lemma 2.7. Suppose that the sequence s ∈ ΩN is either K = It−(T (c))
or a limit itinerary of some x ∈ [0, T (c)), either upper or lower. Then for
any n ∈ N, s�n is the initial n-segment of some actual itinerary It(y) for
some y ∈ [0, T (c)).

Proof. The sequence s is the limit point of itineraries It(z) as z → x
from either above or below, depending upon which limit we are considering.
Thus as the points z get closer to x, their itineraries will agree with s in
ever larger initial segments, so for some y ∈ [0, T (c)), It(y) will have s as
its initial n-segment.

Lemma 2.8. Suppose that the tent map T : I → I has a critical point c
with period m ≥ 3 and kneading sequence K.

(1) Suppose that for some N ∈ N, a word s ∈ {0, 1}N is not the initial
N -segment of the itinerary of any point in [0, T (c)]. Then there is a
segment r of s, with |r| = j ≤ m, for which r � K�j.

(2) Suppose that σk(t) � K for some sequence t ∈ {0, 1}N and for some
k ≥ 0. Then there is a segment r of t, with |r| = j ≤ m, for which
r � K�j.

Proof. (1) Since s is not the initial N -segment of the itinerary of any
point in [0, T (c)], by the admissibility conditions in Definition 2.2, there is
a k ∈ N for which

σk(s) � K�N−k.

Furthermore, σi(K) is a limit itinerary of f i+1(c) for every i ≥ 0, so since s
is not the initial N -segment of the itinerary of any point in [0, T (c)], by
Lemma 2.7 it is not the initial N -segment of a limit itinerary of any point
in [0, T (c)), nor of K, so in particular there must be some k ≥ 0 for which

σk(s) � K�N−k.

If the discrepancy between σk(s) and K is q ≤ m, then setting r = s�q
we get the required result. So suppose that the discrepancy between σk(s)
and K is n = mi + j, for j < m and i > 0. Then the initial mi-segment
of σk(s) is identical to that of K, and there is a word t which immediately
follows this initial mi-segment of σk(s), with |t| = j, such that

t � σmi(K)�j .

But K is periodic with period m, so σmi(K) = K. Thus setting r = t we
get

r � K�j .
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(2) If the discrepancy between σk(t) and K is q ≤ m, then setting r = t�q
we get the required result. So suppose that the discrepancy between σk(t)
and K is n = mi + j, for j < m and i > 0. Then the initial mi-segment
of σk(t) is identical to that of K, and there is a word u which immediately
follows this initial mi-segment of σk(t), with |u| = j, such that

u � σmi(K)�j .

But K is periodic with period m, so σmi(K) = K. Thus setting r = u we
get

r � K�j .
Theorem 2.9 will allow us to determine when a point saIt(c) represents

the itinerary of a pre-critical point (recall that saIt(c) means the concate-
nation of the sequences s and It(c)).

Theorem 2.9. Suppose that T : I → I is a tent map with critical point c
and kneading sequence K. For any n ∈ N and s ∈ {0, 1}n, saIt(c) is the
itinerary of some pre-critical point in [0, T (c)] if and only if one of the
following three conditions holds:

(1) s = 0n;
(2) s ∈ {0, 1}n and σk(saIt(c)) ≺ K for every 0 ≤ k ≤ n;
(3) c is in a period-m orbit with itinerary (Cat)∞ and s = σk(t) for

some 0 ≤ k < m− 1.

Proof. Sufficiency. We consider each case individually.
For case (1), if s = 0n, then saIt(c) is the itinerary of the pre-critical

point, obtained by taking pre-images of c within (0, 1/2) for n pre-images.
For case (2), since σk(saIt(c)) ≺ K for every 0 ≤ k ≤ n, we know by

the admissibility conditions that s is admissible, so for � ∈ {0, 1, C}, sa�
is also admissible. If saC is admissible, then we are done, since the only
itinerary which begins with saC is saIt(c). So assume that for � ∈ {0, 1},
sa� is admissible. By Lemma 2.6, the points whose itineraries begin with
sa� form an interval (a, b) ⊂ I; assume that (a, b) is the maximal interval
containing points with such itineraries. Thus for every x /∈ [a, b], It(x) does
not begin with sa�, and we claim that one of a or b must map to c under Tn

(the other maps to c under Tn−j for some 1 ≤ j ≤ n). Indeed, since (a, b)
is the maximal interval admitting itineraries beginning with sa�, we have
c /∈ Tn(a, b); but c ∈ Tn(a− ε, b+ ε) for every ε > 0, hence c ∈ Tn{a, b}. We
conclude that one of It(a) or It(b) is the sequence saIt(c).

For case (3), if c is in a period-m orbit with itinerary (Cat)∞ and s =
σk(t) for some 0 ≤ k < m− 1 then clearly there is a point in the orbit of c
with itinerary saIt(c) = sa(Cat)∞.

Necessity. Suppose that for a pre-critical point p with It(p) = saIt(c),
s ∈ {0, 1}n is not of the form described in (1) or (3) (which both are instances
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of pre-critical points). We know that by Definition 2.2, σk(It(p)) � K for
every k ≥ 0, so suppose that σk(It(p)) = K for some 0 ≤ k ≤ n. Then
σk(It(p)) = It(T k(p)) = K, and since the itinerary map is one-to-one by
Lemma 2.5, T k(p) must equal the only point whose itinerary can be K,
which by the definition of K is T (c). But then T k−1(p) = c = Tn(p), and
since k ≤ n we see that c is periodic—a contradiction. Thus we are forced
to conclude that σk(saIt(c)) ≺ K for all 0 ≤ k ≤ n.

3. A tent map counter-example. The following theorem is from [5]
and states necessary and sufficient conditions, in terms of itineraries, for one
point to be in the ω-limit set of another, for a class of interval maps. Note
that a pre-periodic point can be either a periodic point or one which maps
onto a periodic point. In other words, we allow the pre-periodic segment of
a pre-periodic point’s orbit to be empty.

Theorem 3.1. Suppose that f : I → I is a continuous, piecewise mono-
tone interval map with no homterval. For x, y ∈ I, either

(1) x is pre-periodic, in which case y ∈ ω(x) if and only if arbitrarily
long initial segments of It(y) occur infinitely often in It(x), or

(2) x is not pre-periodic, in which case y ∈ ω(x) if and only if arbitrarily
long initial segments of either It+(y) or It−(y) occur infinitely often
in It(x).

This result clearly holds for tent maps whose slope λ is in the interval
(1, 2], as these maps have no homterval.

The main theorem in this section is in fact a family of examples which
show that internal chain transitivity does not fully characterize ω-limit sets
in tent maps, thus providing a counter-example to Conjecture 1.1. In the
proof of Theorem 3.2 we refer to a result in [16], which states when a se-
quence of symbols is the kneading sequence of a tent map, rather than state
it here explicitly, as to do so would require introducing excessive terminol-
ogy. Recall that aab means the concatenation of the sequences a and b.

Theorem 3.2. For infinitely many values λ ∈ (
√

2, 2) there is a tent
map T : I → I with slope λ for which there exists a closed, internally chain
transitive set D which is not the ω-limit set for any point in I.

Proof. Fix k ∈ N, k ≥ 2, and let A be the word 10k and let B be the
word 110. Consider the sequence K = AaB∞. This is the itinerary of T (c)
for a tent map T with slope λ ∈ (

√
2, 2) by [16, Lemma III.1.6], so since it

contains no symbol C it is also the kneading sequence of that tent map (by
the definitions of limit itinerary and kneading sequence).

Let D be the set of points whose itineraries are the set Λ, where

Λ := {σn((Bj)aCaAaB∞) : j, n ∈ N}.
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These sequences are all itineraries of points in I by Definition 2.2 and The-
orem 2.9. It is easy to prove that D is closed and internally chain transitive.
Indeed, sequences of the form (Bj)aCaAaB∞ tend to the period-3 cycle as
j →∞, as do sequences of the form σn(AaB∞) as n→∞.

Suppose that D = ω(x) for some x ∈ I. Thus T (D) = D, so we must
have D ⊂ [T 2(c), T (c)]. We can conclude that D = ω(z), where z ∈ [0, T (c)]
and z = T (x).

By Theorem 3.1, we know that for y ∈ I, y ∈ ω(z) if and only if arbi-
trarily long initial segments of either the upper or the lower limit itinerary
of y occur infinitely often in the itinerary of z. Thus the itinerary of z must
contain infinitely many occurrences of words of the form (Bn)a�aAaBm

for every m,n ∈ N, where � indicates a place where we are free to choose
either a 0 or a 1 (it will be one of these infinitely often, and which one will
determine whether we approximate the upper or lower limit itinerary). This
forces the itinerary of z to take the form

κ = Da1 (Bn1)a�aAa(Bm1)aDa2 (Bn2)a�aAa(Bm2)a . . . ,

where {ni}i∈N and {mi}i∈N are strictly increasing sequences of positive in-
tegers, {Dj}j∈N are finite words, and without loss of generality Dj does not
begin with B for any j ∈ N. For the sequence κ to be the itinerary of a point
z as required, it has to satisfy the admissibility conditions of Definition 2.2,
in particular

σj(κ) � K ∀j ≥ 1.

With these conditions, we consider what the first three symbols in each of the
Dj ’s can be. If the Dj ’s begin with a particular sequence H of three symbols
infinitely often, then ω(z) will contain a point whose itinerary contains the
sequence BaH. We analyze each possible sequence H in turn:

(1) Dj = (0 . . .). This case is impossible, regardless of what follows the 0,
considering the parity lexicographic order. Indeed, consider the two
sequences K and κ, where Dj = (0 . . .):

K = (10k110 . . . 1101 . . .), κ = (. . . 10k110 . . . 1100 . . .).

Since the number of 1’s prior to the 0 is odd, we see that the iterate
of κ which starts as above does not follow the above admissibility
condition.

(2) Dj = (10 � . . .). This cannot occur infinitely often, else we would
have a point in ω(z) whose itinerary contains the sequence Ba10�,
which is none of the points in D.

(3) Dj = (110 . . .). This case we have excluded, since 110 = B.
(4) Dj = (111 . . .). This cannot occur infinitely often, else we would have

a point in ω(z) whose itinerary contains the sequence 111, which is
none of the points in D.
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Thus no such (non-empty) sequence H is possible infinitely often, which only
leaves the possibility that Dj = ∅ a cofinite number of times. But we can
also eliminate this possibility, since we have eliminated all the possible (non-
empty) combinations of the three symbols (other than B) which can follow
B in κ infinitely often. Thus no such sequence κ exists, and we conclude
that D cannot be the ω-limit set of any point in I.

Remark 3.3. The initial choice of the number of 0’s following the first 1
in the kneading sequence in Theorem 3.2 gives us countably many different
tent maps for which this result holds. Notice also that the critical point of
these maps is not recurrent, so by [17, Theorem 4.2] (stated below as The-
orem 4.4) these maps do not have the shadowing property (unlike the full
tent map, which has shadowing and for which every closed, internally chain
transitive set is an ω-limit set [7]). So whilst Theorem 3.2 provides a counter-
example to Conjecture 1.1, it enhances the case for Conjectures 1.2 and 1.3.

4. Tent maps with periodic critical point. We begin this section
with some observations about tent maps with periodic critical point c. First,
recall that for tent maps with slope λ < 1, every point in the interval
converges to 0, and for λ > 2 the critical point is mapped out of the interval
I = [0, 1]. For λ = 1 every point in [0, c] is fixed, and for λ = 2 the critical
point is eventually mapped onto 0, which is fixed. So when considering tent
maps with periodic critical point we are naturally restricting our attention
to slope values λ ∈ (1, 2). Hence from now on we will assume this restriction
on the value of λ implicitly when referring to tent maps with periodic critical
point.

For a tent map Tλ with slope λ and critical point c with period m ≥ 3,
let

δT := λ−m min {|x− y| : x 6= y, x, y ∈ Orb(c)},
and let

P := {p ∈ [0, 1] : T i(p) = c for some i ∈ N}.
For each p ∈ P let np ∈ N be least such that Tnp(p) = c, and for n ∈ N let

Pn := {p ∈ P : np < max{n, 2m}},
so that Orb(c) ⊂ Pn for every n ∈ N.

Lemma 4.1. Suppose that the tent map T has periodic critical point c
of period m ≥ 3 and kneading sequence K = (sa�)∞ for � ∈ {0, 1} and
s ∈ {0, 1}m−1. Then sa� is even; in other words, � = 1 if s is odd and � = 0
if s is even.

Proof. Suppose that sa� is odd. Let x ∈ (T (c)− δT , T (c)) and let dx :=
|x − T (c)|. By the definition of δT , c /∈ T i[x, T (c)) for every i ≤ m. Then
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since sa� is odd and the slope of the map is λ > 1,

Tm(x) = x+ λmdx > T (c),

which is not possible. Thus sa� must be even.

As a consequence of Lemma 4.1, for tent maps T with periodic critical
point c of period m ≥ 3, we have Tm[c−δT , c+δT ] ⊂ (0, c] if K�m−1 is even,
and Tm[c− δT , c+ δT ] ⊂ [c, 1) if K�m−1 is odd. We exploit this property in
the following definition.

Definition 4.2. For a tent map T with periodic critical point c of period
m ≥ 3, let S = {[c − δT , c), (c, c + δT ]} and define the accessible side of c,
A ∈ S, to be

A :=

{
[c− δT , c) if Tm[c− δT , c+ δT ] ⊂ [c, 1),

(c, c+ δT ] if Tm[c− δT , c+ δT ] ⊂ (0, c].

Then the hidden side of c, H, is defined to be the element of S which is
not A.

In this section we prove that a closed, internally chain transitive set of a
tent map whose critical point is periodic is necessarily an ω-limit set. This
result follows from a series of results including the following from [5], which
relates ω-limit sets of maps with no homterval to internally chain transitive
sets which do not contain the image of any critical point:

Theorem 4.3. Suppose that f : I → I is a continuous, piecewise mono-
tone interval map having critical points c1, . . . , ck and no homterval, and
D ⊂ I is closed and does not contain f(ci) for any 1 ≤ i ≤ k. Then D is
internally chain transitive if and only if D = ω(x, f) for some x ∈ I.

Since tent maps with slope λ ∈ (1, 2) have no homterval, such maps
satisfy the hypothesis of Theorem 4.3.

We add to the above description of symbolic dynamics for tent maps the
definition of a signature sequence [27], which indicates whether the slope of
the map is positive or negative at each iterate of the critical point c.

For a tent map T with critical point c and kneading sequence K =
K0K1K2 . . . , we define the signature sequence ρ = ρ0ρ1ρ2 . . . as follows:

ρ0 = −1, ρn+1 =


ρn if Kn = 0,

−ρn if Kn = 1,

−1 if Kn = C.

The following theorem, proved in [17], has already been referred to in
this paper; we state it now explicitly as it will be required in what follows:

Theorem 4.4. Suppose that T : I → I is a tent map with slope λ ∈ (1, 2)
and kneading sequence K = (K0K1K2 . . .) ∈ {0, 1, C}N. Then T has the
shadowing property if and only if for every ε > 0 there is an n ∈ N such that
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|Tn(c)− c| < ε and either Tn(c) = c, or ρn = +1 if Kn = 0 and ρn = −1 if
Kn = 1.

The following property was introduced by Sharkovskĭı, who proved that
it is an inherent property of ω-limit sets (this fact was also observed in [8]).
The term weak incompressibility appears in [4] and we adopt this term here.

Definition 4.5. For a continuous map f on a compact metric space X,
a closed set D ⊂ X is said to have weak incompressibility (or to be weakly
incompressible) if for any non-empty subset U ( D which is open in D,
f(U) * U .

Theorem 4.6 is due to Sharkovskĭı [29].

Theorem 4.6. Suppose that f : X → X is a continuous map on the
compact metric space X. Then for every x ∈ X, ω(x, f) has weak incom-
pressibility.

The following two results are from [7] and will also be used in the proof
of the main result in this section.

Proposition 4.7. Let (X, d) be a compact metric space, and f : X → X
be continuous. If L is a closed, internally chain transitive subset of X, then
L is invariant; in other words f(L) = L.

Theorem 4.8. Let (X, d) be a compact metric space, f : X → X be con-
tinuous and let D be a closed, non-empty subset of X. Then D is internally
chain transitive if and only if D is weakly incompressible.

If D ⊂ I is closed and internally chain transitive, then by Proposition
4.7 we know that T (D) = D; but this does not imply that T−1(D) = D.
The following proposition shows that we can expand such a set D in a
certain way to obtain another closed and internally chain transitive set which
contains more elements of T−1(D). As usual, for x ∈ I and ε > 0 we define
Bε(x) := {y ∈ I : |y − x| < ε}.

Proposition 4.9. Suppose that T : I → I is a tent map with slope λ,
having critical point c with period m ≥ 3 and accessible side A. Suppose also
that D ⊂ I is a closed and internally chain transitive set which contains c
and for which c is not isolated in D. Then for each n ∈ N and each p ∈ P ,
there is a set Dn,p ⊂ B2−nλ−npδT

(p) defined as

Dn,p := T−np
(
B2−nδT (c) ∩A ∩D

)
∩B2−nλ−npδT

(p).

Moreover, for each n ∈ N and p ∈ P the following are true:

(1) Tnp(Dn,p) = B2−nδT (c) ∩A ∩D;

(2) Dn,p ∪ {p} = T−np
(
B2−nδT (c) ∩A ∩D

)
∩B2−nλ−npδT

(p), so this set
is compact;

(3) Dn := D ∪
⋃
p∈P∩DDn,p is closed and internally chain transitive.
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Proof. Since c is not isolated in D, we see that every point in Orb(c) is
non-isolated in D, including Tm(c) = c. In particular, c is not isolated in
D ∩A, so the set Dn,p is well defined.

Property (1) follows from the definition of Dn,p. To see property (2)
notice that A \A = {c}, so by the definition of Dn,p,

T−np
(
B2−nδT (c) ∩A ∩D

)
∩B2−nλ−npδT

(p) \Dn,p = {p}.

Thus Dn,p ∪ {p} is as defined, and compactness follows immediately.

To prove property (3), fix any n ∈ N and let 〈ai : i ∈ N〉 be any sequence
in Dn. Either there exists K ∈ N such that

{ai : i ∈ N} ⊂ D ∪
⋃

p∈PK∩D
Dn,p,

or there exists a subsequence 〈bi : i ∈ N〉 of 〈ai : i ∈ N〉 and a sequence
〈pi : i ∈ N〉 in P ∩D such that for all i ∈ N:

• npi+1 > npi ;
• {bi, pi} ⊂ Dn,pi .

In the former case, D∪
⋃
p∈PK∩DDn,p is compact (since Dn,p∪{p} is compact

for each p ∈ D) and so 〈ai : i ∈ N〉 has a convergent subsequence. In the
latter case, for all i ∈ N, |bi−pi| ≤ 2λ−npi δ, which converges to 0 as i→∞.
The set D is closed in [0, 1] and hence is sequentially compact so 〈pi : i ∈ N〉
has a subsequence which converges to a point x ∈ D ⊂ Dn. It follows
that 〈ai : i ∈ N〉 has a subsequence which converges to x. In either case,
〈ai : i ∈ N〉 has a convergent subsequence, and hence Dn is sequentially
compact and is therefore closed.

Let x ∈ Dn \ D, y ∈ D, and fix ε > 0. To show that Dn is internally
chain transitive it suffices to show that there exist ε-pseudo-orbits from x
to y and from y to x, both completely contained in Dn. Let p ∈ P ∩D be
such that x ∈ Dn,p. Then Tnp(x) ∈ D and 〈T i(x) : i ≤ np〉 is an ε-pseudo-
orbit from x to Tnp(x). Because D is internally chain transitive we can find
an ε-pseudo-orbit from Tnp(x) to y. Concatenating the two, we obtain an
ε-pseudo-orbit from x to y completely contained in Dn. To go from y to x
note that by invariance of D, for each p′ ∈ P ∩D we can find p′′ ∈ P ∩D
such that T (p′′) = p′. Thus we can find a sequence 〈pi : i ∈ N〉 in P ∩ D
such that p0 = p and for each i ∈ N, T (pi+1) = pi. Let j ∈ N be such that
ε > λ−j . It follows from the argument above and the definitions of Dn,p and
Dn,pj that there exists z ∈ Dn,pj such that T j(z) = x. Because z ∈ Dn,pj

and npj > j, we have |z−pj | < ε, so there exists an ε-pseudo-orbit from y to
z and hence there exists an ε-pseudo-orbit from y to x completely contained
in Dn, as required.
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Proposition 4.10. Let T be a tent map having critical point c and let
{qn}n∈N ⊂ N. For each n ∈ N suppose there are points xn ∈ I, open intervals
Bn ⊂ I and integers Jn ∈ N such that

(1) qn ≤ Jn for each n;
(2) T Jn(xn), xn+1 ∈ Bn;
(3) for every 0 ≤ j ≤ Jn, c /∈ T j(Bn), so T j maps Bn homeomorphically

onto its image for every 0 ≤ j ≤ Jn.

Let 〈ai : 0 ≤ i ∈ Z〉 be the sequence

〈x1, T (x1), . . . , T
J1−1(x1), x2, T (x2), . . . , T

J2−1(x2), x3, . . .〉.
Then for every n ∈ N, n > 1, and every t ≥

∑
k<n Jk we have

It(at)�qn = (A(ai))
t+qn−1
i=t .

Proof. First notice that since T Jn(xn), xn+1 ∈ Bn, and c /∈ T j(Bn) for
every j ≤ Jn, the itineraries of T Jn(xn) and xn+1 agree on their first Jn ≥ qn
places.

For each n ∈ N let tn =
∑

k<n Jk. Pick n ∈ N and suppose that t ≥ tn. If
t = tn′ for some n′ ≥ n then It(at) = It(xn′), so since c /∈ T j(Bn′) 3 T j(xn′)
for every 0 ≤ j ≤ Jn′ ,

It(xn′)�Jn′ = It(at)�Jn′ = (A(ai))
Jn′−1
i=t ,

and as Jn′ ≥ qn we are done.
If t = tn′ + r for some n′ ≥ n and 0 < r < Jn′+1, then (A(ai))i≥t

and It(at) follow the orbit of T r(xn′) until it reaches xn′+1, after which
(A(ai))i≥t follows xn′+1 and It(at) follows T Jn′ (xn′), and both of these agree
for at least Jn′+1 ≥ qn places, so we use reasoning as above to deduce that
It(at)�qn = (A(ai))

t+qn−1
i=t .

We can now prove our main result, which shows that for tent maps
with periodic critical point (and thus having shadowing), the properties of
internal chain transitivity, weak incompressibility and being an ω-limit set
are equivalent for closed sets.

Theorem 4.11. Suppose that T : I → I is a tent map with periodic
critical point. For a closed set D ⊂ I the following are equivalent:

(1) D is internally chain transitive;
(2) D is weakly incompressible;
(3) D = ω(y, T ) for some y ∈ I.

Proof. For (3)⇒(2) and (2)⇒(1) we refer to Theorems 4.6 and 4.8 re-
spectively.

For (1)⇒(3), let D ⊂ I be closed and internally chain transitive; by
Proposition 4.7, D is invariant. Thus either D = {0} or D ⊂ [T 2(c), T (c)];
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because {0} is an ω-limit set we may assume without loss of generality that
D ⊂ [T 2(c), T (c)].

By Theorem 4.3 if c 6∈ D then D is an ω-limit set, so suppose from now
on that c ∈ D.

Let c have period m ≥ 3. If c is isolated in D, then by invariance of D,
T j(c) is also a pre-image of c so is isolated in D. Because D is internally
chain transitive, it follows that D = Orb(c), which is an ω-limit set. Thus,
without loss of generality we may assume that c is not isolated in D, which
gives us that no element of Orb(c) is isolated in D, thus it follows that c is
not isolated in A ∩D.

For each n ∈ N and each p ∈ P let δT , np and Pn be as defined above,
and let Dn be constructed as in Proposition 4.9. Thus Dn is closed and
internally chain transitive by property (3) of 4.9, and is thus invariant by
Proposition 4.7.

Since c is not isolated in A∩D, we have constructed Dn so that for each
p ∈ P ∩D it contains points which accumulate on p, meaning no element of
Dn ∩P is isolated in Dn. Since Dn \B2−(n+1)(Pn) is compact, we can find a
finite F ⊂ Dn \ Pn such that

Dn \B2−(n+1)(Pn) ⊂ B2−n(F ).

For each p ∈ Pn pick xp ∈ Dn+1,p. Then

Fn := F ∪ {xp : p ∈ Pn}

is a finite subset of Dn \ Pn such that

Dn ⊂ B2−n(Fn).

Write Fn = {bn,i : i ≤ In}.
For each n ∈ N let εn > 0 be such that Bεn(Fn) ∩ Pn = ∅ and note

that εn < 2−n. Since T has shadowing by Theorem 4.4, there exists ηn < εn
such that every ηn-pseudo-orbit is εn-shadowed. Because Dn is internally
chain transitive we can find an ηn-pseudo-orbit from bn,0 to bn,In through
each bn,i such that every member of the pseudo-orbit is in Dn, and then
find cn ∈ [0, 1] and Jn ∈ N such that 〈T j(cn) : j ≤ Jn〉 εn-shadows this
ηn-pseudo-orbit.

For each n ∈ N, find an ηn+1-pseudo-orbit from bn,In to bn+1,0 such that
every member of the pseudo-orbit is in Dn, and find dn ∈ I and Kn ∈ N
such that 〈T k(dn) : k ≤ Kn〉 εn+1-shadows this pseudo-orbit.

Since Fn is a subset of the invariant set Dn and Bεn(Fn) ∩ Pn = ∅ and
T (c), T 2(c) ∈ Pn we know that cn, dn ∈ [T 2(c), T (c)] for every n ∈ N.

Let

〈at : t ≥ 0〉 = 〈c1, T (c1), . . . , T
J1−1(c1), d1, T (d1), . . . , T

K1−1(d1), c2, . . .〉.
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For each t ∈ N, let

αt := 〈αti : i ≥ 0〉 = It(at)

and let

γ := 〈γi : i ∈ N〉 = 〈αi0 : i ∈ N〉.
Each at is some (possibly trivial) forward image of a cn or a dn and conse-
quently must lie in [T 2(c), T (c)]. It follows by Definition 2.2 that for each αt,
σk(αt) � K for every k ≥ 0.

Fix n ∈ N. We see that Bεn (bn,In) ∩ Pn = ∅ and hence T Jn(cn) /∈ Pn.
In particular, T j(x) /∈ Pn for any x ∈ Bεn(bn,In) and any j ≤ Jn. Because
Orb(c) ⊂ Pn for each n ∈ N, it follows that γ ∈ {0, 1}N.

For each n ∈ N let tn =
∑

n′<n Jn′ +Kn′ , so that atn = cn for each
n ∈ N. Thus αtn = It(atn) = It(cn). Also let qn = max{n, 2m}. We claim
that for each t ≥ tn, αt�qn = σt(γ)�qn . To see this, first notice that both dn
and T Jn(cn) are in Bεn(bn,In), and Bεn(bn,In)∩Pn = ∅. So since no point in
Bεn(bn,In) maps to c in any of its first Jn iterations, Proposition 4.10 tells
us that αt�qn = σt(γ)�qn since qn < Jn, which proves the claim.

To prove admissibility of γ, suppose firstly that σl(γ) = K for some l ∈ N
and fix x ∈ D. For each n ∈ N there exists i ≤ In such that |bn,i−x| < 2−n.
Then there exists j ≤ Jn such that |T j(cn)− bn,i| < εn and, of course, there
exists rn ≥ tn such that arn = T j(cn). We have

|arn − x| < 2−n + εn

and by our claim above, for every n ∈ N,

It(arn)�n = αrn�n = σrn(γ)�n.

For some n′ ∈ N, we have t′n ≥ l, so for each n ≥ n′,
It(arn)�n = σrn(γ)�n = σrn−l�K .

It follows that either the upper or the lower limit itinerary of x is an iterate
of K, which forces x ∈ Orb(c). But then, since x ∈ D was arbitrary, it
follows that D ⊂ Orb(c), a contradiction.

If σl(γ) � K for some l ∈ N then by Lemma 2.8 there exists s ≥ 0 such
that σl+s(γ) � K and σl+s(γ)�2m 6= K�2m. We also see that αl+s�2m =
σl+s(γ)�2m. Thus, αl+s � K. By admissibility conditions 2.2, we have αl+s /∈
It(I), a contradiction.

Thus σl(γ) ≺ K for each l ∈ N. By admissibility conditions 2.2 there
must exist y ∈ [0, 1] such that It(y) = γ.

It remains to show that D = ω(y).

To see that D ⊂ ω(y) fix x ∈ D and n ∈ N. As before, there exists
rn ≥ tn such that |arn − x| < 2−n + εn and

It(arn)�n = αrn�n = σrn(γ)�n = It(T rn(y))�n.
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Thus, because two points of the interval whose itineraries agree on the first
n places cannot be more than a distance of λ−n apart,

|T rn(y)− x| < 2−n + εn + λ−n,

which converges to 0 as n→∞. Thus, x is an accumulation point of Orb(y),
that is, x ∈ ω(y).

To see that ω(y) ⊂ D fix n ∈ N and rn ≥ tn. By construction, arn (which
is within λ−n of T rn(y)) is within εn of Dn. Each point of Dn is within 2−n

of D. Thus, there exists xn ∈ D such that

|T rn(y)− xn| < λ−n + εn + 2−n,

which converges to 0 as n→∞. It follows that every accumulation point of
Orb(y) has distance 0 from D and so ω(y) ⊂ D = D.

Theorem 4.11, together with Theorem 3.2, gives further weight to the
Conjecture 1.3 that all maps with shadowing have the property that the ω-
limit sets are precisely the internally chain transitive sets. To our knowledge,
this question, together with the more specific question of whether all tent
maps with shadowing have this property (Conjecture 1.2), remains open.

To end the paper, we demonstrate that for infinitely many tent maps
whose critical point is periodic, there is a closed, internally chain transitive
set which is neither the maximal invariant interval, nor simply the orbit of
the critical point (both of which are known to be ω-limit sets).

Example 4.12. Suppose that T : I → I is a tent map, with kneading
sequence K = (10j1)∞ for j ∈ Z, j ≥ 1. Let

M1 := {σn(((10j1)k)a1∞) : k, n ∈ N},
M2 := {σn((1k)a(Ca10j)∞) : k, n ∈ N}.

Consider the set D ⊂ I whose itineraries are the set ∆ = M1 ∪M2. Admis-
sibility of points in ∆ can be checked against the admissibility conditions
2.2 and Theorem 2.9. Indeed points in M1 correspond to the itineraries of
the fixed point and a sequence of pre-images of the fixed point which origi-
nate arbitrarily close to the orbit of c, and points in M2 correspond to the
itineraries of points in the orbit of c and a sequence of pre-images of c which
originate arbitrarily close to the fixed point.

The set D can easily be checked to be internally chain transitive, and the
accumulation points of D are the fixed point, which has itinerary 1∞, and
points in Orb(c), so D is closed. Thus by Theorem 4.11, D is an ω-limit set.
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