Comparing the closed almost disjointness and dominating numbers

by
Dilip Raghavan (Kobe) and
Saharon Shelah (Jerusalem and Piscataway, NJ)

Abstract

We prove that if there is a dominating family of size \aleph_{1}, then there are \aleph_{1} many compact subsets of ω^{ω} whose union is a maximal almost disjoint family of functions that is also maximal with respect to infinite partial functions.

1. Introduction. Recall that two infinite subsets a and b of ω are almost disjoint or $a . d$. if $a \cap b$ is finite. A family \mathscr{A} of infinite subsets of ω is said to be almost disjoint or a.d. in $[\omega]^{\omega}$ if its members are pairwise almost disjoint. A Maximal Almost Disjoint family, or MAD family in $[\omega]^{\omega}$ is an infinite a.d. family in $[\omega]^{\omega}$ that is not properly contained in a larger a.d. family.

Two functions f and g in ω^{ω} are said to be almost disjoint or a.d. if they agree in only finitely many places. We say that a family $\mathscr{A} \subset \omega^{\omega}$ is a.d. in ω^{ω} if its members are pairwise a.d., and we say that an a.d. family $\mathscr{A} \subset \omega^{\omega}$ is $M A D$ in ω^{ω} if $\forall f \in \omega^{\omega} \exists h \in \mathscr{A}\left[|f \cap h|=\aleph_{0}\right]$. Identifying functions with their graphs, every a.d. family in ω^{ω} is also an a.d. family in $[\omega \times \omega]^{\omega}$; however, it is never MAD in $[\omega \times \omega]^{\omega}$ because any function is a.d. from the vertical columns of $\omega \times \omega$. MAD families in ω^{ω} that become MAD in $[\omega \times \omega]^{\omega}$ when the vertical columns of $\omega \times \omega$ are thrown in were considered by Van Douwen.

We say that $p \subset \omega \times \omega$ is an infinite partial function if it is a function from some infinite set $A \subset \omega$ to ω. An a.d. family $\mathscr{A} \subset \omega^{\omega}$ is said to be Van Douwen if for any infinite partial function p there is $h \in \mathscr{A}$ such that $|h \cap p|=\aleph_{0} . \mathscr{A}$ is Van Douwen iff $\mathscr{A} \cup\left\{c_{n}: n \in \omega\right\}$ is a MAD family in $[\omega \times \omega]^{\omega}$, where c_{n} is the nth vertical column of $\omega \times \omega$. The first author showed in [3] that Van Douwen MAD families always exist.

Recall that \mathfrak{b} is the least size of an unbounded family in $\omega^{\omega}, \mathfrak{d}$ is the least size of a dominating family in ω^{ω}, and \mathfrak{a} is the least size of a MAD family in $[\omega]^{\omega}$. It is well known that $\mathfrak{b} \leq \mathfrak{a}$. Whether \mathfrak{a} could consistently be larger than \mathfrak{d} was an open question for a long time, until Shelah achieved a breakthrough in [4] by producing a model where $\mathfrak{d}=\aleph_{2}$ and $\mathfrak{a}=\aleph_{3}$. However, it is not known whether \mathfrak{a} can be larger than \mathfrak{d} when $\mathfrak{d}=\aleph_{1}$; this is one of the few major remaining open problems in the theory of cardinal invariants posed during the earliest days of the subject (see [5] and [2]). In this note we take a small step towards resolving this question by showing that if $\mathfrak{d}=\aleph_{1}$, then there is a MAD family in $[\omega]^{\omega}$ which is the union of \aleph_{1} compact subsets of $[\omega]^{\omega}$. More precisely, we will establish the following:

Theorem 1. Assume $\mathfrak{d}=\aleph_{1}$. Then there exist \aleph_{1} compact subsets of ω^{ω} whose union is a Van Douwen MAD family.

The cardinal invariant $\mathfrak{a}_{\text {closed }}$ was recently introduced and studied by Brendle and Khomskii [1] in connection with the possible descriptive complexities of MAD families in certain forcing extensions of \mathbf{L}.

Definition 2. $\mathfrak{a}_{\text {closed }}$ is the least κ such that there are κ closed subsets of $[\omega]^{\omega}$ whose union is a MAD family in $[\omega]^{\omega}$.

Obviously, $\mathfrak{a}_{\text {closed }} \leq \mathfrak{a}$. Brendle and Khomskii showed in [1] that $\mathfrak{a}_{\text {closed }}$ behaves differently from \mathfrak{a} by producing a model where $\mathfrak{a}_{\text {closed }}=\aleph_{1}<\aleph_{2}=\mathfrak{b}$. They asked whether $\mathfrak{s}=\aleph_{1}$ implies that $\mathfrak{a}_{\text {closed }}=\aleph_{1}$. As $\mathfrak{s} \leq \mathfrak{d}$, our result in this paper provides a partial positive answer to their question.
2. The construction. Assume $\mathfrak{d}=\aleph_{1}$ in this section. We will build \aleph_{1} compact subsets of ω^{ω} whose union is a Van Douwen MAD family. To this end, we will construct a sequence $\left\langle T_{\alpha}: \alpha<\omega_{1}\right\rangle$ of finitely branching subtrees of $\omega^{<\omega}$ such that $\bigcup_{\alpha<\omega_{1}}\left[T_{\alpha}\right]$ has the required properties. Henceforth, $T \subset$ $\omega^{<\omega}$ will mean T is a subtree of $\omega^{<\omega}$.

Definition 3. Let $T \subset \omega^{<\omega}$. Let $A \in[\omega]^{\omega}$ and $p: A \rightarrow \omega$. For any ordinal ξ and $\sigma \in T$ define $\operatorname{rk}_{T, p}(\sigma) \geq \xi$ to mean

$$
\forall \zeta<\xi \exists \tau \in T \exists l \in A\left[\tau \supset \sigma \wedge|\sigma| \leq l<|\tau| \wedge \tau(l)=p(l) \wedge \operatorname{rk}_{T, p}(\tau) \geq \zeta\right]
$$

Note that if $\eta \leq \xi$ and $\operatorname{rk}_{T, p}(\sigma) \geq \xi$, then $\operatorname{rk}_{T, p}(\sigma) \geq \eta$, and that for a limit ordinal ξ, if $\forall \zeta<\xi\left[\operatorname{rk}_{T, p}(\sigma) \geq \zeta\right]$, then $\operatorname{rk}_{T, p}(\sigma) \geq \xi$. Also, for any $\sigma, \tau \in T$, if $\sigma \subset \tau$ and $\operatorname{rk}_{T, p}(\tau) \geq \xi$, then $\operatorname{rk}_{T, p}(\sigma) \geq \xi$. Moreover, if $\operatorname{rk}_{T, p}(\sigma) \nsupseteq \xi$ and if $\tau \in T$ and $l \in A$ are such that $\tau \supset \sigma,|\sigma| \leq l<|\tau|$, and $p(l)=\tau(l)$, then there is $\zeta<\xi$ such that $\mathrm{rk}_{T, p}(\tau) \nsupseteq \zeta$. Therefore, if there is $f \in[T]$ with $|f \cap p|=\aleph_{0}$, and if $\sigma \subset f$ and there is some ordinal ξ such that $\operatorname{rk}_{T, p}(\sigma) \nsupseteq \xi$, then there is some $\sigma \subset \tau \subset f$ and some ordinal $\zeta<\xi$ such that $\operatorname{rk}_{T, p}(\tau) \nsupseteq \zeta$, thus allowing us to construct an infinite, strictly
descending sequence of ordinals. So if $f \in[T]$ with $|f \cap p|=\aleph_{0}$, then for any $\sigma \subset f$ and any ordinal $\xi, \mathrm{rk}_{T, p}(\sigma) \geq \xi$. On the other hand, suppose that $\sigma \in T$ with $\operatorname{rk}_{T, p}(\sigma) \geq \omega_{1}$. Then there is $\tau \in T$ with $\tau \supset \sigma$ and $l \in A$ such that $|\sigma| \leq l<|\tau|, p(l)=\tau(l)$, and $\operatorname{rk}_{T, p}(\tau) \geq \omega_{1}$, allowing us to construct $f \in[T]$ with $\sigma \subset f$ such that $|f \cap p|=\aleph_{0}$.

Definition 4. Suppose $T \subset \omega^{<\omega}, A \in[\omega]^{\omega}$, and $p: A \rightarrow \omega$. Assume that p is a.d. from each $f \in[T]$. Then define $H_{T, p}: T \rightarrow \omega_{1}$ by

$$
H_{T, p}(\sigma)=\min \left\{\xi: \operatorname{rk}_{T, p}(\sigma) \nsupseteq \xi+1\right\} .
$$

Note the following features of this definition:
$\left(*_{1}\right) \forall \sigma, \tau \in T\left[\sigma \subset \tau \Rightarrow H_{T, p}(\sigma) \geq H_{T, p}(\tau)\right]$.
$\left(*_{2}\right)$ For all $\sigma, \tau \in T$ with $\sigma \subset \tau$, if there exists $l \in A$ such that $|\sigma| \leq$ $l<|\tau|$ and $p(l)=\tau(l)$, then $H_{T, p}(\tau)<H_{T, p}(\sigma)$.

On the other hand, notice that if there is a function $H: T \rightarrow \omega_{1}$ such that $\left(*_{1}\right)$ and $\left(*_{2}\right)$ hold with $H_{T, p}$ replaced with H, then p must be a.d. from $[T]$.

Definition 5. I is said to be an interval partition if $I=\left\langle i_{n}: n \in \omega\right\rangle$, where $i_{0}=0$, and $\forall n \in \omega\left[i_{n}<i_{n+1}\right]$. For $n \in \omega, I_{n}$ denotes the interval $\left[i_{n}, i_{n+1}\right)$.

Given two interval partitions I and J, we say that I dominates J and write $J \leq^{*} I$ if $\forall^{\infty} n \in \omega \exists k \in \omega\left[J_{k} \subset I_{n}\right]$.

It is well known that \mathfrak{d} is also the size of the smallest family of interval partitions dominating any interval partition. So fix a sequence $\left\langle I^{\alpha}: \alpha<\omega_{1}\right\rangle$ of interval partitions such that:
(1) $\forall \alpha \leq \beta<\omega_{1}\left[I^{\alpha} \leq^{*} I^{\beta}\right]$.
(2) For any interval partition J, there exists $\alpha<\omega_{1}$ such that $J \leq^{*} I^{\alpha}$. Fix an ω_{1}-scale $\left\langle f_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that $\forall \alpha<\omega_{1} \forall n \in \omega\left[f_{\alpha}(n)<f_{\alpha}(n+1)\right]$. For each $\alpha \geq 1$, define e_{α} and g_{α} by induction on α as follows. If α is a successor, then $e_{\alpha}: \omega \rightarrow \alpha$ is any onto function, and $g_{\alpha}=f_{\alpha}$. If α is a limit, then let $\left\{e_{n}: n \in \omega\right\}$ enumerate $\left\{e_{\xi}: \xi<\alpha\right\}$. Now, define $e_{\alpha}: \omega \rightarrow \alpha$ and $g_{\alpha} \in \omega^{\omega}$ such that
(3) $\forall n \in \omega\left[g_{\alpha}(n) \leq g_{\alpha}(n+1)\right]$.
(4) $\forall n \in \omega \forall i \leq n \forall j \leq f_{\alpha}(n) \exists k<g_{\alpha}(n)\left[e_{\alpha}(k)=e_{i}(j)\right]$.

Observe that such an e_{α} must be a surjection. For each $n \in \omega$, put

$$
w_{\alpha}(n)=\left\{e_{\alpha}(i): i \leq g_{\alpha}(n)\right\}
$$

Now fix $\alpha<\omega_{1}$ and assume that $T_{\epsilon} \subset \omega^{<\omega}$ has been defined for each $\epsilon<\alpha$ such that each T_{ϵ} is finitely branching and $\bigcup_{\epsilon<\alpha}\left[T_{\epsilon}\right]$ is an a.d. family in ω^{ω}. Let $\left\langle\epsilon_{n}: n \in \omega\right\rangle$ enumerate α, possibly with repetitions. For a tree
$T \subset \omega^{<\omega}$ and $l \in \omega$, write

$$
T \upharpoonright l=\{\sigma \in T:|\sigma| \leq l\} \quad \text { and } \quad T(l)=\{\sigma \in T:|\sigma|=l\}
$$

We will define a sequence of natural numbers $0=l_{0}<l_{1}<\cdots$ and determine $T_{\alpha} \upharpoonright l_{n}$ by induction on n. First, $T_{\alpha} \upharpoonright l_{0}=\{0\}$. Assume that l_{n} and $T_{\alpha} \upharpoonright l_{n}$ are given. Suppose also that we are given a sequence of natural numbers $\left\langle k_{i}: i<n\right\rangle$ such that
(5) $\forall i<i+1<n\left[k_{i}<k_{i+1}\right]$.
(6) $I_{k_{i}}^{\alpha} \subset\left[0, l_{n}\right)$.

Let σ^{*} denote the member of $T_{\alpha}\left(l_{n}\right)$ that is rightmost with respect to the lexicographical ordering on $\omega^{l_{n}}$. Suppose we are also given $L_{n}: T_{\alpha}\left(l_{n}\right) \backslash$ $\left\{\sigma^{*}\right\} \rightarrow W_{n}$, an injection. Here W_{n} is the set of all pairs $\left\langle p_{0}, \bar{h}\right\rangle$ such that:
(7) There are $s \in[\omega]^{<\omega}$ and numbers $i_{0}<j_{0} \leq n$ such that
(a) $s \subset \bigcup_{i \in\left[i_{0}, j_{0}\right)} I_{k_{i}}^{\alpha}$,
(b) for each $i \in\left[i_{0}, j_{0}\right),\left|s \cap I_{k_{i}}^{\alpha}\right|=1$,
(c) $p_{0}: s \rightarrow \omega$ such that $\forall m \in s\left[p_{0}(m) \leq f_{\alpha}(m)\right]$.
(8) There is $j_{1}<n$ such that $\bar{h}=\left\langle h_{\epsilon_{i}}: i \leq j_{1}\right\rangle$ (if $\alpha=0$, this means that $\bar{h}=0)$. For each $i \leq j_{1}, h_{\epsilon_{i}}: T_{\epsilon_{i}} \upharpoonright \max (s)+1 \rightarrow w_{\alpha}(\max (s)+1)$ such that $\left(*_{1}\right)$ and $\left(*_{2}\right)$ hold with T replaced with $T_{\epsilon_{i}} \upharpoonright \max (s)+1$, $H_{T, p}$ replaced with $h_{\epsilon_{i}}, A$ with s, and p with p_{0}.
Assume that for each $i<n$, we are also given $\sigma_{i} \in T_{\alpha}\left(l_{i}\right)$, which we will call the active node at stage i. Note that $T_{\alpha}\left(l_{0}\right)=\{0\}$, and so $\sigma_{0}=0$. For each $\sigma \in T_{\alpha}\left(l_{n}\right)$, let $\Delta(\sigma)=\max \left(\{0\} \cup\left\{i<n: \sigma_{i}=\sigma \upharpoonright l_{i}\right\}\right)$. For, $\sigma, \tau \in T_{\alpha}\left(l_{n}\right)$, say $\sigma \triangleleft \tau$ if either $\Delta(\sigma)<\Delta(\tau)$, or $\Delta(\sigma)=\Delta(\tau)$ and σ is to the left of τ in the lexicographic ordering on $\omega^{l_{n}}$. Let σ_{n} be the \triangleleft-minimal member of $T_{\alpha}\left(l_{n}\right)$. Then σ_{n} will be active at stage n. The meaning of this is that none of the other nodes in $T_{\alpha}\left(l_{n}\right)$ will be allowed to branch at stage n. Choose k_{n} greater than all k_{i} for $i<n$ such that $I_{k_{n}}^{\alpha} \subset\left[l_{n}, \infty\right)$. Let V_{n} be the set of all pairs $\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle$ such that:
(9) There exist s and a natural number $i_{1} \leq n$ such that
(a) $s \subset \bigcup_{i \in\left[i_{1}, n+1\right)} I_{k_{i}}^{\alpha}$,
(b) for each $i \in\left[i_{1}, n+1\right),\left|s \cap I_{k_{i}}^{\alpha}\right|=1$,
(c) $p_{1}: s \rightarrow \omega$ such that $\forall m \in s\left[p_{1}(m) \leq f_{\alpha}(m)\right]$.
(10) There is $j_{2} \leq n$ such that $\overline{\mathbf{h}}=\left\langle\mathbf{h}_{\epsilon_{i}}: i \leq j_{2}\right\rangle$. For each $i \leq j_{2}$, $\mathbf{h}_{\epsilon_{i}}: T_{\epsilon_{i}} \upharpoonright \max (s)+1 \rightarrow w_{\alpha}(\max (s)+1)$ such that $\left(*_{1}\right)$ and $\left(*_{2}\right)$ are satisfied with T replaced with $T_{\epsilon_{i}} \upharpoonright \max (s)+1, H_{T, p}$ replaced with $\mathbf{h}_{\epsilon_{i}}, A$ with s, and p with p_{1}.
Note that V_{n} is always finite. Now, the construction splits into two cases.

CASE I: $\sigma_{n} \neq \sigma^{*}$. Put $\left\langle p_{0}, \bar{h}\right\rangle=L_{n}\left(\sigma_{n}\right)$. Let $i_{0}<n$ be as in (7) above, and let $j_{1}<n$ be as in (8). Let

$$
\begin{aligned}
U_{n}=\left\{\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle \in V_{n}: p_{0} \subset p_{1} \wedge i_{0}=\right. & i_{1} \\
\wedge & j_{1}<j_{2} \\
& \left.\wedge \forall i \leq j_{1}\left[\mathbf{h}_{\epsilon_{i}} \upharpoonright \operatorname{dom}\left(h_{\epsilon_{i}}\right)=h_{\epsilon_{i}}\right]\right\}
\end{aligned}
$$

Here i_{1} is as in (9), and j_{2} is as in (10) with respect to $\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle$. Now choose $l_{n+1}>l_{n}$ large enough so that $I_{k_{n}}^{\alpha} \subset\left[l_{n}, l_{n+1}\right)$ and so that it is possible to pick $\left\{\tau_{x}: x \in U_{n}\right\} \subset \omega^{l_{n+1}}$ and $\left\{\tau_{\sigma}: \sigma \in T_{\alpha}\left(l_{n}\right)\right\} \subset \omega^{l_{n+1}}$ such that the following conditions are satisfied:
(11) For each $x \in U_{n}, \tau_{x} \supset \sigma_{n}$, and for each $\sigma \in T_{\alpha}\left(l_{n}\right), \tau_{\sigma} \supset \sigma$.
(12) For each $x, y \in U_{n}$, if $x \neq y$, then there exists $m \in\left[l_{n}, l_{n+1}\right)$ such that $\tau_{x}(m) \neq \tau_{y}(m)$. For each $x \in U_{n}$, there exists $m \in$ $\left[l_{n}, l_{n+1}\right)$ such that $\tau_{x}(m) \neq \tau_{\sigma_{n}}(m)$. For $x=\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle \in U_{n}$, if $\left\{i^{*}\right\}=\operatorname{dom}\left(p_{1}\right) \cap I_{k_{n}}^{\alpha}$, then $p_{1}\left(i^{*}\right)=\tau_{x}\left(i^{*}\right)$.
(13) For each $x \in U_{n}$ and $\sigma \in T_{\alpha}\left(l_{n}\right), \forall m \in\left[l_{n}, l_{n+1}\right)\left[\tau_{x}(m) \neq \tau_{\sigma}(m)\right]$. For $\sigma, \eta \in T_{\alpha}\left(l_{n}\right)$, if $\sigma \neq \eta$, then $\forall m \in\left[l_{n}, l_{n+1}\right)\left[\tau_{\sigma}(m) \neq \tau_{\eta}(m)\right]$.
(14) For each $i \leq n, \tau \in T_{\epsilon_{i}}\left(l_{n+1}\right), \sigma \in T_{\alpha}\left(l_{n}\right)$ and $m \in\left[l_{n}, l_{n+1}\right), \tau(m) \neq$ $\tau_{\sigma}(m)$. For each $x \in U_{n}, i \leq j_{2}, \tau \in T_{\epsilon_{i}}\left(l_{n+1}\right)$ and $m \in\left[l_{n}, l_{n+1}\right)$, if $\tau_{x}(m)=\tau(m)$, then $m \in \operatorname{dom}\left(p_{1}\right)$ and $p_{1}(m)=\tau_{x}(m)$.

Define L_{n+1} as follows. For any $x \in U_{n}, L_{n+1}\left(\tau_{x}\right)=x$. For any $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash$ $\left\{\sigma^{*}\right\}, L_{n+1}\left(\tau_{\sigma}\right)=L_{n}(\sigma)$. This finishes Case I.

CASE II: $\sigma_{n}=\sigma^{*}$. For each $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$, let $\left\langle p_{0}(\sigma), \bar{h}(\sigma)\right\rangle=L_{n}(\sigma)$. Let $i_{0}(\sigma)<n$ witness (7) for $L_{n}(\sigma)$ and let $j_{1}(\sigma)<n$ witness (8) for $L_{n}(\sigma)$. Let U_{n} be the set of all $\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle \in V_{n}$ such that there is no $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$ so that

$$
p_{0}(\sigma) \subset p_{1} \wedge i_{0}(\sigma)=i_{1} \wedge j_{1}(\sigma)<j_{2} \wedge \forall i \leq j_{1}(\sigma)\left[\mathbf{h}_{\epsilon_{i}}\left\lceil\operatorname{dom}\left(h_{\epsilon_{i}}\right)=h_{\epsilon_{i}}\right] .\right.
$$

Here $i_{1} \leq n$ and $j_{2} \leq n$ witness (9) and (10) respectively with respect to $\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle$. Choose $l_{n+1}>l_{n}$ large enough so that $I_{k_{n}}^{\alpha} \subset\left[l_{n}, l_{n+1}\right)$ and so that it is possible to choose $\left\{\tau^{*}\right\},\left\{\tau_{x}: x \in U_{n}\right\}$, and $\left\{\tau_{\sigma}: \sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}\right\}$, subsets of $\omega^{l_{n+1}}$, satisfying the following conditions:
$\tau^{*} \supset \sigma_{n}$. For each $x \in U_{n}, \tau_{x} \supset \sigma_{n}$. For each $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}, \tau_{\sigma} \supset \sigma$. τ^{*} is the rightmost branch of $T_{\alpha}\left(l_{n+1}\right)$. For each $x \in U_{n}$, there exists $m \in\left[l_{n}, l_{n+1}\right)$ such that $\tau^{*}(m) \neq \tau_{x}(m)$. For each $x, y \in U_{n}$, if $x \neq y$, then there is $m \in\left[l_{n}, l_{n+1}\right)$ so that $\tau_{x}(m) \neq \tau_{y}(m)$. For each $x=\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle \in U_{n}$, if $\left\{i^{*}\right\}=I_{k_{n}}^{\alpha} \cap \operatorname{dom}\left(p_{1}\right)$, then $p_{1}\left(i^{*}\right)=\tau_{x}\left(i^{*}\right)$.
(17) For each $x \in U_{n}$ and $m \in\left[l_{n}, l_{n+1}\right), \tau_{x}(m) \neq \tau^{*}(m)$. For each $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$ and for each $m \in\left[l_{n}, l_{n+1}\right), \tau^{*}(m) \neq \tau_{\sigma}(m)$, and for each $x \in U_{n}, \tau_{\sigma}(m) \neq \tau_{x}(m)$. For each $\sigma, \eta \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$, if $\sigma \neq \eta$, then for all $m \in\left[l_{n}, l_{n+1}\right), \tau_{\sigma}(m) \neq \tau_{\eta}(m)$.
(18) For each $i \leq n, \tau \in T_{\epsilon_{i}}\left(l_{n+1}\right)$, $m \in\left[l_{n}, l_{n+1}\right)$, and $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$, $\tau^{*}(m) \neq \tau(m)$ and $\tau_{\sigma}(m) \neq \tau(m)$. For each $x=\left\langle p_{1}, \overline{\mathbf{h}}\right\rangle \in U_{n}$, $i \leq j_{2}, \tau \in \tau_{\epsilon_{i}}\left(l_{n+1}\right)$ and $m \in\left[l_{n}, l_{n+1}\right)$, if $\tau_{x}(m)=\tau(m)$, then $m \in \operatorname{dom}\left(p_{1}\right)$ and $p_{1}(m)=\tau_{x}(m)$.

For each $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$, define $L_{n+1}\left(\tau_{\sigma}\right)=L_{n}(\sigma)$. For each $x \in U_{n}$, set $L_{n+1}\left(\tau_{x}\right)=x$. This completes the construction. We now check that it is as required.

Lemma 6. For each $f \in\left[T_{\alpha}\right]$, there are infinitely many $n \in \omega$ such that $\sigma_{n}=f \upharpoonright l_{n}$.

Proof. For each $n \in \omega$ put $\Theta(n)=\min \left\{\Delta(\sigma): \sigma \in T_{\alpha}\left(l_{n}\right)\right\}$. It is clear from the construction that $\Theta(n+1) \geq \Theta(n)$. If the lemma fails, then there are m and $\tau \in T_{\alpha}\left(l_{m+1}\right)$ with the property that for infinitely many $n>m+1$, there is a $\sigma \in T_{\alpha}\left(l_{n}\right)$ such that $\Theta(n)=\Delta(\sigma)=m$ and $\sigma \upharpoonright l_{m+1}=\tau$. Let τ be the leftmost node in $T_{\alpha}\left(l_{m+1}\right)$ with this property. Choose $n_{1}>n_{0}>m+1$ and $\sigma \in T_{\alpha}\left(l_{n_{1}}\right)$ such that $\Theta\left(n_{1}\right)=\Theta\left(n_{0}\right)=\Delta(\sigma)=m, \sigma \upharpoonright l_{m+1}=\tau$, and there is no $\eta \in T_{\alpha}\left(l_{n_{0}}\right)$ such that $\Delta(\eta)=m$ and $\eta \upharpoonright l_{m+1}$ is to the left of τ. Note that $\Delta\left(\sigma \upharpoonright l_{n_{0}}\right)=m$. So $\sigma_{n_{0}}$ is to the left of $\sigma \upharpoonright l_{n_{0}}$, and $\sigma_{n_{0}} \upharpoonright l_{m+1}$ is not to the left of τ, whence $\sigma_{n_{0}} \upharpoonright l_{m+1}=\tau$. But then there is some $n \in\left[m+1, n_{0}\right)$ where $\sigma \upharpoonright l_{n}$ was active, a contradiction.

Note that Lemma 6 implies that for any $\sigma \in T_{\alpha}$, there is a unique minimal extension of σ which is active. Lemma 6 also implies that there are infinitely many n where Case II occurs.

Lemma 7. T_{α} is finitely branching and $\bigcup_{\epsilon \leq \alpha}\left[T_{\epsilon}\right]$ is a.d. in ω^{ω}.
Proof. It is clear from the construction that T_{α} is finitely branching. Fix $f, g \in\left[T_{\alpha}\right]$ with $f \neq g$. Let $n=\max \left\{i \in \omega: f\left\lceil l_{i}=g \upharpoonright l_{i}\right\}\right.$. It is clear from the construction that $\forall m \geq l_{n+1}[f(m) \neq g(m)]$.

Next, fix $\epsilon<\alpha$. Suppose $\epsilon=\epsilon_{i}$. Let $h \in\left[T_{\epsilon_{i}}\right]$ and $f \in\left[T_{\alpha}\right]$, and suppose for a contradiction that $|h \cap f|=\aleph_{0}$. So there are infinitely many $n \in \omega$ such that $f \upharpoonright\left[l_{n}, l_{n+1}\right) \cap h\left\lceil\left[l_{n}, l_{n+1}\right) \neq 0\right.$. For any $n \geq i$, this can only happen if $f\left\lceil l_{n}=\sigma_{n}\right.$ and $f\left\lceil l_{n+1}=\tau_{x_{n}}\right.$ for some $x_{n} \in U_{n}$. This is because if $n \geq i$ and $f \upharpoonright\left[l_{n}, l_{n+1}\right) \cap h \upharpoonright\left[l_{n}, l_{n+1}\right) \neq 0$, then when Case I occurs, (14) says that $f\left\lceil l_{n+1} \neq \tau_{\sigma}\right.$ for any $\sigma \in T_{\alpha}\left(l_{n}\right)$, while when Case II occurs, by (18), $f \upharpoonright l_{n+1} \neq$ τ^{*} and also $f \upharpoonright l_{n+1} \neq \tau_{\sigma}$ for any $\sigma \in T_{\alpha}\left(l_{n}\right) \backslash\left\{\sigma_{n}\right\}$. So $f \upharpoonright l_{n+1}=\tau_{x_{n}}$ for some $x_{n} \in U_{n}$, and $f\left\lceil l_{n}=\sigma_{n}\right.$. Now, put $x_{n}=\left\langle p_{1, n}, \overline{\mathbf{h}}_{n}\right\rangle$. Note that in this case $L_{n+1}\left(f\left\lceil l_{n+1}\right)=x_{n}\right.$. For such n, let $j_{2}(n)$ be as in (10) with respect to x_{n}. So for infinitely many such $n, j_{2}(n) \geq i$. But then for infinitely many such n, $\mathbf{h}_{\epsilon_{i}, n}\left(h \upharpoonright \max \left(\operatorname{dom}\left(p_{1, n}\right)\right)+1\right)<\mathbf{h}_{\epsilon_{i}, n}\left(h \upharpoonright l_{n}\right)$, producing an infinite strictly descending sequence of ordinals.

Lemma 8. For each $A \in[\omega]^{\omega}$ and $p: A \rightarrow \omega$, there are $\alpha<\omega_{1}$ and $f \in\left[T_{\alpha}\right]$ such that $|p \cap f|=\aleph_{0}$.

Proof. Suppose for a contradiction that there are $A \in[\omega]^{\omega}$ and $p: A \rightarrow \omega$ such that p is a.d. from $\left[T_{\alpha}\right]$, for each $\alpha<\omega_{1}$. Let $M \prec H(\theta)$ be a countable elementary submodel containing everything relevant. Put $\alpha=M \cap \omega_{1}$. For each $\epsilon<\alpha$, let H_{ϵ} denote $H_{T_{\epsilon}, p}$, and note that H_{ϵ} and $\operatorname{ran}\left(H_{\epsilon}\right)$ are members of M. Let $\xi_{\epsilon}=\sup \left(\operatorname{ran}\left(H_{\epsilon}\right)\right)+1<\alpha$. Find $g \in M \cap \omega^{\omega}$ such that for $n \in \omega$, $H_{\epsilon}^{\prime \prime} T_{\epsilon} \upharpoonright n \subset\left\{e_{\xi_{\epsilon}}(j): j \leq g(n)\right\}$. Since $\forall^{\infty} n \in \omega\left[g(n) \leq f_{\alpha}(n)\right]$, it follows from (4) that for all but finitely many $n \in \omega$, and all $\sigma \in T_{\epsilon} \upharpoonright n, H_{\epsilon}(\sigma) \in w_{\alpha}(n)$. Now, find an infinite $q \subset p$ such that $\forall m \in \operatorname{dom}(q)\left[q(m) \leq f_{\alpha}(m)\right]$ and $\forall^{\infty} n \in \omega\left[\left|\operatorname{dom}(q) \cap I_{n}^{\alpha}\right|=1\right]$. Note that for any $\epsilon<\alpha,\left(*_{1}\right)$ and $\left(*_{2}\right)$ are satisfied with T replaced with $T_{\epsilon}, H_{T, p}$ replaced with H_{ϵ}, A with $\operatorname{dom}(q)$, and p with q. But now, it follows from the construction that there is $f \in\left[T_{\alpha}\right]$ such that for infinitely many $n \in \omega$, there is $m \in\left[l_{n}, l_{n+1}\right) \cap \operatorname{dom}(q)$ such that $q(m)=f(m)$.

We describe how to find such an $f \in\left[T_{\alpha}\right]$. We have $\forall^{\infty} n \in \omega\left[\left|\operatorname{dom}(q) \cap I_{k_{n}}^{\alpha}\right|\right.$ $=1]$. For each $n \in \omega$ such that $\left|\operatorname{dom}(q) \cap I_{k_{n}}^{\alpha}\right|=1$, let m_{n} be the unique member of $\operatorname{dom}(q) \cap I_{k_{n}}^{\alpha}$. We observed above that for any $\epsilon<\alpha$, for all but finitely many $n \in \omega$, and each $\sigma \in T_{\epsilon} \upharpoonright n, H_{\epsilon}(\sigma) \in w_{\alpha}(n)$. It follows that for any $i \in \omega$, there is $u_{i} \geq i$ such that for each $j \leq i$ and each $n \geq u_{i}, m_{n}$ is defined and $\forall \sigma \in T_{\epsilon_{j}}\left\lceil m_{n}+1\left[H_{\epsilon_{j}}(\sigma) \in w_{\alpha}\left(m_{n}+1\right)\right]\right.$. Choose $n^{*} \geq u_{0}$ so that Case II occurs at stage n^{*}. Put $\eta_{0}=\sigma_{n^{*}}$. Define $s_{0}=\left\{m_{n^{*}}\right\}$ and $q_{0}=q \upharpoonright s_{0}$. Put $\bar{h}_{0}=\left\langle h_{0}\right\rangle$, where $h_{0}=H_{\epsilon_{0}} \upharpoonright\left(T_{\epsilon_{0}} \upharpoonright \max \left(s_{0}\right)+1\right)$. Note that h_{0} is a map from $T_{\epsilon_{0}} \upharpoonright \max \left(s_{0}\right)+1$ to $w_{\alpha}\left(\max \left(s_{0}\right)+1\right)$, and so $x_{0}=\left\langle q_{0}, \bar{h}_{0}\right\rangle \in V_{n^{*}}$. Since $m_{n^{*}} \notin I_{k_{i}}^{\alpha}$ for any $i<n^{*}$, it follows that $x_{0} \in U_{n^{*}}$. Put $\eta_{1}=\tau_{x_{0}} \supsetneq \eta_{0}$. Notice that $\eta_{1}\left(m_{n^{*}}\right)=q\left(m_{n^{*}}\right)$. Notice also that η_{1} is not the rightmost branch of $T_{\alpha}\left(l_{\left(n^{*}+1\right)}\right)$, and so if σ is any extension of η_{1} that happens to be active at a certain stage, then Case I necessarily occurs at that stage. Finally, note that $L_{n^{*}+1}\left(\eta_{1}\right)=x_{0}$.

Now, for each $n>n^{*}$, let $s_{n}=\left\{m_{j}: n^{*} \leq j \leq n\right\}$, and put $q_{n}=q \upharpoonright s_{n}$. For any $i>0$ and $n>n^{*}$, if $n \geq u_{i}$, then for each $j \leq i$, define $h_{j}^{n}=$ $H_{\epsilon_{j}} \upharpoonright\left(T_{\epsilon_{j}} \upharpoonright \max \left(s_{n}\right)+1\right)$. Put $\bar{h}_{i}^{n}=\left\langle h_{j}^{n}: j \leq i\right\rangle$ and $x_{i}^{n}=\left\langle q_{n}, \bar{h}_{i}^{n}\right\rangle$. Note that for any $i>0$ and $n>n^{*}$, if $n \geq u_{i}$, then $x_{i}^{n} \in V_{n}$. Moreover, if at stage n, Case I occurs and $L_{n}\left(\sigma_{n}\right)=x_{i-1}^{v}$ for some $v \in \omega$, then $x_{i}^{n} \in U_{n}$; here $x_{0}^{v}=x_{0}$ for all $v \in \omega$. Now, it is easy to see that there is a branch $g \in\left[T_{\alpha}\right]$ such that $\eta_{1} \subset g$ and $\forall n \geq n^{*}+1\left[L_{n}\left(g \upharpoonright l_{n}\right)=x_{0}\right]$. This is because for any $n \geq n^{*}+1$, given $g \upharpoonright l_{n}$ such that $\eta_{1} \subset g \upharpoonright l_{n}$ and $L_{n}\left(g \upharpoonright l_{n}\right)=x_{0}$, if σ is the unique minimal extension of $g \upharpoonright l_{n}$ that is active, then $\tau_{\sigma} \supsetneq g \upharpoonright l_{n}$ and $L_{u+1}\left(\tau_{\sigma}\right)=x_{0}$, where u is the stage at which σ is active. Applying Lemma 6 to g, find $n^{* *}$ such that $n^{* *}>n^{*}, n^{* *} \geq u_{1}$, and $\sigma_{n^{* *}}=g \upharpoonright l_{n^{* *}}$. It follows that $x_{1}^{n^{* *}} \in U_{n^{* *}}$. Let $\eta_{2}=\tau_{x_{1}^{n^{* *}}} \supsetneq \eta_{1}$. Note that $\eta_{2}\left(m_{n^{* *}}\right)=q\left(m_{n^{* *}}\right)$ and that $L_{n^{* *}+1}\left(\eta_{2}\right)=x_{1}^{n^{* *}}$.

Continuing in this fashion, we get

$$
f=\bigcup_{n \in \omega} \eta_{n} \in\left[T_{\alpha}\right] \quad \text { with } \quad|f \cap q|=\omega
$$

3. Remarks and questions. The construction in this paper is very specific to ω_{1}; indeed, it is possible to show that \mathfrak{d} is not always an upper bound for $\mathfrak{a}_{\text {closed }}$. A modification of the methods of Section 4 of [4] shows that if κ is a measurable cardinal and if

$$
\lambda=\operatorname{cf}(\lambda)=\lambda^{\kappa}>\mu=\operatorname{cf}(\mu)>\kappa
$$

then there is a c.c.c. poset \mathbb{P} such that $|\mathbb{P}|=\lambda$, and \mathbb{P} forces that $\mathfrak{b}=\mathfrak{d}=\mu$ and $\mathfrak{a}=\mathfrak{a}_{\text {closed }}=\mathfrak{c}=\lambda$.

As mentioned in Section 1, we see the result in this paper as providing a weak positive answer to the following basic question, which has remained open for long.

Question 9. If $\mathfrak{d}=\aleph_{1}$, then is $\mathfrak{a}=\aleph_{1}$?
There are also several open questions about upper and lower bounds for $\mathfrak{a}_{\text {closed }}$.

Question 10 (Brendle and Khomskii [1]). If $\mathfrak{s}=\aleph_{1}$, then is $\mathfrak{a}_{\text {closed }}=\aleph_{1}$?
Question 11. Is $\mathfrak{h} \leq \mathfrak{a}_{\text {closed }}$?
Regarding Question 10, it is proved in Brendle and Khomskii [1] that if \mathbf{V} is any ground model satisfying CH , then any finite support iteration of Suslin c.c.c. posets in \mathbf{V} forces that $\mathfrak{a}_{\text {closed }}=\aleph_{1}$. It is well known that \mathbf{V} remains a splitting family after such a finite support iteration of Suslin c.c.c. posets. Showing a positive answer to Question 10 would be an improvement of the result in this paper.

Acknowledgments. The first author was partially supported by Grants-in-Aid for Scientific Research for JSPS Fellows No. 23•01017.

The research of the second author was partially supported by NSF grant DMS 1101597, and by the United States-Israel Binational Science Foundation (Grant no. 2006108).

References

[1] J. Brendle and Y. Khomskii, \aleph_{1}-perfect MAD families, in preparation.
[2] E. Pearl (ed.), Open Problems in Topology. II, Elsevier, Amsterdam, 2007.
[3] D. Raghavan, There is a Van Douwen MAD family, Trans. Amer. Math. Soc. 362 (2010), 5879-5891.
[4] S. Shelah, Two cardinal invariants of the continuum $(\mathfrak{d}<\mathfrak{a})$ and FS linearly ordered iterated forcing, Acta Math. 192 (2004), 187-223.
[5] E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.

Dilip Raghavan
Graduate School of System Informatics
Kobe University
Kobe 657-8501, Japan
E-mail: raghavan@math.toronto.edu
http://www.math.toronto.edu/raghavan
Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
and
Department of Mathematics
Rutgers University
Piscataway, NJ 08854, U.S.A.
E-mail: shelah@math.huji.ac.il

Received 12 October 2011;
in revised form 2 March 2012

