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Abstract. Let ω denote the set of natural numbers. We prove: for every mod-finite
ascending chain {Tα : α < λ} of infinite subsets of ω, there exists M ⊂ [ω]ω, an infinite
maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such
that the Stone–Čech remainder βψ \ψ of the associated ψ-space, ψ = ψ(ω,M), is homeo-
morphic to λ+ 1 with the order topology. We also prove that for every λ < t+, where t is
the tower number, there exists a mod-finite ascending chain {Tα : α < λ}, hence a ψ-space
with Stone–Čech remainder homeomorphic to λ+ 1. This generalizes a result credited to
S. Mrówka by J. Terasawa which states that there is a MADF M such that βψ \ ψ is
homeomorphic to ω1 + 1.

1. Introduction. Let ω denote the set of natural numbers. Let [ω]ω

denote the set of all countably infinite subsets of ω. Sets A,B ∈ [ω]ω are
said to be almost disjoint provided A∩B is finite. An infinite familyA ⊂ [ω]ω

is called an almost disjoint family (ADF) if any two elements of A are almost
disjoint. An ADF M is called a maximal almost disjoint family (MADF) if
it is not properly contained in another ADF.

We have considered almost disjoint families of countable subsets of an
arbitrary cardinal κ in [4], [5], but in this paper we only consider the classical
case κ = ω.

Almost disjoint families, especially MADF’s, are of interest in set theory
(e.g., [8], [14]), topology (e.g., [6], [13]), Boolean algebra (e.g., [1], [3]) and
Banach spaces (e.g., [10], [11]).

An important interest in topology of MADF’s concerns the well-known
class of topological spaces called ψ-spaces (e.g., see [2, §11]; for some his-
torical notes, see [4, §2]). For any ADF A ⊂ [ω]ω, let ψ(ω,A) denote the
space with underlying set ω ∪ A and with the topology having as a base
all singletons {α} for α < ω and all sets of the form {A} ∪ (A \ F ) where
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A ∈ A and F is finite. We call ψ(ω,A) the ψ-space associated with A, and
the class of spaces of the form ψ(ω,A) the class of ψ-spaces on ω (or on
[ω]ω). It is well-known that the topology of ψ(ω,A) is closely related to the
ADF A, however all ψ-spaces on ω, regardless of which ADF A is used, are
first countable, zero-dimensional, Hausdorff, locally compact non-compact
spaces in which ω is an open dense set of isolated points (hence the ψ-space
is separable), and ψ \ ω = A is a closed discrete set. Maximal ADF’s are of
additional interest because M is maximal if and only if the ψ-space associ-
ated with M is pseudocompact (i.e., every real-valued continuous function
defined on ψ is bounded [12]).

For A,B ∈ [ω]ω, A ⊂∗ B means that A \B is finite, and A <∗ B means
that A ⊂∗ B and B \ A is infinite. Let X ∈ [ω]ω. A mod-finite ascending
chain of order type λ in X (chain for short) is a family {Tα : α < λ} ⊂ [ω]ω,
where λ is an ordinal, such that Tα <

∗ X for all α < λ, and β < α < λ imply
Tβ <

∗ Tα. We also say “chain indexed by λ” when the particular ordinal λ
is needed. Let c denote the cardinality of the continuum, and let t denote
the tower number, i.e., the smallest cardinality of a tower in [ω]ω (e.g., see
[2] or [16]).

We use the approach to Stone–Čech compactifications in [7]. For E ⊂ ψ,
we let E denote the closure of E in βψ. The closure of E in ψ will be denoted
by clψ(E).

J. Terasawa [15] proved that every compact metric space is the Stone–
Čech remainder of a ψ-space on ω for a suitably chosen MADF M, and he
stated that the ordinal ω1 + 1 with the order topology is also the remainder
of a ψ-space. He attributed that result to S. Mrówka. Our main theorem
generalizes this result as follows.

Theorem 1.1. If there exists a chain {Tα : α < λ} in [ω]ω indexed by
the ordinal λ, then there exists a MADF M ⊂ [ω]ω such that βψ \ ψ is
homeomorphic to λ+ 1 with the order topology.

Concerning the existence of ascending chains, we prove

Theorem 1.2. If λ < t+, then there exists an ascending ordered chain
in ω of order type λ. Thus there exists a MADFM⊂ [ω]ω such that βψ\ψ ∼=
λ+ 1.

Combining these two theorems we get

Theorem 1.3. For every successor ordinal λ + 1 < t+ there exists a
MADF M⊂ [ω]ω such that the Stone–Čech remainder of ψ(ω,M) is hom-
eomorphic to λ+ 1 with the order topology.

Theorem 1.3 implies the result attributed to Mrówka because, as is well
known, t is an uncountable cardinal, hence ω1 + 1 < t+.
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Theorem 1.3 is the best possible in ZFC in the sense that it is consistent
that the ordinal t+ + 1 is not the Stone–Čech remainder of any ψ-space
on ω. This follows because a compact separable space has weight at most c
[9, 2.3(i)]. Hence a compact separable space cannot contain a subspace with
c+ isolated points; in particular cannot contain a copy of the ordinal c+ + 1.
Hence in any model where t = c, also t+ = c+, and this implies that t+ + 1
is not the Stone–Čech remainder of any ψ-space on ω.

We establish the homeomorphism between the Stone–Čech remainder,
βψ \ ψ, and λ+ 1 using the following simple result.

Lemma 1.4. Let X be a Hausdorff space and {Oα : α < λ} a cover of
X by compact, clopen sets such that, for all β < α < λ,

(1) Oβ ⊂ Oα, and
(2) |Oα \

⋃
β<αOβ| = 1 for α < λ.

Then X is homeomorphic to λ with the order topology.

Proof. For α < λ, let xα ∈ X be the point such that {xα} = Oα \⋃
β<αOβ, and define ϕ : λ→ X by ϕ(α) = xα. Clearly ϕ is one-to-one and

onto X. By the compactness of Oα, the decreasing family {Oα \Oβ : β < α}
is a local base for xα in X. We show that ϕ is a homeomorphism by showing
that ϕ((γ, α]) = Oα \ Oγ for all γ < α < λ. If x ∈ ϕ((γ, α]), there exists
γ < β ≤ α such that x = ϕ(β) = xβ. Since xβ ∈ Oβ and, by (1), Oβ ⊂ Oα,
we see that ϕ(β) ∈ Oα. For γ < β, xβ 6∈ Oγ . Thus ϕ(β) = xβ ∈ Oα \ Oγ .
Conversely, let x ∈ Oα \ Oγ , and let β ≤ α be the first ordinal such that
x ∈ Oβ. Then x ∈ Oβ \

⋃
τ<β Oτ ; so x = xβ. We have γ < β, so γ < β ≤ α

and x = ϕ(β). Thus x ∈ ϕ((γ, α]). This proves the equality ϕ((γ, α]) =
Oα \Oγ , and shows that ϕ is a homeomorphism.

Lemma 1.5. If Z is a zero set in βψ, then Z ∩M ⊃ Z ∩ (βψ \ ψ), and
if Z ∩ (βψ \ ψ) 6= ∅, then Z ∩M is infinite.

Proof. Let p ∈ Z ∩ (βψ \ ψ). Then p is a free z-ultrafilter on ψ. Let
Z ′ be any zero-set neighborhood of p in βψ. Since ψ is pseudocompact,
the z-ultrafilter p is countably complete, i.e., if Zn ∈ p for n ∈ ω, then⋂
n∈ω Zn ∈ p ([7, 8.6]). For n ∈ ω, Zn = ψ \ {n} is a (clopen) zero set in ψ,

and since p is free, ψ \ {n} ∈ p. Now we have Z ′′ = Z ∩ Z ′ ∩
⋂
n∈ω Zi ∈ p,

and Z ′′ ⊂ M. This shows that the zero-set neighborhood Z ′ of p has a
non-empty intersection with Z ∩M. Since Z ′ was arbitrary, it follows that
p ∈ Z ∩M. The second statement in the lemma follows from the first.

Let F ∈ [ω]ω and {Tα : α < λ} be a chain in X. We say that the set
F diagonalizes the chain in X (or in [X]ω) provided F ⊂∗ X and for all
β < α, |F ∩ Tβ| < ω. If F ⊂ [ω]ω is a family of sets, we say F diagonalizes
the chain in X provided each set F ∈ F diagonalizes the chain in X. We



86 A. Dow and J. E. Vaughan

note that there exists F that diagonalizes a chain {Tβ : β < α} in X if and
only if the chain is a not a tower in X (consider X \ F ).

Given disjoint sets A,B ∈ [ω]ω and A ⊂ [A]ω ADF, B ⊂ [B]ω ADF with
|A| = |B|, the (Mrówka) join of A and B is defined by A⊕B = {A∪ φ(A) :
A ∈ A}, where φ : A → B is a bijection (see [4, §4]). Clearly A ⊕ B is an
ADF and is maximal if both A and B are maximal.

We call a MADFM a Mrówka MADF provided |βψ \ψ| = 1. As proved
by S. Mrówka in [13], there exists M⊂ [ω]ω such that |βψ \ ψ| = 1.

Lemma 1.6. Let N,ω \ N ∈ [ω]ω, B ⊂ [N ]ω be a Mrówka MADF, and
A ⊂ [ω \ N ]ω an ADF such that |B| = |A| ≥ ω. If M ⊂ [ω]ω is a MADF
and A ⊕ B ⊂ M then A ⊕ B has exactly one limit point in βψ, where
ψ = ψ(ω,M).

Proof. The proof is similar to that of [5, Theorem 1.3, Case 3].

2. Proofs of the main results

Proof of Theorem 1.1. Let {Tβ : β < λ} be a chain in Tλ. For convenience
we identify Tλ with ω. We must construct a MADF M ⊂ [ω]ω such that
βψ \ ψ is homeomorphic to λ+ 1. For λ finite, say λ = n ≥ 1, we prove the
theorem by taking n disjoint copies of ω each with a Mrówka MADF (i.e.,
|βψ\ψ| = 1). Then taking unions yields the theorem. If we prove the theorem
for a limit ordinal λ, then we get it for successor ordinals, λ+ 1, λ+ 2, . . . ,
because all these ordinal spaces are homeomorphic to λ+1. Thus we assume
that {Tβ : β < λ} is a chain and λ is a limit ordinal.

We want our chain to have the following property:

(∗) For α ≤ λ, if cf(α) > ω and {Tβ : β < α} is not a tower in Tα, then
it is not a tower in any H <∗ Tα.

The given chain {Tβ : β < λ} may not have this property, so we adjust
it: For every α < λ, if there exists H <∗ Tα such that {Tβ : β < α} is a tower
in H (hence cf(α) > ω), then we change the definition of Tα by replacing
Tα with H (then Tα = H). After this change, {Tβ : β < α} is a tower in Tα.
For those α < λ for which this change is made, Tα becomes a bit smaller
than it was and the ring Tα+1 \ Tα becomes a bit larger. No change is made
for any other α < λ. This adjusted chain clearly has property (∗).

Now we proceed to the construction of the MADF M. For α ≤ λ define

ξα = {A ⊂ [Tα]ω : A is an ADF diagonalizing {Tβ : β < α} in Tα}.
Note that

ξα = ∅ ⇔ {Tβ : β < α} is a tower in [Tα]ω.

When ξα 6= ∅, we partially order ξα by set inclusion. Then by Zorn’s
Lemma, there is a family Nα ∈ ξα such that Nα is a maximal element in
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the poset ξα. Since there exists a MADF of cardinality c, we may assume
that |Nα| = c. Pick Nα ∈ Nα and let Bα ⊂ [Nα]ω be a Mrówka MADF
with |Bα| = c. Since Nα diagonalizes the chain, Bα diagonalizes the chain.
Then Bα⊕ (Nα \ {Nα}) is an ADF, and diagonalizes the chain {Tβ : β < α}
(obviously if each of two sets diagonalizes a chain, then their union also
does).

As an intermediate step before we get to M we define families Cα.

(1α) If ξα 6= ∅ we define Cα = Bα⊕ (Nα \{Nα}) as described above. This
case includes all successor ordinals, all ordinals of countable cofinality, and
all ordinals of uncountable cofinality for which {Tβ : β < α} is not a tower
in Tα, hence not a tower in any H <∗ Tα (by the adjustment we made to
the tower at the beginning of the proof).

(2α) If ξα = ∅, then we define Cα = ∅.
We note that if Cα 6= ∅ then |Cα| = c.

Claim 1. For all α ≤ λ, Cα ⊂ [Tα]ω and Cα diagonalizes the chain
{Tβ : β < α} in Tα.

Proof. If Cα = ∅, there is nothing to prove. If Cα 6= ∅, then the inclusion
Cα ⊂ [Tα]ω follows because Nα ⊂ [Tα]ω, Bα ⊂ [Nα]ω and Nα ∈ Nα. Since
Cα = Bα ⊕ (Nα \ {Nα}) is a join of two ADF’s each of which diagonalizes
the chain {Tβ : β < α} in Tα, we see that Cα diagonalizes the chain.

Claim 2. For all α ≤ λ, if H ∈ [Tα]ω diagonalizes {Tβ : β < α} in Tα
then there exists C ∈ Cα such that |C ∩H| = ω.

Proof. Assume H diagonalizes {Tβ : β < α} in Tα. The existence of H
implies that ξα 6= ∅. Hence Cα was defined by (1α). Therefore the maximal
element Nα of ξα was used in the definition of Cα. We cannot have both
H 6∈ Nα and Nα ∪ {H} an ADF because that would contradict the maxi-
mality of Nα in ξα. Either way, there is N ∈ Nα such that |H ∩ N | = ω,
hence there exists C ∈ Cα such that |C ∩H| = ω.

Claim 3. The family {C ∩ Tα : C ∈
⋃
β≤α Cβ} is a MADF on Tα.

Proof. If H∈ [Tα]ω, then there exists a first β ≤ α such that |H∩Tβ| = ω.
Then H ∩ Tβ diagonalizes {Tξ : ξ < β} in Tβ; so by Claim 2, there exists
C ∈ Cβ such that |C ∩H ∩ Tβ| = ω. Hence |C ∩H| = ω.

We define

M =
⋃
α≤λ

Cα.

Claim 4. M⊂ [ω]ω is a MADF.

Proof. This follows from Claim 3 and the fact that Tλ = ω.
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We now consider the topology of ψ = ψ(ω,M), the ψ-space associated
with the MADF M constructed above. We want to show that βψ \ ψ is
homeomorphic to λ + 1 with the order topology. We first establish some
useful facts concerning the topology on ψ and βψ.

Claim 5. For α ≤ λ, Tα ∩M ⊂
⋃
β≤α Cα, clψ(Tα) is clopen in ψ, hence

Tα is clopen in βψ.

Proof. LetM ∈Tα∩M; thenM∩Tα is infinite by the definition of the topo-
logy on ψ. By Claim 3, there existsC ∈

⋃
β≤α Cα such that |C∩(M∩Tα)| = ω.

SinceC,M ∈M, an almost disjoint family, we haveC = M ; soM ∈
⋃
β≤α Cα.

To see that clψ(Tα) is clopen in ψ, it suffices to to show this set is open since
it is closed by definition. We may assume α < λ since clψ(Tλ) = clψ(ω) = ψ
is clopen in ψ. Let M ∈ clψ(Tα)∩M, hence M ∈ Tα∩M, so by the first part
of Claim 5, M ∈

⋃
β≤α Cα. Thus by Claim 1, for some β ≤ α, M ⊂ Tβ ⊂∗ Tα,

hence for some finite set F we find that {M}∪(M \F ) is a neighborhood ofM
contained in clψ(Tα). Thus clψ(Tα) is clopen in ψ, and therefore Tα = clψ(Tα)
is clopen in βψ [7, p. 90]. This completes the proof of Claim 5.

In preparation for using Lemma 1.4, we define

Oα = Tα ∩ (βψ \ ψ) = clψ(Tα) ∩ (βψ \ ψ) for α ≤ λ.
Then {Oα : α ≤ λ} is an increasing family of compact clopen sets in βψ \ψ,
Oλ = βψ \ ψ, and satisfies condition (1) in Lemma 1.4. To complete the
proof of the theorem, we show that condition (2) also holds for this family,
i.e., we show that ∣∣∣Oα \ ⋃

β<α

Oβ

∣∣∣ = 1 for α ≤ λ.

First we show that Oα \
⋃
β<αOβ contains at least one point.

Claim 6. If β < α ≤ λ then Oα \
⋃
β<αOβ 6= ∅.

Proof. Since {Oα \ Oβ : β < α} is a decreasing family of compact sets,
it suffices to show that Oα \ Oβ 6= ∅ for all β < α. If Cα 6= ∅ then Cα is an
infinite (in fact uncountable) subset of clψ(Tα) \ clψ(Tβ); hence Tα \ Tβ 6= ∅.
If Cα = ∅, then α is a limit ordinal (in fact cf(α) > ω), hence β + 1 < α.
Since Cβ+1 6= ∅, we have ∅ 6= Oβ+1 \Oβ ⊂ Oα \Oβ.

The remainder of the proof is devoted to showing that Oα \
⋃
β<αOβ

contains at most one point.

Claim 7. For all α ≤ λ, |Oα \
⋃
β<αOβ| ≤ 1.

Proof. Assume that for all β < α we have proved |Oβ \
⋃
τ<β Oτ | = 1.

We show |Oα \
⋃
β<αOβ| ≤ 1. We have two cases:

Case 1: ξα = ∅. Then cf(α) > ω, {Tβ : β < α} is a tower in Tα and
Cα = ∅.
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Let X =
⋃
β<αOβ ⊂ βψ \ψ. By the induction hypothesis, {Oβ : β < α}

satisfies the hypothesis of Lemma 1.4, hence X ∼= α. Then the one-point
compactification of X and the one-point compactification of α are homeo-
morphic, and since in this case cf(α) > ω, the only compactfication of α is its
one-point compactification, the ordinal α+1. Thus the only compactification
of X is its one-point compactification, and X∼=α+1. Moreover X⊂Oα=Oα.
To prove the claim it suffices to show that X = Oα. If X 6= Oα, then there
exists a point p ∈ Oα\X ⊂ Tα. Since X is compact, there exists a continuous
function f : βψ → [0, 1] such that f(p) = 0, f−1(0) ⊂ Tα and f(X) = 1.

Since Cα = ∅, by Claim 5, we have

f−1(0) ∩M ⊂ Tα ∩M ⊂
⋃
β≤α
Cβ =

⋃
β<α

Cβ.

By Lemma 1.5, f−1(0) ∩M is infinite. Pick distinct Ci ∈ f−1(0) ∩M; say
that Ci ∈ Cβi (for i ∈ ω). Let β = sup{βi : i ∈ ω}. Then β < α because
cf(α) > ω. Let x be a limit point of {Ci : i ∈ ω} in βψ \ ψ. Then f(x) = 0.
Since each Ci ⊂ Tβi ⊂∗ Tβ, we have x ∈ Tβ ⊂ X; hence f(x) = 1, which is
a contradiction. This proves Case 1.

Case 2: ξα 6= ∅. We break this case into three subcases depending on
properties of α.

Subcase 1: α is a successor ordinal, say α = τ + 1. In this case

Oα \
⋃
β<α

Oβ = Oτ+1 \Oτ .

Since ξα 6= ∅, |Cα| = c ≥ ω. By Lemma 1.6, Cα has exactly one limit point
in βψ, call it xα. Since Cα diagonalizes {Tβ : β < α} in Tα, we deduce for
every C ∈ Cα that C ⊂∗ Tα \ Tτ , hence the unique limit point xα of Cα is in
Tα \ Tτ = Tα \Tτ ; so xα ∈ Oα \Oτ . If this is the only point in Oα \Oτ , then
we are done. So assume there is a point p ∈ Oα \Oτ and p 6= xα. Therefore
there exists an open neighborhood U of p in βψ such that U ⊂ Tα \ Tτ and
U ∩ Cα = ∅. Let f : βψ → [0, 1] be continuous such that p ∈ f−1(0) ⊂ U .
Since f−1(0) ∩ Cα = ∅, it follows from Claim 5 that

f−1(0) ∩M ⊂ Tα ∩M ⊂
⋃
β≤τ
Cβ,

and from Lemma 1.5 that f−1(0) ∩ (βψ \ ψ) ⊂ f−1(0) ∩M. Therefore

p ∈ f−1(0) ∩ (βψ \ ψ) ⊂ f−1(0) ∩M ⊂
⋃
α≤τ
Cα ⊂ Tτ ;

so p ∈ Oτ . This is a contradiction.

Subcase 2: cf(α) = ω. By Lemma 1.6, Cα has exactly one limit point
in βψ, which we denote by xα, and xα ∈ Oα \

⋃
β<αOβ. If this is the
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only point in Oα \
⋃
β<αOβ, then we are done. So assume there is a point

p ∈ Oα \
⋃
β<αOβ and p 6= xα. Then p 6∈ Cα. Let f : βψ → [0, 1] be a

continuous function such that p ∈ f−1(0) ⊂ Tα, and f−1(0) ∩ Cα = ∅. By
Claim 5 and Lemma 1.5, f−1(0)∩

⋃
β<αCβ is infinite. If f−1(0)∩Cβ 6= ∅ for

cofinally many β < α, then we may pick, for each n ∈ ω, ordinals βn < α
and Mn ∈ f−1(0)∩Cβn in such a way that {βn : n ∈ ω} is an increasing and
cofinal sequence in α. Since f(Mn) = 0 for n ∈ ω, we may pick by recursion
distinct integers an with

an ∈Mn ∩
(
Tα \

⋃
i<n

Tβi

)
such that f(an) < 1/(n+ 1) for n ∈ ω. Then A = {an : n ∈ ω} diagonalizes
{Tβ : β < α} in Tα. By Claim 2 there exists C ∈ Cα such that |C ∩ A|
= ω, but then it follows that f(C) = 0; so C ∈ f−1(0) ∩ Cα, which is a
contradiction. Therefore it must be the case that there exists γ < α such
that f−1(0) ∩ M ⊂

⋃
β≤γ Cβ. We show this possibility does not occur. If

it did, for each C ∈ f−1(0) ∩ M we have C ⊂∗ Tγ , hence C ∈ Tγ ∩ M.

Therefore f−1(0) ∩M ⊂ Tγ . But p ∈ f−1(0) ∩ (βψ \ ψ) ⊂ f−1(0) ∩M by
Lemma 1.5. Thus we have p ∈ Tγ , which implies p ∈ Oγ where γ < α, and
that is a contradiction.

Subcase 3: cf(α) > ω. This subcase has some similarities with Case 1
since in both cases cf(α) > ω. However, in Case 1, we have Cα = ∅, while
in this subcase we have Cα 6= ∅. Put X =

⋃
β<αOβ. As in Case 1, X is the

one-point compactification of
⋃
β<αOβ, and X ⊂ Oα. We need to show that

Oα = X. If not, there exists a point p ∈ Oα \ X. Let f : βψ → [0, 1] be a
continuous function such that p ∈ f−1(0), X ⊂ f−1(1), and f−1(0) ⊂ Tα.
We will derive a contradiction.

By Lemma 1.5 and Claim 5,

p ∈
⋃
β≤α
Cβ =

⋃
β<α

Cβ ∪ Cα.

As in Case 1, p 6∈
⋃
β<α Cβ because f−1([0, 1/2)) is neighborhood of p and

f−1([0, 1/2))∩
⋃
β<α Cβ is finite (since cf(α) > ω and f−1([0, 1/2))∩X = ∅).

Thus p ∈ Cα. By Lemma 1.6, p is the only limit point of Cα in βψ. Since
f−1([0, 1/2)) is a neighborhood of p in βψ, we have Cα ⊂∗ f−1([0, 1/2)). Let
F0 = Cα \ f−1([0, 1/2)), a finite set. By Claim 1, Cα ⊂ Tα, thus F0 ⊂ Tα,
and moreover, for each M ∈ F0, M ⊂ Tα. Define K0 = F0 ∪

⋃
F0. Then

K0 is clopen and compact in ψ, hence clopen and compact in βψ. Define f0
to be equal to f on βψ \ K0 and f0 = 0 on K0. Then f0 : βψ → [0, 1] is
continuous and has the property that Cα ⊂ f−10 ([0, 1/2)) (true subset). In
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addition f0 retains three relevant properties of f : p ∈ f−10 (0), X ⊂ f−10 (1)

(because f and f0 agree on βψ \ ψ), and f−10 (0) ⊂ Tα (because K0 ⊂ Tα).

We see that f−10 ((1/2, 1]) is an open set containing X, and
⋃
β<α Cβ ⊂∗

f−10 ((1/2, 1]) (since cf(α)>ω and f−10 ([0, 1/2))∩X = ∅). Let F1 =
⋃
β<α Cβ\

f−10 ((1/2, 1]), a finite set. Define K1 = F1 ∪
⋃
F1. Then K1 is clopen and

compact in ψ, hence clopen and compact in βψ. Define f1 to be equal to
f0 on βψ \K1 and f1 = 1 on K1. Then f1 : βψ → [0, 1] is continuous and
has the property that

⋃
β<α Cβ ⊂ f−11 ((1/2, 1]) (true subset). In addition

f1 retains four relevant properties of f0: Cα ⊂ f−11 ([0, 1/2)) (since f0 and f1
agree on Cα), p ∈ f−11 (0), X ⊂ f−11 (1) (because f0 and f1 agree on βψ \ ψ),
and f−11 (0) ⊂ Tα (because f−11 (0) ⊂ f−10 (0)).

Now we define

H = f−11 ((1/2, 1]) ∩ Tα.
Then H ⊂ ω is infinite, and has the following three properties:

(i) Tβ ⊂∗ H for all β < α, since if for some β < α we have |Tβ \ H|
= ω, then by Claim 3,

⋃
τ≤β Cα is a MADF on Tβ, hence there

exists C ∈
⋃
τ≤β Cα such that |C ∩ (Tβ \H)| = ω, but this implies

f1(C) ≤ 1/2, which contradicts the definition of f1.
(ii) H <∗ Tα, because by Case 2, Cα 6= ∅, and for any C ∈ Cα, C ⊂∗

Tα \H (since f1(C) < 1/2).
(iii) {Tβ : β < α} is a tower in H. We need only check the maximality

condition of a tower; so suppose K < H and Tβ ⊂∗ K for all
β < α. Then H \ K is an infinite subset of Tα and diagonalizes
{Tβ : β < α} in Tα. Hence by Claim 2 there exists C ∈ Cα such
that |C ∩ (H \K)| = ω. This implies that f1(C) ≥ 1/2, but this is
impossible because f1(C) < 1/2. This proves that {Tβ : β < α} is a
tower in H <∗ Tα.

But by hypothesis of Case 2, ξα 6= ∅; so {Tβ : β < α} is not a tower
in Tα (as noted following the definition of ξα), hence not a tower in H by
property (∗) of our adjusted chain. That contradicts (iii) and completes the
proof of Subcase 3 of Claim 7, and therefore Claim 7 is proved.

By Claims 6 and 7, the family {Oα : α < λ+ 1} satisfies the hypothesis
of Lemma 1.4, hence βψ \ ψ is homeomorphic to λ+ 1. This completes the
proof of Theorem 1.1.

Proof of Theorem 1.2. If we have a chain indexed by an ordinal λ, then
clearly we have chains indexed by all ordinals β < λ. There exists a chain
(in fact a tower) {Sα : α < t} ⊂ [ω]ω indexed by t. It suffices to prove that
for every ordinal λ < t+ with cf(λ) = t, there is a chain indexed by λ. The
proof is by induction. Assume we have (ascending) ordered chains in ω of
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order type β for every β < λ where λ < t+, and cf(λ) = t. We construct a
chain indexed by λ. Let ϕ : t → λ be a strictly increasing function onto a
set of ordinals cofinal in λ. Let {Eα : α < t} be a pairwise disjoint family of
copies of ω, and let fα : Eα → Sα+1 \ Sα be a bijection. For each α < κ let

{Uατ : ϕ(α) ≤ τ < ϕ(α+ 1)}
be an ascending mod-finite chain in [Eα]ω indexed by the interval of ordinals
[ϕ(α), ϕ(α + 1)) (considered as a subset of a chain indexed by the ordinal
ϕ(α + 1)) with the one extra requirement that Uαϕ(α) = ∅. By “ascending”

we mean that if ϕ(α) < τ < µ < ϕ(α + 1) then Uατ <∗ Uαµ <∗ Eα. Now we
define a chain indexed by λ as follows: For τ < λ, let α < t be the unique
ordinal such that ϕ(α) ≤ τ < ϕ(α+ 1), and define

Tτ = Sα ∪ fα(Uατ ) for ϕ(α) ≤ τ < ϕ(α+ 1).

By our definitions, Tϕ(α) = Sα. It remains to show “mod-finite ascending”.
Suppose τ < µ < λ. Let α < t be such that ϕ(α) ≤ τ < ϕ(α + 1). If
µ < ϕ(α + 1), then on Eα we have Uατ <∗ Uαµ , hence fα(Uατ ) <∗ fα(Uαµ ),
hence

Tτ = Sα ∪ fα(Uατ ) <∗ Sα ∪ fα(Uαµ ) = Tµ.

If ϕ(α+1) ≤ µ, let β < t be such that ϕ(β) ≤ µ < ϕ(β+1). Then α+1 ≤ β
and we have

Tτ = Sα ∪ f(Uατ ) <∗ Sα+1 ⊂∗ Sβ ⊂ Sβ ∪ fβ(Uβµ ) = Tµ.

Thus {Tα : α < λ} is a chain, and this completes the proof of Theorem 1.2.
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