Ordinal remainders of classical ψ -spaces

by

Alan Dow (Charlotte, NC) and Jerry E. Vaughan (Greensboro, NC)

Abstract. Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain $\{T_{\alpha} : \alpha < \lambda\}$ of infinite subsets of ω , there exists $\mathcal{M} \subset [\omega]^{\omega}$, an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone–Čech remainder $\beta \psi \setminus \psi$ of the associated ψ -space, $\psi = \psi(\omega, \mathcal{M})$, is homeomorphic to $\lambda + 1$ with the order topology. We also prove that for every $\lambda < \mathfrak{t}^+$, where \mathfrak{t} is the tower number, there exists a mod-finite ascending chain $\{T_{\alpha} : \alpha < \lambda\}$, hence a ψ -space with Stone–Čech remainder homeomorphic to $\lambda + 1$. This generalizes a result credited to S. Mrówka by J. Terasawa which states that there is a MADF \mathcal{M} such that $\beta \psi \setminus \psi$ is homeomorphic to $\omega_1 + 1$.

1. Introduction. Let ω denote the set of natural numbers. Let $[\omega]^{\omega}$ denote the set of all countably infinite subsets of ω . Sets $A, B \in [\omega]^{\omega}$ are said to be almost disjoint provided $A \cap B$ is finite. An infinite family $\mathcal{A} \subset [\omega]^{\omega}$ is called an almost disjoint family (ADF) if any two elements of \mathcal{A} are almost disjoint. An ADF \mathcal{M} is called a maximal almost disjoint family (MADF) if it is not properly contained in another ADF.

We have considered almost disjoint families of countable subsets of an arbitrary cardinal κ in [4], [5], but in this paper we only consider the classical case $\kappa = \omega$.

Almost disjoint families, especially MADF's, are of interest in set theory (e.g., [8], [14]), topology (e.g., [6], [13]), Boolean algebra (e.g., [1], [3]) and Banach spaces (e.g., [10], [11]).

An important interest in topology of MADF's concerns the well-known class of topological spaces called ψ -spaces (e.g., see [2, §11]; for some historical notes, see [4, §2]). For any ADF $\mathcal{A} \subset [\omega]^{\omega}$, let $\psi(\omega, \mathcal{A})$ denote the space with underlying set $\omega \cup \mathcal{A}$ and with the topology having as a base all singletons $\{\alpha\}$ for $\alpha < \omega$ and all sets of the form $\{A\} \cup (A \setminus F)$ where

²⁰¹⁰ Mathematics Subject Classification: Primary 54D35, 54C30, 03E25; Secondary 03E17, 03E35, 46E15, 54D80, 54G12.

Key words and phrases: almost disjoint families, Mrówka–Isbell ψ -spaces, continuous real-valued functions, cardinal numbers, countable cofinality, Stone–Čech compactification.

 $A \in \mathcal{A}$ and F is finite. We call $\psi(\omega, \mathcal{A})$ the ψ -space associated with \mathcal{A} , and the class of spaces of the form $\psi(\omega, \mathcal{A})$ the class of ψ -spaces on ω (or on $[\omega]^{\omega}$). It is well-known that the topology of $\psi(\omega, \mathcal{A})$ is closely related to the ADF \mathcal{A} , however all ψ -spaces on ω , regardless of which ADF \mathcal{A} is used, are first countable, zero-dimensional, Hausdorff, locally compact non-compact spaces in which ω is an open dense set of isolated points (hence the ψ -space is separable), and $\psi \setminus \omega = \mathcal{A}$ is a closed discrete set. Maximal ADF's are of additional interest because \mathcal{M} is maximal if and only if the ψ -space associated with \mathcal{M} is pseudocompact (i.e., every real-valued continuous function defined on ψ is bounded [12]).

For $A, B \in [\omega]^{\omega}$, $A \subset^* B$ means that $A \setminus B$ is finite, and $A <^* B$ means that $A \subset^* B$ and $B \setminus A$ is infinite. Let $X \in [\omega]^{\omega}$. A mod-finite ascending chain of order type λ in X (chain for short) is a family $\{T_{\alpha} : \alpha < \lambda\} \subset [\omega]^{\omega}$, where λ is an ordinal, such that $T_{\alpha} <^* X$ for all $\alpha < \lambda$, and $\beta < \alpha < \lambda$ imply $T_{\beta} <^* T_{\alpha}$. We also say "chain indexed by λ " when the particular ordinal λ is needed. Let \mathfrak{c} denote the cardinality of the continuum, and let \mathfrak{t} denote the tower number, i.e., the smallest cardinality of a tower in $[\omega]^{\omega}$ (e.g., see [2] or [16]).

We use the approach to Stone–Čech compactifications in [7]. For $E \subset \psi$, we let \overline{E} denote the closure of E in $\beta\psi$. The closure of E in ψ will be denoted by $\operatorname{cl}_{\psi}(E)$.

J. Terasawa [15] proved that every compact metric space is the Stone– Čech remainder of a ψ -space on ω for a suitably chosen MADF \mathcal{M} , and he stated that the ordinal $\omega_1 + 1$ with the order topology is also the remainder of a ψ -space. He attributed that result to S. Mrówka. Our main theorem generalizes this result as follows.

THEOREM 1.1. If there exists a chain $\{T_{\alpha} : \alpha < \lambda\}$ in $[\omega]^{\omega}$ indexed by the ordinal λ , then there exists a MADF $\mathcal{M} \subset [\omega]^{\omega}$ such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$ with the order topology.

Concerning the existence of ascending chains, we prove

THEOREM 1.2. If $\lambda < \mathfrak{t}^+$, then there exists an ascending ordered chain in ω of order type λ . Thus there exists a MADF $\mathcal{M} \subset [\omega]^{\omega}$ such that $\beta \psi \setminus \psi \cong \lambda + 1$.

Combining these two theorems we get

THEOREM 1.3. For every successor ordinal $\lambda + 1 < \mathfrak{t}^+$ there exists a MADF $\mathcal{M} \subset [\omega]^{\omega}$ such that the Stone-Čech remainder of $\psi(\omega, \mathcal{M})$ is homeomorphic to $\lambda + 1$ with the order topology.

Theorem 1.3 implies the result attributed to Mrówka because, as is well known, \mathfrak{t} is an uncountable cardinal, hence $\omega_1 + 1 < \mathfrak{t}^+$.

Theorem 1.3 is the best possible in ZFC in the sense that it is consistent that the ordinal $\mathfrak{t}^+ + 1$ is not the Stone–Čech remainder of any ψ -space on ω . This follows because a compact separable space has weight at most \mathfrak{c} [9, 2.3(i)]. Hence a compact separable space cannot contain a subspace with \mathfrak{c}^+ isolated points; in particular cannot contain a copy of the ordinal $\mathfrak{c}^+ + 1$. Hence in any model where $\mathfrak{t} = \mathfrak{c}$, also $\mathfrak{t}^+ = \mathfrak{c}^+$, and this implies that $\mathfrak{t}^+ + 1$ is not the Stone–Čech remainder of any ψ -space on ω .

We establish the homeomorphism between the Stone–Čech remainder, $\beta \psi \setminus \psi$, and $\lambda + 1$ using the following simple result.

LEMMA 1.4. Let X be a Hausdorff space and $\{O_{\alpha} : \alpha < \lambda\}$ a cover of X by compact, clopen sets such that, for all $\beta < \alpha < \lambda$,

(1) $O_{\beta} \subset O_{\alpha}$, and

(2)
$$|O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}| = 1$$
 for $\alpha < \lambda$.

Then X is homeomorphic to λ with the order topology.

Proof. For $\alpha < \lambda$, let $x_{\alpha} \in X$ be the point such that $\{x_{\alpha}\} = O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$, and define $\varphi : \lambda \to X$ by $\varphi(\alpha) = x_{\alpha}$. Clearly φ is one-to-one and onto X. By the compactness of O_{α} , the decreasing family $\{O_{\alpha} \setminus O_{\beta} : \beta < \alpha\}$ is a local base for x_{α} in X. We show that φ is a homeomorphism by showing that $\varphi((\gamma, \alpha]) = O_{\alpha} \setminus O_{\gamma}$ for all $\gamma < \alpha < \lambda$. If $x \in \varphi((\gamma, \alpha])$, there exists $\gamma < \beta \leq \alpha$ such that $x = \varphi(\beta) = x_{\beta}$. Since $x_{\beta} \in O_{\beta}$ and, by (1), $O_{\beta} \subset O_{\alpha}$, we see that $\varphi(\beta) \in O_{\alpha}$. For $\gamma < \beta$, $x_{\beta} \notin O_{\gamma}$. Thus $\varphi(\beta) = x_{\beta} \in O_{\alpha} \setminus O_{\gamma}$. Conversely, let $x \in O_{\alpha} \setminus O_{\gamma}$, and let $\beta \leq \alpha$ be the first ordinal such that $x \in O_{\beta}$. Then $x \in O_{\beta} \setminus \bigcup_{\tau < \beta} O_{\tau}$; so $x = x_{\beta}$. We have $\gamma < \beta$, so $\gamma < \beta \leq \alpha$ and $x = \varphi(\beta)$. Thus $x \in \varphi((\gamma, \alpha])$. This proves the equality $\varphi((\gamma, \alpha]) = O_{\alpha} \setminus O_{\gamma}$, and shows that φ is a homeomorphism.

LEMMA 1.5. If Z is a zero set in $\beta \psi$, then $\overline{Z \cap \mathcal{M}} \supset Z \cap (\beta \psi \setminus \psi)$, and if $Z \cap (\beta \psi \setminus \psi) \neq \emptyset$, then $Z \cap \mathcal{M}$ is infinite.

Proof. Let $p \in Z \cap (\beta \psi \setminus \psi)$. Then p is a free z-ultrafilter on ψ . Let Z' be any zero-set neighborhood of p in $\beta \psi$. Since ψ is pseudocompact, the z-ultrafilter p is countably complete, i.e., if $Z_n \in p$ for $n \in \omega$, then $\bigcap_{n \in \omega} Z_n \in p$ ([7, 8.6]). For $n \in \omega$, $Z_n = \psi \setminus \{n\}$ is a (clopen) zero set in ψ , and since p is free, $\psi \setminus \{n\} \in p$. Now we have $Z'' = Z \cap Z' \cap \bigcap_{n \in \omega} Z_i \in p$, and $Z'' \subset \mathcal{M}$. This shows that the zero-set neighborhood Z' of p has a non-empty intersection with $Z \cap \mathcal{M}$. Since Z' was arbitrary, it follows that $p \in \overline{Z \cap \mathcal{M}}$. The second statement in the lemma follows from the first.

Let $F \in [\omega]^{\omega}$ and $\{T_{\alpha} : \alpha < \lambda\}$ be a chain in X. We say that the set F diagonalizes the chain in X (or in $[X]^{\omega}$) provided $F \subset^* X$ and for all $\beta < \alpha, |F \cap T_{\beta}| < \omega$. If $\mathcal{F} \subset [\omega]^{\omega}$ is a family of sets, we say \mathcal{F} diagonalizes the chain in X provided each set $F \in \mathcal{F}$ diagonalizes the chain in X. We note that there exists F that diagonalizes a chain $\{T_{\beta} : \beta < \alpha\}$ in X if and only if the chain is a not a tower in X (consider $X \setminus F$).

Given disjoint sets $A, B \in [\omega]^{\omega}$ and $\mathcal{A} \subset [A]^{\omega}$ ADF, $\mathcal{B} \subset [B]^{\omega}$ ADF with |A| = |B|, the *(Mrówka) join* of \mathcal{A} and \mathcal{B} is defined by $\mathcal{A} \oplus \mathcal{B} = \{A \cup \phi(A) : A \in \mathcal{A}\}$, where $\phi : \mathcal{A} \to \mathcal{B}$ is a bijection (see [4, §4]). Clearly $\mathcal{A} \oplus \mathcal{B}$ is an ADF and is maximal if both \mathcal{A} and \mathcal{B} are maximal.

We call a MADF \mathcal{M} a *Mrówka MADF* provided $|\beta \psi \setminus \psi| = 1$. As proved by S. Mrówka in [13], there exists $\mathcal{M} \subset [\omega]^{\omega}$ such that $|\beta \psi \setminus \psi| = 1$.

LEMMA 1.6. Let $N, \omega \setminus N \in [\omega]^{\omega}$, $\mathcal{B} \subset [N]^{\omega}$ be a Mrówka MADF, and $\mathcal{A} \subset [\omega \setminus N]^{\omega}$ an ADF such that $|\mathcal{B}| = |\mathcal{A}| \geq \omega$. If $\mathcal{M} \subset [\omega]^{\omega}$ is a MADF and $\mathcal{A} \oplus \mathcal{B} \subset \mathcal{M}$ then $\mathcal{A} \oplus \mathcal{B}$ has exactly one limit point in $\beta \psi$, where $\psi = \psi(\omega, \mathcal{M})$.

Proof. The proof is similar to that of [5, Theorem 1.3, Case 3].

2. Proofs of the main results

Proof of Theorem 1.1. Let $\{T_{\beta} : \beta < \lambda\}$ be a chain in T_{λ} . For convenience we identify T_{λ} with ω . We must construct a MADF $\mathcal{M} \subset [\omega]^{\omega}$ such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$. For λ finite, say $\lambda = n \geq 1$, we prove the theorem by taking *n* disjoint copies of ω each with a Mrówka MADF (i.e., $|\beta \psi \setminus \psi| = 1$). Then taking unions yields the theorem. If we prove the theorem for a limit ordinal λ , then we get it for successor ordinals, $\lambda + 1, \lambda + 2, \ldots$, because all these ordinal spaces are homeomorphic to $\lambda + 1$. Thus we assume that $\{T_{\beta} : \beta < \lambda\}$ is a chain and λ is a limit ordinal.

We want our chain to have the following property:

(*) For $\alpha \leq \lambda$, if $cf(\alpha) > \omega$ and $\{T_{\beta} : \beta < \alpha\}$ is not a tower in T_{α} , then it is not a tower in any $H <^* T_{\alpha}$.

The given chain $\{T_{\beta} : \beta < \lambda\}$ may not have this property, so we adjust it: For every $\alpha < \lambda$, if there exists $H <^* T_{\alpha}$ such that $\{T_{\beta} : \beta < \alpha\}$ is a tower in H (hence $cf(\alpha) > \omega$), then we change the definition of T_{α} by replacing T_{α} with H (then $T_{\alpha} = H$). After this change, $\{T_{\beta} : \beta < \alpha\}$ is a tower in T_{α} . For those $\alpha < \lambda$ for which this change is made, T_{α} becomes a bit smaller than it was and the ring $T_{\alpha+1} \setminus T_{\alpha}$ becomes a bit larger. No change is made for any other $\alpha < \lambda$. This adjusted chain clearly has property (*).

Now we proceed to the construction of the MADF \mathcal{M} . For $\alpha \leq \lambda$ define $\xi_{\alpha} = \{\mathcal{A} \subset [T_{\alpha}]^{\omega} : \mathcal{A} \text{ is an ADF diagonalizing } \{T_{\beta} : \beta < \alpha\} \text{ in } T_{\alpha}\}.$ Note that

Note that

 $\xi_{\alpha} = \emptyset \iff \{T_{\beta} : \beta < \alpha\}$ is a tower in $[T_{\alpha}]^{\omega}$.

When $\xi_{\alpha} \neq \emptyset$, we partially order ξ_{α} by set inclusion. Then by Zorn's Lemma, there is a family $\mathcal{N}_{\alpha} \in \xi_{\alpha}$ such that \mathcal{N}_{α} is a maximal element in

the poset ξ_{α} . Since there exists a MADF of cardinality \mathfrak{c} , we may assume that $|\mathcal{N}_{\alpha}| = \mathfrak{c}$. Pick $N_{\alpha} \in \mathcal{N}_{\alpha}$ and let $\mathcal{B}_{\alpha} \subset [N_{\alpha}]^{\omega}$ be a Mrówka MADF with $|\mathcal{B}_{\alpha}| = \mathfrak{c}$. Since \mathcal{N}_{α} diagonalizes the chain, \mathcal{B}_{α} diagonalizes the chain. Then $\mathcal{B}_{\alpha} \oplus (\mathcal{N}_{\alpha} \setminus \{N_{\alpha}\})$ is an ADF, and diagonalizes the chain $\{T_{\beta} : \beta < \alpha\}$ (obviously if each of two sets diagonalizes a chain, then their union also does).

As an intermediate step before we get to \mathcal{M} we define families C_{α} .

 (1_{α}) If $\xi_{\alpha} \neq \emptyset$ we define $C_{\alpha} = \mathcal{B}_{\alpha} \oplus (\mathcal{N}_{\alpha} \setminus \{N_{\alpha}\})$ as described above. This case includes all successor ordinals, all ordinals of countable cofinality, and all ordinals of uncountable cofinality for which $\{T_{\beta} : \beta < \alpha\}$ is not a tower in T_{α} , hence not a tower in any $H <^* T_{\alpha}$ (by the adjustment we made to the tower at the beginning of the proof).

 (2_{α}) If $\xi_{\alpha} = \emptyset$, then we define $\mathcal{C}_{\alpha} = \emptyset$.

We note that if $\mathcal{C}_{\alpha} \neq \emptyset$ then $|\mathcal{C}_{\alpha}| = \mathfrak{c}$.

CLAIM 1. For all $\alpha \leq \lambda$, $C_{\alpha} \subset [T_{\alpha}]^{\omega}$ and C_{α} diagonalizes the chain $\{T_{\beta} : \beta < \alpha\}$ in T_{α} .

Proof. If $\mathcal{C}_{\alpha} = \emptyset$, there is nothing to prove. If $\mathcal{C}_{\alpha} \neq \emptyset$, then the inclusion $\mathcal{C}_{\alpha} \subset [T_{\alpha}]^{\omega}$ follows because $\mathcal{N}_{\alpha} \subset [T_{\alpha}]^{\omega}$, $\mathcal{B}_{\alpha} \subset [N_{\alpha}]^{\omega}$ and $N_{\alpha} \in \mathcal{N}_{\alpha}$. Since $\mathcal{C}_{\alpha} = \mathcal{B}_{\alpha} \oplus (\mathcal{N}_{\alpha} \setminus \{N_{\alpha}\})$ is a join of two ADF's each of which diagonalizes the chain $\{T_{\beta} : \beta < \alpha\}$ in T_{α} , we see that \mathcal{C}_{α} diagonalizes the chain.

CLAIM 2. For all $\alpha \leq \lambda$, if $H \in [T_{\alpha}]^{\omega}$ diagonalizes $\{T_{\beta} : \beta < \alpha\}$ in T_{α} then there exists $C \in \mathcal{C}_{\alpha}$ such that $|C \cap H| = \omega$.

Proof. Assume H diagonalizes $\{T_{\beta} : \beta < \alpha\}$ in T_{α} . The existence of H implies that $\xi_{\alpha} \neq \emptyset$. Hence \mathcal{C}_{α} was defined by (1_{α}) . Therefore the maximal element \mathcal{N}_{α} of ξ_{α} was used in the definition of \mathcal{C}_{α} . We cannot have both $H \notin \mathcal{N}_{\alpha}$ and $\mathcal{N}_{\alpha} \cup \{H\}$ an ADF because that would contradict the maximality of \mathcal{N}_{α} in ξ_{α} . Either way, there is $N \in \mathcal{N}_{\alpha}$ such that $|H \cap N| = \omega$, hence there exists $C \in \mathcal{C}_{\alpha}$ such that $|C \cap H| = \omega$.

CLAIM 3. The family $\{C \cap T_{\alpha} : C \in \bigcup_{\beta < \alpha} C_{\beta}\}$ is a MADF on T_{α} .

Proof. If $H \in [T_{\alpha}]^{\omega}$, then there exists a first $\beta \leq \alpha$ such that $|H \cap T_{\beta}| = \omega$. Then $H \cap T_{\beta}$ diagonalizes $\{T_{\xi} : \xi < \beta\}$ in T_{β} ; so by Claim 2, there exists $C \in \mathcal{C}_{\beta}$ such that $|C \cap H \cap T_{\beta}| = \omega$. Hence $|C \cap H| = \omega$.

We define

$$\mathcal{M} = \bigcup_{\alpha \le \lambda} C_{\alpha}.$$

CLAIM 4. $\mathcal{M} \subset [\omega]^{\omega}$ is a MADF.

Proof. This follows from Claim 3 and the fact that $T_{\lambda} = \omega$.

We now consider the topology of $\psi = \psi(\omega, \mathcal{M})$, the ψ -space associated with the MADF \mathcal{M} constructed above. We want to show that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$ with the order topology. We first establish some useful facts concerning the topology on ψ and $\beta \psi$.

CLAIM 5. For $\alpha \leq \lambda$, $\overline{T_{\alpha}} \cap \mathcal{M} \subset \bigcup_{\beta \leq \alpha} \mathcal{C}_{\alpha}$, $cl_{\psi}(T_{\alpha})$ is clopen in ψ , hence $\overline{T_{\alpha}}$ is clopen in $\beta\psi$.

Proof. Let $M \in \overline{T_{\alpha}} \cap \mathcal{M}$; then $M \cap T_{\alpha}$ is infinite by the definition of the topology on ψ . By Claim 3, there exists $C \in \bigcup_{\beta \leq \alpha} \mathcal{C}_{\alpha}$ such that $|C \cap (M \cap T_{\alpha})| = \omega$. Since $C, M \in \mathcal{M}$, an almost disjoint family, we have C = M; so $M \in \bigcup_{\beta \leq \alpha} \mathcal{C}_{\alpha}$. To see that $\operatorname{cl}_{\psi}(T_{\alpha})$ is clopen in ψ , it suffices to to show this set is open since it is closed by definition. We may assume $\alpha < \lambda$ since $\operatorname{cl}_{\psi}(T_{\lambda}) = \operatorname{cl}_{\psi}(\omega) = \psi$ is clopen in ψ . Let $M \in \operatorname{cl}_{\psi}(T_{\alpha}) \cap \mathcal{M}$, hence $M \in \overline{T_{\alpha}} \cap \mathcal{M}$, so by the first part of Claim 5, $M \in \bigcup_{\beta \leq \alpha} \mathcal{C}_{\alpha}$. Thus by Claim 1, for some $\beta \leq \alpha, M \subset T_{\beta} \subset^* T_{\alpha}$, hence for some finite set F we find that $\{M\} \cup (M \setminus F)$ is a neighborhood of Mcontained in $\operatorname{cl}_{\psi}(T_{\alpha})$. Thus $\operatorname{cl}_{\psi}(T_{\alpha})$ is clopen in ψ , and therefore $\overline{T_{\alpha}} = \overline{\operatorname{cl}_{\psi}(T_{\alpha})}$ is clopen in $\beta \psi$ [7, p. 90]. This completes the proof of Claim 5.

In preparation for using Lemma 1.4, we define

$$O_{\alpha} = \overline{T_{\alpha}} \cap (\beta \psi \setminus \psi) = \overline{\mathrm{cl}_{\psi}(T_{\alpha})} \cap (\beta \psi \setminus \psi) \quad \text{ for } \alpha \leq \lambda.$$

Then $\{O_{\alpha} : \alpha \leq \lambda\}$ is an increasing family of compact clopen sets in $\beta \psi \setminus \psi$, $O_{\lambda} = \beta \psi \setminus \psi$, and satisfies condition (1) in Lemma 1.4. To complete the proof of the theorem, we show that condition (2) also holds for this family, i.e., we show that

$$\left|O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}\right| = 1 \quad \text{for } \alpha \leq \lambda.$$

First we show that $O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$ contains at least one point.

CLAIM 6. If $\beta < \alpha \leq \lambda$ then $O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta} \neq \emptyset$.

Proof. Since $\{O_{\alpha} \setminus O_{\beta} : \beta < \alpha\}$ is a decreasing family of compact sets, it suffices to show that $O_{\alpha} \setminus O_{\beta} \neq \emptyset$ for all $\beta < \alpha$. If $\mathcal{C}_{\alpha} \neq \emptyset$ then \mathcal{C}_{α} is an infinite (in fact uncountable) subset of $cl_{\psi}(T_{\alpha}) \setminus cl_{\psi}(T_{\beta})$; hence $\overline{T_{\alpha}} \setminus \overline{T_{\beta}} \neq \emptyset$. If $\mathcal{C}_{\alpha} = \emptyset$, then α is a limit ordinal (in fact $cf(\alpha) > \omega$), hence $\beta + 1 < \alpha$. Since $\mathcal{C}_{\beta+1} \neq \emptyset$, we have $\emptyset \neq O_{\beta+1} \setminus O_{\beta} \subset O_{\alpha} \setminus O_{\beta}$.

The remainder of the proof is devoted to showing that $O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$ contains at most one point.

CLAIM 7. For all $\alpha \leq \lambda$, $|O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}| \leq 1$.

Proof. Assume that for all $\beta < \alpha$ we have proved $|O_{\beta} \setminus \bigcup_{\tau < \beta} O_{\tau}| = 1$. We show $|O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}| \le 1$. We have two cases:

CASE 1: $\xi_{\alpha} = \emptyset$. Then $cf(\alpha) > \omega$, $\{T_{\beta} : \beta < \alpha\}$ is a tower in T_{α} and $C_{\alpha} = \emptyset$.

Let $X = \bigcup_{\beta < \alpha} O_{\beta} \subset \beta \psi \setminus \psi$. By the induction hypothesis, $\{O_{\beta} : \beta < \alpha\}$ satisfies the hypothesis of Lemma 1.4, hence $X \cong \alpha$. Then the one-point compactification of X and the one-point compactification of α are homeomorphic, and since in this case $cf(\alpha) > \omega$, the only compactification of α is its one-point compactification, the ordinal $\alpha + 1$. Thus the only compactification of X is its one-point compactification, and $\overline{X} \cong \alpha + 1$. Moreover $\overline{X} \subset \overline{O_{\alpha}} = O_{\alpha}$. To prove the claim it suffices to show that $\overline{X} = O_{\alpha}$. If $\overline{X} \neq O_{\alpha}$, then there exists a point $p \in O_{\alpha} \setminus \overline{X} \subset \overline{T_{\alpha}}$. Since \overline{X} is compact, there exists a continuous function $f : \beta \psi \to [0, 1]$ such that f(p) = 0, $f^{-1}(0) \subset \overline{T_{\alpha}}$ and $f(\overline{X}) = 1$.

Since $C_{\alpha} = \emptyset$, by Claim 5, we have

$$f^{-1}(0) \cap \mathcal{M} \subset \overline{T_{\alpha}} \cap \mathcal{M} \subset \bigcup_{\beta \leq \alpha} \mathcal{C}_{\beta} = \bigcup_{\beta < \alpha} \mathcal{C}_{\beta}.$$

By Lemma 1.5, $f^{-1}(0) \cap \mathcal{M}$ is infinite. Pick distinct $C_i \in f^{-1}(0) \cap \mathcal{M}$; say that $C_i \in \mathcal{C}_{\beta_i}$ (for $i \in \omega$). Let $\beta = \sup\{\beta_i : i \in \omega\}$. Then $\beta < \alpha$ because $cf(\alpha) > \omega$. Let x be a limit point of $\{C_i : i \in \omega\}$ in $\beta \psi \setminus \psi$. Then f(x) = 0. Since each $C_i \subset T_{\beta_i} \subset^* T_{\beta}$, we have $x \in \overline{T_{\beta}} \subset X$; hence f(x) = 1, which is a contradiction. This proves Case 1.

CASE 2: $\xi_{\alpha} \neq \emptyset$. We break this case into three subcases depending on properties of α .

SUBCASE 1: α is a successor ordinal, say $\alpha = \tau + 1$. In this case

$$O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta} = O_{\tau+1} \setminus O_{\tau}.$$

Since $\xi_{\alpha} \neq \emptyset$, $|\mathcal{C}_{\alpha}| = \mathfrak{c} \geq \omega$. By Lemma 1.6, \mathcal{C}_{α} has exactly one limit point in $\beta\psi$, call it x_{α} . Since \mathcal{C}_{α} diagonalizes $\{T_{\beta} : \beta < \alpha\}$ in T_{α} , we deduce for every $C \in \mathcal{C}_{\alpha}$ that $C \subset^* T_{\alpha} \setminus T_{\tau}$, hence the unique limit point x_{α} of \mathcal{C}_{α} is in $\overline{T_{\alpha} \setminus T_{\tau}} = \overline{T_{\alpha}} \setminus \overline{T_{\tau}}$; so $x_{\alpha} \in O_{\alpha} \setminus O_{\tau}$. If this is the only point in $O_{\alpha} \setminus O_{\tau}$, then we are done. So assume there is a point $p \in O_{\alpha} \setminus O_{\tau}$ and $p \neq x_{\alpha}$. Therefore there exists an open neighborhood U of p in $\beta\psi$ such that $U \subset \overline{T_{\alpha}} \setminus \overline{T_{\tau}}$ and $U \cap \mathcal{C}_{\alpha} = \emptyset$. Let $f : \beta\psi \to [0, 1]$ be continuous such that $p \in f^{-1}(0) \subset U$. Since $f^{-1}(0) \cap \mathcal{C}_{\alpha} = \emptyset$, it follows from Claim 5 that

$$f^{-1}(0) \cap \mathcal{M} \subset \overline{T_{\alpha}} \cap \mathcal{M} \subset \bigcup_{\beta \leq \tau} \mathcal{C}_{\beta},$$

and from Lemma 1.5 that $f^{-1}(0) \cap (\beta \psi \setminus \psi) \subset \overline{f^{-1}(0) \cap \mathcal{M}}$. Therefore

$$p \in f^{-1}(0) \cap (\beta \psi \setminus \psi) \subset \overline{f^{-1}(0) \cap \mathcal{M}} \subset \overline{\bigcup_{\alpha \le \tau} \mathcal{C}_{\alpha}} \subset \overline{T_{\tau}};$$

so $p \in O_{\tau}$. This is a contradiction.

SUBCASE 2: $cf(\alpha) = \omega$. By Lemma 1.6, \mathcal{C}_{α} has exactly one limit point in $\beta \psi$, which we denote by x_{α} , and $x_{\alpha} \in O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$. If this is the only point in $O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$, then we are done. So assume there is a point $p \in O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta}$ and $p \neq x_{\alpha}$. Then $p \notin \overline{\mathcal{C}_{\alpha}}$. Let $f : \beta \psi \to [0, 1]$ be a continuous function such that $p \in f^{-1}(0) \subset \overline{T_{\alpha}}$, and $f^{-1}(0) \cap \mathcal{C}_{\alpha} = \emptyset$. By Claim 5 and Lemma 1.5, $f^{-1}(0) \cap \bigcup_{\beta < \alpha} C_{\beta}$ is infinite. If $f^{-1}(0) \cap \mathcal{C}_{\beta} \neq \emptyset$ for cofinally many $\beta < \alpha$, then we may pick, for each $n \in \omega$, ordinals $\beta_n < \alpha$ and $M_n \in f^{-1}(0) \cap \mathcal{C}_{\beta_n}$ in such a way that $\{\beta_n : n \in \omega\}$ is an increasing and cofinal sequence in α . Since $f(M_n) = 0$ for $n \in \omega$, we may pick by recursion distinct integers a_n with

$$a_n \in M_n \cap \left(T_\alpha \setminus \bigcup_{i < n} T_{\beta_i}\right)$$

such that $f(a_n) < 1/(n+1)$ for $n \in \omega$. Then $A = \{a_n : n \in \omega\}$ diagonalizes $\{T_\beta : \beta < \alpha\}$ in T_α . By Claim 2 there exists $C \in C_\alpha$ such that $|C \cap A| = \omega$, but then it follows that f(C) = 0; so $C \in f^{-1}(0) \cap C_\alpha$, which is a contradiction. Therefore it must be the case that there exists $\gamma < \alpha$ such that $f^{-1}(0) \cap \mathcal{M} \subset \bigcup_{\beta \leq \gamma} C_\beta$. We show this possibility does not occur. If it did, for each $C \in f^{-1}(0) \cap \mathcal{M}$ we have $C \subset^* T_\gamma$, hence $C \in \overline{T_\gamma} \cap \mathcal{M}$. Therefore $\overline{f^{-1}(0) \cap \mathcal{M}} \subset \overline{T_\gamma}$. But $p \in f^{-1}(0) \cap (\beta \psi \setminus \psi) \subset \overline{f^{-1}(0) \cap \mathcal{M}}$ by Lemma 1.5. Thus we have $p \in \overline{T_\gamma}$, which implies $p \in O_\gamma$ where $\gamma < \alpha$, and that is a contradiction.

SUBCASE 3: $cf(\alpha) > \omega$. This subcase has some similarities with Case 1 since in both cases $cf(\alpha) > \omega$. However, in Case 1, we have $\mathcal{C}_{\alpha} = \emptyset$, while in this subcase we have $\mathcal{C}_{\alpha} \neq \emptyset$. Put $X = \bigcup_{\beta < \alpha} O_{\beta}$. As in Case 1, \overline{X} is the one-point compactification of $\bigcup_{\beta < \alpha} O_{\beta}$, and $\overline{X} \subset O_{\alpha}$. We need to show that $O_{\alpha} = \overline{X}$. If not, there exists a point $p \in O_{\alpha} \setminus \overline{X}$. Let $f : \beta \psi \to [0, 1]$ be a continuous function such that $p \in f^{-1}(0), \overline{X} \subset f^{-1}(1)$, and $f^{-1}(0) \subset \overline{T_{\alpha}}$. We will derive a contradiction.

By Lemma 1.5 and Claim 5,

$$p \in \overline{\bigcup_{\beta \le \alpha} \mathcal{C}_{\beta}} = \overline{\bigcup_{\beta < \alpha} \mathcal{C}_{\beta}} \cup \overline{\mathcal{C}_{\alpha}}.$$

As in Case 1, $p \notin \overline{\bigcup}_{\beta < \alpha} C_{\beta}$ because $f^{-1}([0, 1/2))$ is neighborhood of p and $f^{-1}([0, 1/2)) \cap \bigcup_{\beta < \alpha} C_{\beta}$ is finite (since $\operatorname{cf}(\alpha) > \omega$ and $f^{-1}([0, 1/2)) \cap X = \emptyset$). Thus $p \in \overline{C_{\alpha}}$. By Lemma 1.6, p is the only limit point of C_{α} in $\beta \psi$. Since $f^{-1}([0, 1/2))$ is a neighborhood of p in $\beta \psi$, we have $C_{\alpha} \subset^* f^{-1}([0, 1/2))$. Let $F_0 = C_{\alpha} \setminus f^{-1}([0, 1/2))$, a finite set. By Claim 1, $C_{\alpha} \subset \overline{T_{\alpha}}$, thus $F_0 \subset \overline{T_{\alpha}}$, and moreover, for each $M \in F_0$, $M \subset T_{\alpha}$. Define $K_0 = F_0 \cup \bigcup F_0$. Then K_0 is clopen and compact in ψ , hence clopen and compact in $\beta \psi$. Define f_0 to be equal to f on $\beta \psi \setminus K_0$ and $f_0 = 0$ on K_0 . Then $f_0 : \beta \psi \to [0, 1]$ is continuous and has the property that $C_{\alpha} \subset f_0^{-1}([0, 1/2))$ (true subset). In addition f_0 retains three relevant properties of $f: p \in f_0^{-1}(0), \overline{X} \subset f_0^{-1}(1)$ (because f and f_0 agree on $\beta \psi \setminus \psi$), and $f_0^{-1}(0) \subset \overline{T_\alpha}$ (because $K_0 \subset \overline{T_\alpha}$).

We see that $f_0^{-1}((1/2,1])$ is an open set containing \overline{X} , and $\bigcup_{\beta < \alpha} C_\beta \subset^*$ $f_0^{-1}((1/2,1])$ (since $\operatorname{cf}(\alpha) > \omega$ and $f_0^{-1}([0,1/2)) \cap X = \emptyset$). Let $F_1 = \bigcup_{\beta < \alpha} C_\beta \setminus f_0^{-1}((1/2,1])$, a finite set. Define $K_1 = F_1 \cup \bigcup F_1$. Then K_1 is clopen and compact in ψ , hence clopen and compact in $\beta\psi$. Define f_1 to be equal to f_0 on $\beta\psi \setminus K_1$ and $f_1 = 1$ on K_1 . Then $f_1 : \beta\psi \to [0,1]$ is continuous and has the property that $\bigcup_{\beta < \alpha} C_\beta \subset f_1^{-1}((1/2,1])$ (true subset). In addition f_1 retains four relevant properties of $f_0 \colon C_\alpha \subset f_1^{-1}([0,1/2])$ (since f_0 and f_1 agree on C_α), $p \in f_1^{-1}(0), \overline{X} \subset f_1^{-1}(1)$ (because f_0 and f_1 agree on $\beta\psi \setminus \psi$), and $f_1^{-1}(0) \subset \overline{T_\alpha}$ (because $f_1^{-1}(0) \subset f_0^{-1}(0)$).

Now we define

$$H = f_1^{-1}((1/2, 1]) \cap T_\alpha.$$

Then $H \subset \omega$ is infinite, and has the following three properties:

- (i) $T_{\beta} \subset^* H$ for all $\beta < \alpha$, since if for some $\beta < \alpha$ we have $|T_{\beta} \setminus H| = \omega$, then by Claim 3, $\bigcup_{\tau \leq \beta} C_{\alpha}$ is a MADF on T_{β} , hence there exists $C \in \bigcup_{\tau \leq \beta} C_{\alpha}$ such that $|C \cap (T_{\beta} \setminus H)| = \omega$, but this implies $f_1(C) \leq 1/2$, which contradicts the definition of f_1 .
- (ii) $H <^* T_{\alpha}$, because by Case 2, $C_{\alpha} \neq \emptyset$, and for any $C \in \mathcal{C}_{\alpha}$, $C \subset^* T_{\alpha} \setminus H$ (since $f_1(C) < 1/2$).
- (iii) $\{T_{\beta} : \beta < \alpha\}$ is a tower in H. We need only check the maximality condition of a tower; so suppose K < H and $T_{\beta} \subset^* K$ for all $\beta < \alpha$. Then $H \setminus K$ is an infinite subset of T_{α} and diagonalizes $\{T_{\beta} : \beta < \alpha\}$ in T_{α} . Hence by Claim 2 there exists $C \in C_{\alpha}$ such that $|C \cap (H \setminus K)| = \omega$. This implies that $f_1(C) \ge 1/2$, but this is impossible because $f_1(C) < 1/2$. This proves that $\{T_{\beta} : \beta < \alpha\}$ is a tower in $H <^* T_{\alpha}$.

But by hypothesis of Case 2, $\xi_{\alpha} \neq \emptyset$; so $\{T_{\beta} : \beta < \alpha\}$ is not a tower in T_{α} (as noted following the definition of ξ_{α}), hence not a tower in H by property (*) of our adjusted chain. That contradicts (iii) and completes the proof of Subcase 3 of Claim 7, and therefore Claim 7 is proved.

By Claims 6 and 7, the family $\{O_{\alpha} : \alpha < \lambda + 1\}$ satisfies the hypothesis of Lemma 1.4, hence $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. If we have a chain indexed by an ordinal λ , then clearly we have chains indexed by all ordinals $\beta < \lambda$. There exists a chain (in fact a tower) $\{S_{\alpha} : \alpha < \mathfrak{t}\} \subset [\omega]^{\omega}$ indexed by \mathfrak{t} . It suffices to prove that for every ordinal $\lambda < \mathfrak{t}^+$ with $\mathrm{cf}(\lambda) = \mathfrak{t}$, there is a chain indexed by λ . The proof is by induction. Assume we have (ascending) ordered chains in ω of order type β for every $\beta < \lambda$ where $\lambda < \mathfrak{t}^+$, and $\mathrm{cf}(\lambda) = \mathfrak{t}$. We construct a chain indexed by λ . Let $\varphi : \mathfrak{t} \to \lambda$ be a strictly increasing function onto a set of ordinals cofinal in λ . Let $\{E_{\alpha} : \alpha < \mathfrak{t}\}$ be a pairwise disjoint family of copies of ω , and let $f_{\alpha} : E_{\alpha} \to S_{\alpha+1} \setminus S_{\alpha}$ be a bijection. For each $\alpha < \kappa$ let

$$\{U_{\tau}^{\alpha}:\varphi(\alpha)\leq\tau<\varphi(\alpha+1)\}$$

be an ascending mod-finite chain in $[E_{\alpha}]^{\omega}$ indexed by the interval of ordinals $[\varphi(\alpha), \varphi(\alpha + 1))$ (considered as a subset of a chain indexed by the ordinal $\varphi(\alpha + 1)$) with the one extra requirement that $U^{\alpha}_{\varphi(\alpha)} = \emptyset$. By "ascending" we mean that if $\varphi(\alpha) < \tau < \mu < \varphi(\alpha + 1)$ then $U^{\alpha}_{\tau} <^* U^{\alpha}_{\mu} <^* E_{\alpha}$. Now we define a chain indexed by λ as follows: For $\tau < \lambda$, let $\alpha < \mathfrak{t}$ be the unique ordinal such that $\varphi(\alpha) \leq \tau < \varphi(\alpha + 1)$, and define

$$T_{\tau} = S_{\alpha} \cup f_{\alpha}(U_{\tau}^{\alpha}) \quad \text{ for } \varphi(\alpha) \le \tau < \varphi(\alpha+1).$$

By our definitions, $T_{\varphi(\alpha)} = S_{\alpha}$. It remains to show "mod-finite ascending". Suppose $\tau < \mu < \lambda$. Let $\alpha < \mathfrak{t}$ be such that $\varphi(\alpha) \leq \tau < \varphi(\alpha + 1)$. If $\mu < \varphi(\alpha + 1)$, then on E_{α} we have $U_{\tau}^{\alpha} <^{*} U_{\mu}^{\alpha}$, hence $f_{\alpha}(U_{\tau}^{\alpha}) <^{*} f_{\alpha}(U_{\mu}^{\alpha})$, hence

$$T_{\tau} = S_{\alpha} \cup f_{\alpha}(U_{\tau}^{\alpha}) <^{*} S_{\alpha} \cup f_{\alpha}(U_{\mu}^{\alpha}) = T_{\mu}.$$

If $\varphi(\alpha+1) \leq \mu$, let $\beta < \mathfrak{t}$ be such that $\varphi(\beta) \leq \mu < \varphi(\beta+1)$. Then $\alpha+1 \leq \beta$ and we have

$$T_{\tau} = S_{\alpha} \cup f(U_{\tau}^{\alpha}) <^* S_{\alpha+1} \subset^* S_{\beta} \subset S_{\beta} \cup f_{\beta}(U_{\mu}^{\beta}) = T_{\mu}.$$

Thus $\{T_{\alpha} : \alpha < \lambda\}$ is a chain, and this completes the proof of Theorem 1.2.

Acknowledgements. Research of the first author was supported by NSF grant No. NSF-DMS 20060114.

References

- J. E. Baumgartner and M. Weese, Partition algebras for almost-disjoint families, Trans. Amer. Math. Soc. 274 (1982), 619–630.
- [2] E. K. van Douwen, *The integers and topology*, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 111–167.
- [3] A. Dow and R. Frankiewicz, *Remarks on partitioner algebras*, Proc. Amer. Math. Soc. 113 (1991), 1067–1070.
- [4] A. Dow and J. E. Vaughan, Mrówka maximal almost disjoint families for uncountable cardinals, Topology Appl. 157 (2010), 1379–1394.
- [5] A. Dow and J. E. Vaughan, Ordinal remainders of ψ-spaces, Topology Appl. 158 (2011), 1852–1857.
- [6] F. Galvin and P. Simon, A Čech function in ZFC, Fund. Math. 193 (2007), 181–188.
- [7] L. Gillman and M. Jerison, *Rings of Continuous Functions*, Van Nostrand, Princeton, NJ, 1960.
- [8] A. Hajnal, I. Juhász, and L. Soukup, On saturated almost disjoint families, Comment. Math. Univ. Carolin. 28 (1987), 629–633.

- [9] I. Juhász, Cardinal Functions in Topology, Math. Centre Tracts 34, Mathematisch Centrum, Amsterdam, 1971.
- [10] P. Koszmider, On decompositions of Banach spaces of continuous functions on Mrówka's spaces, Proc. Amer. Math. Soc. 133 (2005), 2137–2146.
- [11] W. Marciszewski and R. Pol, On Banach spaces whose norm-open sets are F_{σ} -sets in the weak topology, J. Math. Anal. Appl. 350 (2009),708–722.
- [12] S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105–106.
- S. Mrówka, Some set-theoretic constructions in topology, Fund. Math. 94 (1977), 83–92.
- [14] S. Shelah, Two cardinal invariants of the continuum (∂ < a), and FS linearly ordered iterated forcing, Acta Math. 192 (2004), 187–223.
- [15] J. Terasawa, Spaces $N \cup \mathscr{R}$ and their dimensions, Topology Appl. 11 (1980), 93–102.
- [16] J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 195–218.

Alan Dow

Department of Mathematics and Statistics University of North Carolina at Charlotte Charlotte, NC 28223, U.S.A. E-mail: adow@uncc.edu Jerry E. Vaughan Department of Mathematics and Statistics University of North Carolina at Greensboro Greensboro, NC 27412, U.S.A. E-mail: vaughanj@uncg.edu

Received 23 December 2011; in revised form 11 March 2012