Ordinal remainders of classical ψ-spaces

by

Alan Dow (Charlotte, NC) and Jerry E. Vaughan (Greensboro, NC)

Abstract. Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain $\{T_\alpha : \alpha < \lambda\}$ of infinite subsets of ω, there exists $M \subset [\omega]^\omega$, an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone–Čech remainder $\beta \psi \setminus \psi$ of the associated ψ-space, $\psi = \psi(\omega, M)$, is homeomorphic to $\lambda + 1$ with the order topology. We also prove that for every $\lambda < t^+$, where t is the tower number, there exists a mod-finite ascending chain $\{T_\alpha : \alpha < \lambda\}$, hence a ψ-space with Stone–Čech remainder homeomorphic to $\lambda + 1$. This generalizes a result credited to S. Mrówka by J. Terasawa which states that there is a MADF M such that $\beta \psi \setminus \psi$ is homeomorphic to $\omega_1 + 1$.

1. Introduction. Let ω denote the set of natural numbers. Let $[\omega]^\omega$ denote the set of all countably infinite subsets of ω. Sets $A, B \in [\omega]^\omega$ are said to be almost disjoint provided $A \cap B$ is finite. An infinite family $A \subset [\omega]^\omega$ is called an almost disjoint family (ADF) if any two elements of A are almost disjoint. An ADF M is called a maximal almost disjoint family (MADF) if it is not properly contained in another ADF.

We have considered almost disjoint families of countable subsets of an arbitrary cardinal κ in [4], [5], but in this paper we only consider the classical case $\kappa = \omega$.

Almost disjoint families, especially MADF’s, are of interest in set theory (e.g., [8], [14]), topology (e.g., [6], [13]), Boolean algebra (e.g., [1], [3]) and Banach spaces (e.g., [10], [11]).

An important interest in topology of MADF’s concerns the well-known class of topological spaces called ψ-spaces (e.g., see [2, §11]; for some historical notes, see [4, §2]). For any ADF $A \subset [\omega]^\omega$, let $\psi(\omega, A)$ denote the space with underlying set $\omega \cup A$ and with the topology having as a base all singletons $\{\alpha\}$ for $\alpha < \omega$ and all sets of the form $\{A\} \cup (A \setminus F)$ where...
A ∈ ℳ and ℱ is finite. We call \(ψ(ω, A) \) the \(ψ \)-space associated with \(A \), and the class of spaces of the form \(ψ(ω, A) \) the class of \(ψ \)-spaces on \(ω \) (or on \([ω]ω \)). It is well-known that the topology of \(ψ(ω, A) \) is closely related to the ADF \(A \), however all \(ψ \)-spaces on \(ω \), regardless of which ADF \(A \) is used, are first countable, zero-dimensional, Hausdorff, locally compact non-compact spaces in which \(ω \) is an open dense set of isolated points (hence the \(ψ \)-space is separable), and \(ψ \setminus ω = A \) is a closed discrete set. Maximal ADF’s are of additional interest because \(M \) is maximal if and only if the \(ψ \)-space associated with \(M \) is pseudocompact (i.e., every real-valued continuous function defined on \(ψ \) is bounded \([12]\)).

For \(A, B \in [ω]ω \), \(A ↑ B \) means that \(A \setminus B \) is finite, and \(A \subset^* B \) means that \(A \subset B \) and \(B \setminus A \) is infinite. Let \(X \in [ω]ω \). A mod-finite ascending chain of order type \(λ \) in \(X \) (chain for short) is a family \(\{T_α : α < λ\} \subset [ω]^ω \), where \(λ \) is an ordinal, such that \(T_α ↑ X \) for all \(α < λ \), and \(β < α < λ \) imply \(T_β ↑ T_α \). We also say “chain indexed by \(λ \)” when the particular ordinal \(λ \) is needed. Let \(c \) denote the cardinality of the continuum, and let \(t \) denote the tower number, i.e., the smallest cardinality of a tower in \([ω]^ω \) (e.g., see \([2]\) or \([16]\)).

We use the approach to Stone–Cech compactifications in \([7]\). For \(E \subset ψ \), we let \(E^\bullet \) denote the closure of \(E \) in \(βψ \). The closure of \(E \) in \(ψ \) will be denoted by \(cl_ψ(E) \).

J. Terasawa \([15]\) proved that every compact metric space is the Stone–Čech remainder of a \(ψ \)-space on \(ω \) for a suitably chosen MADF \(M \), and he stated that the ordinal \(ω_1 + 1 \) with the order topology is also the remainder of a \(ψ \)-space. He attributed that result to S. Mrówka. Our main theorem generalizes this result as follows.

Theorem 1.1. If there exists a chain \(\{T_α : α < λ\} \) in \([ω]^ω \) indexed by the ordinal \(λ \), then there exists a MADF \(M \subset [ω]^ω \) such that \(βψ \setminus ψ \) is homeomorphic to \(λ + 1 \) with the order topology.

Concerning the existence of ascending chains, we prove

Theorem 1.2. If \(λ < t^+ \), then there exists an ascending ordered chain in \(ω \) of order type \(λ \). Thus there exists a MADF \(M \subset [ω]^ω \) such that \(βψ \setminus ψ \cong \lambda + 1 \).

Combining these two theorems we get

Theorem 1.3. For every successor ordinal \(λ + 1 < t^+ \) there exists a MADF \(M \subset [ω]^ω \) such that the Stone–Čech remainder of \(ψ(ω, M) \) is homeomorphic to \(λ + 1 \) with the order topology.

Theorem \([13]\) implies the result attributed to Mrówka because, as is well known, \(t \) is an uncountable cardinal, hence \(ω_1 + 1 < t^+ \).
Theorem 1.3 is the best possible in ZFC in the sense that it is consistent that the ordinal \(t^+ + 1 \) is not the Stone–Čech remainder of any \(\psi \)-space on \(\omega \). This follows because a compact separable space has weight at most \(\mathfrak{c} \) [9 2.3(i)]. Hence a compact separable space cannot contain a subspace with \(\mathfrak{c}^+ \) isolated points; in particular cannot contain a copy of the ordinal \(\mathfrak{c}^+ + 1 \).

Hence in any model where \(t = \mathfrak{c} \), also \(t^+ = \mathfrak{c}^+ \), and this implies that \(t^+ + 1 \) is not the Stone–Čech remainder of any \(\psi \)-space on \(\omega \).

We establish the homeomorphism between the Stone–Čech remainder, \(\beta \psi \setminus \psi \), and \(\lambda + 1 \) using the following simple result.

Lemma 1.4. Let \(X \) be a Hausdorff space and \(\{ O_\alpha : \alpha < \lambda \} \) a cover of \(X \) by compact, clopen sets such that, for all \(\beta < \alpha < \lambda \),

1. \(O_\beta \subset O_\alpha \), and
2. \(|O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta| = 1 \) for \(\alpha < \lambda \).

Then \(X \) is homeomorphic to \(\lambda \) with the order topology.

Proof. For \(\alpha < \lambda \), let \(x_\alpha \in X \) be the point such that \(\{ x_\alpha \} = O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta \), and define \(\varphi : \lambda \to X \) by \(\varphi(\alpha) = x_\alpha \). Clearly \(\varphi \) is one-to-one and onto \(X \). By the compactness of \(O_\alpha \), the decreasing family \(\{ O_\alpha \setminus O_\beta : \beta < \alpha \} \) is a local base for \(x_\alpha \) in \(X \). We show that \(\varphi \) is a homeomorphism by showing that \(\varphi((\gamma, \alpha]) = O_\alpha \setminus O_\gamma \) for all \(\gamma < \alpha < \lambda \). If \(x \in \varphi((\gamma, \alpha]) \), there exists \(\gamma < \beta \leq \alpha \) such that \(x = \varphi(\beta) = x_\beta \). Since \(x_\beta \in O_\beta \) and, by (1), \(O_\beta \subset O_\alpha \), we see that \(\varphi(\beta) \in O_\alpha \). For \(\gamma < \beta \), \(x_\beta \not\in O_\gamma \). Thus \(\varphi(\beta) = x_\beta \in O_\alpha \setminus O_\gamma \).

Conversely, let \(x \in O_\alpha \setminus O_\gamma \), and let \(\beta \leq \alpha \) be the first ordinal such that \(x \in O_\beta \). Then \(x \in O_\beta \setminus \bigcup_{\tau \leq \beta} O_\tau \); so \(x = x_\beta \). We have \(\gamma < \beta \), so \(\gamma < \beta \leq \alpha \) and \(x = \varphi(\beta) \). Thus \(x \in \varphi((\gamma, \alpha]) \). This proves the equality \(\varphi((\gamma, \alpha]) = O_\alpha \setminus O_\gamma \), and shows that \(\varphi \) is a homeomorphism.

Lemma 1.5. If \(Z \) is a zero set in \(\beta \psi \), then \(\overline{Z} \cap \mathcal{M} \supset Z \cap (\beta \psi \setminus \psi) \), and if \(Z \cap (\beta \psi \setminus \psi) \neq \emptyset \), then \(Z \cap \mathcal{M} \) is infinite.

Proof. Let \(p \in Z \cap (\beta \psi \setminus \psi) \). Then \(p \) is a free z-ultrafilter on \(\psi \). Let \(Z' \) be any zero-set neighborhood of \(p \) in \(\beta \psi \). Since \(\psi \) is pseudocompact, the z-ultrafilter \(p \) is countably complete, i.e., if \(Z_n \in p \) for \(n \in \omega \), then \(\bigcap_{n \in \omega} Z_n \in p \) ([7 8.6]). For \(n \in \omega \), \(Z_n = \psi \setminus \{ n \} \) is a (clopen) zero set in \(\psi \), and since \(p \) is free, \(\psi \setminus \{ n \} \in p \). Now we have \(Z'' = Z \cap Z' \cap \bigcap_{n \in \omega} Z_i \in p \), and \(Z'' \subset \mathcal{M} \). This shows that the zero-set neighborhood \(Z' \) of \(p \) has a non-empty intersection with \(Z \cap \mathcal{M} \). Since \(Z' \) was arbitrary, it follows that \(p \in Z \cap \overline{\mathcal{M}} \).

Let \(F \in [\omega]^{\omega} \) and \(\{ T_\alpha : \alpha < \lambda \} \) be a chain in \(X \). We say that the set \(F \) diagonalizes the chain in \(X \) (or in \([X]^{\omega} \)) provided \(F \subset X \) and for all \(\beta < \alpha \), \(|F \cap T_\beta| < \omega \). If \(\mathcal{F} \subset [\omega]^{\omega} \) is a family of sets, we say \(\mathcal{F} \) diagonalizes the chain in \(X \) provided each set \(F \in \mathcal{F} \) diagonalizes the chain in \(X \). We
note that there exists F that diagonalizes a chain $\{T_\beta : \beta < \lambda\}$ in X if and only if the chain is a not a tower in X (consider $X \setminus F$).

Given disjoint sets $A, B \in [\omega]^\omega$ and $A \subset [A]^\omega$ ADF, $B \subset [B]^\omega$ ADF with $|A| = |B|$, the (Mrówka) join of A and B is defined by $A \oplus B = \{A \cup \phi(A) : A \in A\}$, where $\phi : A \to B$ is a bijection (see [4, §4]). Clearly $A \oplus B$ is an ADF and is maximal if both A and B are maximal.

We call a MADF M a Mrówka MADF provided $|\beta \psi \setminus \psi| = 1$. As proved by S. Mrówka in [13], there exists $M \subset [\omega]^\omega$ such that $|\beta \psi \setminus \psi| = 1$.

Lemma 1.6. Let $N, \omega \setminus N \in [\omega]^\omega$, $B \subset [N]^\omega$ be a Mrówka MADF, and $A \subset [\omega \setminus N]^\omega$ an ADF such that $|B| = |A| \geq \omega$. If $M \subset [\omega]^\omega$ is a MADF and $A \oplus B \subset M$ then $A \oplus B$ has exactly one limit point in $\beta \psi$, where $\psi = \psi(\omega, M)$.

Proof. The proof is similar to that of [5, Theorem 1.3, Case 3].

2. Proofs of the main results

Proof of Theorem 1.4. Let $\{T_\beta : \beta < \lambda\}$ be a chain in T_λ. For convenience we identify T_λ with ω. We must construct a MADF $M \subset [\omega]^\omega$ such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$. For λ finite, say $\lambda = n \geq 1$, we prove the theorem by taking n disjoint copies of ω each with a Mrówka MADF (i.e., $|\beta \psi \setminus \psi| = 1$). Then taking unions yields the theorem. If we prove the theorem for a limit ordinal λ, then we get it for successor ordinals, $\lambda + 1, \lambda + 2, \ldots$, because all these ordinal spaces are homeomorphic to $\lambda + 1$. Thus we assume that $\{T_\beta : \beta < \lambda\}$ is a chain and λ is a limit ordinal.

We want our chain to have the following property:

(*) For $\alpha \leq \lambda$, if $\text{cf}(\alpha) > \omega$ and $\{T_\beta : \beta < \alpha\}$ is not a tower in T_α, then it is not a tower in any $H <^* T_\alpha$.

The given chain $\{T_\beta : \beta < \lambda\}$ may not have this property, so we adjust it: For every $\alpha < \lambda$, if there exists $H <^* T_\alpha$ such that $\{T_\beta : \beta < \alpha\}$ is a tower in H (hence $\text{cf}(\alpha) > \omega$), then we change the definition of T_α by replacing T_α with H (then $T_\alpha = H$). After this change, $\{T_\beta : \beta < \alpha\}$ is a tower in T_α. For those $\alpha < \lambda$ for which this change is made, T_α becomes a bit smaller than it was and the ring $T_{\alpha+1} \setminus T_\alpha$ becomes a bit larger. No change is made for any other $\alpha < \lambda$. This adjusted chain clearly has property (*).

Now we proceed to the construction of the MADF M. For $\alpha \leq \lambda$ define

$\xi_\alpha = \{A \subset [T_\alpha]^\omega : A$ is an ADF diagonalizing $\{T_\beta : \beta < \alpha\}$ in $T_\alpha\}$.

Note that

$\xi_\alpha = \emptyset \iff \{T_\beta : \beta < \alpha\}$ is a tower in $[T_\alpha]^\omega$.

When $\xi_\alpha \neq \emptyset$, we partially order ξ_α by set inclusion. Then by Zorn's Lemma, there is a family $N_\alpha \in \xi_\alpha$ such that N_α is a maximal element in
the poset \(\xi_\alpha \). Since there exists a MADF of cardinality \(c \), we may assume that \(|N_\alpha| = c\). Pick \(N_\alpha \in N_\alpha \) and let \(B_\alpha \subset [N_\alpha]^{\omega} \) be a Mrówka MADF with \(|B_\alpha| = c\). Since \(N_\alpha \) diagonalizes the chain, \(B_\alpha \) diagonalizes the chain. Then \(B_\alpha \oplus (N_\alpha \setminus \{N_\alpha\}) \) is an ADF, and diagonalizes the chain \(\{T_\beta : \beta < \alpha\} \) (obviously if each of two sets diagonalizes a chain, then their union also does).

As an intermediate step before we get to \(M \) we define families \(C_\alpha \).

(1\(\alpha \)) If \(\xi_\alpha \neq \emptyset \) we define \(C_\alpha = B_\alpha \oplus (N_\alpha \setminus \{N_\alpha\}) \) as described above. This case includes all successor ordinals, all ordinals of countable cofinality, and all ordinals of uncountable cofinality for which \(\{T_\beta : \beta < \alpha\} \) is not a tower in \(T_\alpha \), hence not a tower in any \(H <^* T_\alpha \) (by the adjustment we made to the tower at the beginning of the proof).

(2\(\alpha \)) If \(\xi_\alpha = \emptyset \), then we define \(C_\alpha = \emptyset \).

We note that if \(C_\alpha \neq \emptyset \) then \(|C_\alpha| = c\).

Claim 1. For all \(\alpha \leq \lambda \), \(C_\alpha \subset [T_\alpha]^{\omega} \) and \(C_\alpha \) diagonalizes the chain \(\{T_\beta : \beta < \alpha\} \) in \(T_\alpha \).

Proof. If \(C_\alpha = \emptyset \), there is nothing to prove. If \(C_\alpha \neq \emptyset \), then the inclusion \(C_\alpha \subset [T_\alpha]^{\omega} \) follows because \(N_\alpha \subset [T_\alpha]^{\omega} \), \(B_\alpha \subset [N_\alpha]^{\omega} \) and \(N_\alpha \in N_\alpha \). Since \(C_\alpha = B_\alpha \oplus (N_\alpha \setminus \{N_\alpha\}) \) is a join of two ADF’s each of which diagonalizes the chain \(\{T_\beta : \beta < \alpha\} \) in \(T_\alpha \), we see that \(C_\alpha \) diagonalizes the chain.

Claim 2. For all \(\alpha \leq \lambda \), if \(H \in [T_\alpha]^{\omega} \) diagonalizes \(\{T_\beta : \beta < \alpha\} \) in \(T_\alpha \) then there exists \(C \in C_\alpha \) such that \(|C \cap H| = \omega\).

Proof. Assume \(H \) diagonalizes \(\{T_\beta : \beta < \alpha\} \) in \(T_\alpha \). The existence of \(H \) implies that \(\xi_\alpha \neq \emptyset \). Hence \(C_\alpha \) was defined by (1\(\alpha \)). Therefore the maximal element \(N_\alpha \) of \(\xi_\alpha \) was used in the definition of \(C_\alpha \). We cannot have both \(H \notin N_\alpha \) and \(N_\alpha \cup \{H\} \) an ADF because that would contradict the maximality of \(N_\alpha \) in \(\xi_\alpha \). Either way, there is \(N \in N_\alpha \) such that \(|H \cap N| = \omega\), hence there exists \(C \in C_\alpha \) such that \(|C \cap H| = \omega\).

Claim 3. The family \(\{C \cap T_\alpha : C \in \bigcup_{\beta \leq \alpha} C_\beta\} \) is a MADF on \(T_\alpha \).

Proof. If \(H \in [T_\alpha]^{\omega} \), then there exists a first \(\beta \leq \alpha \) such that \(|H \cap T_\beta| = \omega\). Then \(H \cap T_\beta \) diagonalizes \(\{T_\xi : \xi < \beta\} \) in \(T_\beta \); so by Claim 2, there exists \(C \in C_\beta \) such that \(|C \cap H \cap T_\beta| = \omega\). Hence \(|C \cap H| = \omega\).

We define

\[
M = \bigcup_{\alpha \leq \lambda} C_\alpha.
\]

Claim 4. \(M \subset [\omega]^{\omega} \) is a MADF.

Proof. This follows from Claim 3 and the fact that \(T_\lambda = \omega \).
We now consider the topology of $\psi = \psi(\omega, M)$, the ψ-space associated with the MADF M constructed above. We want to show that $\beta\psi \setminus \psi$ is homeomorphic to $\lambda + 1$ with the order topology. We first establish some useful facts concerning the topology on ψ and $\beta\psi$.

Claim 5. For $\alpha \leq \lambda$, $T_\alpha \cap M \subset \bigcup_{\beta \leq \alpha} C_\alpha$, $\text{cl}_\psi(T_\alpha)$ is clopen in ψ, hence $\overline{T_\alpha}$ is clopen in $\beta\psi$.

Proof. Let $M \in T_\alpha \cap M$; then $M \cap T_\alpha$ is infinite by the definition of the topology on ψ. By Claim 3, there exists $C \in \bigcup_{\beta \leq \alpha} C_\alpha$ such that $|C \cap (M \cap T_\alpha)| = \omega$. Since $C, M \in M$, an almost disjoint family, we have $C = M$; so $M \in \bigcup_{\beta \leq \alpha} C_\alpha$.

To see that $\text{cl}_\psi(T_\alpha)$ is clopen in ψ, it suffices to to show this set is open since it is closed by definition. We may assume $\alpha < \lambda$ since $\text{cl}_\psi(T_\lambda) = \text{cl}_\psi(\omega) = \psi$ is clopen in ψ. Let $M \in \text{cl}_\psi(T_\alpha) \cap M$, hence $M \in \overline{T_\alpha} \cap M$, so by the first part of Claim 5, $M \in \bigcup_{\beta \leq \alpha} C_\alpha$. Thus by Claim 1, for some $\beta \leq \alpha$, $M \subset T_\beta \subset T_\alpha$, hence for some finite set F we find that $\{M\} \cup (M \setminus F)$ is a neighborhood of M contained in $\text{cl}_\psi(T_\alpha)$. Thus $\text{cl}_\psi(T_\alpha)$ is clopen in ψ, and therefore $\overline{T_\alpha} = \text{cl}_\psi(T_\alpha)$ is clopen in $\beta\psi$ [7, p. 90]. This completes the proof of Claim 5.

In preparation for using Lemma 1.4, we define

$$O_\alpha = \overline{T_\alpha} \cap (\beta\psi \setminus \psi) = \text{cl}_\psi(T_\alpha) \cap (\beta\psi \setminus \psi) \quad \text{for } \alpha \leq \lambda.$$

Then $\{O_\alpha : \alpha \leq \lambda\}$ is an increasing family of compact clopen sets in $\beta\psi \setminus \psi$, $O_\lambda = \beta\psi \setminus \psi$, and satisfies condition (1) in Lemma 1.4. To complete the proof of the theorem, we show that condition (2) also holds for this family, i.e., we show that

$$|O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta| = 1 \quad \text{for } \alpha \leq \lambda.$$

First we show that $O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta$ contains at least one point.

Claim 6. If $\beta < \alpha \leq \lambda$ then $O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta \neq \emptyset$.

Proof. Since $\{O_\alpha \setminus O_\beta : \beta < \alpha\}$ is a decreasing family of compact sets, it suffices to show that $O_\alpha \setminus O_\beta \neq \emptyset$ for all $\beta < \alpha$. If $C_\alpha \neq \emptyset$ then C_α is an infinite (in fact uncountable) subset of $\text{cl}_\psi(T_\alpha) \setminus \text{cl}_\psi(T_\beta)$; hence $T_\alpha \setminus T_\beta \neq \emptyset$. If $C_\alpha = \emptyset$, then α is a limit ordinal (in fact $\text{cf}(\alpha) > \omega$), hence $\beta + 1 < \alpha$. Since $C_{\beta + 1} \neq \emptyset$, we have $\emptyset \neq O_{\beta + 1} \setminus O_\beta \subset O_\alpha \setminus O_\beta$.

The remainder of the proof is devoted to showing that $O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta$ contains at most one point.

Claim 7. For all $\alpha \leq \lambda$, $|O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta| \leq 1$.

Proof. Assume that for all $\beta < \alpha$ we have proved $|O_\beta \setminus \bigcup_{\tau < \beta} O_\tau| = 1$. We show $|O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta| \leq 1$. We have two cases:

Case 1: $\xi_\alpha = \emptyset$. Then $\text{cf}(\alpha) > \omega$, so $\{T_\beta : \beta < \alpha\}$ is a tower in T_α and $C_\alpha = \emptyset$.

Let $X = \bigcup_{\beta < \alpha} O_{\beta} \subset \beta\psi \setminus \psi$. By the induction hypothesis, \(\{O_{\beta} : \beta < \alpha\} \) satisfies the hypothesis of Lemma 1.4 hence \(X \cong \alpha \). Then the one-point compactification of \(X \) and the one-point compactification of \(\alpha \) are homeomorphic, and since in this case \(\text{cf}(\alpha) > \omega \), the only compactification of \(\alpha \) is its one-point compactification, the ordinal \(\alpha + 1 \). Thus the only compactification of \(X \) is its one-point compactification, and \(X \cong \alpha + 1 \). Moreover \(X \subset \overline{O_{\alpha}} = \alpha \). To prove the claim it suffices to show that \(\overline{X} = \alpha \). If \(\overline{X} \neq \alpha \), then there exists a point \(p \in O_{\alpha} \setminus X \subset T_{\alpha} \). Since \(\overline{X} \) is compact, there exists a continuous function \(f : \beta\psi \to [0, 1] \) such that \(f(p) = 0, f^{-1}(0) \subset T_{\alpha} \) and \(f(\overline{X}) = 1 \).

Since \(C_{\alpha} = \emptyset \), by Claim 5, we have

\[
f^{-1}(0) \cap \mathcal{M} \subset T_{\alpha} \cap \mathcal{M} \subset \bigcup_{\beta \leq \alpha} C_{\beta} = \bigcup_{\beta < \alpha} C_{\beta}.
\]

By Lemma 1.5, \(f^{-1}(0) \cap \mathcal{M} \) is infinite. Pick distinct \(C_{i} \in f^{-1}(0) \cap \mathcal{M} \); say that \(C_{i} \in \mathcal{C}_{\beta_{i}} \) (for \(i \in \omega \)). Let \(\beta = \sup\{\beta_{i} : i \in \omega\} \). Then \(\beta < \alpha \) because \(\text{cf}(\alpha) > \omega \). Let \(x \) be a limit point of \(\{C_{i} : i \in \omega\} \) in \(\beta\psi \setminus \psi \). Then \(f(x) = 0 \). Since each \(C_{i} \subset T_{\beta_{i}} \supset \ast T_{\beta} \), we have \(x \in T_{\beta} \subset X \); hence \(f(x) = 1 \), which is a contradiction. This proves Case 1.

Case 2: \(\xi_{\alpha} \neq \emptyset \). We break this case into three subcases depending on properties of \(\alpha \).

Subcase 1: \(\alpha \) is a successor ordinal, say \(\alpha = \tau + 1 \). In this case

\[
O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta} = O_{\tau + 1} \setminus O_{\tau}.
\]

Since \(\xi_{\alpha} \neq \emptyset \), \(|C_{\alpha}| = \mathfrak{c} \geq \omega \). By Lemma 1.6, \(C_{\alpha} \) has exactly one limit point in \(\beta\psi \), call it \(x_{\alpha} \). Since \(C_{\alpha} \) diagonalizes \(\{T_{\beta} : \beta < \alpha\} \) in \(T_{\alpha} \), we deduce for every \(C \in C_{\alpha} \) that \(C \subset \ast T_{\alpha} \setminus T_{\tau} \), hence the unique limit point \(x_{\alpha} \) of \(C_{\alpha} \) is in \(T_{\alpha} \setminus T_{\tau} = T_{\alpha} \setminus T_{\tau} \); so \(x_{\alpha} \in O_{\alpha} \setminus O_{\tau} \). If this is the only point in \(O_{\alpha} \setminus O_{\tau} \), then we are done. So assume there is a point \(p \in O_{\alpha} \setminus O_{\tau} \) and \(p \neq x_{\alpha} \). Therefore there exists an open neighborhood \(U \) of \(p \) in \(\beta\psi \) such that \(U \subset T_{\alpha} \setminus T_{\tau} \) and \(U \cap C_{\alpha} = \emptyset \). Let \(f : \beta\psi \to [0, 1] \) be continuous such that \(p \in f^{-1}(0) \subset U \). Since \(f^{-1}(0) \cap C_{\alpha} = \emptyset \), it follows from Claim 5 that

\[
f^{-1}(0) \cap \mathcal{M} \subset T_{\alpha} \cap \mathcal{M} \subset \bigcup_{\beta \leq \tau} C_{\beta},
\]

and from Lemma 1.5 that \(f^{-1}(0) \cap (\beta\psi \setminus \psi) \subset f^{-1}(0) \cap \mathcal{M} \). Therefore

\[
p \in f^{-1}(0) \cap (\beta\psi \setminus \psi) \subset f^{-1}(0) \cap \mathcal{M} \subset \bigcup_{\alpha \leq \tau} C_{\alpha} \subset T_{\tau}.
\]

so \(p \in O_{\tau} \). This is a contradiction.

Subcase 2: \(\text{cf}(\alpha) = \omega \). By Lemma 1.6, \(C_{\alpha} \) has exactly one limit point in \(\beta\psi \), which we denote by \(x_{\alpha} \), and \(x_{\alpha} \in O_{\alpha} \setminus \bigcup_{\beta < \alpha} O_{\beta} \). If this is the
only point in \(O_\alpha \setminus \bigcup_{\beta < \omega} O_\beta \), then we are done. So assume there is a point \(p \in O_\alpha \setminus \bigcup_{\beta < \alpha} O_\beta \) and \(p \neq x_\alpha \). Then \(p \notin C_\alpha \). Let \(f : \beta \psi \to [0,1] \) be a continuous function such that \(p \in f^{-1}(0) \subset T_\alpha \), and \(f^{-1}(0) \cap C_\alpha = \emptyset \). By Claim 5 and Lemma 1.5, \(f^{-1}(0) \cap \bigcup_{\beta < \alpha} C_\beta \) is infinite. If \(f^{-1}(0) \cap C_\beta \neq \emptyset \) for cofinally many \(\beta < \alpha \), then we may pick, for each \(n \in \omega \), ordinals \(\beta_n < \alpha \) and \(M_n \in f^{-1}(0) \cap C_{\beta_n} \) in such a way that \(\{ \beta_n : n \in \omega \} \) is an increasing and cofinal sequence in \(\alpha \). Since \(f(M_n) = 0 \) for \(n \in \omega \), we may pick by recursion distinct integers \(a_n \) with
\[
a_n \in M_n \cap \left(T_\alpha \setminus \bigcup_{i < n} T_{\beta_i} \right)
\]
such that \(f(a_n) < 1/(n+1) \) for \(n \in \omega \). Then \(A = \{ a_n : n \in \omega \} \) diagonalizes \(\{ T_\beta : \beta < \alpha \} \) in \(T_\alpha \). By Claim 2 there exists \(C \in C_\alpha \) such that \(|C \cap A| = \omega \), but then it follows that \(f(C) = 0 \); so \(C \in f^{-1}(0) \cap C_\alpha \), which is a contradiction. Therefore it must be the case that \(f^{-1}(0) \cap M \subset \bigcup_{\beta \leq \gamma} C_\beta \). We show this possibility does not occur. If it did, for each \(C \in f^{-1}(0) \cap M \) we have \(C \subset^* T_\gamma \), hence \(C \in \overline{T_\gamma} \cap M \). Therefore \(f^{-1}(0) \cap M \subset \overline{T_\gamma} \). But \(p \in f^{-1}(0) \cap (\beta \psi \setminus \psi) \subset f^{-1}(0) \cap M \) by Lemma 1.5. Thus we have \(p \in \overline{T_\gamma} \), which implies \(p \in O_\gamma \) where \(\gamma < \alpha \), and that is a contradiction.

SUBCASE 3: \(\text{cf}(\alpha) > \omega \). This subcase has some similarities with Case 1 since in both cases \(\text{cf}(\alpha) > \omega \). However, in Case 1, we have \(C_\alpha = \emptyset \), while in this subcase, we have \(C_\alpha \neq \emptyset \). Put \(X = \bigcup_{\beta < \alpha} O_\beta \). As in Case 1, \(X \) is the one-point compactification of \(\bigcup_{\beta < \alpha} O_\beta \), and \(X \subset O_\alpha \). We need to show that \(O_\alpha = X \). If not, there exists a point \(p \in O_\alpha \setminus X \). Let \(f : \beta \psi \to [0,1] \) be a continuous function such that \(p \in f^{-1}(0) \), \(X \subset f^{-1}(1) \), and \(f^{-1}(0) \subset T_\alpha \). We will derive a contradiction.

By Lemma 1.5 and Claim 5,
\[
p \in \bigcup_{\beta \leq \alpha} C_\beta = \bigcup_{\beta < \alpha} C_\beta \cup \overline{C_\alpha}.
\]
As in Case 1, \(p \notin \bigcup_{\beta < \alpha} C_\beta \) because \(f^{-1}([0,1/2)) \) is neighborhood of \(p \) and \(f^{-1}([0,1/2)) \cap \bigcup_{\beta < \alpha} C_\beta \) is finite (since \(\text{cf}(\alpha) > \omega \) and \(f^{-1}([0,1/2)) \cap X = \emptyset \)). Thus \(p \in \overline{C_\alpha} \). By Lemma 1.6, \(p \) is the only limit point of \(C_\alpha \) in \(\beta \psi \). Since \(f^{-1}([0,1/2)) \) is a neighborhood of \(p \) in \(\beta \psi \), we have \(C_\alpha \subset^* f^{-1}([0,1/2)) \). Let \(F_0 = C_\alpha \setminus f^{-1}([0,1/2)) \), a finite set. By Claim 1, \(C_\alpha \subset \overline{T_\alpha} \), thus \(F_0 \subset \overline{T_\alpha} \), and moreover, for each \(M \in F_0 \), \(M \subset T_\alpha \). Define \(K_0 = F_0 \cup \bigcup_{\beta \leq \alpha} K_0 \). Then \(K_0 \) is clopen and compact in \(\psi \), hence clopen and compact in \(\beta \psi \). Define \(f_0 \) to be equal to \(f \) on \(\beta \psi \setminus K_0 \) and \(f_0 = 0 \) on \(K_0 \). Then \(f_0 : \beta \psi \to [0,1] \) is continuous and has the property that \(C_\alpha \subset f_0^{-1}([0,1/2)) \) (true subset).
addition \(f_0 \) retains three relevant properties of \(f \): \(p \in f_0^{-1}(0) \), \(\overline{X} \subset f_0^{-1}(1) \) (because \(f \) and \(f_0 \) agree on \(\beta \psi \setminus \psi \)), and \(f_0^{-1}(0) \subset \overline{T_\alpha} \) (because \(K_\alpha \subset \overline{T_\alpha} \)).

We see that \(f_0^{-1}((1/2, 1]) \) is an open set containing \(\overline{X} \), and \(\bigcup_{\beta < \alpha} C_\beta \subset^* f_0^{-1}((1/2, 1]) \) (since \(\text{cf}(\alpha) > \omega \) and \(f_0^{-1}([0, 1/2)) \cap X = \emptyset \)). Let \(F_1 = \bigcup_{\beta < \alpha} C_\beta \setminus f_0^{-1}((1/2, 1]) \), a finite set. Define \(K_1 = F_1 \cup \bigcup F_1 \). Then \(K_1 \) is clopen and compact in \(\psi \), hence clopen and compact in \(\beta \psi \). Define \(f_1 \) to be equal to \(f_0 \) on \(\beta \psi \setminus K_1 \) and \(f_1 = 1 \) on \(K_1 \). Then \(f_1 : \beta \psi \to [0, 1] \) is continuous and has the property that \(\bigcup_{\beta < \alpha} C_\beta \subset f_1^{-1}((1/2, 1]) \) (true subset). In addition \(f_1 \) retains four relevant properties of \(f_0 \): \(C_\alpha \subset f_1^{-1}([0, 1/2)) \) (since \(f_0 \) and \(f_1 \) agree on \(C_\alpha \)), \(p \in f_1^{-1}(0) \), \(\overline{X} \subset f_1^{-1}(1) \) (because \(f_0 \) and \(f_1 \) agree on \(\beta \psi \setminus \psi \)), and \(f_1^{-1}(0) \subset \overline{T_\alpha} \) (because \(f_1^{-1}(0) \subset f_0^{-1}(0) \)).

Now we define \(H = f_1^{-1}((1/2, 1]) \cap T_\alpha \).

Then \(H \subset \omega \) is infinite, and has the following three properties:

(i) \(T_\beta \subset^* H \) for all \(\beta < \alpha \), since if for some \(\beta < \alpha \) we have \(|T_\beta \setminus H| = \omega \), then by Claim 3, \(\bigcup_{\tau \leq \beta} C_\tau \) is a MADF on \(T_\beta \), hence there exists \(C \in \bigcup_{\tau \leq \beta} C_\tau \) such that \(|C \cap (T_\beta \setminus H)| = \omega \), but this implies \(f_1(C) \leq 1/2 \), which contradicts the definition of \(f_1 \).

(ii) \(H \subset^* T_\alpha \), because by Case 2, \(C_\alpha \neq \emptyset \), and for any \(C \in C_\alpha \), \(C \subset^* T_\alpha \setminus H \) (since \(f_1(C) \subset 1/2 \)).

(iii) \(\{T_\beta : \beta < \alpha \} \) is a tower in \(H \). We need only check the maximality condition of a tower; so suppose \(K < H \) and \(T_\beta \subset^* K \) for all \(\beta < \alpha \). Then \(H \setminus K \) is an infinite subset of \(T_\alpha \) and diagonalizes \(\{T_\beta : \beta < \alpha \} \) in \(T_\alpha \). Hence by Claim 2 there exists \(C \in C_\alpha \) such that \(|C \cap (H \setminus K)| = \omega \). This implies that \(f_1(C) \geq 1/2 \), but this is impossible because \(f_1(C) < 1/2 \). This proves that \(\{T_\beta : \beta < \alpha \} \) is a tower in \(H \subset^* T_\alpha \).

But by hypothesis of Case 2, \(\xi_\alpha \neq \emptyset \); so \(\{T_\beta : \beta < \alpha \} \) is not a tower in \(T_\alpha \) (as noted following the definition of \(\xi_\alpha \)), hence not a tower in \(H \) by property (\(* \)) of our adjusted chain. That contradicts (iii) and completes the proof of Subcase 3 of Claim 7, and therefore Claim 7 is proved.

By Claims 6 and 7, the family \(\{O_\alpha : \alpha < \lambda + 1\} \) satisfies the hypothesis of Lemma \(\ref{claim:ordered} \), hence \(\beta \psi \setminus \psi \) is homeomorphic to \(\lambda + 1 \). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 If we have a chain indexed by an ordinal \(\lambda \), then clearly we have chains indexed by all ordinals \(\beta < \lambda \). There exists a chain (in fact a tower) \(\{S_\alpha : \alpha < t\} \subset [\omega]^{\omega} \) indexed by \(t \). It suffices to prove that for every ordinal \(\lambda < t^+ \) with \(\text{cf}(\lambda) = t \), there is a chain indexed by \(\lambda \). The proof is by induction. Assume we have (ascending) ordered chains in \(\omega \) of
order type β for every $\beta < \lambda$ where $\lambda < t^+$, and $\text{cf}(\lambda) = t$. We construct a chain indexed by λ. Let $\varphi : t \to \lambda$ be a strictly increasing function onto a set of ordinals cofinal in λ. Let $\{E_\alpha : \alpha < t\}$ be a pairwise disjoint family of copies of ω, and let $f_\alpha : E_\alpha \to S_{\alpha + 1} \setminus S_\alpha$ be a bijection. For each $\alpha < \kappa$ let
\[
\{U_\tau^\alpha : \varphi(\alpha) \leq \tau < \varphi(\alpha + 1)\}
\]
be an ascending mod-finite chain in $[E_\alpha]^\omega$ indexed by the interval of ordinals $[\varphi(\alpha), \varphi(\alpha + 1))$ (considered as a subset of a chain indexed by the ordinal $\varphi(\alpha + 1)$) with the one extra requirement that $U_\tau^\alpha = \emptyset$. By “ascending” we mean that if $\varphi(\alpha) < \tau < \mu < \varphi(\alpha + 1)$ then $U_\tau^\alpha <* U_\mu^\alpha <* E_\alpha$. Now we define a chain indexed by λ as follows: For $\tau < \lambda$, let $\alpha < t$ be the unique ordinal such that $\varphi(\alpha) \leq \tau < \varphi(\alpha + 1)$, and define
\[
T_\tau = S_\alpha \cup f_\alpha(U_\tau^\alpha) \quad \text{for} \quad \varphi(\alpha) \leq \tau < \varphi(\alpha + 1).
\]
By our definitions, $T_{\varphi(\alpha)} = S_\alpha$. It remains to show “mod-finite ascending”. Suppose $\tau < \mu < \lambda$. Let $\alpha < t$ be such that $\varphi(\alpha) \leq \tau < \varphi(\alpha + 1)$. If $\mu < \varphi(\alpha + 1)$, then on E_α we have $U_\tau^\alpha <* U_\mu^\alpha$, hence $f_\alpha(U_\tau^\alpha) <* f_\alpha(U_\mu^\alpha)$, hence
\[
T_\tau = S_\alpha \cup f_\alpha(U_\tau^\alpha) <* S_\alpha \cup f_\alpha(U_\mu^\alpha) = T_\mu.
\]
If $\varphi(\alpha + 1) \leq \mu$, let $\beta < t$ be such that $\varphi(\beta) \leq \mu < \varphi(\beta + 1)$. Then $\alpha + 1 \leq \beta$ and we have
\[
T_\tau = S_\alpha \cup f(U_\tau^\alpha) <* S_{\alpha + 1} \subset* S_\beta \subset S_\beta \cup f_\beta(U_\beta^\alpha) = T_\mu.
\]
Thus $\{T_\alpha : \alpha < \lambda\}$ is a chain, and this completes the proof of Theorem 1.2.

Acknowledgements. Research of the first author was supported by NSF grant No. NSF-DMS 20060114.

References

Ordinal remainders of classical ψ-spaces

Alan Dow
Department of Mathematics and Statistics
University of North Carolina at Charlotte
Charlotte, NC 28223, U.S.A.
E-mail: adow@uncc.edu

Jerry E. Vaughan
Department of Mathematics and Statistics
University of North Carolina at Greensboro
Greensboro, NC 27412, U.S.A.
E-mail: vaughanj@uncg.edu

Received 23 December 2011;
in revised form 11 March 2012