Zero-one laws for graphs with edge probabilities decaying with distance. Part II

by

Saharon Shelah (Jerusalem and Piscataway, NJ)

Abstract. Let G_n be the random graph on $[n] = \{1, \ldots, n\}$ with the probability of $\{i, j\}$ being an edge decaying as a power of the distance, specifically the probability being $p_{|i-j|} = 1/|i-j|^{\alpha}$, where the constant $\alpha \in (0,1)$ is irrational. We analyze this theory using an appropriate weight function on a pair (A,B) of graphs and using an equivalence relation on $B \setminus A$. We then investigate the model theory of this theory, including a "finite compactness". Lastly, as a consequence, we prove that the zero-one law (for first order logic) holds.

Introduction. This continues [Sh 467] which is Part I and will be denoted here by [I], background and a description of the results are given in $[I,\S 0]$; as this is the second part, our sections are named $\S 4-\S 6$ and not $\S 1-\S 3$.

Recall that we fix an irrational $\alpha \in (0,1)_{\mathbb{R}}$ and the random graph $\mathcal{M}_n = \mathcal{M}_n^0$ is drawn as follows:

- (a) its set of elements is $[n] = \{1, \dots, n\},\$
- (b) for i < j in [n] the probability of $\{i, j\}$ being an edge is $p_{|i-j|}$, where p_l is $1/l^{\alpha}$ if l > 1 and $1/2^{\alpha}$ if l = 1, or just $\binom{1}{l}$ $p_l = 1/l^{\alpha}$ for l > 1,
- (c) the drawings for the edges are independent,
- (d) \mathcal{K}_n is the set of possible values of \mathcal{M}_n , \mathcal{K} is the class of graphs.

Our main interest is to prove the 0-1 laws (for first order logic) for this 0-1 context, but also to analyze the limit theory.

We can now explain our intentions.

²⁰⁰⁰ Mathematics Subject Classification: 03C13, 05C80, 60F20, 03C10.

We thank John Baldwin and Shmuel Lifsches and Çiğdem Gencer and Alon Siton for helping in various ways and stages to make the paper more user-friendly.

Research partially supported by the United States–Israel Binational Science Foundation. Publication 517 in the author's list.

I would like to thank Alice Leonhardt for the beautiful typing.

 $^(^{1})$ Originally we assume the former but actually also the latter works.

Zero step: We define relations $<_x^*$ on the class of graphs with no apparent relation to the probability side.

First step: We can prove that these $<_x^*$ have the formal properties of $<_x$, like $<_i^*$ is a partial order etc.; this is done in §4, e.g., in 4.17.

Remember from [I, §1] that $A <_a B \Leftrightarrow$ for random enough \mathcal{M}_n and $f: A \hookrightarrow \mathcal{M}_n$, the maximal number of pairwise disjoint $g \supseteq f$ satisfying $g: B \to \mathcal{M}_n$ is $< n^{\varepsilon}$ (for every fixed ε).

Second step: We shall start dealing with the two versions of $<_a$: the $<_a$ from [I, §1] and $<_a^*$ defined in 4.11(5) below. We intend to prove:

$$(*) A <_a^* B \Rightarrow A <_a B.$$

For this it suffices to show that for every $f: A \hookrightarrow \mathcal{M}_n$ and positive real ε , the expected value of the following is $\leq 1/n^{\varepsilon}$: the number of extensions $g: B \to \mathcal{M}_n$ of f satisfying "the sets $\operatorname{Rang}(g \upharpoonright (B \setminus A))$, f(A) are at distance $\geq n^{\varepsilon}$ ". Then the expected value of the number of k-tuples of such (pairwise) disjoint g is $\leq 1/n^{k\varepsilon}$. So if $k\varepsilon > |A|$, the expected value of the number of functions f with f pairwise disjoint such extensions f is f in the expected value of the number of pairwise disjoint f is f in the expected value of the number of functions f with f pairwise disjoint such extensions f is f in the expected value of the number of pairwise disjoint f is f in the expected value of the number of functions f is f in the expected value of the number of functions f is f in the expected value of the number of functions f is f in the expected value of the number of functions f is f in the expected value of the number of f is f in the expected value of the number of functions f is f in the expected value of the number of f is f in the expected value of f is f in the expected value of f is f in the expected value of f is f. Hence for random enough f is f in the expected value of f in the expected value of f is f in the expected value of f in the expected value of f is f in the expected value of f in the

Third step: We deduce from §5 that $<_x^* = <_x$ for all relevant x and prove that the context is weakly nice. We then work somewhat more to prove the existential part of nice (the simple goodness (see [I, Definition 2.12(1)]) of appropriate candidate). That is we first prove "weak niceness" by proving that $A <_i^* B$ implies (A, B) satisfies the demand for $<_i$ of [I, §1], and in a strong way the parallel thing for \le_s . Those involve probability estimation, i.e., quoting §5. But we need more: sufficient conditions for appropriate tuples to be simply good, and this is the first part of §6.

Fourth step: This is the universal part from niceness. This does not involve any probability, just weight computations (and previous stages), in other words, purely model-theoretic investigation of the "limit" theory. By the "universal part of nice" we mean (A) of [I, 2.13(1)] which includes:

if $\bar{a} \in {}^k(\mathcal{M}_n), b \in \mathcal{M}_n$ then there are $m_1 < m, B \subseteq \operatorname{cl}^{k,m_1}(\bar{a})$ such that $\bar{a} \subseteq B$ and

$$\operatorname{cl}^k(B) \bigcup_{B}^{\mathcal{M}_n} (\operatorname{cl}^k(\bar{a}b, \mathcal{M}_n) \setminus \operatorname{cl}^k(B, \mathcal{M})) \cup B.$$

This is done in the last part of $\S 6$.

Because of the request of the referee and editors to shorten the paper, the computational part (in §5) in full was moved to [Sh:E48], and the gener-

alization to the case we have a successor function (which was §7) was moved to [Sh:E49].

- **4. Applications.** We intend to apply the general theorems ([I, Lemmas 2.17, 2.19]) to our problem. That is, we try to answer: does the main context \mathcal{M}_n^0 with $p_i = 1/i^{\alpha}$ for i > 1 satisfy the 0-1 law? So here our irrational number $\alpha \in (0,1)_{\mathbb{R}}$ is fixed. We work in Main Context (see 4.1 below, the other one, \mathcal{M}_n^1 , would work out as well, see §7).
- **4.1.** Context. A particular case of [I, 1.1]: $p_i = 1/i^{\alpha}$ for i > 1, $p_1 = p_2$ (where $\alpha \in (0,1)_{\mathbb{R}}$ is a fix irrational) and the *n*th random structure is $\mathcal{M}_n = \mathcal{M}_n^0 = ([n], R)$ (i.e. only the graph with the probability of $\{i, j\}$ being $p_{|i-j|}$).
 - **4.2.** FACT. (1) For any graph A, $1 = \lim_{n} \operatorname{Prob}(A \text{ is embeddable into } \mathcal{M}_n).$
 - (2) Moreover (2), for every $\varepsilon > 0$, $1 = \lim_{n} \operatorname{Prob}(A \ has \ge n^{1-\varepsilon} \ disjoint \ copies \ in \ \mathcal{M}_n).$

This is easy, still, before proving it, note that since by our definition of closure $A \subseteq \text{cl}^{m,k}(\emptyset, \mathcal{M}_n)$ implies that A has $< n^{\varepsilon}$ embeddings into \mathcal{M}_n , we get:

4.3. Conclusion. $\langle \operatorname{cl}_{\mathscr{M}_n}^{m,k}(\emptyset) : n < \omega \rangle$ satisfies the 0-1 law (being a sequence of empty models).

Hence (see [I, Def. 1.4, Conclusion 2.19])

4.4. CONCLUSION. $\mathscr{K}_{\infty} = \mathscr{K}$ and for our main theorem it suffices to prove simple almost niceness of \mathfrak{K} (see [I, Def. 2.13]).

(Now 4.3 explicates one part of what in fact we always meant by "random enough" in previous discussions.)

Proof of 4.2. Let the nodes of A be $\{a_0, \ldots, a_{k-1}\}$. Let the event \mathscr{E}_r^n be $a_l \mapsto 2rk + 2l$ is an embedding of A into \mathscr{M}_n .

The point is that for various values of r these tries are going to speak on pairwise disjoint sets of nodes, so we get independent events.

4.5. Subfact. Prob $(\mathscr{E}_r^n) = q > 0$ (i.e. > 0 but it does not depend on n, r).

(Note: this is not true in a close context where the probability of $\{i, j\}$ being an edge when $i \neq j$ is $1/n^{\alpha} + 1/2^{|i-j|}$, as in that case the probability

⁽²⁾ Actually also " $\geq cn$ " works for $c \in \mathbb{R}^{>0}$ depending on A only.

depends on n. But still, we can have $\geq q > 0$ which suffices.) Here

$$q = \prod_{l < m < k, \{l, m\} \text{ edge}} \frac{1}{(2(m-l))^{\alpha}} \cdot \prod_{l < m < k, \{l, m\} \text{ not an edge}} \left(1 - \frac{1}{(2(m-l))^{\alpha}}\right).$$

(What we need is that all the relevant edges have probability > 0, < 1. Note: if we have retained $p = 1/i^{\alpha}$ this is false for the pairs (i, i + 1), so we have changed p_1 . Anyway, in our case we multiplied by 2 to avoid this (in the definition of the event).) For the second case (the probability of edge being $1/n^{\alpha} + 1/2^{i-j}$),

$$q \ge \prod_{l < m < k, \{l, m\} \text{ edge}} \frac{1}{2^{|m-l|}} \cdot \prod_{l < m < k, \{l, m\} \text{ not an edge}} \left(1 - \frac{1}{(3/2)^{|m-l|}}\right).$$

So $Prob(\mathscr{E}_r^n)$ has a positive lower bound which does not depend on r.

Also the events $\mathscr{E}_0^n, \ldots, \mathscr{E}_{[n/2k]-1}^n$ are independent. So the probability that they all fail is

$$\prod_{i < |n/2k|} (1 - \text{Prob}(\mathcal{E}_i^n)) \le \prod_i (1 - q) \le (1 - q)^{n/2k},$$

which goes to 0 quite fast. The "moreover" part is left to the reader. $\blacksquare_{4.4}$

4.6. Definition. (1) Let

 $\mathscr{T} = \{(A, B, \lambda) : A \subseteq B \text{ graphs (generally: models from } \mathscr{K}) \text{ and } \lambda \text{ an equivalence relation on } B \setminus A\}.$

We may write (A, B, λ) instead of $(A, B, \lambda \upharpoonright (B \setminus A))$.

(2) We say that $X \subseteq B$ is λ -closed if

$$x \in X$$
 and $x \in B \cap \text{Dom}(\lambda)$ implies $x/\lambda \subseteq X$.

(3)
$$A \leq^* B$$
 if (3) $A \leq B \in \mathcal{K}_{\infty}$ (clearly \leq^* is a partial order).

Story: We would like to ask, for any given copy of A in \mathcal{M}_n , if there is a copy of B above it, and how many; we hope for a dichotomy: usually none, always few or always many. The point of λ is to take distance into account, because for our present distribution being near is important; $b_1\lambda b_2$ will indicate that b_1 and b_2 are near. Note that being near is not transitive, but "luck" helps us, we will succeed by "pretending" it is. We will look at many candidates for a copy of $B \setminus A$ and compute the expected value. We would like to show that saying "variance small" says that the true value is near the expected value.

⁽³⁾ Note: this is in our present specific context, so this definition does not apply to §1, §2, §3, §7; in fact, in §7 we give a different definition for a different context.

4.7. Definition. (1) For $(A, B, \lambda) \in \mathcal{T}$ let

$$\mathbf{v}(A, B, \lambda) = \mathbf{v}_{\lambda}(A, B) = |(B \setminus A)/\lambda|$$

be the number of λ -equivalence classes in $B \setminus A$ (\mathbf{v} stands for vertices). (This measures degrees of freedom in choosing candidates for B over a given copy of A.)

(2) Let

$$\mathbf{e}(A, B, \lambda) = \mathbf{e}_{\lambda}(A, B) = |e_{\lambda}(A, B)|,$$

where

$$e_{\lambda}(A, B) = \{e : e \text{ an edge of } B, e \nsubseteq A, \text{ and } e \nsubseteq x/\lambda \text{ for } x \in B \setminus A\}.$$

[This measures the number of "expensive", "long" edges (e stands for edges).]

Story: \mathbf{v} larger means that there are more candidates for B; \mathbf{e} larger means that the probability per candidate is smaller.

4.8. DEFINITION. (1) For $(A, B, \lambda) \in \mathscr{T}$ and our given irrational $\alpha \in (0, 1)_{\mathbb{R}}$ we define (**w** stands for weight)

$$\mathbf{w}(A, B, \lambda) = \mathbf{w}_{\lambda}(A, B) = \mathbf{v}_{\lambda}(A, B) - \alpha \mathbf{e}_{\lambda}(A, B).$$

(2) Let

$$\Xi(A,B) = \{\lambda : (A,B,\lambda) \in \mathcal{F}, \text{ and if } C \subseteq B \setminus A \text{ is a nonempty } \lambda\text{-closed set then } \mathbf{w}_{\lambda}(A,C \cup A) > 0\}.$$

- (3) If $A \leq^* B$ then we let $\xi(A, B) = \max\{\mathbf{w}_{\lambda}(A, B) : \lambda \in \Xi(A, B)\}.$
- **4.9.** Observation. (1) $(A, B, \lambda) \in \mathcal{T} \& A \neq B \Rightarrow \mathbf{w}_{\lambda}(A, B) \neq 0$.
- (2) If $A \leq^* B \leq^* C$ (hence $A \leq^* C$) and $(A, C, \lambda) \in \mathcal{T}$ and B is λ -closed then
 - (a) $(A, B, \lambda \upharpoonright (B \setminus A)) \in \mathscr{T}$,
 - (b) $(B, C, \lambda \upharpoonright (C \setminus B)) \in \mathscr{T}$,
 - (c) $\mathbf{w}_{\lambda}(A, C) = \mathbf{w}_{\lambda \uparrow (B \setminus A)}(A, B) + \mathbf{w}_{\lambda \uparrow (C \setminus B)}(B, C),$
 - (d) similarly for \mathbf{v} and \mathbf{e} .
- (3) Note that 4.9(2) legitimizes our writing λ instead of $\lambda \upharpoonright (C \setminus A)$ or $\lambda \upharpoonright (B \setminus (C \cup A))$ when $(A, B, \lambda) \in \mathcal{T}$ and C is a λ -closed subset of B. Thus we may write, e.g., $\mathbf{w}_{\lambda}(A \cup C, B)$ for $\mathbf{w}(A \cup C, B, \lambda \upharpoonright (B \setminus A \setminus C))$.
- (4) If $(A, B, \lambda) \in \mathscr{T}$ and $D \subseteq B \setminus A$ and $D^+ = \bigcup \{x/\lambda : x \in D\}$ then $\mathbf{w}_{\lambda \upharpoonright D^+}(A, A \cup D^+) \leq \mathbf{w}_{\lambda \upharpoonright D}(A, A \cup D)$ and D^+ is λ -closed.

Proof. (1) As α is irrational and $\mathbf{v}_{\lambda}(A, B)$ is not zero.

- (2) Clauses (a), (b) are immediate, and for a proof of (c), (d) see the proof of 4.16 below.
 - (3) Left to the reader.

- (4) Clearly by the choice of D^+ we have $\mathbf{v}_{\lambda \upharpoonright D^+}(A, A \cup D^+) = |D^+/\lambda| = |D/(\lambda \upharpoonright D)| = \mathbf{v}_{\lambda \upharpoonright D}(A, A \cup D)$ and $\mathbf{e}_{\lambda \upharpoonright D^+}(A, A \cup D^+) \geq \mathbf{e}_{\lambda \upharpoonright D}(A, A \cup D^+)$, hence $\mathbf{w}_{\lambda \upharpoonright D^+}(A, A \cup D^+) \leq \mathbf{w}_{\lambda \upharpoonright D}(A, A \cup D^+)$. $\blacksquare_{4.9}$
- **4.10.** DISCUSSION. Note that $\mathbf{w}_{\lambda}(A, B)$ measures in a sense the expected value of the number of copies of B over a given copy of A with λ saying when one node is "near to" another. Of course, when λ is the identity this degenerates to the definition in [ShSp 304].

We would like to characterize \leq_i and \leq_s (from [I, Definition 1.4(3), (4)] using **w** and to prove that they are O.K. (meaning that they form a nice context). Looking at the expected behaviour, we attempt to give an "effective" definition (depending on α only).

All of this, of course, just says what the intention of these relations and functions is (i.e. $<_i^*$, $<_s^*$, $<_{pr}^*$ and \mathbf{v} , \mathbf{e} , \mathbf{w} below); we still will not prove anything on the connections to \leq_i , \leq_s , \leq_{pr} . We may view it differently: We are, for our fixed α , defining $\mathbf{w}_{\lambda}(A, B)$ and investigating the \leq_i^* , \leq_s^* , \leq_{pr}^* defined below per se ignoring the probability side.

- **4.11.** DEFINITION. (1) $A \leq B$ means A is a submodel of B, and remember that by Definition 4.6(3), $A \leq^* B$ means (4) $A \leq B \in \mathcal{K}_{\infty}$.
 - (2) $A <_c^* B$ if $A <^* B$ and for every λ , we have

$$(A, B, \lambda) \in \mathscr{T} \Rightarrow \mathbf{w}_{\lambda}(A, B) < 0.$$

(3) $A \leq_i^* B$ if $A \leq^* B$ and for every A' we have

$$A \leq^* A' <^* B \Rightarrow A' <^*_c B.$$

Of course, $A <_i^* B$ means $A \le_i^* B \& A \ne B$.

(4) $A \leq_s^* B$ if $A \leq^* B$ and for no A' do we have

$$A <_i^* A' \le^* B.$$

Of course, $A <_s^* B$ means $A \le_s^* B \& A \ne B$.

- (5) $A <_a^* B$ if $A \le^* B \& \neg (A <_s^* B)$ (i.e. $A \le^* B$ and there is $A' \subseteq B \setminus A$ such that $A <_i^* A \cup A' \le^* B$),
 - (6) $A <_{pr}^* B$ if $A \leq^* B$ and $A <_s^* B$ but for no C do we have $A <_s^* C <_s^* B$.
- **4.12.** REMARK. We *intend* to prove that usually $\leq_x^* = \leq_x$ but it will take time.
- **4.13.** LEMMA. Suppose $A' <^* B$, $(A', B, \lambda) \in \mathcal{F}$ and $\mathbf{w}_{\lambda}(A', B) > 0$. Then there is A'' satisfying $A' \leq^* A'' <^* B$ such that A'' is λ -closed and

⁽⁴⁾ Note: this is in our present specific context, so this definition does not apply to §1, §2, §3, §7; in fact in §7 we give a different definition for a different context.

 $(*)_1[A'',B,\lambda]$ we have $\mathbf{w}_{\lambda}(A'',B) > 0$ and if $C \subseteq B \setminus A'', C \not\in \{\emptyset, B \setminus A''\}$ and C is λ -closed then $\mathbf{w}_{\lambda}(A'',A'' \cup C) > 0$ and $\mathbf{w}_{\lambda}(A'' \cup C,B) < 0$.

Proof. Let C' be a maximal λ -closed subset of $B \setminus A'$ with the property that $\mathbf{w}_{\lambda}(A' \cup C', B) > 0$. Such a C' exists since $C' = \emptyset$ is as required and B is finite. Let $A'' = A' \cup C'$. Since C' is λ -closed, it follows that $B \setminus A''$ is λ -closed and $(A'', B, \lambda \upharpoonright (B \setminus A'')) \in \mathscr{T}$ and clearly $\mathbf{w}_{\lambda}(A'', B) > 0$. Now suppose $D \subseteq B \setminus A''$ is λ -closed and $D \notin \{\emptyset, B \setminus A''\}$. By the maximality of C', $\mathbf{w}_{\lambda}(A'' \cup D, B) < 0$. Now (by 4.9(2)(c))

$$\mathbf{w}_{\lambda}(A'', B) = \mathbf{w}_{\lambda}(A'', A'' \cup D) + \mathbf{w}_{\lambda}(A'' \cup D, B),$$

and the left term is positive by the choice of C' and A'', but the right term is negative by the previous sentence, so we conclude $\mathbf{w}_{\lambda}(A'', A'' \cup D) > 0$, contradicting the maximality of C'. $\blacksquare_{4.13}$

- **4.14.** Claim. Assume $A <^* B$. The following statements are equivalent:
 - (i) $A <_i^* B$,
- (ii) for no A' and λ do we have:

$$(*)_2 = (*)_2[A, A', B, \lambda]$$
 we have $A \leq^* A' <^* B$, $(A', B, \lambda) \in \mathscr{T}$ and $\mathbf{w}_{\lambda}(A', B) > 0$,

(iii) for no A', λ do we have:

$$(*)_3 = (*)_3[A, A', B, \lambda]$$
 we have $A \leq^* A' <^* B, (A', B, \lambda) \in \mathscr{T},$ $\mathbf{w}_{\lambda}(A', B) > 0$ and $(*)_1[A', B, \lambda]$ of 4.13.

Proof. For the equivalence of the first and the second clauses read Definition 4.11(2),(3) (remembering 4.9(1)). Trivially $(*)_3 \Rightarrow (*)_2$ and hence the second clause implies the third one. Now we will see that (iii) \Rightarrow (ii). So suppose \neg (ii); let this be exemplified by A', λ , i.e. they satisfy $(*)_2$. Then by 4.13 there is A'' such that $A' \leq *A'' < *B$ and $(*)_1[A'', B, \lambda]$ of 4.13 holds. So A'', λ exemplifies that \neg (iii) holds. $\blacksquare_{4.14}$

- **4.15.** OBSERVATION. (1) If $(*)_3[A, A', B, \lambda]$ from 4.14(iii) holds, then we have: if $C \subseteq B \setminus A'$ is λ -closed nonempty then $\mathbf{w}(A', A' \cup C, \lambda \upharpoonright C) > 0$. [Why? If $C \neq B \setminus A'$ this is stated explicitly, otherwise this means $\mathbf{w}(A', B, \lambda) > 0$, which holds.]
- (2) In $(*)_3$ of 4.14(iii), i.e., $4.13(*)_1[A', B, \lambda]$, we can allow any λ -closed $C \subseteq B \setminus A'$ if we make the inequalities nonstrict. [Why? If $C = \emptyset$ then $\mathbf{w}_{\lambda}(A', A' \cup C) = \mathbf{w}_{\lambda}(A', A') = 0$ and $\mathbf{w}_{\lambda}(A' \cup C, B) = \mathbf{w}_{\lambda}(A', B) > 0$. If $C = B \setminus A'$ then $\mathbf{w}_{\lambda}(A', A' \cup C) = \mathbf{w}_{\lambda}(A', B) > 0$ and $\mathbf{w}_{\lambda}(A' \cup C, B) = \mathbf{w}_{\lambda}(B, B) = 0$. Lastly, if $C \notin \{\emptyset, B \setminus A'\}$ we use $4.13(*)_1[A', B, \lambda]$ itself.]
- (3) If $(A, B, \lambda) \in \mathcal{T}$, $A' \leq^* A$, $B' \leq^* B$, $A' \leq^* B'$ and $B \setminus A = B' \setminus A'$ then $(A', B', \lambda) \in \mathcal{T}$, $\mathbf{w}(A', B', \lambda) \geq \mathbf{w}(A, B, \lambda)$, $\mathbf{e}(A', B', \lambda) \leq \mathbf{e}(A, B, \lambda)$, and $\mathbf{v}(A', B', \lambda) = \mathbf{v}(A, B, \lambda)$.

(4) In (3) if in addition $A \bigcup_{A'}^{M} B'$, i.e., there is no edge $\{x,y\}$ with $x \in A \backslash A'$ and $y \in B' \backslash A'$ then the equalities hold.

4.16. CLAIM. $A \leq_s^* B$ if and only if either A = B or for some λ we have: $(A, B, \lambda) \in \mathcal{T}$ and $\mathbf{w}_{\lambda}(A, B) > 0$, moreover for every nonempty λ -closed $C \subseteq B \setminus A$, we have $\mathbf{w}(A, A \cup C, \lambda \upharpoonright C) > 0$, that is, $\Xi(A, B) \neq \emptyset$.

Proof. The "only if" direction. Suppose $A \leq_s^* B$. If A = B we are done. So assume $A <_s^* B$. Let C be minimal such that $A \leq^* C \leq^* B$ and for some λ_0 the triple $(C, B, \lambda_0) \in \mathcal{T}$ satisfies: for every nonempty λ_0 -closed $C' \subseteq B \setminus C$ we have $\mathbf{w}(C, C \cup C', \lambda_0 \upharpoonright C') > 0$ (exists because C = B is O.K. as there is no such C'). By 4.9(4), for every nonempty $C' \subseteq B \setminus C$ we have $\mathbf{w}(C, C \cup C', \lambda_0 \upharpoonright C') > 0$, hence $\neg(C <_i^* C \cup C')$ by (i) \Leftrightarrow (ii) of 4.14. If C = A we have finished by the definition of \leq_s^* . Otherwise, the hypothesis $A \leq_s^* B$ implies that $\neg(A <_i^* C)$, hence 4.14(iii) fails, which means that (recalling 4.11(1)) for some C', λ_1 we have $A \leq^* C' <^* C$, $(C', C, \lambda_1) \in \mathcal{T}$, $\mathbf{w}_{\lambda_1}(C', C) > 0$ and for every λ_1 -closed $D \subseteq C \setminus C'$ satisfying $D \notin \{\emptyset, C \setminus C'\}$ we have

$$\mathbf{w}(C', C' \cup D, \lambda_1 \upharpoonright D) > 0, \quad \mathbf{w}(C' \cup D, C, \lambda_1 \upharpoonright (C \setminus C' \setminus D)) < 0.$$

Define an equivalence relation λ on $B \setminus C'$: an equivalence class of λ is an equivalence class of λ_0 or an equivalence class of λ_1 .

We shall show that (C', B, λ) satisfies the requirement above on C, thus contradicting the minimality of C. Clearly $A \leq^* C' \leq^* B$. So let $D \subseteq B \setminus C'$ be λ -closed and define $D_0 = D \cap (B \setminus C)$ and $D_1 = D \cap (C \setminus C')$. Clearly D_0 is λ_0 -closed so $\mathbf{w}(C, C \cup D_0, \lambda \upharpoonright D_0) \geq 0$ (see 4.15(2)), and D_1 is λ_1 -closed so $\mathbf{w}(C', C' \cup D_1, \lambda \upharpoonright D_1) \geq 0$ (this follows from: for every λ_1 -closed $D \subseteq C \setminus C'$ with $D \notin \{\emptyset, C \setminus C'\}$ we have $\mathbf{w}_{\lambda}(C', C' \cup D, \lambda_1 \upharpoonright D) > 0$, and by 4.15(2)). Now (in the last line we change C' to C twice), by 4.15(3) we will get

$$\mathbf{v}(C', C' \cup D, \lambda) = |D/\lambda| = |D_1/\lambda_1| + |D_0/\lambda_0|$$

$$= \mathbf{v}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{v}(C' \cup D_1, C' \cup D_1 \cup D_0, \lambda \upharpoonright D_0)$$

$$= \mathbf{v}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{v}(C, C \cup D_0, \lambda \upharpoonright D_0),$$

and (using 4.15(3))

$$\mathbf{e}(C', C' \cup D, \lambda) = \mathbf{e}(C', C' \cup D_1, \lambda \upharpoonright D_1)$$

$$+ \mathbf{e}(C' \cup D_1, C' \cup D_1 \cup D_0, \lambda \upharpoonright D_0)$$

$$\leq \mathbf{e}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{e}(C, C \cup D_0, \lambda \upharpoonright D_0),$$

and hence

$$\mathbf{w}(C', C' \cup D, \lambda) = \mathbf{v}(C', C' \cup D, \lambda) - \alpha \mathbf{e}(C', C' \cup D, \lambda)$$
$$= \mathbf{v}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{v}(C, C \cup D_0, \lambda \upharpoonright D_0)$$

$$-\alpha \mathbf{e}(C', C' \cup D_1, \lambda \upharpoonright D_1)$$

$$-\alpha \mathbf{e}(C' \cup D_1, C' \cup D_1 \cup D_0, \lambda \upharpoonright D_0)$$

$$\geq \mathbf{v}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{v}(C, C \cup D_0, \lambda \upharpoonright D_0)$$

$$-\alpha \mathbf{e}(C', C' \cup D_1, \lambda \upharpoonright D_1) - \alpha \mathbf{e}(C, C \cup D_0, \lambda \upharpoonright D_0)$$

$$= \mathbf{w}(C', C' \cup D_1, \lambda \upharpoonright D_1) + \mathbf{w}(C, C \cup D_0, \lambda \upharpoonright D_0) \geq 0,$$

and the (strict) inequality holds by the irrationality of α , i.e. by 4.9(1). So actually (C', B, λ) satisfies the requirements on C, λ_0 , thus giving a contradiction to the minimality of C.

The "if" direction. As the case A=B is obvious, we can assume that the second half of 4.16 holds. So let λ be as in the second half of 4.16.

Suppose $A <^* C \le^* B$, and we shall prove that $\neg (A <_i^* C)$, thus finishing by Definition 4.11. We shall show that $(A', \lambda') = (A, \lambda \restriction (C \setminus A))$ satisfies $(*)_2[A, A, C, \lambda']$ from 4.14, thus 4.14(ii) fails, hence 4.14(i) fails, i.e., $\neg (A <_i^* C)$ as required. Let $D = \bigcup \{x/\lambda : x \in C \setminus A\}$, so D is a nonempty λ -closed subset of $B \setminus A$. Hence by the present assumption on A, B, λ we have $\mathbf{w}(A, A \cup D, \lambda \restriction D) > 0$. Now

$$\mathbf{v}(A, C, \lambda \upharpoonright C) = |C/\lambda| = |D/\lambda| = \mathbf{v}(A, D, \lambda \upharpoonright D)$$

and

$$\mathbf{e}(A, C, \lambda \upharpoonright C) \le \mathbf{e}(A, D, \lambda \upharpoonright D),$$

so $\mathbf{w}(A, C, \lambda \upharpoonright C) \ge \mathbf{w}(A, D, \lambda \upharpoonright D) > 0$ as required. $\blacksquare_{4.16}$

- **4.17.** CLAIM. (1) \leq_i^* is transitive.
- $(2) \leq_s^* is transitive.$
- (3) For any $A \leq^* C$, for some B we have $A \leq^*_i B \leq^*_s C$.
- (4) If $A <^* B$ and $\neg (A \leq^*_s B)$ then $A <^*_c B$ or there is C such that $A <^* C <^* B$ and $\neg (A <^*_s C)$.
 - (5) Smoothness holds (with $<_i^*$ instead of $<_i$, see [I, 2.5(4)]), that is,
 - (a) if $A \leq^* C \leq^* M \in \mathcal{K}, A \leq^* B \leq^* M, B \cap C = A$ then $A <^*_c B \Rightarrow C <^*_c B \cup C$ and $A \leq^*_i C \Rightarrow B \leq^*_i B \cup C$,
 - (b) if in addition $C \bigcup_{A}^{M} B$ then $A <_{c}^{*} B \Leftrightarrow C \leq_{c}^{*} B \cup C$ and $A \leq_{i}^{*} B \Leftrightarrow C \leq_{i}^{*} B \cup C$ and $A \leq_{s}^{*} B \Leftrightarrow C \leq_{s}^{*} B \cup C$.
 - (6) For $A <^* B$ we have $\neg (A \leq_s^* B) \Leftrightarrow (\exists C)(A <_c^* C \leq^* B)$.
 - (7) If $A \leq^* B \leq^* C$ and $A \leq^*_s C$ then $A \leq^*_s B$.
- (8) If $A_l \leq_s^* B_l$ for $l = 1, 2, A_1 \leq^* A_2, B_1 \leq^* B_2$ and $B_2 \setminus A_2 = B_1 \setminus A_1$ then

$$\xi(A_1, B_1) \ge \xi(A_2, B_2).$$

- (9) In (8), equality holds iff A_2, B_1 are freely amalgamated over A_1 inside B_2 .
- (10) If $A <_s^* B_l$ for l = 1, 2 and $B_1 <_i^* B_2$ and for some edge x, y of B_2 we have $s \in A, y \in B_2 \setminus B_1$ then $\xi(A, B_1) > \xi(A, B_2)$.
- (11) If $B_1 <^* B_2$ and for no $x \in B_1, y \in B_2 \setminus B_1$ is $\{x, y\}$ an edge of B_2 then $B_1 <^*_s B_2$.
 - (12) If $A \leq^* B \leq^* C$ and $A \leq^*_i C$ then $B \leq^*_i C$.
 - (13) If $A <_{nr}^* B$ and $a \in B \setminus A$ then $A \cup \{a\} \leq_i^* B$.
- (14) If $A_1 <_{pr}^* B_1, A_1 \le^* A_2 \le^* B_2$ and $B_1 \le^* B_2$ and $B_2 = A_2 \cup B_1$ then $A_2 \le^*_s B_2$ or $A_2 <^*_{pr} B_2$.
- Proof. (1) Assume $A \leq_i^* B \leq_i^* C$ we shall prove $A \leq_i^* C$. It suffices to prove that 4.14(ii) holds with A, C here standing for A, B there. So assume $A \leq^* A' <^* C$, $(A', C, \lambda) \in \mathcal{T}$ and we shall prove that $\mathbf{w}_{\lambda}(A', C) \leq 0$; this suffices. Let $A'_1 := A' \cap B$ and $A'_0 := B \cup A' \cup \bigcup \{x/\lambda : x \in B\}$. As $A \leq_i^* B$, by 4.14 + 4.15(2) we have $\mathbf{w}_{\lambda}(A'_1, B) \leq 0$, by 4.15(3) we have $\mathbf{w}_{\lambda}(A', B \cup A') \leq \mathbf{w}_{\lambda}(A'_1, B)$, and by 4.9(4) we have $\mathbf{w}_{\lambda}(A', A'_0) \leq \mathbf{w}_{\lambda}(A', A' \cup B)$. Those three inequalities together give $\mathbf{w}_{\lambda}(A', A'_0) \leq 0$, and as $B \leq_i^* C$, by 4.14 we have $\mathbf{w}_{\lambda}(A'_0, C) \leq 0$. By 4.9(2)(c) we have $\mathbf{w}_{\lambda}(A', C) = \mathbf{w}_{\lambda}(A', A'_0) + \mathbf{w}_{\lambda}(A'_0, C)$ and by the previous sentence the latter is $\leq 0 + 0 = 0$, so $\mathbf{w}_{\lambda}(A, A') \leq 0$ as required.
- (2) We use the condition from 4.16. So assume $A_0 \leq_s^* A_1 \leq_s^* A_2$ and let λ_l witness $A_l \leq_s^* A_{l+1}$ (i.e. $(A_l, A_{l+1}, \lambda_l)$ is as in 4.16). Let λ be the equivalence relation on $A_2 \setminus A_0$ such that for $x \in A_{l+1} \setminus A_l$ we have $x/\lambda = x/\lambda_l$. It follows easily that $(A_0, A_2, \lambda) \in \mathcal{T}$. Now, by 4.9(2)(c), 4.15(3) and 4.16 the triple (A_0, A_2, λ) satisfies the second condition in 4.16 so $A_0 \leq_s^* A_2$.
- (3) Let B be maximal such that $A \leq_i^* B \leq^* C$; such a B exists as C is finite (5) and for B = A we get $A \leq_i^* B \leq^* C$. Now if $B \leq_s^* C$ we are done. Otherwise by the definition of \leq_s^* in 4.11(4) there is B' such that $B <_i^* B' \leq^* C$; now by part (1) we have $A \leq_i^* B' \leq^* C$, contradicting the maximality of B, so really $B \leq_s^* C$ and we are done.
- (4) We assume $A <^* B$. If $A <^*_c B$ we are done, hence we can assume $\neg (A <^*_c B)$. Clearly there is λ such that $(A, B, \lambda) \in \mathcal{T}$ and $\mathbf{w}_{\lambda}(A, B) \geq 0$. So by the irrationality of α the inequality is strict and by 4.13 there is C such that $A \leq^* C <^* B$, C is λ -closed, $\mathbf{w}_{\lambda}(C, B) > 0$ and if $C' \subseteq B \setminus C$ is nonempty λ -closed and $\neq B \setminus C$ then $\mathbf{w}_{\lambda}(C, C \cup C') > 0$ and $\mathbf{w}_{\lambda}(C \cup C', B) < 0$. So by 4.16 + inspection, $C <^*_s B$, and thus by 4.17(2), $A \leq^*_s C \Rightarrow A^* \leq^*_s B$; but we know that $\neg (A <^*_s B)$, hence by part (2), $\neg (A \leq^*_s C)$, so the second possibility in the conclusion holds.

⁽⁵⁾ Actually, the finiteness is not needed if for possibly infinite A, B we define $A \leq_i^* B$ iff for every finite $B' \leq^* B$ there is a finite B'' such that $B' \leq^* B'' \leq^* B$, and $B'' \cap A <_i^* B''$.

- (5) Clause (a): $A \leq_c^* B \Rightarrow C <_c^* B \cup C$ and $A \leq_i^* C \Rightarrow B \leq_i^* B \cup C$. [Why? Note that by our assumption $C <_i^* B \cup C$ and $B <_i^* B \cup C$. The first desired conclusion is easier, so we prove the second; hence assume $A \leq_i^* C$. If $B \leq_i^* D <_i^* B \cup C$ and $(D, B \cup C, \lambda) \in \mathcal{F}$, then $A \leq_i^* D \cap C <_i^* C$, so as $A \leq_i^* C$, by the definition of \leq_i^* we have $\mathbf{w}_{\lambda}(D \cap C, C) <_i^* D \cap C = B \cup C \setminus D$ by Observation 4.15(3) we have $\mathbf{w}_{\lambda}(D, B \cup C) \leq_i^* D \cap C$. As this holds for any such D by Definition 4.11(3) we have $B \leq_i^* B \cup C$ as required.]
- Clause (b): If in addition $C \bigcup_{A}^{M} B$ then $A <_{c}^{*} C \Leftrightarrow B \leq_{c}^{*} B \cup C$ and $A \leq_{i} C \Leftrightarrow B \leq_{i} B \cup C$ and $A \leq_{s}^{*} B \Leftrightarrow B \leq_{s}^{*} B \cup C$. [Why? Immediate by 4.15(4), Definition 4.11 and part (a).]
- (6) The "only if" direction can be proved by induction on |B|, using 4.17(4). For the "if" direction assume that for some C, $A <_c^* C \le^* B$, and choose a minimal C like that. Now if $A \le^* A^* <^* C$, and λ_1 is an equivalence relation on $C \setminus A^*$, then let λ_0 be an equivalence relation on $A^* \setminus A$ such that $\mathbf{w}_{\lambda_0}(A,A^*) \ge 0$ (exists by the minimality of C) and let $\lambda = \lambda_0 \cup \lambda_1$. Then $(A,C,\lambda) \in \mathscr{T}$ and by 4.9(2)(i) we have $\mathbf{w}_{\lambda}(A^*,C) = \mathbf{w}_{\lambda}(A,C) \mathbf{w}_{\lambda}(A,A^*)$; but as $A <_c^* C$ we have $\mathbf{w}_{\lambda}(A,C) < 0$, and by the choice of λ_0 we have $\mathbf{w}_{\lambda}(A,A^*) \ge 0$, hence $\mathbf{w}_{\lambda}(A^*,C) < 0$ so that $\mathbf{w}_{\lambda_1}(A^*,C) = \mathbf{w}_{\lambda}(A^*,C) < 0$. As λ_1 was any equivalence relation on $C \setminus A^*$, by Definition 4.11(2) we have shown that $A^* <_c^* C$. By the definition of $\leq_i^* (4.11(3))$, as A^* was arbitrary such that $A \le^* A^* <^* C$, by Definition 4.11(3) we get $A <_i^* C$, hence by the definition of $\leq_s (4.11(4))$ we deduce $\neg (A \le_s^* B)$ as required.
 - (7) Immediate by Definition 4.11(4).
 - (8) It is enough to prove that
 - \circledast if $\lambda \in \Xi(A_2, B_2)$ then $\lambda \in \Xi(A_1, B_1)$ and $\mathbf{w}_{\lambda}(A_1, B_1) \geq \mathbf{w}_{\lambda}(A_2, B_2)$.

So assume λ is an equivalence relation over $B_2 \setminus A_2$ which is equal to $B_1 \setminus A_1$. Now for every nonempty λ -closed $C \subseteq B_1 \setminus A_1$ we have

- (i) $\mathbf{v}_{\lambda}(A_1, A_1 \cup C) = |C/\lambda| = \mathbf{v}_{\lambda}(A_2, A_2 \cup C),$
- (ii) $\mathbf{e}_{\lambda}(A_1, A_1 \cup C) \leq \mathbf{e}_{\lambda}(A_2, A_2 \cup C)$ [as any edge in $e_{\lambda}(A_1, A_1 \cup C)$ belongs to $e_{\lambda}(A_2, A_2 \cup C)$], hence
- (iii) $\mathbf{w}_{\lambda}(A_1, A_1 \cup C) \ge \mathbf{w}_{\lambda}(A_2, A_2 \cup C)$.

So by the definition of $\Xi(A_1, B_1)$ we have $\lambda \in \Xi(A_2, B_2) \Rightarrow \lambda \in \Xi(A_1, B_1)$ and, moreover, the desired inequality in \circledast holds.

(9) If $A_2 \bigcup_{A_1}^{B_2} B_1$ in the proof of (8) we get $e_{\lambda}(A_1, A_1 \cup C) = e_{\lambda}(A_2, A_2 \cup C)$,

hence $\mathbf{w}_{\lambda}(A_1, A_1 \cup C) = \mathbf{w}_{\lambda}(A_2, A_2 \cup C)$, in particular $\mathbf{w}_{\lambda}(A_1, B_1) =$

 $\mathbf{w}_{\lambda}(A_2, B_2)$. Also now the proof of (8) gives $\lambda \in \Xi(A_1, B_1) \Rightarrow \lambda \in \Xi(A_2, B_2)$, so trivially $\xi(A_1, B_1) = \xi(A_2, B_2)$.

If $\neg (A_2 \bigcup_{A_1}^{B_2} B_1)$ then for every equivalence relation λ on $B_1 \setminus A_1 = B_2 \setminus A_2$

we have

(ii)⁺ $\mathbf{e}_{\lambda}(A_1, B_1) < \mathbf{e}_{\lambda}(A_2, B_2)$ [as $e_{\lambda}(A_1, B_1)$ is a proper subset of $e_{\lambda}(A_2, B_2)$ by our present assumption], hence

$$(iii)^+ \mathbf{w}_{\lambda}(A_1, B_1) > \mathbf{w}_{\lambda}(A_2, B_2).$$

As the number of such λ is finite and as we have shown $\Xi(A_2, B_2) \subseteq \Xi(A_1, B_1)$ we get $\xi(A_1, B_1) > \xi(A_2, B_2)$.

(10) This follows from $\circledast_1 + \circledast_2$ below and the finiteness of $\Xi(A, B_2)$ upon recalling Definition 4.8(3).

$$\circledast_1 \lambda \in \Xi(A, B_2) \Rightarrow \lambda \upharpoonright (B_1 \setminus A) \in \Xi(A, B_1).$$

[Why? If λ is an equivalence relation on $B_2 \setminus A$ and $\lambda_1 := \lambda \upharpoonright (B_1 \setminus A)$ then λ_1 is an equivalence relation on $B_1 \setminus A$ and for any nonempty λ_1 -closed $C_1 \subseteq B_1 \setminus A$, letting $C_2 = \bigcup \{x/\lambda : x \in C_1\}$ we have $\mathbf{w}_{\lambda}(A, A \cup C_1) \ge \mathbf{w}_{\lambda}(A, A \cup C_2)$ by 4.9(4) and the latter is positive because $\lambda \in \Xi(A, B_2)$.]

$$\circledast_2 \lambda \in \Xi(A, B_2) \Rightarrow \mathbf{w}_{\lambda}(A, B_2) < \mathbf{w}_{\lambda}(A, B_1).$$

[Why? Otherwise let λ be from $\Xi(A, B_2)$ and let $C_{\lambda} = \bigcup \{x/\lambda : x \in B_1 \setminus A\} \cup A$ so $B_1 \leq^* C_{\lambda} \leq^* B_2$.]

CASE 1: $C_{\lambda} = B_2$. So $\mathbf{v}_{\lambda}(A, B_1) = \mathbf{v}(A, B_1, \lambda \upharpoonright (B_1 \backslash A)) = |(B_1 \backslash A)/\lambda| = |(B_2 \backslash A)/\lambda| = \mathbf{v}_{\lambda}(A, B_2, \lambda)$. By an assumption of part (10), for some $x \in A$ and $y \in B_2 \backslash B_1$ the pair $\{x, y\}$ is an edge so $e(A, B_1, \lambda \upharpoonright (B_1 \backslash A))$ is a proper subset of $e(A, B_2, \lambda)$. Hence

$$\mathbf{e}_{\lambda}(A, B_1) < \mathbf{e}_{\lambda}(A, B_2)$$

and so

$$\mathbf{w}_{\lambda}(A, B_1) > \mathbf{w}_{\lambda}(A, B_2)$$

is as required.

CASE 2: $C_{\lambda} \neq B_2$. As in Case 1, $\mathbf{w}_{\lambda}(A, B_1) \geq \mathbf{w}_{\lambda}(A, C_{\lambda})$. Now $B_1 \leq^* C_{\lambda} \leq^* B_2$ (using the case assumption) and $B_1 <^*_i B_2$ by assumption, so by part (12) below we have $C_{\lambda} \leq^*_i B_2$, hence $C_{\lambda} <^*_i B_2$, and by 4.14 this implies $\mathbf{w}_{\lambda}(C_{\lambda}, B_2) < 0$. So $\mathbf{w}_{\lambda}(A, B_2) = \mathbf{w}_{\lambda}(A, C_{\lambda}) + \mathbf{w}_{\lambda}(C_{\lambda}, B_2) \leq \mathbf{w}_{\lambda}(A, B_1) + \mathbf{w}_{\lambda}(C_{\lambda}, B_2) < \mathbf{w}_{\lambda}(A, B_1)$ as required.

- (11) Define λ to be the equivalence relation with exactly one class on $B_2 \setminus B_1$, so $(B_1, B_2, \lambda) \in \mathcal{T}$, $\mathbf{v}_{\lambda}(B_1, B_2) = 1$, $\mathbf{e}_{\lambda}(B_1, B_2) = 0$ and thus $\mathbf{w}_{\lambda}(B_1, B_2) \geq 0$. Hence $\lambda \in \Xi(B_2, B_2)$ so that $B_1 <_s B_2$.
 - (12) By Definition 4.11(3).

- (13) Clearly $A \cup \{a\} \leq^* B$, hence by part (3) for some C we have $A \cup \{a\} \leq^*_i C \leq^*_s B$. If C = B we are done; otherwise $A <^*_s C$ by part (7) so we have $A <^*_s C <^*_s B$, contradiction.
 - (14) Easy by Definition 4.11(6). $\blacksquare_{4.17}$
- **5. The probabilistic inequalities.** In this section we deal with probabilistic inequalities about the number of extensions for the context \mathcal{M}_n^0 . Mostly the computations are delayed to [Sh:E48].

Note: the proof of almost simple niceness of \mathfrak{K} is in the next section.

- **5.1.** Context. As in §4, so $p_i = 1/i^{\alpha}$ for i > 1, $p_1 = p_2$ (where $\alpha \in (0, 1)_{\mathbb{R}}$ is irrational) and $\mathcal{M}_n = \mathcal{M}_n^0$ (i.e. only the graph).
- **5.2.** DEFINITION. Let $\varepsilon > 0$, $k \in \mathbb{N}$, $\mathcal{M}_n \in \mathcal{K}$ and $A <^* B$ be in \mathcal{K}_{∞} . Assume $f : A \hookrightarrow \mathcal{M}_n$ is an embedding or just $f : A \hookrightarrow [n]$, which means it is one-to-one. Define

$$\mathcal{G}_{A,B}^{\varepsilon,k}(f,\mathcal{M}_n)$$

$$:= \{\bar{g}: (1) \ \bar{g} = \langle g_l: l < k \rangle,$$

$$(2) \ f \subseteq g_l, g_l \text{ a one-to-one function from } B \text{ into } |\mathcal{M}_n|,$$

$$(3) \ g_l: B \hookrightarrow_f \mathcal{M}_n \text{ for } l \leq k \text{ or just } g_l: B \hookrightarrow_A \mathcal{M}_n,$$

$$\text{which means: } \{a,b\} \in \text{Edge}(B) \setminus \text{Edge}(A)$$

$$\Rightarrow \{g(b), g(b)\} \in \text{Edge}(\mathcal{M}_n)$$

$$\text{(and } g \text{ is one-to-one extending } f),$$

$$(4) \ l_1 \neq l_2 \Rightarrow \text{Rang}(g_{l_1}) \cap \text{Rang}(g_{l_2}) = \text{Rang}(f),$$

$$(5) \ [l < k \& x \in B \setminus A \& y \in A] \Rightarrow |g_l(x) - g_l(y)| \geq n^{\varepsilon} \}.$$

The size of this set has a natural connection with the number of pairwise disjoint extensions $g: B \hookrightarrow \mathcal{M}_n$ of f, hence with $A <_s B$; see 5.3 below.

- **5.3.** FACT. For every ε and k and $A \leq^* B$ we have:
- (*) for every n, k and $M \in \mathcal{K}_n$ and one-to-one $f : A \hookrightarrow_A M_n$ we have: if $\mathscr{G}_{A,B}^{\varepsilon,k}(f,M_n) = \emptyset$ then

$$\max\{l : there \ are \ g_m : B \hookrightarrow_A M \ for \ m < l \ such \ that \ f \subseteq g_m \ and$$

$$[m_1 < m_2 \Rightarrow \operatorname{Rang}(g_{m_1}) \cap \operatorname{Rang}(g_{m_2}) \subseteq \operatorname{Rang}(f)]\}$$

$$< 2|A|n^{\varepsilon} + (k-1).$$

Proof. Assume that there are g_m as above for $m < l^*$, where $l^* > 2|A|n^{\varepsilon} + k - 1$. By renaming without loss of generality for some $l^{**} \leq l^*$ the set $\operatorname{Rang}(g_m) \setminus \operatorname{Rang}(f)$ when $m < l^{**}$ is at distance $\geq n^{\varepsilon}$ from $\operatorname{Rang}(f)$ but if $l \in [l^{**}, l^*]$ then $\operatorname{Rang}(g_l) \setminus \operatorname{Rang}(f)$ has distance $< n^{\varepsilon}$ to $\operatorname{Rang}(f)$. Recall that by one of our assumptions $l^{**} \leq k - 1$. Now for each $x \in \operatorname{Rang}(f)$, there

are $\leq 2n^{\varepsilon}$ numbers $m \in [l^{**}, l^{*})$ such that $\min\{|x - g_{m}(y)| : y \in B \setminus A\} \leq n^{\varepsilon}$. So by the demand on l^{**} we have $l^{*} - l^{**} \leq |A| \cdot (2n^{\varepsilon}) = 2|A|n^{\varepsilon}$ and as $l^{**} < k$ we are done. $\blacksquare_{5,3}$

The next theorem is central; it does not yet prove almost niceness but its parallels from [ShSp 304], [BlSh 528] were immediate, and here we see the main additional difficulties: we are looking for copies B over A but we have to take into account the distance, and the closeness of images of points in B under embeddings into \mathcal{M}_n . To prove 5.4 we will have to look for different types of g's which satisfy condition (5) from the definition of $\mathcal{G}_{A,B}^{\varepsilon,k}(f,\mathcal{M}_n)$; restricting ourselves to one kind we will calculate the expected value of a "relevant part" of $\mathcal{G}_{A,B}^{\varepsilon,1}(f,\mathcal{M}_n)$ and we will show that it is small enough.

- **5.4.** Theorem. Assume $A <^* B$ (so both in \mathcal{K}_{∞}). Then a sufficient condition for
 - \bigotimes_1 for every $\varepsilon > 0$, for some $k \in \mathbb{N}$, for every random enough \mathscr{M}_n we have:

(*) if
$$f: A \hookrightarrow [n]$$
 then $\mathscr{G}_{A,B}^{\varepsilon,k}(f,\mathscr{M}_n) = \emptyset$

is the following:

- $\bigotimes_2 A <_a^* B \text{ (which by Definition 4.11(5) means } A <^* B \& \neg (A <_s B)).$
- **5.5.** REMARK. From \bigotimes_1 we can conclude: for every $\varepsilon \in \mathbb{R}^+$ we have: for every random enough \mathscr{M}_n , for every $f: A \hookrightarrow_A \mathscr{M}_n$, there cannot be $\geq n^{\varepsilon}$ extensions $g: B \hookrightarrow_A \mathscr{M}_n$ of f pairwise disjoint over f.
- **5.6.** Explanation. For this, first choose $\varepsilon_1 < \varepsilon$. Note that for any k we have $\mathscr{G}_{A,B}^{\varepsilon,k}(f,\mathscr{M}_n) \subseteq \mathscr{G}_{A,B}^{\varepsilon_1,k}(f,\mathscr{M}_n)$. Choose k_1 for ε_1 by 5.3. Then the number of pairwise disjoint extensions $g: B \hookrightarrow_A \mathscr{M}_n$ of f is $\leq 2|A|n^{\varepsilon_1} + (k_1 1)$. For sufficiently large n this is $< n^{\varepsilon}$.
- **5.7.** REMARK. We think of $g: B \hookrightarrow \mathcal{M}_n$ extending f such that, for some constants c_1 and c_2 with $c_2 > 2c_1$,

$$x\lambda y \Rightarrow |g(x) - g(y)| < c_1$$

and

$$[\{x,y\} \subseteq B \& \{x,y\} \not\subseteq A \& \neg x\lambda y] \Rightarrow |g(x) - g(y)| \ge c_2.$$

- **5.8.** Explanation. The number of such g is $\sim n^{|(B \setminus A)/\lambda|} = n^{\mathbf{v}(A,B,\lambda)}$; the probability of each being an embedding, assuming f is one, is $\sim n^{-\alpha \mathbf{e}(A,B,\lambda)}$, hence the expected value is $\sim n^{\mathbf{w}_{\lambda}(A,B)}$ (\sim means "up to a constant"). So $A <_i^* B$ implies that usually there are few such copies of B over any copy of A, i.e. the expected value is < 1. In [ShSp 304], λ is equality, here things are more complicated.
- By 5.4 we have sufficient conditions for: (given $A \leq^* B$) every $f: A \hookrightarrow \mathcal{M}_n$ has few pairwise disjoint extensions to $g: B \hookrightarrow \mathcal{M}_n$. Now we try to

get a dual, a sufficient condition for: (given $A \leq^* B$) for every random enough \mathcal{M}_n , every $f: A \hookrightarrow \mathcal{M}_n$ has "many" pairwise disjoint extensions to $g: A \hookrightarrow \mathcal{M}_n$.

5.9. Lemma. Assume

- (A) $(A, B, \lambda) \in \mathcal{T}$ and $m \in \mathbb{N}$,
- (B) $(\forall B')[A <^* B' \leq^* B \& B' \text{ is } \lambda\text{-closed} \Rightarrow \mathbf{w}_{\lambda}(A, B') > 0]$ (recall that "B' is $\lambda\text{-closed}$ " means $x\lambda y \& x \in B' \Rightarrow y \in B'$).

Then there is $\zeta \in \mathbb{R}^+$, in fact we can let

$$\zeta := \min \{ \mathbf{w}_{\lambda \upharpoonright B'}(A, B') : A \subseteq B' \subseteq B \text{ and } B' \text{ is } \lambda\text{-closed} \},$$

such that:

- \otimes for every small enough $\varepsilon > 0$, for every random enough \mathcal{M}_n , for every $f: A \hookrightarrow \mathcal{M}_n$ and k with $0 < k < k + n^{1-\varepsilon} < n$, there are $\geq n^{(1-\varepsilon)\cdot\zeta}$ pairwise disjoint extensions g of f satisfying
 - (i) $g: B \hookrightarrow \mathcal{M}_n$,
 - (ii) $g(B \setminus A) \subseteq [k, k + n^{1-\varepsilon}),$
 - (iii) if $x \lambda y$ (so $x, y \in B \setminus A$) then $|x y| \le 2|B|$,
 - (iv) if $x \in B \setminus A, y \in B$ and $\neg(x\lambda y)$ then $|x y| \ge n^{\varepsilon}$,
 - (v) if $B <_i B'$, $A <_s B'$ and $|B' \setminus B| \le m$ then there is no extension $g' : B' \hookrightarrow \mathcal{M}_n$ of g such that $(\forall x \in B' \setminus B)(\forall y \in B)(|g'(x) g'(y)| \ge mn^{\varepsilon})$.

Now, 5.4 and 5.9 are enough for proving $\langle i^* = \langle i, \langle s^* = \langle s, \rangle$ weakly nice and similar things. But we need more.

5.10. Lemma. Assume

- (A) $(A, B, \lambda) \in \mathscr{T}$,
- (B) $\xi = \xi(A, B) = \mathbf{w}_{\lambda}(A, B) > 0$ (see Definition 4.8(3)),
- (C) if $A <^* C <^* B$ and C is λ -closed then $\mathbf{w}_{\lambda}(C, B) < 0$ (hence necessarily $\xi \in (0, 1)_{\mathbb{R}}$ and $C \neq \emptyset \Rightarrow \mathbf{w}_{\lambda}(A, C) > 0$ and even $\mathbf{w}_{\lambda}(A, C) > \xi$).

Then for every $\varepsilon \in \mathbb{R}^+$, every random enough \mathcal{M}_n , and every $f: A \hookrightarrow \mathcal{M}_n$, we have

- (a) the number of $g: B \hookrightarrow \mathcal{M}_n$ extending f is at least $n^{\xi-\varepsilon}$,
- (b) also the maximal number of pairwise disjoint extensions $g: B \hookrightarrow \mathcal{M}_n$ of f is at least this number.
- **5.11.** Remark. (1) We can get a reasonably much better bound (see [ShSp 304], [BlSh 528] and [Sh 550]) but this suffices.
- (2) In the most interesting cases of 5.10 we have $A <_{pr}^* B$ but it applies to more cases.

5.12. Claim. Assume

- (A) $(A, B, \lambda) \in \mathscr{T}$,
- (B) if $C \subseteq B \setminus A$ is nonempty and λ -closed then $\mathbf{w}_{\lambda}(A, A \cup C) > 0$.

Then for some $\varepsilon_0 \in \mathbb{R}^+$, for every $\varepsilon \in (0, \varepsilon_0)_{\mathbb{R}}$, every random enough \mathcal{M}_n , and every $f : A \hookrightarrow \mathcal{M}_n$, we have

- (a) the number of $g: B \hookrightarrow \mathcal{M}_n$ extending f is at least $n^{\mathbf{w}_{\lambda}(A,B)-\varepsilon}$,
- (b) for every $X \subseteq [n]$ with $|X| \le n^{\varepsilon_0 \varepsilon}$, the number of $g : B \hookrightarrow \mathcal{M}_n$ extending f with $\operatorname{Rang}(g) \cap X \subseteq \operatorname{Rang}(f)$ is at least $n^{\mathbf{w}_{\lambda}(A,B) \varepsilon}$.
- **5.13.** Remark. (1) By 4.16 the statement

"for some λ the hypothesis of 5.12 holds"

is equivalent to " $A \leq_s^* B$ ".

- (2) The affinity of this claim to being nice (see [I, §2]) should be clear.
- (3) If $|X| \ge n^{1-\varepsilon}$ we can demand Rang $(g) \subseteq X$ but no need arises.
- **5.14.** CLAIM. (1) Assume $A <_{pr}^* B$, and let $\xi = \xi(A, B)$ that is

$$\xi = \max\{\mathbf{w}_{\lambda}(A, B) : (A, B, \lambda) \in \mathscr{T} \text{ and}$$
for every λ -closed nonempty $C \subseteq B \setminus A$
we have $\mathbf{w}(A, A \cup C, \lambda \upharpoonright C) > 0\}$.

Then for every $\varepsilon \in \mathbb{R}^+$, every random enough \mathscr{M}_n , and every $f: A \hookrightarrow \mathscr{M}_n$, we have

- (*) the number of $g: B \hookrightarrow \mathcal{M}_n$ extending f is at most $n^{\xi+\varepsilon}$.
- (2) Assume that $A <_s^* B$, $\lambda \in \Xi(A, B)$ and $\xi = \mathbf{w}_{\lambda}(A, B)$. Then for any small enough reals $\zeta, \varepsilon > 0$ for every random enough \mathcal{M}_n , for every $f : A \hookrightarrow \mathcal{M}_n$ the set $\mathcal{G}_{f,B,\lambda}^{\varepsilon,\zeta}(\mathcal{M}_n)$ defined below has $\leq n^{\xi+\varepsilon}$ members, where

$$\mathcal{G}_{f,B,\lambda}^{\varepsilon,\zeta}(\mathcal{M}_n) = \{g : g : B \hookrightarrow \mathcal{M}_n \text{ extends } f \text{ and } x \in B \setminus A \land y \in B \land \neg(x\lambda y) \Rightarrow n^{\zeta} \leq |g(x) - g(y)| \}.$$

6. The conclusion

Comment. In this section it is shown that $<_i^*$ and $<_s^*$ (introduced in §4) agree with the $<_i$ and $<_s$ of [I, §1] by using the probabilistic information from §5. Then it is proven that the main context \mathcal{M}_n is simply nice (hence simply almost nice) and it satisfies the 0-1 law.

6.1. Context. As in §4 and §5, so $p_i = 1/i^{\alpha}$ for i > 1, $p_1 = p_2$ (where $\alpha \in (0,1)_{\mathbb{R}}$ irrational) and $\mathcal{M}_n = \mathcal{M}_n^0$ (only the graph) and \leq_i, \leq_s , cl are as defined in §1. (So $\mathcal{K}_{\infty} = \mathcal{K}$ by 4.4.)

Note that actually the section has two parts of distinct flavours: in 6.2–6.5 we use the probabilistic information from $\S 5$ to show that the definitions

of $<_x$ from [I, §1] and of $<_x^*$ from §4 give the same relation. But to actually prove almost niceness, we need more work on the relations \leq_x^* defined in §4; this is done in 6.8, 6.10, 6.11. Lastly, we put everything together.

The argument in 6.2–6.5 parallels that in [BlSh 528], which is more hidden in [ShSp 304]. The most delicate step is to establish clauses (A)(δ) and (ε) of [I, Definition 2.13(1)] (almost simply nice). For this, we consider $f:A\hookrightarrow \mathcal{M}_n$ and try to extend f to $g:B\hookrightarrow \mathcal{M}_n$, where $A\leq_s B$, such that Rang(g) and $\operatorname{cl}^k(f(A),\mathcal{M}_n)$ are "freely amalgamated" over Rang(f). The key facts have been established in Section 5. If $\zeta=\mathbf{w}(A,B,\lambda)$ we have shown (Claim 5.12) that for every $\varepsilon>0$ and every random enough \mathcal{M}_n , there are $\geq n^{\zeta-\varepsilon}$ embeddings of B into \mathcal{M}_n extending f. But we also show (using 5.14) that for each obstruction to free amalgamation there is a $\zeta'<\zeta$ such that for every $\varepsilon_1>0$ the number of embeddings satisfying this obstruction is $< n^{\zeta'+\varepsilon_1}$, where $\zeta'=\mathbf{w}(A,B',\lambda)$ (for some B' exemplifying the obstruction) with $\zeta'+\alpha\leq\zeta$. So if $\alpha>\varepsilon+\varepsilon_1$ we overcome the obstruction. The details of this computation for various kinds of obstructions are carried out in proving Claim 6.5.

- **6.2.** Claim. Assume $A <^* B$. Then the following are equivalent:
 - (i) $A <_i^* B$ (i.e. from Definition 4.11(3)),
- (ii) it is not true that: for some ε , for every random enough \mathcal{M}_n and every $f: A \hookrightarrow \mathcal{M}_n$, the number of $g: B \hookrightarrow \mathcal{M}_n$ extending f is $\geq n^{\varepsilon}$,
- (iii) for every $\varepsilon \in \mathbb{R}^+$, every random enough \mathcal{M}_n , and every $f : A \hookrightarrow \mathcal{M}_n$, the number of $g : B \hookrightarrow \mathcal{M}_n$ extending f is $< n^{\varepsilon}$ (this is the definition of $A <_i B$ in $[I, \S 1]$).

Proof. We shall use the well known finite Δ -system lemma: if $f_i: B \to [n]$ is one-to-one and $f_i \upharpoonright A = f$ for i < k then for some $w \subseteq \{0, \dots, k-1\}$ with $|w| \geq k^{1/2^{|B \setminus A|}}/|B \setminus A|^2$, and $A' \subseteq B$ and f^* we have: $\bigwedge_{i \in w} f_i \upharpoonright A' = f^*$ and $\langle \operatorname{Rang}(f_i \upharpoonright (B \setminus A') : i \in w \rangle$ are pairwise disjoint (so if the f_i 's are pairwise distinct then $B \setminus A' \neq \emptyset$).

We use freely Fact 4.2. First, clearly (iii) \Rightarrow (ii). Second, if \neg (i), i.e., $\neg(A <_i^* B)$ then by 4.14 (equivalence of first and last possibilities + 4.13(1)) there are A', λ as there, that is, such that:

 $A \leq^* A' <^* B$ and $(A', B, \lambda) \in \mathcal{T}$ and if $C \subseteq B \setminus A'$ is nonempty λ -closed then $\mathbf{w}(A', A' \cup C, \lambda \upharpoonright C) > 0$ (see 4.14).

So (A', B, λ) satisfies the assumptions of 5.9, which gives $\neg(ii)$, i.e., we have proved (ii) \Rightarrow (i).

Lastly, to prove (i) \Rightarrow (iii) assume \neg (iii). So for some $\varepsilon \in \mathbb{R}^+$:

 $(*)_1 \ 0 < \limsup_{n \to \infty} \operatorname{Prob}(\text{for some } f : A \hookrightarrow \mathcal{M}_n, \text{ the number of } g : B \hookrightarrow \mathcal{M}_n \text{ extending } f \text{ is } \geq n^{\varepsilon}).$

By the first paragraph of this proof it follows that from $(*)_1$ we can deduce that for some $\zeta \in \mathbb{R}^+$,

 $(*)_2 \ 0 < \limsup_{n \to \infty} \operatorname{Prob}(\text{for some } A' \text{ with } A \leq^* A' <^* B \text{ and } f' : A' \hookrightarrow \mathscr{M}_n \text{ there are } \geq n^{\zeta} \text{ functions } g : B \hookrightarrow \mathscr{M}_n \text{ which are pairwise disjoint extensions of } f').$

So for some A' with $A \leq^* A' <^* B$ we have

- $(*)_3 \ 0 < \limsup_{n \to \infty} \operatorname{Prob}(\text{for some } f' : A' \hookrightarrow \mathscr{M}_n \text{ there are } \geq n^{\zeta} \text{ functions } g : B \hookrightarrow \mathscr{M}_n \text{ which are pairwise disjoint extensions of } f').$
- By 5.4 (and 5.3, 5.2) we have $\neg(A' <_a^* B)$, which by Definition 4.11(5) means that $A' <_s^* B$, which (by Definition 4.11(4)) implies $\neg(A <_i^* B)$, so $\neg(i)$ holds as required. $\blacksquare_{6.2}$
 - **6.3.** Claim. For $A <^* B \in \mathcal{K}_{\infty}$, the following conditions are equivalent:
 - (i) $A <_{s}^{*} B$,
 - (ii) it is not true that: for every $\varepsilon \in \mathbb{R}^+$, every random enough \mathcal{M}_n , and every $f: A \hookrightarrow \mathcal{M}_n$, there are no n^{ε} pairwise disjoint extensions $g: B \hookrightarrow \mathcal{M}_n$ of f,
 - (iii) for some $\varepsilon \in \mathbb{R}^+$, for every random enough \mathcal{M}_n and every $f: A \hookrightarrow \mathcal{M}_n$, there are $\geq n^{\varepsilon}$ pairwise disjoint extensions $g: B \hookrightarrow \mathcal{M}_n$ of f.

Proof. Reflection shows that (iii)⇒(ii).

If $\neg(i)$, i.e., $\neg(A <_s^* B)$ then by Definition 4.11(4), $A <_i^* B' \le^* B$ for some B', hence 6.2 easily yields $\neg(ii)$, so $(ii) \Rightarrow (i)$.

Lastly, it suffices to prove (i) \Rightarrow (iii). Now by (i) and 4.16 for some λ the assumptions of 5.9 hold, and hence its conclusion, which gives clause (iii). $\blacksquare_{6.3}$

- **6.4.** CONCLUSION. (1) $<_s^* = <_s$ and $<_i^* = <_i$, and \Re is weakly nice, where $<_s,<_i$ are defined in [I, 1.4(4),(5)]; hence $<_{pr}^* = \leq_{pr}$.
- (2) $(\mathcal{K}, \operatorname{cl})$ is as required in $[I, \S 2]$, and the \leq_i , \leq_s defined in $[I, \S 2]$ are the same as those defined in $[I,\S 1]$ for our context, of course when for $A \leq B \in \mathcal{K}_{\infty}$ we let $\operatorname{cl}(A, B)$ be minimal A' such that $A \leq A' \leq_s B$.
- (3) Also \mathfrak{K} (that is, (\mathcal{K}, cl)) is transitive local transparent and smooth (see [I, 2.2(3), 2.3(2), 2.5(5),(4)]).
- *Proof.* (1) $<_s^* = <_s$ and $<_i^* = <_i$ by 6.2, 6.3 and see definition in [I, §1]. Lastly, \mathfrak{K} being weakly nice follows from 6.3 (see definition in [I, §1]).
 - (2) By [I, 2.6].
- (3) By [I, 2.6] the transitive local and transparent follows (see clauses (δ) , (ε) , (ζ) there). As for smoothness, use 4.17(5). $\blacksquare_{6.4}$

Note that we are in a "nice" case, in particular no successor function. Toward proving it we characterize "simply good".

- **6.5.** Claim. If $A \leq_s^* B$ and $k, t \in \mathbb{N}$ satisfies $k + |B| \leq t$, then for every random enough \mathcal{M}_n and every $f: A \hookrightarrow \mathcal{M}_n$, we can find $g: B \hookrightarrow \mathcal{M}_n$ extending f such that:
 - (i) $\operatorname{Rang}(g) \cap \operatorname{cl}^t(\operatorname{Rang}(f), \mathscr{M}_n) = \operatorname{Rang}(f),$
 - (ii) Rang(g) $\bigcup_{\text{Rang}(f)}^{\mathcal{M}_n} \text{cl}^t(\text{Rang}(f), \mathcal{M}_n),$
 - (iii) $\operatorname{cl}^k(\operatorname{Rang}(g), \mathcal{M}_n) \subseteq \operatorname{Rang}(g) \cup \operatorname{cl}^k(\operatorname{Rang}(f), \mathcal{M}_n)$.
- **6.6.** REMARK. Note that in clauses (i), (ii) of 6.5 we can replace t by k—this just demands less. We shall use this freely. Have we put t in the second appearance of k in clause (iii) of 6.5 the loss would not be great: just as in [I], we should systematically use [I, 2.12(2)] instead of [I, 2.12(1)].

Proof of Claim 6.5. We prove this by induction on $|B \setminus A|$, but by the character of the desired conclusion, if $A <_s^* B <_s^* C$, to prove it for the pair (A, C) it suffices to prove it for the pairs (A, B) and (B, C). Also, if B = A the statement is trivial (because we can take f = g). So, without loss of generality, $A <_{pr}^* B$ (see Definition 4.11(6)).

Let λ be such that $(A, B, \lambda) \in \mathcal{T}$ and for every λ -closed $C \subseteq B \setminus A$ we have $\mathbf{w}_{\lambda}(A, A \cup C) > 0$ and

$$\xi := \mathbf{w}_{\lambda}(A,B) = \max\{\mathbf{w}_{\lambda_{1}}(A,B) : (A,B,\lambda_{1}) \in \mathscr{T} \text{ satisfies :}$$
 for every λ_{1} -closed nonempty $C \subseteq B \setminus A$ we have $\mathbf{w}_{\lambda_{1}}(A,A \cup C) > 0\}.$

Choose $\varepsilon \in \mathbb{R}^+$ small enough and k(*) large enough. The requirements on ε , k(*) will be clear by the end of the argument.

Let \mathcal{M}_n be random enough, and $f: A \hookrightarrow \mathcal{M}_n$. Now by 6.2 and the definition of cl^t we have (*) and by 5.9 for $\zeta = \varepsilon$ we have $(*)_1$, where

$$(*) |\operatorname{cl}^{t}(f(A), \mathcal{M}_{n})| \leq n^{\varepsilon/k(*)}, (*)_{1} |\mathcal{G}| \geq n^{\xi-\varepsilon/2},$$

where \mathscr{G} is constructed there so in particular

$$\mathscr{G} \subseteq \{g : g \text{ extends } f \text{ to an embedding of } B \text{ into } \mathscr{M}_n$$
 and satisfies clauses (i)–(v) from 5.9}.

Recall that

$$\circledast_1$$
 if $A' \subseteq M \in \mathscr{K}$ and $a \in \mathrm{cl}^k(A', M)$ then for some C we have $C \subseteq \mathrm{cl}^k(A', M), |C| \leq k, a \in C$ and $\mathrm{cl}^k(C \cap A', C) = C$

(by the definition of cl^k , see [I, §1]).

We intend to find $g \in \mathcal{G}$ satisfying the requirements in the claim. Now g being an embedding of B into \mathcal{M}_n extending f follows from $g \in \mathcal{G}$. So it

is enough to prove that $< n^{\xi-\varepsilon}$ members g of $\mathscr G$ fail clause (i) and similarly for clauses (ii) and (iii).

More specifically, let $\mathscr{G}^1 = \{g \in \mathscr{G} : g(B) \cap \operatorname{cl}^t(f(A), \mathscr{M}_n) \neq A\}$, $\mathscr{G}^2 = \{g \in \mathscr{G} : g \notin \mathscr{G}^1 \text{ but clause (ii) fails for } g\}$ and $\mathscr{G}^3 = \{g \in \mathscr{G} : \text{ clause (iii) fails for } g \text{ but } g \notin \mathscr{G}^1 \cup \mathscr{G}^2\}$. So clearly it is enough to prove $\mathscr{G} \nsubseteq \mathscr{G}^1 \cup \mathscr{G}^2 \cup \mathscr{G}^3$, because: (i) fails for $g \Rightarrow g \in \mathscr{G}^1$, (ii) fails for $g \Rightarrow g \in \mathscr{G}^2 \vee g \in \mathscr{G}^1$, and (iii) fails for $g \Rightarrow g \in \mathscr{G}^3 \vee g \in \mathscr{G}^2 \vee g \in \mathscr{G}^1$.

On the number of $g \in \mathcal{G}^1$: For $a \in B \setminus A$ and $x \in \text{cl}^t(f(A), \mathcal{M}_n)$ let $\mathcal{G}^2_{a,x} = \{g \in \mathcal{G}^2 : g(a) = x\}$, so $\mathcal{G}^2 = \bigcup \{\mathcal{G}^2_{a,x} : a \in B \setminus A \text{ and } x \in \text{cl}^t(f(A), \mathcal{M}_n)\}$, and by 4.17(13) clearly $A \cup \{a\} \leq_i B$ (as $A <_{pr} B$). The rest is as in the proof for \mathcal{G}^2 below, only easier.

On the number of $g \in \mathcal{G}^2$: If $g \in \mathcal{G}^2$ then for some

$$x_g \in \text{cl}^t(\text{Rang}(f), \mathcal{M}_n) \setminus \text{Rang}(f) \text{ and } y \in B \setminus A$$

we have: $\{x_g, g(y)\}$ is an edge of \mathcal{M}_n . Note $x_g \notin g(B)$ as $g \in \mathcal{G}_2$.

We now form a new structure $B^2 = B \cup \{x^*\}$ $(x^* \notin B)$ such that $g \cup \{\langle x^*, x_g \rangle\} : B^2 \hookrightarrow \mathcal{M}_n$ and let $A^2 = B^2 \upharpoonright (A \cup \{x^*\})$. Now up to isomorphism over B there are a finite number (i.e., with a bound not depending on n) of such B^2 , say $\langle B_j^2 : j < j_2^* \rangle$.

For $x \in \text{cl}^t(\text{Rang}(f), \mathcal{M}_n)$ and $j < j^*$ let

 $\mathscr{G}_{j,x}^2 := \{g : g \text{ is an embedding of } B_j^2 \text{ into } \mathscr{M}_n \text{ extending } f$ and satisfying $g(x^*) = x\},$

$$\mathscr{G}_{j}^{2} := \bigcup_{x \in \mathrm{cl}^{t}(f(A), \mathscr{M}_{n})} \mathscr{G}_{j, x}^{2}.$$

So:

$$(*)_2$$
 if $g \in \mathcal{G}^2$ then $g \in \bigcup \{ \{g' \mid B : g' \in \mathcal{G}_{j,x}^2 \} : j < j_2^* \text{ and } x \in \operatorname{cl}^t(f(A), \mathcal{M}_n) \}.$

Now, if $\neg (A_j^2 <_s B_j^2)$ then as $A <_{pr}^* B$ it follows easily that $A_j^2 <_i B_j^2$, so by 6.2 using (*) (with $\varepsilon/2 - \varepsilon/k$ (*) here standing for ε in (iii) there) we have

$$(*)_3$$
 if $\neg (A_i^2 <_s B_i^2)$ then $|\mathscr{G}_i^2| \le n^{\varepsilon/2}$.

[Why? As $A_j^2 <_i B_j^2$, on the one hand for each $x \in \text{cl}^t(\text{Rang}(f), \mathcal{M}_n)$ by 6.2 the number of $g: B_j^2 \hookrightarrow \mathcal{M}_n$ extending $f \cup \{\langle x^*, x \rangle\}: A_j^2 \hookrightarrow \mathcal{M}_n$ is $< n^{\varepsilon/k(*)}$, and on the other hand the number of candidates for x is $\leq |\text{cl}^t(\text{Rang}(f), \mathcal{M}_n)| \leq n^{\varepsilon/k(*)}$. So $|\mathcal{G}_j^2| \leq n^{\varepsilon/k(*)} \cdot n^{\varepsilon/k(*)} \leq n^{2\varepsilon/k(*)} \leq n^{\varepsilon/2}$.]

If
$$A_j^2 <_s B_j^2$$
, then by 4.17(14) still $A_j^2 <_{pr} B_j^2$, and if we let
$$\xi_j^2 := \max\{\mathbf{w}_{\lambda}(A_j^2, B_j^2) : (A_j^2, B_j^2, \lambda) \in \mathscr{T} \text{ and for every}$$
 $\lambda\text{-closed nonempty } C \subseteq B_j^2 \setminus A_j^2$ we have $\mathbf{w}(A_i^2, A_i^2 \cup C, \lambda \upharpoonright C) > 0\}$,

then clearly $\xi_j^2 < \xi - 2\varepsilon$ (as we retain the "old" edges, and by at least one we actually enlarge the number of edges but we keep the number of "vertices", i.e., equivalence classes; see 4.17(9)).

So, by 5.14,

$$(*)_4$$
 if $A_j^2 <_{pr}^* B_j^2$ then $|\mathscr{G}_j^2| \le n^{\xi - 2\varepsilon}$.

As $\xi - 2\varepsilon > \varepsilon$ by $(*)_3 + (*)_4$, multiplying by j^* , as n is large enough,

 $(*)_5 |\mathscr{G}^2|$, the number of $g \in \mathscr{G} \setminus \mathscr{G}^1$ failing clause (ii) of 6.5, is $\leq n^{\xi-\varepsilon}$.

On the number of $g \in \mathcal{G}^3$: First if $g \in \mathcal{G}^3$, then there are A^+, B^+, C, g^+ such that

 $\otimes_1 A \leq_i A^+ \leq_s B^+, B \leq B^+, B \cap A^+ = A, |B^+| \leq |B| + k, |A^+| \leq |A| + k, C \not\subseteq B \cup A^+, B^+ \setminus B \subseteq C \subseteq B^+, C \cap B <_i C, \text{ hence } \operatorname{cl}^k(C \cap B, B^+) \supseteq C \text{ and } g \subseteq g^+, g^+ : B^+ \hookrightarrow \mathscr{M}_n, g^+(A^+) \subseteq \operatorname{cl}^t(f(A), \mathscr{M}_n).$

[Why? As $g \in \mathcal{G}^3$ there is $y_g \in \operatorname{cl}^k(g(B), \mathcal{M}_n)$ such that $y_g \notin g(B)$ and moreover $y_g \notin \operatorname{cl}^k(f(A), \mathcal{M}_n)$. By the first statement (and \circledast_1 above) there is $C^* \subseteq \operatorname{cl}^k(g(B), \mathcal{M}_n)$ with $\leq k$ elements such that $y_g \in C^*$ and $C^* \cap g(B) \leq_i C^*$. Let $B^* = g(B) \cup C^* \leq \mathcal{M}_n$. Let B^+, g^+ be such that $B \leq B^+ \in \mathcal{K}, g \subseteq g^+, g^+$ an isomorphism from B^+ onto B^* , and let $C = g^{-1}(C^*)$. Lastly, choose A^+ such that $A' \leq_i A^+ \leq_s B^+$; clearly it exists by 4.17(2). Now $|A^+| \leq |B| + |C| \leq t$ by the assumptions on A, B, k, t, hence $g^+(A^+) \subseteq \operatorname{cl}^t(f(A), \mathcal{M}_n)$; but as $g \in \mathcal{G}^3$ we have $g \notin \mathcal{G}^1$, hence $A = g(B) \cap \operatorname{cl}^t(f(A), \mathcal{M}_n)$, so we have $A^+ \cap B = A$. Also $C \nsubseteq B \cup A^+$, otherwise,

as $g \notin \mathscr{G}^2$ and $g \notin \mathscr{G}^1$ we have $B \bigcup_{A}^{B^+} A^+$, hence $C \cap B \bigcup_{C \cap A} C \cap A^+$; but as $C \cap B <_i^* C$, by smoothness (e.g. 4.17(5)) we get $C \cap A <_i^* C \cap A^+$, so $C \cap A^+ \subseteq \operatorname{cl}^k(A, B^+)$, so $C^* \setminus g(B) = g^+(C \setminus B) \subseteq g^+(C \cap A^+) \subseteq \operatorname{cl}^k(f(A), \mathscr{M}_n)$, and thus $y_g \in \operatorname{cl}^k(f(A), \mathscr{M}_n)$, contradiction. So \otimes_1 holds.]

 \otimes_2 in \otimes_1 for some λ' and m we have: $(A^+, B^+, \lambda^+) \in \mathcal{T}, m \in \{1, \dots, n\}, \lambda' = \{(x, y) : x, y \in B^+ \setminus A, |g^+(x) - g^+(y)| < m\varepsilon/k(*)\}$ and $\mathbf{w}_{\lambda'}(A^+, B^+) < \xi - \varepsilon$.

[Why? We can find $m \in \{1, ..., k\}$ such that for $\zeta = l\varepsilon/k(*)$ the set

$$\lambda' := \{(x, y) : x, y \in B^+ \text{ and } |x - y| \le n^{\zeta} \}$$

is an equivalence relation on $B^+ \setminus A^+$.

As $g \in \mathcal{G}$, clearly $\lambda' \upharpoonright B$ is equal to λ . As $g \in \mathcal{G}$, necessarily some λ' -equivalence class is disjoint from B, but $B <_i B^+$, hence easily $\mathbf{w}_{\lambda'}(A^+, B^+) < \xi$ so by the choice of ε , $\mathbf{w}_{\lambda'}(A^+, B^+) < \xi - \varepsilon$.

Let $\{(A_j^+, B_j^+, \lambda', m) : j < j_3^* \}$ list the possible (A^+, B^+, λ, m) up to isomorphism over B as described above. Let

$$\mathscr{G}_{j,h}^3 := \{g \in \mathscr{G} : g \text{ embeds } B_j^+ \text{ into } \mathscr{M}_n \text{ extending } f \text{ and moreover } h\}$$

for any $h \in \mathscr{H}_{j}^{3} := \{h : h : A_{j}^{+} \hookrightarrow \mathscr{M}_{n} \text{ extending } f\}$, so h necessarily satisfies $h(A_{j}^{+}) \subseteq \operatorname{cl}^{k}(f(A), \mathscr{M}_{n}) \subseteq \operatorname{cl}^{t}(f(A), \mathscr{M}_{n})$. Now it follows easily (for random enough \mathscr{M}_{n}) by \otimes_{1} , \otimes_{2} above, by 5.14(2), and by computation respectively that

 $(*)_6$ if $g \in \mathscr{G}^3$ then

$$g \in \bigcup_{j < j_3^*} \bigcup_{h \in \mathcal{H}_i^3} \{ g' | B : g' \in \mathcal{G}_{j,h}^3 \},$$

$$(*)_7 \ |\mathscr{G}^3_{j,h}| < n^{\xi - 2\varepsilon} \ \text{for each} \ h \in \mathscr{H}^3_j,$$

$$(*)_8 |\mathcal{H}_i^3| < |\operatorname{cl}^k(f(A), \mathcal{M}_n)|^k \le |\operatorname{cl}^t(f(A), \mathcal{M}_n)|^k < n^{\varepsilon, k}.$$

Altogether,

 $(*)_9$ the number of $g \in \mathscr{G}^3$ is $< n^{\xi - \varepsilon}$. $\blacksquare_{6.5}$

6.7. CONCLUSION. If $A <_s^* B$ and $B_0 \subseteq B$ and $k \in \mathbb{N}$ then the tuple (B, A, B_0, k) is simply good (see [I, Definition 2.12(1)]).

Proof. Read 6.5 and [I, Definition 2.12(1)]. $\blacksquare_{6.7}$

* * *

Toward simple niceness the "only" thing left is the universal part, i.e., $[I, Definition\ 2.13(1)(A)].$

The following Claims 6.8, 6.10 do not use §5 and have nothing to do with probability; they are the crucial step for proving the satisfaction of [I, Definition 2.13(1)(A)] in our case; Claim 6.8 is a sufficient condition for goodness (by 6.7). Our preceding the actual proof (of 6.11) by the two claims (6.8, 6.10) and separating them is for clarity, though it has a bad effect on the bound; also 6.8 using $cl^{k,m}(\bar{a}b,M)$ instead of $cl^{k}(\bar{a}b,M)$ when k' < k may improve the bound.

6.8. CLAIM. For every k and l (from \mathbb{N}) there are natural numbers t = t(k, l) and $k^*(k, l) \geq t$, k such that for any $k^* \geq k^*(k, l)$ we have:

- (*) if $m^{\otimes} \in \mathbb{N}$ and $M \in \mathcal{K}$, $\bar{a} \in {}^{l \geq} M$, $b \in M$ then
 - \otimes the set

$$\begin{split} \mathscr{R} := \{(c,d): d \in \operatorname{cl}^k(\bar{a}b,M) \setminus \operatorname{cl}^{k^*,m^\otimes + k}(\bar{a},M) \ and \\ c \in \operatorname{cl}^{k^*,m^\otimes}(\bar{a},M) \ and \ \{c,d\} \ is \ an \ edge \ of \ M\} \end{split}$$

has less than t members.

Proof. If k=0 this is trivial so assume k>0. Choose $\varepsilon\in\mathbb{R}^+$ small enough such that

$$(*)_1 C_0 <^* C_1 \& (C_0, C_1, \lambda) \in \mathscr{T} \& |C_1| \le k \Rightarrow \mathbf{w}_{\lambda}(C_0, C_1) \notin [-\varepsilon, \varepsilon]$$

(in fact we can restrict ourselves to the case $C_0 <_i^* C_1$). Choose $\mathbf{c} \in \mathbb{R}^+$ large enough such that

$$(*)_2 (C_0, C_1, \lambda) \in \mathcal{T}, |(C_1 \setminus C_0)/\lambda| \le k \Rightarrow \mathbf{w}_{\lambda}(C_0, C_1) \le \mathbf{c}$$

(so actually $\mathbf{c} = k$ is enough). Choose $t_1 > 0$ such that $t_1 > \mathbf{c}/\varepsilon$ and $t_1 > 2$. Choose $t_2 \geq 2^{2^{t_1+k+l}}$ (overkill, we mainly need to apply twice the Δ -system lemma; but note that in the proof of 6.10 below we will use the Ramsey theorem). Lastly, choose $t > k^2t_2$ and let $k^* \in \mathbb{N}$ be large enough, which actually means that $k^* > k \& k^* \geq (k+1)t_2$ so $k^*(k,l) := (k+1)t_2$ is O.K.

Suppose we have m^{\otimes} , M, \bar{a} , b as in (*) but such that the set \mathscr{R} has at least t members. Let $(c_i, d_i) \in \mathscr{R}$ for i < t be pairwise distinct (⁶).

As $d_i \in \operatorname{cl}^k(\bar{a}b, \mathcal{M}_n)$, we can choose for each i < t a set $C_i \leq M$ such that:

- (i) $C_i \leq M$,
- (ii) $|C_i| \leq k$,
- (iii) $d_i \in C_i$,
- (iv) $C_i \upharpoonright (C_i \cap (\bar{a}b)) <_i C_i$.

For each i < t, as $C_i \cap \operatorname{cl}^{k^*, m^{\otimes} + k}(\bar{a}, M)$ is a proper subset of C_i (this is witnessed by d_i , i.e., as $d_i \in C_i \setminus (C_i \cap \operatorname{cl}^{k^*, m^{\otimes} + k}(\bar{a}, M_n))$), clearly this set has < k elements and hence for some k[i] < k we have

(v)
$$C_i \cap \operatorname{cl}^{k^*, m^{\otimes} + k[i] + 1}(\bar{a}, M) \subseteq \operatorname{cl}^{k^*, m^{\otimes} + k[i]}(\bar{a}, M)$$
.

So without loss of generality

(vi)
$$i < t/k^2 \Rightarrow k[i] = k[0] \& |C_i| = |C_0| = k' \le k$$

(remember $t_2 < t/k^2$); also

(vii)
$$b \in C_i$$
.

⁽⁶⁾ Note: we do not require the d_i 's to be distinct; though if $w = \{i : d_i = d^*\}$ has $\geq k' > 1/\alpha$ elements then $d^* \in \text{cl}^{k'}(\text{cl}^{k^*,m^{\otimes}+k}(\bar{a},M))$.

[Why? If not then by clause (iv) we have $(C_i \cap \bar{a}) <_i C_i$, hence $d_i \in C_i \subseteq \text{cl}^k(\bar{a}, M) \subseteq \text{cl}^{k^*, m^{\otimes} + k}(\bar{a}, M)$, contradiction.]

As $k^* \ge k^*(k, l) \ge t_2(k+1)$ (by the assumption on k^*), clearly

$$\Big| \bigcup_{i < t_2} C_i \cup \{c_i : i < t_2\} \Big| \le \sum_{i < t_2} |C_i| + t_2 \le \sum_{i < t_2} k + t_2 \le t_2(k+1) \le k^*$$

and we define

$$D = \bigcup_{i < t_2} C_i \cup \{c_i : i < t_2\}, \quad D' = D \cap \operatorname{cl}^{k^*, m^{\otimes} + k[0]}(\bar{a}, M).$$

So by the previous sentence we have $|D'| \leq |D| \leq k^*$. Now

$$\otimes_0 D' <_s D.$$

[Why? As otherwise there is D'' such that $D' <_i D'' \le_s D$, so as $|D''| \le |D| \le k^*$, clearly $D'' \subseteq \operatorname{cl}^{k^*, m^{\otimes} + k[0] + 1}(\bar{a}b, M)$; contradiction.]

So we can choose $\lambda \in \Xi(D',D)$ (see Definition 4.8(2)). Let $C_i = \{d_{i,s} : s < k'\}$, with $d_{i,0} = d_i$, and recalling (vii) also $b \neq d_i \Rightarrow b = d_{i,1}$, and with no repetitions.

Clearly $d_{i,0} = d_i \notin D'$. By the finite Δ -system lemma for some $S_0, S_1, S_2 \subseteq \{0, \dots, k'-1\}$ and $u \subseteq \{0, \dots, t_2-1\}$ with $\geq t_1$ elements we have:

- $\bigoplus_1(a) \lambda' := \{(s_1, s_2) : d_{i,s_1}\lambda d_{i,s_2}\}$ is the same for all $i \in u$ and $S_0 = \{0, \ldots, k'-1\} \setminus \text{Dom}(\lambda')$, so $d_{i,s} \in D' \Leftrightarrow i \in S_0$,
 - (b) for each $j < \lg(\bar{a}) + 1$, and s < k', the truth value of $d_{i,s} = (\bar{a}b)_j$ is the same for all $i \in u$ for each $s \in S_0 = \{0, \dots, k' 1\} \setminus \text{Dom}(\lambda')$,
 - (c) $d_{i_1,s_1} = d_{i_2,s_2} \Rightarrow s_1 = s_2 \text{ for } i_1, i_2 \in u,$
 - (d) $d_{i_1,s} = d_{i_2,s} \Leftrightarrow s \in S_1 \text{ for } i_1 \neq i_2 \in u,$
 - (e) $d_{i_1,s_1} \lambda d_{i_2,s_2} \Rightarrow d_{i_1,s_1} \lambda d_{i_1,s_2} \& d_{i_1,s_2} \lambda d_{i_2,s_2}$ for $i_1 \neq i_2 \in u$,
 - (f) $d_{i_1,s} \lambda d_{i_2,s} \Leftrightarrow s \in S_2$ for $i_1 \neq i_2 \in u$; so $i \in u \& s \in S_2 \Rightarrow d_{i,s} \notin D'$,
 - (g) the statement $b = d_{i,0}$ has the same truth value for all $i \in u$.

Now we necessarily have

$$\oplus_2 \ 0 \not\in S_2$$
 (i.e., $\lambda \upharpoonright \{d_i : i \in u\}$ is equality).

[Why? Otherwise, let $X = d_i/\lambda$ for any $i \in u$; then the triple $(D', D' \cup X, \lambda \upharpoonright X) \in \mathscr{T}$ has weight

$$\mathbf{w}(D', D' \cup X, \lambda \upharpoonright X) = \mathbf{v}(D', D' \cup X, \lambda \upharpoonright X) - \alpha \mathbf{e}(D', D' \cup X, \lambda \upharpoonright X)$$

 $=1-\alpha\cdot|\{e:e \text{ an edge of } M \text{ with one end in } \}|$

D' and the other in X}|.

Now as $c_i \in \operatorname{cl}^{k^*,m^{\otimes}}(\bar{a},M)$, clearly $c_i \in D'$ and the pairs $\{c_i,d_i\} \in \operatorname{edge}(M)$ are distinct for different i; clearly the number above is $\leq 1 - \alpha |\{(c_i,d_i): i \in u\}| = 1 - \alpha |u| = 1 - \alpha t_1 < 0$; contradiction to $\lambda \in \Xi(D',D)$.]

Let $D_0 = \bar{a} \cup \bigcup \{d_{i,s}/\lambda : s \in S_2 \text{ and } i \in u\}$; clearly D_0 is a λ -closed subset of D though not necessarily $\subseteq \text{Dom}(\lambda) = D \setminus D'$ because of \bar{a} . We have:

 \oplus_3 $b = d_{i,1}$ and $1 \in S_1 \setminus S_0$ and $0 \notin S_0 \cup S_1 \cup S_2$ and $S_1 \setminus S_0 \subseteq S_2$ (hence $b \in D_0$).

[Why? The first two clauses hold as $b \in C_i$, $b \in \{d_{i,0}, d_{i,1}\}$ and by \oplus_2 and (g) of \oplus_1 . The last clause holds by $\oplus_1(d)$,(f), and the "hence $b \in D_0$ " by the definition of $D_0, S_1 \setminus \text{Dom}(\lambda') \subseteq S_2$ and the first clause. Also $0 \notin S_0 \cup S_1 \cup S_2$ should be clear.]

 \oplus_4 For each $i \in u$ we have $\mathbf{w}_{\lambda}(C_i \cap D_0, C_i) < 0$.

[Why? As $C_i \cap (\bar{a}b) \subseteq C_i \cap D_0$ by clauses (b) + (f) of \oplus_1 and by monotonicity of $<_i$ we have $C_i \upharpoonright (C_i \cap \bar{a}b) <_i C_i \Rightarrow C_i \cap D_0 \leq_i C_i$, but $d_{i,0} = d_i \in C_i \setminus C_i \cap D_0$.] Hence

$$\bigoplus_5 \mathbf{w}_{\lambda}(C_i \cap D_0, C_i) \leq -\varepsilon \text{ for } i \in u.$$

[Why? See the choice of ε .] Let

$$D_1 := D' \cup \bigcup \{d_{i,s}/\lambda : i \in u, s < k'\}$$

= $D' \cup D_0 \cup \{d_{i,s}/\lambda : i \in u, s < k' \& s \notin S_2\}.$

Then clearly D_1 is a λ -closed subset of D including D' but $D_1 \neq D'$ as $i \in u \Rightarrow d_i \in D_1$ by \oplus_2 . Also clearly

$$\bigoplus_{i \in B} D' \subseteq D' \cup D_0 \subseteq D_1 \subseteq D$$
 and D_0 , D_1 are λ -closed.

So, as we know $\lambda \in \Xi(D', D)$, we have

$$\oplus_7 \mathbf{w}_{\lambda}(D', D_1) > 0.$$

Now

$$\mathbf{w}_{\lambda}(D', D_{1}) = \mathbf{w}_{\lambda} \Big(D', \bigcup \Big\{ x/\lambda : x \in \bigcup_{i \in u} C_{i} \setminus D' \Big\} \cup D' \Big)$$

$$= \mathbf{w}_{\lambda}(D', D' \cup D_{0}) + \mathbf{w}_{\lambda} \Big(D' \cup D_{0}, D' \cup D_{0}$$

$$\cup \bigcup \{ d_{i,s}/\lambda : i \in u, s < k', s \notin S_{0} \cup S_{2} \} \Big)$$

[so by 6.9 below with $B_i = \{d_{i,s} : s < k', s \notin S_2 \cup S_0\}$ and $B_i^+ = \bigcup \{d_{i,s}/\lambda : s < k', s \notin S_2\}$]

$$\leq \mathbf{w}_{\lambda}(D', D' \cup D_0)$$

$$+ \sum_{i \in u} \mathbf{w}_{\lambda}(D' \cup D_0, D' \cup D_0 \cup \{d_{i,s} : s < k', s \notin S_2 \cup S_0\})$$

[as
$$C_i = \{d_{i,s} : s < k'\}$$
 and $d_{i,s} \in D' \cup D_0$ if $s < k', s \in S_0 \cup S_2, i \in u$]

$$\leq \mathbf{w}_{\lambda}(D', D' \cup D_0) + \sum_{i \in u} \mathbf{w}_{\lambda}(D' \cup D_0, D' \cup D_0 \cup C_i)$$

[so as $\mathbf{w}_{\lambda}(A_1, B_1) \leq \mathbf{w}_{\lambda}(A, B)$ when $A \leq A_1 \leq B_1, A \leq B \leq B_1, B_1 \setminus A_1 = B \setminus A$ by 4.15(3)]

$$\leq \mathbf{w}_{\lambda}(D' \cap D_0, D_0) + \sum_{i \in u} \mathbf{w}_{\lambda}(C_i \cap D_0, C_i)$$

[so by the choice of \mathbf{c}, D_0 , i.e., $(*)_2$ and the choice of $\varepsilon, u + \oplus_5$ respectively]

$$\leq \mathbf{c} + |u|(-\varepsilon) = \mathbf{c} - t_1 \varepsilon < 0,$$

contradicting the choice of λ , i.e., \oplus_7 . $\blacksquare_{6.8}$

- **6.9.** Observation. Assume
- (a) $A \leq^* A \cup B_i \leq^* A \cup B_i^+ \leq^* B \text{ for } i \in u$,
- (b) $B \setminus A$ is the disjoint union of $\langle B_i^+ : i \in u \rangle$,
- (c) λ is an equivalence relation on $B \setminus A$,
- (d) each B_i^+ is λ -closed,
- (e) $B_i^+ = \bigcup_{i=1}^{n} \{x/\lambda : x \in B_i \setminus A\},\$

Then $\mathbf{w}_{\lambda}(A, B) \geq \sum \{\mathbf{w}_{\lambda}(A, B_i) : i \in u\}.$

Proof. By (b) + (d),

$$\mathbf{v}_{\lambda}(A,B) = \sum \{\mathbf{v}_{\lambda}(A,A \cup B_{i}^{+}) : i \in u\} = \sum \{\mathbf{v}_{\lambda}(A,A \cup B_{i}) : i \in u\}$$

and by clause (b) the set $e_{\lambda}(A, B)$ contains the disjoint union of $\langle e_{\lambda}(A, B_i) : i \in u \rangle$. Altogether, the result follows. $\blacksquare_{6.9}$

- **6.10.** CLAIM. For every k, m and l from \mathbb{N} and some $m^* = m^*(k, l, m)$, for any $k^* \geq k^*(k, l)$ (the function $k^*(k, l)$ is the one from Claim 6.8) satisfying $k^* \geq km^*$ we have
 - (*) if $M \in \mathcal{K}$, $\bar{a} \in {}^{l \geq} M$ and $b \in M \setminus \operatorname{cl}^{k^*, m^*}(\bar{a}, M)$ then for some $m^{\otimes} \leq m^* m$ we have

$$\operatorname{cl}^{k}(\bar{a}b, M) \cap \operatorname{cl}^{k^{*}, m^{\otimes} + m}(\bar{a}, M) \subseteq \operatorname{cl}^{k^{*}, m^{\otimes}}(\bar{a}, M).$$

Proof. For k=0 this is trivial so assume k>0. Let t=t(k,l) be as in Claim 6.8. Choose m^* such that, e.g., $\lfloor m^*/(km) \rfloor \to (t+5)_{2^{k!+l}}^2$ in the usual notation in Ramsey theory. We could get more reasonable bounds but there is no need now. Remember that $k^*(k,l)$ is from 6.8 and k^* is any natural number $\geq k^*(k,l)$ such that $k^* \geq km^*$.

If the conclusion fails, then the set

$$Z := \{ j \le m^* - k : \operatorname{cl}^k(\bar{a}b, M) \cap \operatorname{cl}^{k^*, j+1}(\bar{a}, M) \nsubseteq \operatorname{cl}^{k^*, j}(\bar{a}, M) \}$$

satisfies

$$j \le m^* - m - k \implies Z \cap [j, j + m) \ne \emptyset.$$

Hence $|Z| \geq (m^* - m - k)/m$. For $j \in Z$ there are $C_j \leq M$ and d_j such that

$$|C_j| \le k$$
, $(C_j \cap (\bar{a}b)) <_i^* C_j$, $d_j \in C_j \cap \operatorname{cl}^{k^*,j+1}(\bar{a},M) \setminus \operatorname{cl}^{k^*,j}(\bar{a},M)$.

Now we use the same argument as in the proof of 6.8. As $d_j \in C_j \cap \operatorname{cl}^{k^*,j+1}(\bar{a},M) \setminus \operatorname{cl}^{k^*,j}(\bar{a},M)$ we find that $C_j \cap \operatorname{cl}^{k^*,j}(\bar{a},M)$ is a proper subset of $C_j \cap \operatorname{cl}^{k^*,j+1}(\bar{a},M)$ (witnessed by d_j), so $|C_j \cap \operatorname{cl}^{k^*,j}(\bar{a},M)| < |C_j \cap \operatorname{cl}^{k^*,j+1}(\bar{a},M)| \le k$, so $|C_j \cap \operatorname{cl}^{k^*,j}(\bar{a},M)| < k$. Hence for some $k_j \in \{1,\ldots,k\}$ we have $C_j \cap \operatorname{cl}^{k^*,m^*-k_j+1}(\bar{a},M) \subseteq \operatorname{cl}^{k^*,m^*-k_j}(\bar{a},M)$, hence for some $k' \in \{1,\ldots,k\}$ we have $|Z'| \ge (m^*-m-k)/(mk)$, where $Z' = \{j \in Z : k_j = k'\}$.

Let $C_j = \{d_{j,s} : s < s_j \le k\}$ with $d_{j,0} = d_j$ and no repetitions. We can find $s^* \le k$ and $S_1, S_0 \subseteq \{0, \dots, s^* - 1\}$ and $u \subseteq Z'$ satisfying |u| = t + 5 such that (because of the partition relation):

- (a) $i \in u \Rightarrow s_i = s^*$,
- (b) for each $j < \lg(\bar{a}) + 1$ and $s < s^*$ the truth value of $d_{i,s} = (\bar{a}b)_j$ is the same for all $i \in u$,
- (c) if $i \neq j$ are from u then |i j| > k + 1, i.e., the C_i 's for $i \in u$ are quite far from each other,
- (d) the truth value of " $\{d_{i,s_1},d_{i,s_2}\}$ is an edge" is the same for all $i\in u,$
- (e) for all $i_0 < i_1$ from u:

$$d_{i_0,s} \in \operatorname{cl}^{k^*,i_1}(\bar{a},M) \iff s \in S_0,$$

(f) for all $i_0 < i_1$ from u:

$$d_{i_1,s} \in \operatorname{cl}^{k^*,i_0}(\bar{a},M) \iff s \in S_1,$$

- (g) for each $s < s^*$, the sequence $\langle d_{i,s} : i \in u \rangle$ is constant or with no repetitions,
- (h) if $d_{i_1,s_1} = d_{i_2,s_2}$ then $d_{i_1,s_1} = d_{i_1,s_2} = d_{i_2,s_2}$, moreover, $s_1 = s_2$ (recalling that $\langle d_{i,s} : s < s_j \rangle$ is with no repetitions).

Now let i(*) be, e.g., the third element of the set u and

$$B_1 := C_{i(*)} \cap \operatorname{cl}^{k^*, \min(u)}(\bar{a}, M), \quad B_2 := C_{i(*)} \cap \operatorname{cl}^{k^*, \max(u)}(\bar{a}, M).$$

So

- $\circledast_1 B_1 <^* B_2 \le^* C_{i(*)}$ (note: $B_1 \ne B_2$ because $d_{i(*)} \in B_2 \setminus B_1$),
- \circledast_2 $(\bar{a}b) \cap B_2 \subseteq B_1$ by clause (b),
- \circledast_3 there is no edge in $(C_{i(*)} \setminus B_2) \times (B_2 \setminus B_1)$.

Why? Assume that this fails. Let the edge be $\{d_{i(*),s_1},d_{i(*),s_2}\}$ with $d_{i(*),s_1} \in C_{i(*)} \setminus B_2$ and $d_{i(*),s_2} \in B_2 \setminus B_1$; hence

 $(*)_1 \ d_{i(*),s_1} \in C_{i(*)} \setminus \operatorname{cl}^{k^*,\max(u)}(\bar{a},M) \text{ and } d_{i(*),s_2} \in \operatorname{cl}^{k^*,\max(u)}(\bar{a},M) \setminus \operatorname{cl}^{k^*,\min(u)}(\bar{a},M) \\ \text{and } \{d_{i(*),s_1},d_{i(*),s_2}\} \text{ is an edge.}$

Hence by clause (d),

 $(*)_2 \{d_{i,s_1}, d_{i,s_2}\}$ is an edge for every $i \in u$

and by clauses (e), (f) we have

(*)₃ if $i_0 < i_1 < i_2$ are in u then $d_{i_1,s_2} \notin \operatorname{cl}^{k^*,i_0}(\bar{a},M)$ and $d_{i_1,s_2} \in \operatorname{cl}^{k^*,i_2}(\bar{a},M)$,

and so necessarily

 $(*)_4 \langle d_{i,s_2} : i \in u \rangle$ is with no repetitions.

[Why? By clause (g) and $(*)_3$.]

So the set of edges $\{\{d_{i,s_1},d_{i,s_2}\}: i\in u \text{ but } |u\cap i|\geq 2 \text{ and } |u\setminus i|\geq 2\}$ contradicts 6.8 using $m^\otimes=\max(u)-k$ there (and our choice of parameters and $C_i\subseteq\operatorname{cl}^k(\bar ab,M)$). Thus \circledast_3 holds.

As $C_{i(*)} \upharpoonright (\bar{a}b) <_i C_{i(*)}$ and $B_2 \cap (\bar{a}b) \subseteq B_1$ (by \circledast_2), clearly $C_{i(*)} \cap \bar{a}b \subseteq C_{i(*)} \setminus (B_2 \setminus B_1) \subset C_{i(*)}$, the strict \subset as

$$d_{i(*)} \in C_{i(*)} \cap (\operatorname{cl}^{k^*,i(*)+1}(\bar{a}b,M) \setminus \operatorname{cl}^{k^*,i(*)}(\bar{a}b,M)) \subseteq B_2 \setminus B_1.$$

But, as stated above, $C_{i(*)} \setminus (B_2 \setminus B_1) \bigcup_{B_1} B_2$, hence by the previous sentence

(and smoothness, see 4.17(5)) we get $B_1 <_i^* B_2$; also $|B_2| \le |C_{i(*)}| \le k \le k^*$. By their definitions, $B_1 \subseteq \operatorname{cl}^{k^*,\min(u)}(\bar{a},M)$, but $B_1 \le_i^* B_2$, $|B_2| \le k \le k^*$ and hence $B_2 \subseteq \operatorname{cl}^{k^*,2^{\operatorname{nd}}} \operatorname{member of } u(\bar{a},M)$. Contradiction to the choice of $d_{i(*)}$. $\blacksquare_{6.10}$

- **6.11.** LEMMA. For every k, m and l (from \mathbb{N}), for some m^* , k^* and t^* we have:
 - (*) if $M \in \mathcal{K}, \bar{a} \in {}^{l \geq} M$ and $b \in M \setminus \operatorname{cl}^{k^*,m^*}(\bar{a},M)$ then for some $m^{\otimes} \leq m^* m$ and B we have
 - (i) $|B| \le t^*$,
 - (ii) $\bar{a} \subseteq B \subseteq \operatorname{cl}^k(B, M) \subseteq \operatorname{cl}^{k^*, m^{\otimes}}(\bar{a}, M),$
 - (iii) $\operatorname{cl}^{k^*,m^{\otimes}+m}(\bar{a},M), (\operatorname{cl}^k(\bar{a}b,M) \setminus \operatorname{cl}^{k^*,m^{\otimes}+m}(\bar{a},M)) \cup B$ are free over B inside M,
 - (iv) $B \leq_s^* B^* := M \upharpoonright ((\operatorname{cl}^{k^*}(\bar{a}b, M) \setminus \operatorname{cl}^{k^*, m^{\otimes} + m}(B, M)) \cup B).$
 - 6.12. Remark. Clearly this will finish the proof of simply nice.
 - **6.13.** Comments. Let us describe the proof below.

- (1) In the proof we apply the last two claims. By them we arrive at the following situation: inside $\operatorname{cl}^k(\bar{a}b,M)$ we have $B \leq B^*, |B| \leq t^*$ and there is no "small" D such that $B <_i^* D \leq B^*$ and we have to show that $B <_s^* B^*$, a kind of compactness lemma.
- (2) Note that for each $d \in \operatorname{cl}^k(\bar{a}b, M)$ there is $C_d \subseteq \operatorname{cl}^k(\bar{a}b, M)$ witnessing it, i.e., $C_d \cap (\bar{a}b) \leq_i C_d$, $d \in C_d$, $|C_d| \leq k$. To prove the statement above we choose an increasing sequence $\langle D_i : i \leq i(*) \rangle$ of subsets of B^* , $D_0 = B \cup \{b\}$, $|D_i|$ has an a priori bound, D_{i+1} "large" enough. So by our assumption toward contradiction $B <_s^* D_{i(*)}$, hence there is $\lambda \in \Xi(B, D_{i(*)})$; without loss of generality, $B^* = B \cup \bigcup \{C_d : d \in D_{i(*)}\}$. For each i < i(*) we try to "lift" $\lambda \upharpoonright (D_i \setminus B)$ to $\lambda^+ \in \Xi(B, B^*)$; a failure will show that we could have put elements satisfying some conditions in D_{i+1} so we had done so. As this occurs for every i < i(*), by weight computations we get a contradiction.

Proof of Lemma 6.11. Without loss of generality k > 0. Let t = t(k, l) and $k^*(k, l)$ be as required in 6.8 (for our given k, l).

Choose m(1) = t(m+1) + k + 2 and let $t^* = t + l + k$.

Choose m^* as in 6.10 for k (given in 6.11), m(1) (chosen above) and l (given in 6.11), i.e., $m^* = m^*(k, m(1), l)$. Let $\varepsilon^* \in \mathbb{R}^{>0}$ be such that

$$(A', B', \lambda) \in \mathscr{T} \& |B'| \le k \& A' \ne B' \implies \mathbf{w}_{\lambda}(A', B') \notin (-\varepsilon^*, \varepsilon^*).$$

Let $i(*) > 1/\varepsilon^*$. Define inductively k_i^* for $i \leq i(*)$ as follows:

$$k_0^* = \max\{k^*(k,l), mk, m^*t^* + 1\}, \quad k_{i+1}^* = 2^{2^{k_i^*}},$$

and lastly let

$$k^* = kk_{i(*)}^*$$
.

We shall prove that m^* , k^* , t^* are as required in 6.11. Let M, \bar{a} , b be as in the assumption of (*) of 6.11. So $M \in \mathcal{K}$, $\bar{a} \in {}^{l \geq} M$ and $b \in M \setminus \operatorname{cl}^{k^*, m^*}(\bar{a}, M)$; but this means that the assumption of (*) in 6.10 holds for k, m(1), l, so we can apply it (i.e., as $m^* = m^*(k, m(1), l), k^* \geq k^*(k, l)$, where $k^*(k, l)$ is from 6.8 and $k^* \geq km^*$ as $k^* \geq k^*_{i(*)} > k^*_0 \geq m^*k$). Hence for some $r \leq m^* - m(1)$ we have

$$\bigoplus_1 \operatorname{cl}^k(\bar{a}b, M) \cap \operatorname{cl}^{k^*, r+m(1)}(\bar{a}, M) \subseteq \operatorname{cl}^{k^*, r}(\bar{a}, M).$$

Let us define

$$\mathcal{R} = \{(c,d) : d \in \operatorname{cl}^k(\bar{a}b, M) \setminus \operatorname{cl}^{k^*, r+m(1)}(\bar{a}, M) \text{ and } c \in \operatorname{cl}^{k^*, r+m(1)-k}(\bar{a}, M) \text{ and } \{c, d\} \text{ is an edge of } M\}.$$

How many members does \mathcal{R} have? By 6.8 (with r + m(1) - k here standing

for m^{\otimes} there as $k^* > k^*(k, l)$ at most t members. But by \oplus_1 above

$$\mathcal{R} = \{(c,d) : d \in \operatorname{cl}^k(\bar{a}b,M) \setminus \operatorname{cl}^{k^*,r}(\bar{a},M) \text{ and }$$

$$c \in \operatorname{cl}^{k^*,r+m(1)-k}(\bar{a},M) \text{ and }$$

$$\{c,d\} \text{ is an edge of } M\}.$$

But t(m+1)+1 < m(1)-k by the choice of m(1) (and, of course, $\operatorname{cl}^{k^*,i}(\bar{a},M)$ increase with i), hence for some $m^{\otimes} \in \{r+1,\ldots,r+m(1)-k-m\}$ we have

$$\oplus_2 (c,d) \in \mathscr{R} \Rightarrow c \notin \operatorname{cl}^{k^*,m^{\otimes}+m}(\bar{a},M) \setminus \operatorname{cl}^{k^*,m^{\otimes}-1}(\bar{a},M).$$

So

$$\oplus_3 \ r \le m^{\otimes} - 1 < m^{\otimes} + m \le r + m(1) - k.$$

Let

$$B := \{c \in \operatorname{cl}^{k^*, m^{\otimes} - 1}(\bar{a}, M) : \text{for some } d \text{ we have } (c, d) \in \mathcal{R}\} \cup \bar{a}.$$

So by the above $B = \{c \in \operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M) : (\exists d)((c, d) \in \mathscr{R})\} \cup \bar{a}.$

Let us check the demands (i)–(iv) of (*) of 6.11; remember that we are defining $B^* = (\operatorname{cl}^k(\bar{a}b, M) \setminus \operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M)) \cup B$, that is, the submodel of M with this set of elements.

Clause (i): $|B| \le t^*$. As said above, $|\mathcal{R}| \le t$, hence clearly $|B| \le t + \lg(\bar{a}) \le t + l \le t^*$.

Clause (ii): $\bar{a} \subseteq B \subseteq \operatorname{cl}^k(B,M) \subseteq \operatorname{cl}^{k^*,m^{\otimes}}(\bar{a},M)$. As by its definition $B \subseteq \operatorname{cl}^{k^*,m^{\otimes}-1}(\bar{a},M)$, and $k \leq k^*$, clearly $\operatorname{cl}^k(B,M) \subseteq \operatorname{cl}^{k^*,m^{\otimes}}(\bar{a},M)$, and $B \subseteq \operatorname{cl}^k(B,M)$ always and $\bar{a} \subseteq B$ by its definition.

Clause (iii): Clearly

$$B = \operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M) \cap ((\operatorname{cl}^k(\bar{a}b, M) \setminus \operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M)) \cup B)$$
$$= (\operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M)) \cap B^*.$$

Now the "no edges" holds by the definitions of B and \mathcal{R} .

Clause (iv): $B \leq_s^* B^*$. Clearly $B \subseteq B^*$ by the definition of B^* before the proof of clause (i). Toward contradiction assume $\neg (B \leq_s^* B^*)$; then 4.17(2) holds for some D with $B <_i D \leq B^*$; choose such a D with a minimal number of elements. Note that as $B \subseteq \operatorname{cl}^{k^*,m^{\otimes}-1}(\bar{a},M)$ and $B^* \cap \operatorname{cl}^{k^*,m^{\otimes}+m}(\bar{a},M) = B$, necessarily $|D| > k^*$ (and $B <^* D \leq B^*$). For every $d \in D \setminus B$, as $d \in B^*$, clearly $d \in \operatorname{cl}^k(\bar{a}b,M)$, hence there is a set $C_d \leq M$ with $|C_d| \leq k$ such that $C_d \upharpoonright (\bar{a}b) \leq_i C_d$ and $d \in C_d$; note that $C_d \subseteq \operatorname{cl}^k(\bar{a}b,M)$ by the definition of cl^k , hence by the choice of B^* and m^{\otimes} and \oplus_1 we have $C_d \subseteq B^* \cup \operatorname{cl}^{k^*,m^{\otimes}-1}(\bar{a},M)$. Let $C'_d = C_d \cap (B \cup \{b\})$ and $C''_d = C_d \cap B^*$. Clearly $C_d \cap (\bar{a}b) \leq C'_d \leq C''_d \leq C_d$, hence $C'_d \leq_i C_d$. Now by clause (iii),

 $C''_d \bigcup_{C'_d}^M C'_d \cup (C_d \setminus C''_d)$, hence (by smoothness) we have $C'_{d_i} \leq_i C''_{d_i}$. Of course,

 $|C''_d| \le |C_d| \le k$. For $d \in B$ let $C_d = C'_d = C''_d = \{d\}$.

We now choose a set D_i , by induction on $i \leq i(*)$, such that (letting $C_i^{**} = \bigcup_{d \in D_i} C_d''$):

- (a) $D_0 = B \cup \{b\},\$
- (b) $j < i \Rightarrow D_i \subseteq D_i \subseteq D$,
- (c) $|D_i| \leq k_i^*$,
- (d) if λ is an equivalence relation on $C_i^{**} \setminus B$ and for some $d \in D \setminus D_i$ one of the clauses below holds then there is such $d \in D_{i+1}$, where
 - $\otimes_{\lambda,d}^1$ for some $x \in C''_d \setminus C_i^{**}$, there are no $y \in C''_d \cap C_i^{**}$, $j^* \in \mathbb{N}$ and $\langle y_j : j \leq j^* \rangle$ such that $y_j \in C''_d$, $y_{j^*} = x$, $y_0 = y$, $\{y_j, y_{j+1}\}$ an edge of M (actually an empty case, i.e., never occurs; see $(*)_{14}$ below),
 - $\otimes_{\lambda,d}^2$ there are $x \in C''_d \setminus C_i^{**}$, $y \in (C_i^{**} \setminus C''_d) \cup B$ and $y' \in C''_d \cap C_i^{**}$ such that $\{x,y\}$ is an edge of M and y is connected by a path $\langle y_0,\ldots,y_j\rangle$ inside C''_d to x so $x=y_j$, $y=y_0$ and $[y_i \in C_i^{**} \equiv i=0]$ and $\neg(y'\lambda y)$,
 - $\bigotimes_{\lambda,d}^3$ there is an edge $\{x_1,x_2\}$ of M such that we have:
 - (A) $\{x_1, x_2\} \subseteq C''_d$,
 - (B) $\{x_1, x_2\}$ is disjoint from C_i^{**} ,
 - (C) for $s \in \{1, 2\}$ there is a path $\langle y_{s,0}, \dots, y_{s,j_s} \rangle$ in C''_d , $y_{s,j_s} = x_s$, $[y_{s,j} \in C_i^{**} \equiv j = 0]$ and $\neg (y_{1,0} \lambda y_{2,0})$,
- (e) if λ is an equivalence relation on $C_i^{**} \setminus B$ to which clause (d) does not apply but there are $d_1, d_2 \in D$ satisfying one of the following, then we can find such $d_1, d_2 \in D_{i+1}$:

 - $\otimes_{\lambda,d_1,d_2}^5$ for some x_1, x_2, y_1, y_2 as in $\otimes_{\lambda,d_1,d_2}^4$ we have $\neg(y_1\lambda y_2)$ and $\{x_1,x_2\}$ is an edge.

So $|D_{i(*)}| \leq k^*/k$ (by the choice of k^* , i(*) and clause (c)), hence $C_{i(*)}^{**} := \bigcup_{d \in D_{i(*)}} C_d''$ has $\leq k^*$ members, $\bar{a}b \subseteq B \cup \{b\} \subseteq D_0 \subseteq C_{i(*)}^{**} \subseteq \operatorname{cl}^k(\bar{a}b, M)$ and $C_{i(*)}^{**} \cap \operatorname{cl}^{k^*, m^{\otimes} + m}(\bar{a}, M) = B \subseteq \operatorname{cl}^{k^*, m^{\otimes} - 1}(\bar{a}, M)$. Hence necessarily $B \leq_s C_{i(*)}^{**}$, so there is $\lambda \in \Xi(B, C_{i(*)}^{**})$. Let $\lambda_i = \lambda \upharpoonright (C_i^{**} \setminus B)$. Now

$$\Box (B, C_i^{**}, \lambda_i) \in \Xi(B, C_i^{**}).$$

[Why? Easy.]

CASE 1: For some i and an equivalence relation λ_i on $D_i \setminus B$, clauses (d) and (e) are vacuous for λ_i . Let λ_i^* be the set of pairs (x,y) from $C^{**}\setminus B$, where $C^{**} = \bigcup_{d \in D} C''_d$, which satisfy (α) or (β) , where

- $(\alpha) \ x, y \in C_i^{**} \setminus B \text{ and } x\lambda_i y,$
- (β) for some $d \in D$ we have $x \in C^{**} \setminus C_i^{**}, x \in C_d'', y \in C_i^{**} \cap C_d''$ and there is a sequence $\langle y_j : j \leq j^* \rangle$, $j^* \geq 1$, such that $y_{j^*} = x$, $y_j \in C''_d$, $y_0 = y$, $\{y_j, y_{j+1}\}$ is an edge of M and $[j > 0 \Rightarrow y_j \notin C_i^{**}]$.

This in general is not an equivalence relation. Let

$$C^{\otimes} = \{x : \text{for some } (x_1, x_2) \in \lambda_i^* \text{ we have } x \in \{x_1, x_2\}\},\$$

 $\lambda_i^+ = \{(x_1, x_2) : \text{for some } y_1, y_2 \in D_i \text{ we have }$
 $y_1 \lambda y_2, (x_1, y_1) \in \lambda_i^*, (x_2, y_2) \in \lambda_i^*\}.$

Now

 $(*)_1 \lambda_i^+$ is a set of pairs from C^{\otimes} with $\lambda_i^+ \upharpoonright D_i = \lambda_i$. $(*)_2 \ x \in C^{\otimes} \Rightarrow (x, x) \in \lambda_i^+$.

$$(*)_2 \ x \in C^{\otimes} \Rightarrow (x, x) \in \lambda_i^+.$$

[Why? Read (α) or (β) and the choice of λ_i^+ .]

 $(*)_3$ For every $x \in C^{\otimes}$, for some $y \in C_i^{**}$ we have $x\lambda_i^*y$.

[Why? Read the choice of λ_i^+, λ_i^* .]

 $(*)_4 \lambda_i^+$ is a symmetric relation on C^{\otimes} .

[Why? Read the definition of λ_i^+ recalling λ is symmetric.]

 $(*)_5 \lambda_i^+$ is transitive.

[Why? Looking at the choice of λ_i^* this is reduced to the case excluded in $(*)_6$ below.

$$(*)_6 \text{ If } (x, y_1), (x, y_2) \in \lambda_i^*, \{y_1, y_2\} \subseteq D_i, x \notin D_i, \text{ then } y_1 \lambda y_2.$$

[Why? Because clause (e) in the choice of D_{i+1} is vacuous. More fully, otherwise possibility $\otimes_{\lambda,d_1,d_2}^4$ holds for λ_i .]

(*)₇ For every $x \in C^{**} \setminus C_i^{**}$, clause (β) applies to $x \in C^{\otimes}$, that is, $C^{\otimes} = C^{**}$

[Why? As $x \in C^{**}$ there is $d \in D$ such that $x \in C''_d$, hence by $\otimes^1_{\lambda,d}$ of clause (d) of the choice of D_{i+1} holds for x, so is not vacuous, contradicting the assumption on i in the present case.]

 $(*)_8 \lambda_i^+$ is an equivalence relation on $C^{**} \setminus B$.

[Why? Its domain is $C^{**} \setminus B$ by $(*)_7$, it is an equivalence relation on its domain by $(*)_1 + (*)_2 + (*)_4 + (*)_5$.

$$(*)_9 \lambda_i^+ \upharpoonright C_i^{**} = \lambda_i.$$

[Why? By the choice of λ_i^+ , that is, by $(*)_1$.]

 $(*)_{10}$ Every λ_i^+ -equivalence class is represented in C_i^{**} .

[Why? By the choice of λ_i^+ and λ_i^* .]

 $(*)_{11}$ If $x_1, x_2 \in C^{**} \setminus B$ and $\neg(x_1\lambda_i^+x_2)$ but $\{x_1, x_2\}$ is an edge then $\{x_1, x_2\} \subseteq C_i^{**}$.

[Why? Assume $\{x_1, x_2\}$ is a counterexample, so $\{x_1, x_2\} \not\subseteq C_i^{**}$; assume $x_1 \not\in C_i^{**}$. Now for l = 1, 2 if $x_l \not\in C_i^{**}$ then we can choose $d_l \in D_i$ and $y_l \in C''_{d_l} \cap C_i^{**}$ such that d witnesses that $(x_l, y_l) \in \lambda_i^*$, that is, as in clause (β) there is a path $\langle y_{l,0}, \ldots, y_{l,j_l} \rangle$ such that $y_{l,0} = y_l, y_{l,j_l} = x_l$ and $(j > 0) \Rightarrow y_{l,j} \notin C_i^{**}$.

We separate into cases:

- (A) $x_1, x_2 \notin C_i^{**}$, $d_1 = d_2$. This case cannot happen as $\bigotimes_{\lambda, d_1}^3$ of clause (d) is vacuous.
- (B) $x_1, x_2 \notin C_i^{**}, d_1 \neq d_2$. In this case by the vacuousness of $\bigotimes_{\lambda_i, d_1, d_2}^5$ of clause (e) we get a contradiction.
- (C) $x_1 \in C''_{d_l}$ and $x_2 \in C_i^{**}$. By the vacuousness of $\otimes_{\lambda_i, d_1}^2$ of clause (d) we get a contradiction.

Altogether we have proved $(*)_{11}$.

As $\lambda_i \in \Xi(B, C_i^{**})$, by $(*)_8 + (*)_9 + (*)_{10} + (*)_{11}$ and \Box , it follows easily that $\lambda_i^+ \in \Xi(B, C^{**})$, hence (see 4.16) $B <_s^* C^{**}$, so as $B \subseteq D \subseteq C^{**}$ we have $B <_s^* D$, the desired contradiction.

CASE 2: For every i < i(*), at least one of the clauses (d), (e) is non-vacuous for λ_i . Let $\mathbf{w}_i = \mathbf{w}_{\lambda_i}(B, C_i^{**})$. For each i let $\langle d_{i,j} : j < j_i \rangle$ list $D_{i+1} \setminus D_i$, such that: if clause (d) applies to λ_i then $d_{i,0}$ form a witness and if clause (e) applies to λ_i then $d_{i,0}$, $d_{i,1}$ form a witness. For $j \leq j_i$ let $C_{i,j}^{**} = C_i^{**} \cup \bigcup_{s < j} C_{d_{i,s}}''$, so $C_{i,0}^{**} = C_i^{**}$ and $C_{i,j_i}^{**} = C_{i+1}^{**}$. Let $\mathbf{w}_{i,j} = \mathbf{w}_{\lambda_i}(B, C_{i,j}^{**})$.

So it suffices to prove:

- $(A) \mathbf{w}_{i,j} \geq \mathbf{w}_{i,j+1},$
- (B) $\mathbf{w}_{i,0} \varepsilon^* \geq \mathbf{w}_{i,1}$ or $\mathbf{w}_{i,1} \varepsilon^* \geq \mathbf{w}_{i,2}$.

Let i < i(*) and $j < j_i$. Clearly $C_{i,j+1}^{**} \setminus C_{i,j}^{**} \subseteq C_{d_{i,j}}^{"} \subseteq C_{i,j+1}^{**}$. Let

$$A_{i,j} = \{x \in C''_{d_{i,j}} : x \in B \text{ or } x/\lambda \text{ is not disjoint from } C^{**}_{i,j}\}.$$

Clearly $A_{i,j} \setminus B$ is $(\lambda \upharpoonright C''_{d_{i,j}})$ -closed, hence $A_{i,j} \leq^* C''_{d_{i,j}}$, $C''_{d_{i,j}} \setminus A_{i,j}$ is disjoint from $C^{**}_{i,j}$ and $C'_{d_{i,j}} = C_{d_{i,j}} \cap (B \cup \{b\}) \subseteq C^{**}_{i,j}$, and $C'_{d_{i,j}} \subseteq C''_{d_{i,j}}$. Hence $C'_{d_{i,j}} \subseteq A_{i,j}$ and $A_{i,j} \leq^* C''_{d_{i,j}}$, but $C'_{d_{i,j}} \leq_i C''_{d_{i,j}}$, so $A_{i,j} \leq^*_i C''_{d_{i,j}}$.

Clearly

$$(*)_{12} \mathbf{w}_{i,j+1} = \mathbf{w}_{i,j} + \mathbf{w}_{\lambda}(A_{i,j}, C''_{d_{i,j}}) - \alpha \mathbf{e}_{i,j}^{1} - \alpha \mathbf{e}_{i,j}^{2}$$

where

$$\begin{aligned} \mathbf{e}_{i,j}^1 &= | \{ \{x,y\} : \{x,y\} \text{ an edge of } M, \{x,y\} \subseteq A_{i,j}, \\ & \neg (x\lambda y) \text{ but } \{x,y\} \not\subseteq C_{i,j}^{**} \} |, \\ \mathbf{e}_{i,j}^2 &= | \{ \{x,y\} : \{x,y\} \text{ an edge of } M, \, x \in C_{d_{i,j}}'' \setminus C_{i,j}^{**}, \\ & y \in C_{i,j}^{**} \setminus C_{d_{i,j}}'' \text{ but } \neg (x\lambda y) \} |. \end{aligned}$$

Note

 $(*)_{13}$ $\mathbf{w}_{\lambda}(A_{i,j}, C''_{d_{i,j}})$ can be zero if $A_{i,j} = C''_{d_{i,j}}$ and is $\leq -\varepsilon^*$ otherwise. [Why? As $A_{i,j} \leq_i^* C''_{d_{i,j}}$.]

 $(*)_{14}$ In clause (d), $\otimes^1_{\lambda,d}$ never occurs.

[Why? If $x \in C''_d$ is as there, let $Y = \{y \in C''_d : y, x \text{ are connected in } M \upharpoonright C''_d \}$. So $x \in Y \subseteq C''_d$ and $Y \cap C^{**}_i = \emptyset$, and $C'_d = C''_d \cap (B \cup \{b\}) = C''_d \cap C^{**}_0 \subseteq C^{**}_i$. Hence $(C''_d \setminus Y) <_i^* C''_d$, but the equivalence relation $\{(y', y'') : y', y'' \in Y\}$ exemplifies that this fails.]

Proof of (A). Easy by $(*)_{12}$, because $\mathbf{w}_{\lambda}(A_{i,j}, C''_{d_{i,j}}) \leq 0$ holds by $(*)_{13}$, $-\alpha \mathbf{e}^1_{i,j} \leq 0$, and $-\alpha \mathbf{e}^2_{i,j} \leq 0$ as $\mathbf{e}^1_{i,j}$, $\mathbf{e}^2_{i,j}$ are natural numbers.

Proof of (B). It suffices to prove that $\mathbf{w}_{i,0} \neq \mathbf{w}_{i,1}$ or $\mathbf{w}_{i,1} \neq \mathbf{w}_{i,2}$ (as inequality implies the right order (by clause (A)) and the difference is $\geq \varepsilon^*$ by definition of ε^* (if $\mathbf{w}_{\lambda}(A_{i,1}, C''_{d_{i,j}}) \neq 0$) and $\geq \alpha$ (if $\mathbf{e}^1_{i,j} \neq 0$ or $\mathbf{e}^2_{i,j} \neq 0$). But if $\mathbf{w}_{i,0} = \mathbf{w}_{i,1}$, recalling (*)₁₄ it follows easily that clause (d) does not apply to λ_i , and if $\mathbf{w}_{i,0} = \mathbf{w}_{i,1} = \mathbf{w}_{i,2}$ also clause (e) does not apply.

So (A), (B) hold, so does Case 2 and hence the claim. ■6.11

6.14. REMARK. (a) We could use smaller k^* by building a tree $\langle (D_t, D_t^+, C_t, \lambda_t) : t \in T \rangle$, where T is a finite tree with a root Λ , $D_{\Lambda} = \emptyset$, $D_{\Lambda}^+ = B \cup \{b\}$, each λ_t is an equivalence relation on $C_t \setminus B$ and $C_t = \bigcup \{C_d'' : d \in D_t\} \cup B$, $s \in \text{suc}_T(t) \Rightarrow D_t^+ = D_s$ and $D_t^+ \setminus D_t$ is $\{d\}$ or $\{d_1, d_2\}$, witnessing clause (d) or clause (e) for (D_t, λ_t) when $t \neq \Lambda$ and

$$\{(D_s, \lambda_s) : s \in \operatorname{suc}_T(t)\}$$

$$= \{(D_t^+, \lambda) : \lambda \upharpoonright D_t = \lambda_t, \lambda \text{ an equivalence relation on } D_t^+ \setminus B\}.$$

- (b) We can make the argument separated, that is, prove as a separate claim that for any k and l there is k^* such that: if $A, B \subseteq M \in \mathcal{K}$, $|B|, |A| \leq l$, $B \subseteq B^*$, $\operatorname{cl}^k(A, M) \setminus \operatorname{cl}^k(B, M) \subseteq B^* \setminus B \subseteq \operatorname{cl}^k(A, M)$ and $(\forall C)(B \subseteq C \subseteq B^* \wedge |C| \leq k^* \Rightarrow B <_s C)$ then $B <_s B^*$. This is a kind of compactness.
- **6.15.** Conclusion. Requirements (A) of [I, 2.13(1)] and even (B) + (C) of [I, 2.13(3)] hold.

Proof. Requirement (B) of [I, 2.13(3)] holds by 6.7. Requirement (A) of [I, 2.13(2)] holds by 6.11 (and the previous sentence). $\blacksquare_{6.15}$

- **6.16.** Conclusion. (a) \mathfrak{K} is smooth and transitive and local and transparent.
- (b) \Re is simply nice (hence simply almost nice).
- (c) \Re satisfies the 0-1 law.

Proof. (a) By 6.4.

- (b) By 6.15 we know that \Re is simply nice.
- (c) By 4.2 we know that for each k, for every random enough \mathcal{M}_n , $\operatorname{cl}^k(\emptyset, \mathcal{M}_n)$ is empty. Hence by [I, 2.19(1)] we get the desired conclusion. $\blacksquare_{6.16}$

References

[BlSh 528]	J. T. Baldwin and S. Shelah, Randomness and semigenericity, Trans. Amer.
	Math. Soc. 349 (1997), 1359–1376; math.LO/9607226.

[Sh 550] S. Shelah, 0-1 laws, preprint, math.LO/9804154.

[Sh 467] —, Zero-one laws for graphs with edge probabilities decaying with distance. Part I, Fund. Math. 175 (2002), 195–239; math.LO/9606226.

[Sh:E48] —, Zero-one laws for graphs with edge probability decaying with distance. Part III. Probability computations, manuscript.

[Sh:E49] —, Zero-one laws for graphs with edge probability decaying with distance.

Part IV. Having a successor function, manuscript.

[ShSp 304] S. Shelah and J. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math. Soc. 1 (1988), 97–115.

Einstein Institute of Mathematics The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel E-mail: shelah@math.huji.ac.il Department of Mathematics Rutgers, The State University of New Jersey Hill Center-Busch Campus 110 Frelinghuysen Road Piscataway, NJ 08854-8019, U.S.A.

Received 13 February 2003; in revised form 3 December 2004