
FUNDAMENTA

MATHEMATICAE

185 (2005)

Zero-one laws for graphs with edge probabilities

decaying with distance. Part II

by

Saharon Shelah (Jerusalem and Piscataway, NJ)

Abstract. Let Gn be the random graph on [n] = {1, . . . , n} with the probability of
{i, j} being an edge decaying as a power of the distance, specifically the probability being
p|i−j| = 1/|i − j|

α, where the constant α ∈ (0, 1) is irrational. We analyze this theory
using an appropriate weight function on a pair (A,B) of graphs and using an equivalence
relation on B \A. We then investigate the model theory of this theory, including a “finite
compactness”. Lastly, as a consequence, we prove that the zero-one law (for first order
logic) holds.

Introduction. This continues [Sh 467] which is Part I and will be de-
noted here by [I], background and a description of the results are given in
[I,§0]; as this is the second part, our sections are named §4–§6 and not §1–§3.
Recall that we fix an irrational α ∈ (0, 1)R and the random graph

Mn =M 0
n is drawn as follows:

(a) its set of elements is [n] = {1, . . . , n},
(b) for i < j in [n] the probability of {i, j} being an edge is p|i−j|, where
pl is 1/l

α if l > 1 and 1/2α if l = 1, or just (1) pl = 1/l
α for l > 1,

(c) the drawings for the edges are independent,

(d) Kn is the set of possible values of Mn, K is the class of graphs.

Our main interest is to prove the 0-1 laws (for first order logic) for this 0-1
context, but also to analyze the limit theory.

We can now explain our intentions.
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Zero step: We define relations <∗x on the class of graphs with no apparent
relation to the probability side.

First step: We can prove that these <∗x have the formal properties of <x,
like <∗i is a partial order etc.; this is done in §4, e.g., in 4.17.
Remember from [I, §1] that A <a B ⇔ for random enough Mn and

f : A →֒ Mn, the maximal number of pairwise disjoint g ⊇ f satisfying
g : B →Mn is < n

ε (for every fixed ε).

Second step: We shall start dealing with the two versions of <a: the <a
from [I, §1] and <∗a defined in 4.11(5) below. We intend to prove:

(∗) A <∗a B ⇒ A <a B.

For this it suffices to show that for every f : A →֒Mn and positive real ε,
the expected value of the following is ≤ 1/nε: the number of extensions
g : B →Mn of f satisfying “the sets Rang(g↾(B \A)), f(A) are at distance
≥ nε”. Then the expected value of the number of k-tuples of such (pairwise)
disjoint g is ≤ 1/nkε. So if kε > |A|, the expected value of the number of
functions f with k pairwise disjoint such extensions g is < 1/nkε−|A|. Hence
for random enough Mn, for every f : A →֒ Mn there are no such k-tuples
of pairwise disjoint g’s. This will help to prove that <∗i = <i. We do this
and more probability arguments in §5. But the full proofs are delayed to
[Sh:E48].

Third step: We deduce from §5 that <∗x = <x for all relevant x and prove
that the context is weakly nice. We then work somewhat more to prove the
existential part of nice (the simple goodness (see [I, Definition 2.12(1)]) of
appropriate candidate). That is we first prove “weak niceness” by proving
that A <∗i B implies (A,B) satisfies the demand for <i of [I, §1], and in a
strong way the parallel thing for ≤s. Those involve probability estimation,
i.e., quoting §5. But we need more: sufficient conditions for appropriate
tuples to be simply good, and this is the first part of §6.

Fourth step: This is the universal part from niceness. This does not
involve any probability, just weight computations (and previous stages), in
other words, purely model-theoretic investigation of the “limit” theory. By
the “universal part of nice” we mean (A) of [I, 2.13(1)] which includes:

if ā ∈ k(Mn), b ∈ Mn then there are m1 < m, B ⊆ cl
k,m1(ā) such that

ā ⊆ B and

clk(B)
Mn
⋃

B
(clk(āb,Mn) \ cl

k(B,M )) ∪B.

This is done in the last part of §6.
Because of the request of the referee and editors to shorten the paper,

the computational part (in §5) in full was moved to [Sh:E48], and the gener-
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alization to the case we have a successor function (which was §7) was moved
to [Sh:E49].

4. Applications. We intend to apply the general theorems ([I, Lemmas
2.17, 2.19]) to our problem. That is, we try to answer: does the main context
M 0
n with pi = 1/i

α for i > 1 satisfy the 0-1 law? So here our irrational
number α ∈ (0, 1)R is fixed. We work in Main Context (see 4.1 below, the
other one, M 1

n , would work out as well, see §7).

4.1. Context. A particular case of [I, 1.1]: pi = 1/i
α for i > 1, p1 = p2

(where α ∈ (0, 1)R is a fix irrational) and the nth random structure is
Mn = M 0

n = ([n], R) (i.e. only the graph with the probability of {i, j}
being p|i−j|).

4.2. Fact. (1) For any graph A,

1 = lim
n
Prob(A is embeddable into Mn).

(2) Moreover (2), for every ε > 0,

1 = lim
n
Prob(A has ≥ n1−ε disjoint copies in Mn).

This is easy, still, before proving it, note that since by our definition of
closure A ⊆ clm,k(∅,Mn) implies that A has < n

ε embeddings intoMn, we
get:

4.3. Conclusion. 〈clm,k
Mn
(∅) : n < ω〉 satisfies the 0-1 law (being a se-

quence of empty models).

Hence (see [I, Def. 1.4, Conclusion 2.19])

4.4. Conclusion. K∞ = K and for our main theorem it suffices to
prove simple almost niceness of K (see [I, Def. 2.13]).

(Now 4.3 explicates one part of what in fact we always meant by “random
enough” in previous discussions.)

Proof of 4.2. Let the nodes of A be {a0, . . . , ak−1}. Let the event E
n
r be

al 7→ 2rk + 2l is an embedding of A into Mn.

The point is that for various values of r these tries are going to speak on
pairwise disjoint sets of nodes, so we get independent events.

4.5. Subfact. Prob(E nr ) = q > 0 (i.e. > 0 but it does not depend on
n, r).

(Note: this is not true in a close context where the probability of {i, j}
being an edge when i 6= j is 1/nα + 1/2|i−j|, as in that case the probability

(2) Actually also “≥ cn” works for c ∈ R>0 depending on A only.
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depends on n. But still, we can have ≥ q > 0 which suffices.) Here

q =
∏

l<m<k, {l,m} edge

1

(2(m− l))α
·

∏

l<m<k, {l,m} not an edge

(

1−
1

(2(m− l))α

)

.

(What we need is that all the relevant edges have probability > 0, < 1.
Note: if we have retained p = 1/iα this is false for the pairs (i, i+ 1), so we
have changed p1. Anyway, in our case we multiplied by 2 to avoid this (in
the definition of the event).) For the second case (the probability of edge
being 1/nα + 1/2i−j),

q ≥
∏

l<m<k, {l,m} edge

1

2|m−l|
·

∏

l<m<k, {l,m} not an edge

(

1−
1

(3/2)|m−l|

)

.

So Prob(E nr ) has a positive lower bound which does not depend on r.

Also the events E n0 , . . . ,E
n
[n/2k]−1 are independent. So the probability

that they all fail is
∏

i<⌊n/2k⌋

(1− Prob(E ni )) ≤
∏

i

(1− q) ≤ (1− q)n/2k,

which goes to 0 quite fast. The “moreover” part is left to the reader. 4.4

4.6. Definition. (1) Let

T = {(A,B, λ) : A ⊆ B graphs (generally: models from K ) and

λ an equivalence relation on B \A}.

We may write (A,B, λ) instead of (A,B, λ↾(B \A)).

(2) We say that X ⊆ B is λ-closed if

x ∈ X and x ∈ B ∩Dom(λ) implies x/λ ⊆ X.

(3) A ≤∗ B if (3) A ≤ B ∈ K∞ (clearly ≤
∗ is a partial order).

Story : We would like to ask, for any given copy of A in Mn, if there
is a copy of B above it, and how many; we hope for a dichotomy: usually
none, always few or always many. The point of λ is to take distance into
account, because for our present distribution being near is important; b1λb2
will indicate that b1 and b2 are near. Note that being near is not transitive,
but “luck” helps us, we will succeed by “pretending” it is. We will look at
many candidates for a copy of B \ A and compute the expected value. We
would like to show that saying “variance small” says that the true value is
near the expected value.

(3) Note: this is in our present specific context, so this definition does not apply to
§1, §2, §3, §7; in fact, in §7 we give a different definition for a different context.
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4.7. Definition. (1) For (A,B, λ) ∈ T let

v(A,B, λ) = vλ(A,B) = |(B \ A)/λ|

be the number of λ-equivalence classes in B\A (v stands for vertices). (This
measures degrees of freedom in choosing candidates for B over a given copy
of A.)
(2) Let

e(A,B, λ) = eλ(A,B) = |eλ(A,B)|,

where

eλ(A,B) = {e : e an edge of B, e * A, and e * x/λ for x ∈ B \A}.

[This measures the number of “expensive”, “long” edges (e stands for edges).]

Story : v larger means that there are more candidates for B; e larger
means that the probability per candidate is smaller.

4.8. Definition. (1) For (A,B, λ) ∈ T and our given irrational α ∈
(0, 1)R we define (w stands for weight)

w(A,B, λ) = wλ(A,B) = vλ(A,B)− αeλ(A,B).

(2) Let

Ξ(A,B) = {λ : (A,B, λ) ∈ T , and if C ⊆ B \A is a nonempty

λ-closed set then wλ(A,C ∪A) > 0}.

(3) If A ≤∗ B then we let ξ(A,B) = max{wλ(A,B) : λ ∈ Ξ(A,B)}.

4.9. Observation. (1) (A,B, λ) ∈ T &A 6= B ⇒ wλ(A,B) 6= 0.

(2) If A ≤∗ B ≤∗ C (hence A ≤∗ C) and (A,C, λ) ∈ T and B is λ-closed
then

(a) (A,B, λ↾(B \A)) ∈ T ,
(b) (B,C, λ↾(C \B)) ∈ T ,
(c) wλ(A,C) = wλ↾(B\A)(A,B) +wλ↾(C\B)(B,C),
(d) similarly for v and e.

(3) Note that 4.9(2) legitimizes our writing λ instead of λ↾(C \ A) or
λ↾(B \ (C ∪A)) when (A,B, λ) ∈ T and C is a λ-closed subset of B. Thus
we may write, e.g., wλ(A ∪ C,B) for w(A ∪ C,B, λ↾(B \A \ C)).
(4) If (A,B, λ) ∈ T and D ⊆ B \ A and D+ =

⋃

{x/λ : x ∈ D} then
wλ↾D+(A,A ∪D

+) ≤ wλ↾D(A,A ∪D) and D
+ is λ-closed.

Proof. (1) As α is irrational and vλ(A,B) is not zero.
(2) Clauses (a), (b) are immediate, and for a proof of (c), (d) see the

proof of 4.16 below.
(3) Left to the reader.
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(4) Clearly by the choice of D+ we have vλ↾D+(A,A∪D
+) = |D+/λ| =

|D/(λ↾D)| = vλ↾D(A,A ∪ D) and eλ↾D+(A,A ∪ D
+) ≥ eλ↾D(A,A ∪ D

+),
hence wλ↾D+(A,A ∪D

+) ≤ wλ↾D(A,A ∪D
+). 4.9

4.10.Discussion. Note thatwλ(A,B) measures in a sense the expected
value of the number of copies of B over a given copy of A with λ saying
when one node is “near to” another. Of course, when λ is the identity this
degenerates to the definition in [ShSp 304].

We would like to characterize ≤i and ≤s (from [I, Definition 1.4(3),
(4)] using w and to prove that they are O.K. (meaning that they form a
nice context). Looking at the expected behaviour, we attempt to give an
“effective” definition (depending on α only).

All of this, of course, just says what the intention of these relations and
functions is (i.e. <∗i , <

∗
s , <

∗
pr and v, e, w below); we still will not prove

anything on the connections to ≤i,≤s,≤pr. We may view it differently: We
are, for our fixed α, defining wλ(A,B) and investigating the ≤

∗
i ,≤

∗
s ,≤

∗
pr

defined below per se ignoring the probability side.

4.11. Definition. (1) A ≤ B means A is a submodel of B, and remem-
ber that by Definition 4.6(3), A ≤∗ B means (4) A ≤ B ∈ K∞.

(2) A <∗c B if A <
∗ B and for every λ, we have

(A,B, λ) ∈ T ⇒ wλ(A,B) < 0.

(3) A ≤∗i B if A ≤
∗ B and for every A′ we have

A ≤∗ A′ <∗ B ⇒ A′ <∗c B.

Of course, A <∗i B means A ≤
∗
i B &A 6= B.

(4) A ≤∗s B if A ≤
∗ B and for no A′ do we have

A <∗i A
′ ≤∗ B.

Of course, A <∗s B means A ≤
∗
s B &A 6= B.

(5) A <∗a B if A ≤
∗ B&¬(A <∗s B) (i.e. A ≤

∗ B and there is A′ ⊆ B \A
such that A <∗i A ∪A

′ ≤∗ B),

(6) A <∗pr B if A ≤
∗ B and A <∗s B but for no C do we have A<

∗
sC<

∗
sB.

4.12. Remark. We intend to prove that usually ≤∗x = ≤x but it will
take time.

4.13. Lemma. Suppose A′ <∗ B, (A′, B, λ) ∈ T and wλ(A
′, B) > 0.

Then there is A′′ satisfying A′ ≤∗ A′′ <∗ B such that A′′ is λ-closed and

(4) Note: this is in our present specific context, so this definition does not apply to
§1, §2, §3, §7; in fact in §7 we give a different definition for a different context.
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(∗)1[A
′′, B, λ] we have wλ(A

′′, B) > 0 and if C ⊆ B\A′′, C 6∈ {∅, B\A′′}
and C is λ-closed then wλ(A

′′, A′′ ∪C) > 0 and wλ(A
′′ ∪

C,B) < 0.

Proof. Let C ′ be a maximal λ-closed subset of B \A′ with the property
that wλ(A

′ ∪ C ′, B) > 0. Such a C ′ exists since C ′ = ∅ is as required and
B is finite. Let A′′ = A′ ∪ C ′. Since C ′ is λ-closed, it follows that B \ A′′

is λ-closed and (A′′, B, λ↾(B \ A′′)) ∈ T and clearly wλ(A
′′, B) > 0. Now

suppose D ⊆ B \A′′ is λ-closed and D 6∈ {∅, B \A′′}. By the maximality of
C ′, wλ(A

′′ ∪D,B) < 0. Now (by 4.9(2)(c))

wλ(A
′′, B) = wλ(A

′′, A′′ ∪D) +wλ(A
′′ ∪D,B),

and the left term is positive by the choice of C ′ and A′′, but the right term
is negative by the previous sentence, so we conclude wλ(A

′′, A′′ ∪D) > 0,
contradicting the maximality of C ′. 4.13

4.14. Claim. Assume A <∗ B. The following statements are equivalent :

(i) A <∗i B,
(ii) for no A′ and λ do we have:

(∗)2 = (∗)2[A,A
′, B, λ] we have A ≤∗ A′ <∗ B, (A′, B, λ) ∈ T and

wλ(A
′, B) > 0,

(iii) for no A′, λ do we have:

(∗)3 = (∗)3[A,A
′, B, λ] we have A ≤∗ A′ <∗ B, (A′, B, λ) ∈ T ,

wλ(A
′, B) > 0 and (∗)1[A

′, B, λ] of 4.13.

Proof. For the equivalence of the first and the second clauses read Def-
inition 4.11(2),(3) (remembering 4.9(1)). Trivially (∗)3 ⇒ (∗)2 and hence
the second clause implies the third one. Now we will see that (iii)⇒(ii). So
suppose ¬(ii); let this be exemplified by A′, λ, i.e. they satisfy (∗)2. Then by
4.13 there is A′′ such that A′ ≤∗ A′′ <∗ B and (∗)1[A

′′, B, λ] of 4.13 holds.
So A′′, λ exemplifies that ¬(iii) holds. 4.14

4.15. Observation. (1) If (∗)3[A,A
′, B, λ] from 4.14(iii) holds, then we

have: if C ⊆ B\A′ is λ-closed nonempty then w(A′, A′∪C, λ↾C) > 0. [Why?
If C 6= B \A′ this is stated explicitly, otherwise this means w(A′, B, λ) > 0,
which holds.]
(2) In (∗)3 of 4.14(iii), i.e., 4.13(∗)1[A

′, B, λ], we can allow any λ-closed
C ⊆ B \ A′ if we make the inequalities nonstrict. [Why? If C = ∅ then
wλ(A

′, A′ ∪ C) = wλ(A
′, A′) = 0 and wλ(A

′ ∪ C,B) = wλ(A
′, B) > 0. If

C = B \ A′ then wλ(A
′, A′ ∪ C) = wλ(A

′, B) > 0 and wλ(A
′ ∪ C,B) =

wλ(B,B) = 0. Lastly, if C 6∈ {∅, B \ A
′} we use 4.13(∗)1[A

′, B, λ] itself.]
(3) If (A,B, λ) ∈ T , A′ ≤∗ A, B′ ≤∗ B, A′ ≤∗ B′ and B \ A = B′ \ A′

then (A′, B′, λ) ∈ T , w(A′, B′, λ) ≥ w(A,B, λ), e(A′, B′, λ) ≤ e(A,B, λ),
and v(A′, B′, λ) = v(A,B, λ).
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(4) In (3) if in additionA
M
⋃

A′
B′, i.e., there is no edge {x, y} with x ∈ A\A′

and y ∈ B′ \A′ then the equalities hold.

4.16. Claim. A ≤∗s B if and only if either A = B or for some λ we
have: (A,B, λ) ∈ T and wλ(A,B) > 0, moreover for every nonempty λ-
closed C ⊆ B \A, we have w(A,A ∪ C, λ↾C) > 0, that is, Ξ(A,B) 6= ∅.

Proof. The “only if” direction. Suppose A ≤∗s B. If A = B we are done.
So assume A <∗s B. Let C be minimal such that A ≤

∗ C ≤∗ B and for
some λ0 the triple (C,B, λ0) ∈ T satisfies: for every nonempty λ0-closed
C ′ ⊆ B \ C we have w(C,C ∪ C ′, λ0↾C

′) > 0 (exists because C = B is
O.K. as there is no such C ′). By 4.9(4), for every nonempty C ′ ⊆ B \C we
have w(C,C ∪ C ′, λ0↾C

′) > 0, hence ¬(C <∗i C ∪C
′) by (i)⇔(ii) of 4.14. If

C = A we have finished by the definition of ≤∗s . Otherwise, the hypothesis
A ≤∗s B implies that ¬(A <

∗
i C), hence 4.14(iii) fails, which means that

(recalling 4.11(1)) for some C ′, λ1 we have A ≤
∗ C ′ <∗ C, (C ′, C, λ1) ∈ T ,

wλ1(C
′, C) > 0 and for every λ1-closedD ⊆ C\C

′ satisfyingD 6∈ {∅, C\C ′}
we have

w(C ′, C ′ ∪D,λ1↾D) > 0, w(C ′ ∪D,C, λ1↾(C \ C
′ \D)) < 0.

Define an equivalence relation λ on B \ C ′: an equivalence class of λ is an
equivalence class of λ0 or an equivalence class of λ1.
We shall show that (C ′, B, λ) satisfies the requirement above on C, thus

contradicting the minimality of C. Clearly A ≤∗ C ′ ≤∗ B. So let D ⊆ B \C ′

be λ-closed and define D0 = D∩ (B \C) and D1 = D∩ (C \C
′). Clearly D0

is λ0-closed so w(C,C ∪D0, λ↾D0) ≥ 0 (see 4.15(2)), and D1 is λ1-closed so
w(C ′, C ′ ∪D1, λ↾D1) ≥ 0 (this follows from: for every λ1-closed D ⊆ C \C

′

with D 6∈ {∅, C \ C ′} we have wλ(C
′, C ′ ∪ D,λ1↾D) > 0, and by 4.15(2)).

Now (in the last line we change C ′ to C twice), by 4.15(3) we will get

v(C ′, C ′ ∪D,λ) = |D/λ| = |D1/λ1|+ |D0/λ0|

= v(C ′, C ′ ∪D1, λ↾D1) + v(C
′ ∪D1, C

′ ∪D1 ∪D0, λ↾D0)

= v(C ′, C ′ ∪D1, λ↾D1) + v(C,C ∪D0, λ↾D0),

and (using 4.15(3))

e(C ′, C ′ ∪D,λ) = e(C ′, C ′ ∪D1, λ↾D1)

+ e(C ′ ∪D1, C
′ ∪D1 ∪D0, λ↾D0)

≤ e(C ′, C ′ ∪D1, λ↾D1) + e(C,C ∪D0, λ↾D0),

and hence

w(C ′, C ′ ∪D,λ) = v(C ′, C ′ ∪D,λ)− αe(C ′, C ′ ∪D,λ)

= v(C ′, C ′ ∪D1, λ↾D1) + v(C,C ∪D0, λ↾D0)
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− αe(C ′, C ′ ∪D1, λ↾D1)

− αe(C ′ ∪D1, C
′ ∪D1 ∪D0, λ↾D0)

≥ v(C ′, C ′ ∪D1, λ↾D1) + v(C,C ∪D0, λ↾D0)

− αe(C ′, C ′ ∪D1, λ↾D1)− αe(C,C ∪D0, λ↾D0)

= w(C ′, C ′ ∪D1, λ↾D1) +w(C,C ∪D0, λ↾D0) ≥ 0,

and the (strict) inequality holds by the irrationality of α, i.e. by 4.9(1).
So actually (C ′, B, λ) satisfies the requirements on C, λ0, thus giving a
contradiction to the minimality of C.

The “if” direction. As the case A = B is obvious, we can assume that
the second half of 4.16 holds. So let λ be as in the second half of 4.16.

Suppose A <∗ C ≤∗ B, and we shall prove that ¬(A <∗i C), thus
finishing by Definition 4.11. We shall show that (A′, λ′) = (A, λ↾(C \ A))
satisfies (∗)2[A,A,C, λ

′] from 4.14, thus 4.14(ii) fails, hence 4.14(i) fails, i.e.,
¬(A <∗i C) as required. Let D =

⋃

{x/λ : x ∈ C \ A}, so D is a nonempty
λ-closed subset of B \ A. Hence by the present assumption on A, B, λ we
have w(A,A ∪D,λ↾D) > 0. Now

v(A,C, λ↾C) = |C/λ| = |D/λ| = v(A,D, λ↾D)

and

e(A,C, λ↾C) ≤ e(A,D, λ↾D),

so w(A,C, λ↾C) ≥ w(A,D, λ↾D) > 0 as required. 4.16

4.17. Claim. (1) ≤∗i is transitive.
(2) ≤∗s is transitive.
(3) For any A ≤∗ C, for some B we have A ≤∗i B ≤

∗
s C.

(4) If A <∗ B and ¬(A ≤∗s B) then A <
∗
c B or there is C such that

A <∗ C <∗ B and ¬(A <∗s C).
(5) Smoothness holds (with <∗i instead of <i, see [I, 2.5(4)]), that is,

(a) if A ≤∗ C ≤∗ M ∈ K , A ≤∗ B ≤∗ M , B ∩ C = A then
A <∗c B ⇒ C <

∗
c B ∪ C and A ≤

∗
i C ⇒ B ≤

∗
i B ∪ C,

(b) if in addition C
M
⋃

A
B then A <∗c B ⇔ C ≤

∗
c B ∪ C and

A ≤∗i B ⇔ C ≤
∗
i B ∪ C and A ≤

∗
s B ⇔ C ≤

∗
s B ∪ C.

(6) For A <∗ B we have ¬(A ≤∗s B)⇔ (∃C)(A <
∗
c C ≤

∗ B).

(7) If A ≤∗ B ≤∗ C and A ≤∗s C then A ≤
∗
s B.

(8) If Al ≤
∗
s Bl for l = 1, 2, A1 ≤

∗ A2, B1 ≤
∗ B2 and B2 \A2 = B1 \A1

then

ξ(A1, B1) ≥ ξ(A2, B2).
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(9) In (8), equality holds iff A2, B1 are freely amalgamated over A1 in-
side B2.
(10) If A <∗s Bl for l = 1, 2 and B1 <

∗
i B2 and for some edge x, y of B2

we have s ∈ A, y ∈ B2 \B1 then ξ(A,B1) > ξ(A,B2).
(11) If B1 <

∗ B2 and for no x ∈ B1, y ∈ B2 \B1 is {x, y} an edge of B2
then B1 <

∗
s B2.

(12) If A ≤∗ B ≤∗ C and A ≤∗i C then B ≤
∗
i C.

(13) If A <∗pr B and a ∈ B \ A then A ∪ {a} ≤
∗
i B.

(14) If A1 <
∗
pr B1, A1 ≤

∗ A2 ≤
∗ B2 and B1 ≤

∗ B2 and B2 = A2 ∪ B1
then A2 ≤

∗
s B2 or A2 <

∗
pr B2.

Proof. (1) Assume A ≤∗i B ≤
∗
i C we shall prove A ≤

∗
i C. It suffices to

prove that 4.14(ii) holds with A,C here standing for A,B there. So assume
A ≤∗ A′ <∗ C, (A′, C, λ) ∈ T and we shall prove that wλ(A

′, C) ≤ 0; this
suffices. Let A′1 := A

′∩B and A′0 := B∪A
′∪
⋃

{x/λ : x ∈ B}. As A ≤∗i B, by
4.14 + 4.15(2) we have wλ(A

′
1, B) ≤ 0, by 4.15(3) we have wλ(A

′, B∪A′) ≤
wλ(A

′
1, B), and by 4.9(4) we have wλ(A

′, A′0) ≤ wλ(A
′, A′∪B). Those three

inequalities together give wλ(A
′, A′0) ≤ 0, and as B ≤

∗
i C, by 4.14 we have

wλ(A
′
0, C) ≤ 0. By 4.9(2)(c) we have wλ(A

′, C) = wλ(A
′, A′0) +wλ(A

′
0, C)

and by the previous sentence the latter is ≤ 0 + 0 = 0, so wλ(A,A
′) ≤ 0 as

required.
(2) We use the condition from 4.16. So assumeA0 ≤

∗
s A1 ≤

∗
s A2 and let λl

witness Al ≤
∗
s Al+1 (i.e. (Al, Al+1, λl) is as in 4.16). Let λ be the equivalence

relation on A2\A0 such that for x ∈ Al+1\Al we have x/λ = x/λl. It follows
easily that (A0, A2, λ) ∈ T . Now, by 4.9(2)(c), 4.15(3) and 4.16 the triple
(A0, A2, λ) satisfies the second condition in 4.16 so A0 ≤

∗
s A2.

(3) Let B be maximal such that A ≤∗i B ≤
∗ C; such a B exists as C

is finite (5) and for B = A we get A ≤∗i B ≤
∗ C. Now if B ≤∗s C we are

done. Otherwise by the definition of ≤∗s in 4.11(4) there is B
′ such that

B <∗i B
′ ≤∗ C; now by part (1) we have A ≤∗i B

′ ≤∗ C, contradicting the
maximality of B, so really B ≤∗s C and we are done.
(4) We assume A <∗ B. If A <∗c B we are done, hence we can assume

¬(A <∗c B). Clearly there is λ such that (A,B, λ) ∈ T and wλ(A,B) ≥ 0.
So by the irrationality of α the inequality is strict and by 4.13 there is
C such that A ≤∗ C <∗ B, C is λ-closed, wλ(C,B) > 0 and if C

′ ⊆
B \ C is nonempty λ-closed and 6= B \ C then wλ(C,C ∪ C

′) > 0 and
wλ(C ∪ C

′, B) < 0. So by 4.16 + inspection, C <∗s B, and thus by 4.17(2),
A ≤∗s C ⇒ A

∗ ≤∗s B; but we know that ¬(A <
∗
s B), hence by part (2),

¬(A ≤∗s C), so the second possibility in the conclusion holds.

(5) Actually, the finiteness is not needed if for possibly infinite A,B we define A ≤∗i B
iff for every finite B′ ≤∗ B there is a finite B′′ such that B′ ≤∗ B′′ ≤∗ B, and
B′′ ∩ A <∗i B

′′.
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(5) Clause (a): A ≤∗c B ⇒ C <
∗
c B ∪ C and A ≤

∗
i C ⇒ B ≤

∗
i B ∪ C.

[Why? Note that by our assumption C <∗ B∪C and B <∗ B ∪C. The first
desired conclusion is easier, so we prove the second; hence assume A ≤∗i C.
If B ≤∗ D <∗ B ∪ C and (D,B ∪ C, λ) ∈ T , then A ≤∗ D ∩ C <∗ C, so as
A ≤∗i C, by the definition of ≤i we have wλ(D ∩ C,C) < 0. Hence (noting
C \D ∩ C = B ∪ C \D) by Observation 4.15(3) we have wλ(D,B ∪ C) ≤
wλ(D ∩ C,C) < 0 and so (by the definition of ≤

∗
c) D ≤

∗
c B ∪ C. As this

holds for any such D by Definition 4.11(3) we have B ≤∗i B∪C as required.]

Clause (b): If in addition C
M
⋃

A
B then A <∗c C ⇔ B ≤

∗
c B ∪ C and

A ≤i C ⇔ B ≤i B ∪ C and A ≤
∗
s B ⇔ B ≤

∗
s B ∪ C. [Why? Immediate by

4.15(4), Definition 4.11 and part (a).]

(6) The “only if” direction can be proved by induction on |B|, using
4.17(4). For the “if” direction assume that for some C, A <∗c C ≤

∗ B, and
choose a minimal C like that. Now if A ≤∗ A∗ <∗ C, and λ1 is an equivalence
relation on C \A∗, then let λ0 be an equivalence relation on A

∗ \A such that
wλ0(A,A

∗) ≥ 0 (exists by the minimality of C) and let λ = λ0 ∪ λ1. Then
(A,C, λ) ∈ T and by 4.9(2)(i) we have wλ(A

∗, C) = wλ(A,C)−wλ(A,A
∗);

but as A <∗c C we have wλ(A,C) < 0, and by the choice of λ0 we have
wλ(A,A

∗) ≥ 0, hence wλ(A
∗, C) < 0 so that wλ1(A

∗, C) = wλ(A
∗, C) < 0.

As λ1 was any equivalence relation on C \A
∗, by Definition 4.11(2) we have

shown that A∗ <∗c C. By the definition of ≤
∗
i (4.11(3)), as A

∗ was arbitrary
such that A ≤∗ A∗ <∗ C, by Definition 4.11(3) we get A <∗i C, hence by
the definition of ≤s (4.11(4)) we deduce ¬(A ≤

∗
s B) as required.

(7) Immediate by Definition 4.11(4).

(8) It is enough to prove that

⊛ if λ ∈ Ξ(A2, B2) then λ ∈ Ξ(A1, B1) and wλ(A1, B1) ≥ wλ(A2, B2).

So assume λ is an equivalence relation over B2\A2 which is equal to B1\A1.
Now for every nonempty λ-closed C ⊆ B1 \A1 we have

(i) vλ(A1, A1 ∪ C) = |C/λ| = vλ(A2, A2 ∪ C),

(ii) eλ(A1, A1 ∪ C) ≤ eλ(A2, A2 ∪ C) [as any edge in eλ(A1, A1 ∪ C)
belongs to eλ(A2, A2 ∪ C)], hence

(iii) wλ(A1, A1 ∪ C) ≥ wλ(A2, A2 ∪ C).

So by the definition of Ξ(A1, B1) we have λ ∈ Ξ(A2, B2)⇒ λ ∈ Ξ(A1, B1)
and, moreover, the desired inequality in ⊛ holds.

(9) If A2
B2
⋃

A1
B1 in the proof of (8) we get eλ(A1, A1 ∪ C)=eλ(A2, A2∪C),

hence wλ(A1, A1 ∪ C) = wλ(A2, A2 ∪ C), in particular wλ(A1, B1) =
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wλ(A2, B2). Also now the proof of (8) gives λ∈Ξ(A1, B1)⇒λ ∈ Ξ(A2, B2),
so trivially ξ(A1, B1) = ξ(A2, B2).

If ¬(A2
B2
⋃

A1
B1) then for every equivalence relation λ on B1\A1 = B2\A2

we have

(ii)
+
eλ(A1, B1) < eλ(A2, B2) [as eλ(A1, B1) is a proper subset of
eλ(A2, B2) by our present assumption], hence

(iii)
+
wλ(A1, B1) > wλ(A2, B2).

As the number of such λ is finite and as we have shown Ξ(A2, B2) ⊆
Ξ(A1, B1) we get ξ(A1, B1) > ξ(A2, B2).
(10) This follows from ⊛1 + ⊛2 below and the finiteness of Ξ(A,B2)

upon recalling Definition 4.8(3).

⊛1 λ ∈ Ξ(A,B2)⇒ λ↾(B1 \A) ∈ Ξ(A,B1).

[Why? If λ is an equivalence relation on B2 \ A and λ1 := λ↾(B1 \ A) then
λ1 is an equivalence relation on B1 \ A and for any nonempty λ1-closed
C1 ⊆ B1 \ A, letting C2 =

⋃

{x/λ : x ∈ C1} we have wλ(A,A ∪ C1) ≥
wλ(A,A ∪ C2) by 4.9(4) and the latter is positive because λ ∈ Ξ(A,B2).]

⊛2 λ ∈ Ξ(A,B2)⇒ wλ(A,B2) < wλ(A,B1).

[Why? Otherwise let λ be from Ξ(A,B2) and let Cλ =
⋃

{x/λ : x ∈ B1 \A}
∪A so B1 ≤

∗ Cλ ≤
∗ B2.]

Case 1: Cλ = B2. So vλ(A,B1) = v(A,B1, λ↾(B1\A)) = |(B1\A)/λ| =
|(B2 \A)/λ| = vλ(A,B2, λ). By an assumption of part (10), for some x ∈ A
and y ∈ B2 \B1 the pair {x, y} is an edge so e(A,B1, λ↾(B1 \A)) is a proper
subset of e(A,B2, λ). Hence

eλ(A,B1) < eλ(A,B2)

and so

wλ(A,B1) > wλ(A,B2)

is as required.

Case 2: Cλ 6= B2. As in Case 1, wλ(A,B1) ≥ wλ(A,Cλ). Now B1 ≤
∗

Cλ ≤
∗ B2 (using the case assumption) and B1 <

∗
i B2 by assumption, so by

part (12) below we have Cλ ≤
∗
i B2, hence Cλ <

∗
i B2, and by 4.14 this implies

wλ(Cλ, B2) < 0. So wλ(A,B2) = wλ(A,Cλ) +wλ(Cλ, B2) ≤ wλ(A,B1) +
wλ(Cλ, B2) < wλ(A,B1) as required.
(11) Define λ to be the equivalence relation with exactly one class on

B2 \ B1, so (B1, B2, λ) ∈ T , vλ(B1, B2) = 1, eλ(B1, B2) = 0 and thus
wλ(B1, B2) ≥ 0. Hence λ ∈ Ξ(B2, B2) so that B1 <s B2.
(12) By Definition 4.11(3).
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(13) Clearly A ∪ {a} ≤∗ B, hence by part (3) for some C we have
A ∪ {a} ≤∗i C ≤

∗
s B. If C = B we are done; otherwise A <

∗
s C by part (7)

so we have A <∗s C <
∗
s B, contradiction.

(14) Easy by Definition 4.11(6). 4.17

5. The probabilistic inequalities. In this section we deal with prob-
abilistic inequalities about the number of extensions for the context M 0

n .
Mostly the computations are delayed to [Sh:E48].
Note: the proof of almost simple niceness of K is in the next section.

5.1. Context. As in §4, so pi = 1/i
α for i > 1, p1 = p2 (where α ∈ (0, 1)R

is irrational) and Mn =M 0
n (i.e. only the graph).

5.2. Definition. Let ε > 0, k ∈ N, Mn ∈ K and A <∗ B be in K∞.
Assume f : A →֒Mn is an embedding or just f : A →֒ [n], which means it
is one-to-one. Define

G
ε,k
A,B(f,Mn)

:= {ḡ : (1) ḡ = 〈gl : l < k〉,

(2) f ⊆ gl, gl a one-to-one function from B into |Mn|,

(3) gl : B →֒f Mn for l ≤ k or just gl : B →֒A Mn,

which means: {a, b} ∈ Edge(B) \ Edge(A)

⇒ {g(b), g(b)} ∈ Edge(Mn)

(and g is one-to-one extending f),

(4) l1 6= l2 ⇒ Rang(gl1) ∩Rang(gl2) = Rang(f),

(5) [l < k & x ∈ B \A& y ∈ A]⇒ |gl(x)− gl(y)| ≥ n
ε}.

The size of this set has a natural connection with the number of pairwise
disjoint extensions g : B →֒Mn of f , hence with A <s B; see 5.3 below.

5.3. Fact. For every ε and k and A ≤∗ B we have:

(∗) for every n, k and M ∈ Kn and one-to-one f : A →֒A Mn we have:

if G ε,kA,B(f,Mn) = ∅ then

max{l : there are gm : B →֒A M for m < l such that f ⊆ gm and

[m1 < m2 ⇒ Rang(gm1) ∩ Rang(gm2) ⊆ Rang(f)]}

≤ 2|A|nε + (k − 1).

Proof. Assume that there are gm as above for m < l
∗, where l∗ >

2|A|nε+ k− 1. By renaming without loss of generality for some l∗∗ ≤ l∗ the
set Rang(gm)\Rang(f) when m < l

∗∗ is at distance ≥ nε from Rang(f) but
if l ∈ [l∗∗, l∗] then Rang(gl) \Rang(f) has distance < n

ε to Rang(f). Recall
that by one of our assumptions l∗∗ ≤ k−1. Now for each x ∈ Rang(f), there
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are ≤ 2nε numbersm ∈ [l∗∗, l∗) such that min{|x−gm(y)| : y ∈ B\A} ≤ n
ε.

So by the demand on l∗∗ we have l∗−l∗∗ ≤ |A|·(2nε) = 2|A|nε and as l∗∗ < k
we are done. 5.3

The next theorem is central; it does not yet prove almost niceness but its
parallels from [ShSp 304], [BlSh 528] were immediate, and here we see the
main additional difficulties: we are looking for copies B over A but we have
to take into account the distance, and the closeness of images of points in B
under embeddings into Mn. To prove 5.4 we will have to look for different
types of g’s which satisfy condition (5) from the definition of G ε,kA,B(f,Mn);
restricting ourselves to one kind we will calculate the expected value of a
“relevant part” of G ε,1A,B(f,Mn) and we will show that it is small enough.

5.4. Theorem. Assume A <∗ B (so both in K∞). Then a sufficient
condition for
⊗

1 for every ε > 0, for some k ∈ N, for every random enough Mn we
have:
(∗) if f : A →֒ [n] then G

ε,k
A,B(f,Mn) = ∅

is the following :
⊗

2 A <
∗
a B (which by Definition 4.11(5) means A <

∗ B & ¬(A <s B)).

5.5. Remark. From
⊗

1 we can conclude: for every ε ∈ R+ we have: for
every random enough Mn, for every f : A →֒A Mn, there cannot be ≥ n

ε

extensions g : B →֒A Mn of f pairwise disjoint over f .

5.6. Explanation. For this, first choose ε1 < ε. Note that for any k we
have G ε,kA,B(f,Mn) ⊆ G

ε1,k
A,B (f,Mn). Choose k1 for ε1 by 5.3. Then the number

of pairwise disjoint extensions g : B →֒A Mn of f is ≤ 2|A|n
ε1 + (k1 − 1).

For sufficiently large n this is < nε.

5.7. Remark. We think of g : B →֒ Mn extending f such that, for
some constants c1 and c2 with c2 > 2c1,

xλy ⇒ |g(x)− g(y)| < c1

and
[{x, y} ⊆ B & {x, y} * A& ¬xλy] ⇒ |g(x)− g(y)| ≥ c2.

5.8. Explanation. The number of such g is ∼ n|(B\A)/λ| = nv(A,B,λ); the
probability of each being an embedding, assuming f is one, is ∼ n−αe(A,B,λ),
hence the expected value is ∼ nwλ(A,B) (∼ means “up to a constant”). So
A <∗i B implies that usually there are few such copies of B over any copy
of A, i.e. the expected value is < 1. In [ShSp 304], λ is equality, here things
are more complicated.
By 5.4 we have sufficient conditions for: (given A ≤∗ B) every f : A →֒

Mn has few pairwise disjoint extensions to g : B →֒ Mn. Now we try to
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get a dual, a sufficient condition for: (given A ≤∗ B) for every random
enough Mn, every f : A →֒Mn has “many” pairwise disjoint extensions to
g : A →֒Mn.

5.9. Lemma. Assume

(A) (A,B, λ) ∈ T and m ∈ N,
(B) (∀B′)[A <∗ B′ ≤∗ B & B′ is λ-closed ⇒ wλ(A,B

′) > 0] (recall that
“B′ is λ-closed” means xλy & x ∈ B′ ⇒ y ∈ B′).

Then there is ζ ∈ R+, in fact we can let

ζ := min{wλ↾B′(A,B
′) : A ⊆ B′ ⊆ B and B′ is λ-closed},

such that :

⊗ for every small enough ε > 0, for every random enoughMn, for every
f : A →֒Mn and k with 0 < k < k + n

1−ε < n, there are ≥ n(1−ε)·ζ

pairwise disjoint extensions g of f satisfying

(i) g : B →֒Mn,
(ii) g(B \A) ⊆ [k, k + n1−ε),
(iii) if xλy (so x, y ∈ B \A) then |x− y| ≤ 2|B|,
(iv) if x ∈ B \A, y ∈ B and ¬(xλy) then |x− y| ≥ nε,
(v) if B <i B

′, A <s B
′ and |B′ \B| ≤ m then there is no extension

g′ : B′ →֒ Mn of g such that (∀x ∈ B
′ \ B)(∀y ∈ B)(|g′(x) −

g′(y)| ≥ mnε).

Now, 5.4 and 5.9 are enough for proving <∗i = <i, <
∗
s = <s, weakly nice

and similar things. But we need more.

5.10. Lemma. Assume

(A) (A,B, λ) ∈ T ,
(B) ξ = ξ(A,B) = wλ(A,B) > 0 (see Definition 4.8(3)),
(C) if A <∗ C <∗ B and C is λ-closed then wλ(C,B) < 0 (hence
necessarily ξ ∈ (0, 1)R and C 6= ∅ ⇒ wλ(A,C) > 0 and even
wλ(A,C) > ξ).

Then for every ε ∈ R+, every random enough Mn, and every f : A →֒Mn,
we have

(a) the number of g : B →֒Mn extending f is at least n
ξ−ε,

(b) also the maximal number of pairwise disjoint extensions g : B →֒Mn

of f is at least this number.

5.11. Remark. (1) We can get a reasonably much better bound (see
[ShSp 304], [BlSh 528] and [Sh 550]) but this suffices.
(2) In the most interesting cases of 5.10 we have A <∗pr B but it applies

to more cases.
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5.12. Claim. Assume

(A) (A,B, λ) ∈ T ,
(B) if C ⊆ B \A is nonempty and λ-closed then wλ(A,A ∪ C) > 0.

Then for some ε0 ∈ R+, for every ε ∈ (0, ε0)R, every random enough Mn,
and every f : A →֒Mn, we have

(a) the number of g : B →֒Mn extending f is at least n
wλ(A,B)−ε,

(b) for every X ⊆ [n] with |X| ≤ nε0−ε, the number of g : B →֒ Mn

extending f with Rang(g) ∩X ⊆ Rang(f) is at least nwλ(A,B)−ε.

5.13. Remark. (1) By 4.16 the statement

“for some λ the hypothesis of 5.12 holds”

is equivalent to “A ≤∗s B”.
(2) The affinity of this claim to being nice (see [I, §2]) should be clear.
(3) If |X| ≥ n1−ε we can demand Rang(g) ⊆ X but no need arises.

5.14. Claim. (1) Assume A <∗pr B, and let ξ = ξ(A,B) that is

ξ = max{wλ(A,B) : (A,B, λ) ∈ T and

for every λ-closed nonempty C ⊆ B \ A

we have w(A,A ∪ C, λ↾C) > 0}.

Then for every ε ∈ R+, every random enough Mn, and every f : A →֒Mn,
we have

(∗) the number of g : B →֒Mn extending f is at most n
ξ+ε.

(2) Assume that A <∗s B, λ ∈ Ξ(A,B) and ξ = wλ(A,B). Then for
any small enough reals ζ, ε > 0 for every random enough Mn, for every
f : A →֒ Mn the set G

ε,ζ
f,B,λ(Mn) defined below has ≤ n

ξ+ε members, where

Gε,ζf,B,λ(Mn) = {g : g : B →֒ Mn extends f and

x ∈ B \A ∧ y ∈ B ∧ ¬(xλy)⇒ nζ ≤ |g(x)− g(y)|}.

6. The conclusion

Comment. In this section it is shown that <∗i and <
∗
s (introduced in §4)

agree with the <i and <s of [I, §1] by using the probabilistic information
from §5. Then it is proven that the main context Mn is simply nice (hence
simply almost nice) and it satisfies the 0-1 law.

6.1. Context. As in §4 and §5, so pi = 1/i
α for i > 1, p1 = p2 (where

α ∈ (0, 1)R irrational) and Mn = M 0
n (only the graph) and ≤i, ≤s, cl are

as defined in §1. (So K∞ = K by 4.4.)

Note that actually the section has two parts of distinct flavours: in 6.2–
6.5 we use the probabilistic information from §5 to show that the definitions
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of <x from [I, §1] and of <
∗
x from §4 give the same relation. But to actually

prove almost niceness, we need more work on the relations ≤∗x defined in §4;
this is done in 6.8, 6.10, 6.11. Lastly, we put everything together.

The argument in 6.2–6.5 parallels that in [BlSh 528], which is more
hidden in [ShSp 304]. The most delicate step is to establish clauses (A)(δ)
and (ε) of [I, Definition 2.13(1)] (almost simply nice). For this, we consider
f : A →֒ Mn and try to extend f to g : B →֒ Mn, where A ≤s B, such
that Rang(g) and clk(f(A),Mn) are “freely amalgamated” over Rang(f).
The key facts have been established in Section 5. If ζ = w(A,B, λ) we have
shown (Claim 5.12) that for every ε > 0 and every random enoughMn, there
are ≥ nζ−ε embeddings of B intoMn extending f . But we also show (using
5.14) that for each obstruction to free amalgamation there is a ζ ′ < ζ such
that for every ε1 > 0 the number of embeddings satisfying this obstruction is
< nζ

′+ε1 , where ζ ′ = w(A,B′, λ) (for some B′ exemplifying the obstruction)
with ζ ′+α ≤ ζ. So if α > ε+ε1 we overcome the obstruction. The details of
this computation for various kinds of obstructions are carried out in proving
Claim 6.5.

6.2. Claim. Assume A <∗ B. Then the following are equivalent :

(i) A <∗i B (i.e. from Definition 4.11(3)),

(ii) it is not true that : for some ε, for every random enough Mn and
every f : A →֒Mn, the number of g : B →֒Mn extending f is ≥ n

ε,

(iii) for every ε ∈ R+, every random enoughMn, and every f : A →֒Mn,
the number of g : B →֒Mn extending f is < n

ε (this is the definition
of A <i B in [I, §1]).

Proof. We shall use the well known finite ∆-system lemma: if fi : B →
[n] is one-to-one and fi↾A = f for i < k then for some w ⊆ {0, . . . , k−1} with

|w| ≥ k1/2
|B\A|

/|B \A|2, and A′ ⊆ B and f∗ we have:
∧

i∈w fi↾A
′ = f∗ and

〈Rang(fi↾(B \ A
′) : i ∈ w〉 are pairwise disjoint (so if the fi’s are pairwise

distinct then B \ A′ 6= ∅).
We use freely Fact 4.2. First, clearly (iii)⇒(ii). Second, if ¬(i), i.e.,

¬(A <∗i B) then by 4.14 (equivalence of first and last possibilities + 4.13(1))
there are A′, λ as there, that is, such that:

A ≤∗ A′ <∗ B and (A′, B, λ) ∈ T and if C ⊆ B \ A′ is nonempty
λ-closed then w(A′, A′ ∪ C, λ↾C) > 0 (see 4.14).

So (A′, B, λ) satisfies the assumptions of 5.9, which gives ¬(ii), i.e., we have
proved (ii)⇒(i).
Lastly, to prove (i)⇒(iii) assume ¬(iii). So for some ε ∈ R+:

(∗)1 0 < lim supn→∞ Prob(for some f : A →֒ Mn, the number of g :
B →֒Mn extending f is ≥ n

ε).
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By the first paragraph of this proof it follows that from (∗)1 we can deduce
that for some ζ ∈ R+,

(∗)2 0 < lim supn→∞ Prob(for some A
′ with A ≤∗ A′ <∗ B and f ′ :

A′ →֒Mn there are ≥ n
ζ functions g : B →֒Mn which are pairwise

disjoint extensions of f ′).

So for some A′ with A ≤∗ A′ <∗ B we have

(∗)3 0 < lim supn→∞ Prob(for some f
′ : A′ →֒Mn there are ≥ n

ζ func-
tions g : B →֒Mn which are pairwise disjoint extensions of f

′).

By 5.4 (and 5.3, 5.2) we have ¬(A′ <∗a B), which by Definition 4.11(5)
means that A′ <∗s B, which (by Definition 4.11(4)) implies ¬(A <

∗
i B), so

¬(i) holds as required. 6.2

6.3. Claim. For A <∗ B ∈ K∞, the following conditions are equivalent :

(i) A <∗s B,
(ii) it is not true that : for every ε ∈ R+, every random enough Mn,
and every f : A →֒Mn, there are no n

ε pairwise disjoint extensions
g : B →֒Mn of f ,

(iii) for some ε ∈ R+, for every random enough Mn and every f : A →֒
Mn, there are ≥ n

ε pairwise disjoint extensions g : B →֒Mn of f .

Proof. Reflection shows that (iii)⇒(ii).
If ¬(i), i.e., ¬(A <∗s B) then by Definition 4.11(4), A <

∗
i B

′ ≤∗ B for
some B′, hence 6.2 easily yields ¬(ii), so (ii)⇒(i).
Lastly, it suffices to prove (i)⇒(iii). Now by (i) and 4.16 for some λ

the assumptions of 5.9 hold, and hence its conclusion, which gives clause
(iii). 6.3

6.4. Conclusion. (1) <∗s = <s and <
∗
i = <i, and K is weakly nice,

where <s, <i are defined in [I, 1.4(4),(5)]; hence <
∗
pr = ≤pr.

(2) (K , cl) is as required in [I, §2], and the ≤i, ≤s defined in [I, §2]
are the same as those defined in [I,§1] for our context , of course when for
A ≤ B ∈ K∞ we let cl(A,B) be minimal A

′ such that A ≤ A′ ≤s B.
(3) Also K (that is, (K , cl)) is transitive local transparent and smooth

(see [I, 2.2(3), 2.3(2), 2.5(5),(4)]).

Proof. (1) <∗s = <s and <
∗
i = <i by 6.2, 6.3 and see definition in [I, §1].

Lastly, K being weakly nice follows from 6.3 (see definition in [I, §1]).
(2) By [I, 2.6].
(3) By [I, 2.6] the transitive local and transparent follows (see clauses

(δ), (ε), (ζ) there). As for smoothness, use 4.17(5). 6.4

Note that we are in a “nice” case, in particular no successor function.
Toward proving it we characterize “simply good”.
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6.5. Claim. If A ≤∗s B and k, t ∈ N satisfies k+ |B| ≤ t, then for every
random enough Mn and every f : A →֒ Mn, we can find g : B →֒ Mn

extending f such that :

(i) Rang(g) ∩ clt(Rang(f),Mn) = Rang(f),

(ii) Rang(g)
Mn
⋃

Rang(f)
clt(Rang(f),Mn),

(iii) clk(Rang(g),Mn) ⊆ Rang(g) ∪ cl
k(Rang(f),Mn).

6.6. Remark. Note that in clauses (i), (ii) of 6.5 we can replace t by k—
this just demands less. We shall use this freely. Have we put t in the second
appearance of k in clause (iii) of 6.5 the loss would not be great: just as in
[I], we should systematically use [I, 2.12(2)] instead of [I, 2.12(1)].

Proof of Claim 6.5. We prove this by induction on |B \ A|, but by the
character of the desired conclusion, if A <∗s B <

∗
s C, to prove it for the pair

(A,C) it suffices to prove it for the pairs (A,B) and (B,C). Also, if B = A
the statement is trivial (because we can take f = g). So, without loss of
generality, A <∗pr B (see Definition 4.11(6)).
Let λ be such that (A,B, λ) ∈ T and for every λ-closed C ⊆ B \ A we

have wλ(A,A ∪ C) > 0 and

ξ := wλ(A,B) = max{wλ1(A,B) : (A,B, λ1) ∈ T satisfies :

for every λ1-closed nonempty C ⊆ B \A

we have wλ1(A,A ∪ C) > 0}.

Choose ε ∈ R+ small enough and k(∗) large enough. The requirements on
ε, k(∗) will be clear by the end of the argument.
Let Mn be random enough, and f : A →֒ Mn. Now by 6.2 and the

definition of clt we have (∗) and by 5.9 for ζ = ε we have (∗)1, where

(∗) |clt(f(A),Mn)| ≤ n
ε/k(∗),

(∗)1 |G | ≥ n
ξ−ε/2,

where G is constructed there so in particular

G ⊆ {g : g extends f to an embedding of B into Mn

and satisfies clauses (i)–(v) from 5.9}.

Recall that

⊛1 if A
′ ⊆ M ∈ K and a ∈ clk(A′,M) then for some C we have

C ⊆ clk(A′,M), |C| ≤ k, a ∈ C and clk(C ∩A′, C) = C

(by the definition of clk, see [I, §1]).
We intend to find g ∈ G satisfying the requirements in the claim. Now

g being an embedding of B into Mn extending f follows from g ∈ G . So it
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is enough to prove that < nξ−ε members g of G fail clause (i) and similarly
for clauses (ii) and (iii).

More specifically, let G 1 = {g ∈ G : g(B) ∩ clt(f(A),Mn) 6= A}, G
2 =

{g ∈ G : g 6∈ G 1 but clause (ii) fails for g} and G 3 = {g ∈ G : clause (iii) fails
for g but g 6∈ G 1 ∪ G 2}. So clearly it is enough to prove G * G 1 ∪ G 2 ∪ G 3,
because: (i) fails for g ⇒ g ∈ G 1, (ii) fails for g ⇒ g ∈ G 2 ∨ g ∈ G 1, and
(iii) fails for g ⇒ g ∈ G 3 ∨ g ∈ G 2 ∨ g ∈ G 1.

On the number of g ∈ G 1: For a ∈ B \ A and x ∈ clt(f(A),Mn) let
G 2a,x = {g ∈ G 2 : g(a) = x}, so G 2 =

⋃

{G 2a,x : a ∈ B \ A and x ∈

clt(f(A),Mn)}, and by 4.17(13) clearly A ∪ {a} ≤i B (as A <pr B). The
rest is as in the proof for G 2 below, only easier.

On the number of g ∈ G 2: If g ∈ G 2 then for some

xg ∈ cl
t(Rang(f),Mn) \Rang(f) and y ∈ B \A

we have: {xg, g(y)} is an edge of Mn. Note xg 6∈ g(B) as g ∈ G2.

We now form a new structure B2 = B ∪ {x∗} (x∗ 6∈ B) such that g ∪
{〈x∗, xg〉} : B

2 →֒Mn and let A
2 = B2↾(A∪{x∗}). Now up to isomorphism

over B there are a finite number (i.e., with a bound not depending on n) of
such B2, say 〈B2j : j < j

∗
2〉.

For x ∈ clt(Rang(f),Mn) and j < j
∗ let

G
2
j,x := {g : g is an embedding of B

2
j into Mn extending f

and satisfying g(x∗) = x},

G
2
j :=

⋃

x∈clt(f(A),Mn)

G
2
j,x.

So:

(∗)2 if g ∈ G 2 then
g ∈
⋃

{{g′↾B : g′ ∈ G 2j,x} : j < j
∗
2 and x ∈ cl

t(f(A),Mn)}.

Now, if ¬(A2j <s B
2
j ) then as A <

∗
pr B it follows easily that A

2
j <i B

2
j , so by

6.2 using (∗) (with ε/2− ε/k(∗) here standing for ε in (iii) there) we have

(∗)3 if ¬(A
2
j <s B

2
j ) then |G

2
j | ≤ n

ε/2.

[Why? As A2j <i B
2
j , on the one hand for each x ∈ cl

t(Rang(f),Mn) by

6.2 the number of g : B2j →֒ Mn extending f ∪ {〈x
∗, x〉} : A2j →֒ Mn

is < nε/k(∗), and on the other hand the number of candidates for x is ≤
|clt(Rang(f),Mn)| ≤ n

ε/k(∗). So |G 2j | ≤ n
ε/k(∗) · nε/k(∗) ≤ n2ε/k(∗) ≤ nε/2.]
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If A2j <s B
2
j , then by 4.17(14) still A

2
j <pr B

2
j , and if we let

ξ2j := max{wλ(A
2
j , B

2
j ) : (A

2
j , B

2
j , λ) ∈ T and for every

λ-closed nonempty C ⊆ B2j \A
2
j

we have w(A2j , A
2
j ∪ C, λ↾C) > 0},

then clearly ξ2j < ξ−2ε (as we retain the “old” edges, and by at least one we
actually enlarge the number of edges but we keep the number of “vertices”,
i.e., equivalence classes; see 4.17(9)).

So, by 5.14,

(∗)4 if A
2
j <
∗
pr B

2
j then |G

2
j | ≤ n

ξ−2ε.

As ξ − 2ε > ε by (∗)3 + (∗)4, multiplying by j
∗, as n is large enough,

(∗)5 |G
2|, the number of g ∈ G \ G 1 failing clause (ii) of 6.5, is ≤ nξ−ε.

On the number of g ∈ G 3: First if g ∈ G 3, then there are A+, B+, C,
g+ such that

⊗1 A ≤i A
+ ≤s B

+, B ≤ B+, B ∩ A+ = A, |B+| ≤ |B| + k, |A+| ≤
|A| + k, C * B ∪ A+, B+ \ B ⊆ C ⊆ B+, C ∩ B <i C, hence
clk(C ∩ B,B+) ⊇ C and g ⊆ g+, g+ : B+ →֒ Mn, g

+(A+) ⊆
clt(f(A),Mn).

[Why? As g ∈ G 3 there is yg ∈ cl
k(g(B),Mn) such that yg 6∈ g(B) and

moreover yg 6∈ cl
k(f(A),Mn). By the first statement (and ⊛1 above) there

is C∗ ⊆ clk(g(B),Mn) with ≤ k elements such that yg ∈ C
∗ and C∗ ∩

g(B) ≤i C
∗. Let B∗ = g(B) ∪ C∗ ≤ Mn. Let B

+, g+ be such that B ≤
B+ ∈ K , g ⊆ g+, g+ an isomorphism from B+ onto B∗, and let C =
g−1(C∗). Lastly, choose A+ such that A′ ≤i A

+ ≤s B
+; clearly it exists

by 4.17(2). Now |A+| ≤ |B| + |C| ≤ t by the assumptions on A,B, k, t,
hence g+(A+) ⊆ clt(f(A),Mn); but as g ∈ G 3 we have g 6∈ G 1, hence A =
g(B)∩ clt(f(A),Mn), so we have A

+∩B = A. Also C * B∪A+, otherwise,

as g 6∈ G 2 and g 6∈ G 1 we have B
B+
⋃

A
A+, hence C ∩ B

⋃

C ∩A
C ∩ A+; but

as C ∩ B <∗i C, by smoothness (e.g. 4.17(5)) we get C ∩ A <
∗
i C ∩ A

+,
so C ∩ A+ ⊆ clk(A,B+), so C∗ \ g(B) = g+(C \ B) ⊆ g+(C ∩ A+) ⊆
clk(f(A),Mn), and thus yg ∈ cl

k(f(A),Mn), contradiction. So ⊗1 holds.]

⊗2 in ⊗1 for some λ
′ and m we have:

(A+, B+, λ+) ∈ T , m ∈ {1, . . . , n}, λ′ = {(x, y) : x, y ∈ B+ \ A,
|g+(x)− g+(y)| < mε/k(∗)} and wλ′(A

+, B+) < ξ − ε.
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[Why? We can find m ∈ {1, . . . , k} such that for ζ = lε/k(∗) the set

λ′ := {(x, y) : x, y ∈ B+ and |x− y| ≤ nζ}

is an equivalence relation on B+ \A+.
As g ∈ G, clearly λ′↾B is equal to λ. As g ∈ G, necessarily some λ′-

equivalence class is disjoint from B, but B <i B
+, hence easilywλ′(A

+, B+)
< ξ so by the choice of ε,wλ′(A

+, B+) < ξ − ε.]
Let {(A+j , B

+
j , λ

′,m) : j < j∗3 〉 list the possible (A
+, B+, λ,m) up to

isomorphism over B as described above. Let

G
3
j,h := {g ∈ G : g embeds B+j into Mn extending f and moreover h}

for any h ∈ H 3
j := {h : h : A

+
j →֒ Mn extending f}, so h necessarily

satisfies h(A+j ) ⊆ cl
k(f(A),Mn) ⊆ cl

t(f(A),Mn). Now it follows easily (for
random enough Mn) by ⊗1, ⊗2 above, by 5.14(2), and by computation
respectively that

(∗)6 if g ∈ G 3 then

g ∈
⋃

j<j∗3

⋃

h∈H 3
j

{g′↾B : g′ ∈ G
3
j,h},

(∗)7 |G
3
j,h| < n

ξ−2ε for each h ∈H 3
j ,

(∗)8 |H
3
j | < |cl

k(f(A),Mn)|
k ≤ |clt(f(A),Mn)|

k < nε,k.

Altogether,

(∗)9 the number of g ∈ G 3 is < nξ−ε. 6.5

6.7. Conclusion. If A <∗s B and B0 ⊆ B and k ∈ N then the tuple
(B,A,B0, k) is simply good (see [I, Definition 2.12(1)]).

Proof. Read 6.5 and [I, Definition 2.12(1)]. 6.7

∗ ∗ ∗

Toward simple niceness the “only” thing left is the universal part, i.e.,
[I, Definition 2.13(1)(A)].
The following Claims 6.8, 6.10 do not use §5 and have nothing to do

with probability; they are the crucial step for proving the satisfaction of
[I, Definition 2.13(1)(A)] in our case; Claim 6.8 is a sufficient condition for
goodness (by 6.7). Our preceding the actual proof (of 6.11) by the two claims
(6.8, 6.10) and separating them is for clarity, though it has a bad effect on
the bound; also 6.8 using clk,m(āb,M) instead of clk(āb,M) when k′ < k
may improve the bound.

6.8. Claim. For every k and l (from N) there are natural numbers t =
t(k, l) and k∗(k, l) ≥ t, k such that for any k∗ ≥ k∗(k, l) we have:
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(∗) if m⊗ ∈ N and M ∈K , ā ∈ l≥M , b ∈M then

⊗ the set

R := {(c, d) : d ∈ clk(āb,M) \ clk
∗,m⊗+k(ā,M) and

c ∈ clk
∗,m⊗(ā,M) and {c, d} is an edge of M}

has less than t members.

Proof. If k = 0 this is trivial so assume k > 0. Choose ε ∈ R+ small
enough such that

(∗)1 C0 <
∗ C1 & (C0, C1, λ) ∈ T & |C1| ≤ k ⇒ wλ(C0, C1) 6∈ [−ε, ε]

(in fact we can restrict ourselves to the case C0 <
∗
i C1). Choose c ∈ R+

large enough such that

(∗)2 (C0, C1, λ) ∈ T , |(C1 \ C0)/λ| ≤ k ⇒ wλ(C0, C1) ≤ c

(so actually c = k is enough). Choose t1 > 0 such that t1 > c/ε and t1 > 2.

Choose t2 ≥ 2
2t1+k+l (overkill, we mainly need to apply twice the ∆-system

lemma; but note that in the proof of 6.10 below we will use the Ramsey
theorem). Lastly, choose t > k2t2 and let k

∗ ∈ N be large enough, which
actually means that k∗ > k & k∗ ≥ (k + 1)t2 so k

∗(k, l) := (k + 1)t2 is O.K.
Suppose we have m⊗, M , ā, b as in (∗) but such that the set R has at

least t members. Let (ci, di) ∈ R for i < t be pairwise distinct (6).

As di ∈ cl
k(āb,Mn), we can choose for each i < t a set Ci ≤ M such

that:

(i) Ci ≤M ,
(ii) |Ci| ≤ k,
(iii) di ∈ Ci,
(iv) Ci↾(Ci ∩ (āb)) <i Ci.

For each i < t, as Ci ∩ cl
k∗,m⊗+k(ā,M) is a proper subset of Ci (this is

witnessed by di, i.e., as di ∈ Ci \ (Ci ∩ cl
k∗,m⊗+k(ā,Mn))), clearly this set

has < k elements and hence for some k[i] < k we have

(v) Ci ∩ cl
k∗,m⊗+k[i]+1(ā,M) ⊆ clk

∗,m⊗+k[i](ā,M).

So without loss of generality

(vi) i < t/k2 ⇒ k[i] = k[0] & |Ci| = |C0| = k
′ ≤ k

(remember t2 < t/k
2); also

(vii) b ∈ Ci.

(6) Note: we do not require the di’s to be distinct; though if w = {i : di = d
∗} has

≥ k′ > 1/α elements then d∗ ∈ clk
′

(clk
∗,m⊗+k(ā,M)).
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[Why? If not then by clause (iv) we have (Ci ∩ ā) <i Ci, hence di ∈ Ci ⊆

clk(ā,M) ⊆ clk
∗,m⊗+k(ā,M), contradiction.]

As k∗ ≥ k∗(k, l) ≥ t2(k + 1) (by the assumption on k
∗), clearly

∣

∣

∣

⋃

i<t2

Ci ∪ {ci : i < t2}
∣

∣

∣
≤
∑

i<t2

|Ci|+ t2 ≤
∑

i<t2

k + t2 ≤ t2(k + 1) ≤ k
∗

and we define

D =
⋃

i<t2

Ci ∪ {ci : i < t2}, D′ = D ∩ clk
∗,m⊗+k[0](ā,M).

So by the previous sentence we have |D′| ≤ |D| ≤ k∗. Now

⊗0 D
′ <s D.

[Why? As otherwise there is D′′ such that D′ <i D
′′ ≤s D, so as |D

′′| ≤

|D| ≤ k∗, clearly D′′ ⊆ clk
∗,m⊗+k[0]+1(āb,M); contradiction.]

So we can choose λ ∈ Ξ(D′, D) (see Definition 4.8(2)). Let Ci = {di,s :
s < k′}, with di,0 = di, and recalling (vii) also b 6= di ⇒ b = di,1, and with
no repetitions.
Clearly di,0 = di 6∈ D

′. By the finite ∆-system lemma for some S0, S1, S2
⊆ {0, . . . , k′ − 1} and u ⊆ {0, . . . , t2 − 1} with ≥ t1 elements we have:

⊕1(a) λ
′ := {(s1, s2) : di,s1λdi,s2} is the same for all i ∈ u and S0 =
{0, . . . , k′ − 1} \Dom(λ′), so di,s ∈ D

′ ⇔ i ∈ S0,
(b) for each j < lg(ā)+1, and s < k′, the truth value of di,s = (āb)j is
the same for all i ∈ u for each s ∈ S0 = {0, . . . , k

′− 1} \Dom(λ′),
(c) di1,s1 = di2,s2 ⇒ s1 = s2 for i1, i2 ∈ u,
(d) di1,s = di2,s ⇔ s ∈ S1 for i1 6= i2 ∈ u,
(e) di1,s1λdi2,s2 ⇒ di1,s1λdi1,s2 & di1,s2λdi2,s2 for i1 6= i2 ∈ u,
(f) di1,sλdi2,s ⇔ s ∈ S2 for i1 6= i2 ∈ u; so i ∈ u&s ∈ S2 ⇒ di,s 6∈ D

′,
(g) the statement b = di,0 has the same truth value for all i ∈ u.

Now we necessarily have

⊕2 0 6∈ S2 (i.e., λ↾{di : i ∈ u} is equality).

[Why? Otherwise, let X = di/λ for any i ∈ u; then the triple (D
′, D′ ∪

X,λ↾X) ∈ T has weight

w(D′, D′ ∪X,λ↾X) = v(D′, D′ ∪X,λ↾X)− αe(D′, D′ ∪X,λ↾X)

= 1− α · |{e : e an edge of M with one end in

D′ and the other in X}|.

Now as ci ∈ cl
k∗,m⊗(ā,M), clearly ci ∈ D

′ and the pairs {ci, di} ∈ edge(M)
are distinct for different i; clearly the number above is ≤ 1 − α|{(ci, di) :
i ∈ u}| = 1− α|u| = 1− αt1 < 0; contradiction to λ ∈ Ξ(D

′, D).]
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Let D0 = ā ∪
⋃

{di,s/λ : s ∈ S2 and i ∈ u}; clearly D0 is a λ-closed
subset of D though not necessarily ⊆ Dom(λ) = D \ D′ because of ā. We
have:

⊕3 b = di,1 and 1 ∈ S1 \S0 and 0 6∈ S0 ∪S1 ∪S2 and S1 \S0 ⊆ S2 (hence
b ∈ D0).

[Why? The first two clauses hold as b ∈ Ci, b ∈ {di,0, di,1} and by ⊕2 and
(g) of ⊕1. The last clause holds by ⊕1(d),(f), and the “hence b ∈ D0” by the
definition of D0, S1\Dom(λ

′) ⊆ S2 and the first clause. Also 0 6∈ S0∪S1∪S2
should be clear.]

⊕4 For each i ∈ u we have wλ(Ci ∩D0, Ci) < 0.

[Why? As Ci∩(āb) ⊆ Ci∩D0 by clauses (b) + (f) of ⊕1 and by monotonicity
of <i we have Ci↾(Ci ∩ āb) <i Ci ⇒ Ci ∩ D0 ≤i Ci, but di,0 = di ∈
Ci \ Ci ∩D0.] Hence

⊕5 wλ(Ci ∩D0, Ci) ≤ −ε for i ∈ u.

[Why? See the choice of ε.] Let

D1 := D
′ ∪
⋃

{di,s/λ : i ∈ u, s < k
′}

= D′ ∪D0 ∪ {di,s/λ : i ∈ u, s < k
′ & s 6∈ S2}.

Then clearly D1 is a λ-closed subset of D including D
′ but D1 6= D

′ as
i ∈ u⇒ di ∈ D1 by ⊕2. Also clearly

⊕6 D
′ ⊆ D′ ∪D0 ⊆ D1 ⊆ D and D0, D1 are λ-closed.

So, as we know λ ∈ Ξ(D′, D), we have

⊕7 wλ(D
′, D1) > 0.

Now

wλ(D
′, D1) = wλ

(

D′,
⋃

{

x/λ : x ∈
⋃

i∈u

Ci \D
′
}

∪D′
)

= wλ(D
′, D′ ∪D0) +wλ

(

D′ ∪D0, D
′ ∪D0

∪
⋃

{di,s/λ : i ∈ u, s < k
′, s 6∈ S0 ∪ S2}

)

[so by 6.9 below with Bi = {di,s : s < k
′, s 6∈ S2 ∪ S0} and B

+
i =
⋃

{di,s/λ :
s < k′, s 6∈ S2}]

≤ wλ(D
′, D′ ∪D0)

+
∑

i∈u

wλ(D
′ ∪D0, D

′ ∪D0 ∪ {di,s : s < k
′, s 6∈ S2 ∪ S0})
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[as Ci = {di,s : s < k
′} and di,s ∈ D

′ ∪D0 if s < k
′, s ∈ S0 ∪ S2, i ∈ u]

≤ wλ(D
′, D′ ∪D0) +

∑

i∈u

wλ(D
′ ∪D0, D

′ ∪D0 ∪ Ci)

[so as wλ(A1, B1) ≤ wλ(A,B) when A ≤ A1 ≤ B1, A ≤ B ≤ B1, B1 \ A1 =
B \ A by 4.15(3)]

≤ wλ(D
′ ∩D0, D0) +

∑

i∈u

wλ(Ci ∩D0, Ci)

[so by the choice of c, D0, i.e., (∗)2 and the choice of ε, u+⊕5 respectively]

≤ c+ |u|(−ε) = c− t1ε < 0,

contradicting the choice of λ, i.e., ⊕7. 6.8

6.9. Observation. Assume

(a) A ≤∗ A ∪Bi ≤
∗ A ∪B+i ≤

∗ B for i ∈ u,
(b) B \ A is the disjoint union of 〈B+i : i ∈ u〉,
(c) λ is an equivalence relation on B \A,
(d) each B+i is λ-closed ,

(e) B+i =
⋃

{x/λ : x ∈ Bi \A},

Then wλ(A,B) ≥
∑

{wλ(A,Bi) : i ∈ u}.

Proof. By (b) + (d),

vλ(A,B) =
∑

{vλ(A,A ∪B
+
i ) : i ∈ u} =

∑

{vλ(A,A ∪Bi) : i ∈ u}

and by clause (b) the set eλ(A,B) contains the disjoint union of 〈eλ(A,Bi) :
i ∈ u〉. Altogether, the result follows. 6.9

6.10. Claim. For every k, m and l from N and some m∗ = m∗(k, l,m),
for any k∗ ≥ k∗(k, l) (the function k∗(k, l) is the one from Claim 6.8) satis-
fying k∗ ≥ km∗ we have

(∗) if M ∈ K , ā ∈ l≥M and b ∈ M \ clk
∗,m∗(ā,M) then for some

m⊗ ≤ m∗ −m we have

clk(āb,M) ∩ clk
∗,m⊗+m(ā,M) ⊆ clk

∗,m⊗(ā,M).

Proof. For k = 0 this is trivial so assume k > 0. Let t = t(k, l) be as in
Claim 6.8. Choose m∗ such that, e.g., ⌊m∗/(km)⌋ → (t+5)22k!+l in the usual
notation in Ramsey theory. We could get more reasonable bounds but there
is no need now. Remember that k∗(k, l) is from 6.8 and k∗ is any natural
number ≥ k∗(k, l) such that k∗ ≥ km∗.
If the conclusion fails, then the set

Z := {j ≤ m∗ − k : clk(āb,M) ∩ clk
∗,j+1(ā,M) * clk

∗,j(ā,M)}
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satisfies

j ≤ m∗ −m− k ⇒ Z ∩ [j, j +m) 6= ∅.

Hence |Z| ≥ (m∗−m−k)/m. For j ∈ Z there are Cj ≤M and dj such that

|Cj | ≤ k, (Cj ∩ (āb)) <
∗
i Cj , dj ∈ Cj ∩ cl

k∗,j+1(ā,M) \ clk
∗,j(ā,M).

Now we use the same argument as in the proof of 6.8. As dj ∈ Cj ∩

clk
∗,j+1(ā,M) \ clk

∗,j(ā,M) we find that Cj ∩ cl
k∗,j(ā,M) is a proper sub-

set of Cj ∩ cl
k∗,j+1(ā,M) (witnessed by dj), so |Cj ∩ cl

k∗,j(ā,M)| < |Cj ∩

clk
∗,j+1(ā,M)| ≤ k, so |Cj∩cl

k∗,j(ā,M)| < k. Hence for some kj ∈ {1, . . . , k}

we have Cj ∩ cl
k∗,m∗−kj+1(ā,M) ⊆ clk

∗,m∗−kj (ā,M), hence for some k′ ∈
{1, . . . , k} we have |Z ′| ≥ (m∗−m−k)/(mk), where Z ′ = {j ∈ Z : kj = k

′}.
Let Cj = {dj,s : s < sj ≤ k} with dj,0 = dj and no repetitions. We can

find s∗ ≤ k and S1, S0 ⊆ {0, . . . , s
∗ − 1} and u ⊆ Z ′ satisfying |u| = t + 5

such that (because of the partition relation):

(a) i ∈ u⇒ sj = s
∗,

(b) for each j < lg(ā) + 1 and s < s∗ the truth value of di,s = (āb)j is
the same for all i ∈ u,

(c) if i 6= j are from u then |i − j| > k + 1, i.e., the Ci’s for i ∈ u are
quite far from each other,

(d) the truth value of “{di,s1 , di,s2} is an edge” is the same for all i ∈ u,
(e) for all i0 < i1 from u:

di0,s ∈ cl
k∗,i1(ā,M) ⇔ s ∈ S0,

(f) for all i0 < i1 from u:

di1,s ∈ cl
k∗,i0(ā,M) ⇔ s ∈ S1,

(g) for each s < s∗, the sequence 〈di,s : i ∈ u〉 is constant or with no
repetitions,

(h) if di1,s1 = di2,s2 then di1,s1 = di1,s2 = di2,s2 , moreover, s1 = s2
(recalling that 〈di,s : s < sj〉 is with no repetitions).

Now let i(∗) be, e.g., the third element of the set u and

B1 := Ci(∗) ∩ cl
k∗,min(u)(ā,M), B2 := Ci(∗) ∩ cl

k∗,max(u)(ā,M).

So

⊛1 B1 <
∗ B2 ≤

∗ Ci(∗) (note: B1 6= B2 because di(∗) ∈ B2 \B1),
⊛2 (āb) ∩B2 ⊆ B1 by clause (b),
⊛3 there is no edge in (Ci(∗) \B2)× (B2 \B1).

Why? Assume that this fails. Let the edge be {di(∗),s1 , di(∗),s2} with di(∗),s1 ∈
Ci(∗) \B2 and di(∗),s2 ∈ B2 \B1; hence
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(∗)1 di(∗),s1 ∈ Ci(∗) \ cl
k∗,max(u)(ā,M) and

di(∗),s2 ∈ cl
k∗,max(u)(ā,M) \ clk

∗,min(u)(ā,M)
and {di(∗),s1 , di(∗),s2} is an edge.

Hence by clause (d),

(∗)2 {di,s1 , di,s2} is an edge for every i ∈ u

and by clauses (e), (f) we have

(∗)3 if i0 < i1 < i2 are in u then di1,s2 6∈ cl
k∗,i0(ā,M) and di1,s2 ∈

clk
∗,i2(ā,M) and di1,s1 6∈ cl

k∗,i2(ā,M),

and so necessarily

(∗)4 〈di,s2 : i ∈ u〉 is with no repetitions.

[Why? By clause (g) and (∗)3.]

So the set of edges {{di,s1 , di,s2} : i ∈ u but |u ∩ i| ≥ 2 and |u \ i| ≥ 2}
contradicts 6.8 using m⊗ = max(u)− k there (and our choice of parameters
and Ci ⊆ cl

k(āb,M)). Thus ⊛3 holds.

As Ci(∗)↾(āb) <i Ci(∗) and B2 ∩ (āb) ⊆ B1 (by ⊛2), clearly Ci(∗) ∩ āb ⊆
Ci(∗) \ (B2 \B1) ⊂ Ci(∗), the strict ⊂ as

di(∗) ∈ Ci(∗) ∩ (cl
k∗,i(∗)+1(āb,M) \ clk

∗,i(∗)(āb,M)) ⊆ B2 \B1.

But, as stated above, Ci(∗) \ (B2 \B1)
⋃

B1
B2, hence by the previous sentence

(and smoothness, see 4.17(5)) we get B1 <
∗
i B2; also |B2| ≤ |Ci(∗)| ≤ k ≤ k

∗.

By their definitions, B1 ⊆ cl
k∗,min(u)(ā,M), but B1 ≤

∗
i B2, |B2| ≤ k ≤ k

∗

and hence B2 ⊆ cl
k∗,2ndmember of u(ā,M). Contradiction to the choice of

di(∗). 6.10

6.11. Lemma. For every k, m and l (from N), for some m∗, k∗ and t∗

we have:

(∗) if M ∈ K , ā ∈ l≥M and b ∈ M \ clk
∗,m∗(ā,M) then for some

m⊗ ≤ m∗ −m and B we have

(i) |B| ≤ t∗,

(ii) ā ⊆ B ⊆ clk(B,M) ⊆ clk
∗,m⊗(ā,M),

(iii) clk
∗,m⊗+m(ā,M), (clk(āb,M) \ clk

∗,m⊗+m(ā,M)) ∪ B are free
over B inside M ,

(iv) B ≤∗s B
∗ :=M↾((clk

∗

(āb,M) \ clk
∗,m⊗+m(B,M)) ∪B).

6.12. Remark. Clearly this will finish the proof of simply nice.

6.13. Comments. Let us describe the proof below.
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(1) In the proof we apply the last two claims. By them we arrive at the
following situation: inside clk(āb,M) we have B ≤ B∗, |B| ≤ t∗ and there is
no “small” D such that B <∗i D ≤ B

∗ and we have to show that B <∗s B
∗,

a kind of compactness lemma.

(2) Note that for each d ∈ clk(āb,M) there is Cd ⊆ cl
k(āb,M) witnessing

it, i.e., Cd ∩ (āb) ≤i Cd, d ∈ Cd, |Cd| ≤ k. To prove the statement above we
choose an increasing sequence 〈Di : i ≤ i(∗)〉 of subsets of B

∗, D0 = B∪{b},
|Di| has an a priori bound, Di+1 “large” enough. So by our assumption
toward contradiction B <∗s Di(∗), hence there is λ ∈ Ξ(B,Di(∗)); without
loss of generality, B∗ = B ∪

⋃

{Cd : d ∈ Di(∗)}. For each i < i(∗) we try to
“lift” λ↾(Di \ B) to λ

+ ∈ Ξ(B,B∗); a failure will show that we could have
put elements satisfying some conditions in Di+1 so we had done so. As this
occurs for every i < i(∗), by weight computations we get a contradiction.

Proof of Lemma 6.11. Without loss of generality k > 0. Let t = t(k, l)
and k∗(k, l) be as required in 6.8 (for our given k, l).

Choose m(1) = t(m+ 1) + k + 2 and let t∗ = t+ l + k.

Choose m∗ as in 6.10 for k (given in 6.11), m(1) (chosen above) and l
(given in 6.11), i.e., m∗ = m∗(k,m(1), l) . Let ε∗ ∈ R>0 be such that

(A′, B′, λ) ∈ T & |B′| ≤ k &A′ 6= B′ ⇒ wλ(A
′, B′) 6∈ (−ε∗, ε∗).

Let i(∗) > 1/ε∗. Define inductively k∗i for i ≤ i(∗) as follows:

k∗0 = max{k
∗(k, l),mk,m∗t∗ + 1}, k∗i+1 = 2

2k
∗
i
,

and lastly let

k∗ = kk∗i(∗).

We shall prove thatm∗, k∗, t∗ are as required in 6.11. LetM , ā, b be as in the
assumption of (∗) of 6.11. So M ∈K , ā ∈ l≥M and b ∈M \ clk

∗,m∗(ā,M);
but this means that the assumption of (∗) in 6.10 holds for k, m(1), l, so
we can apply it (i.e., as m∗ = m∗(k,m(1), l), k∗ ≥ k∗(k, l), where k∗(k, l)
is from 6.8 and k∗ ≥ km∗ as k∗ ≥ k∗i(∗) > k

∗
0 ≥ m

∗k). Hence for some

r ≤ m∗ −m(1) we have

⊕1 cl
k(āb,M) ∩ clk

∗,r+m(1)(ā,M) ⊆ clk
∗,r(ā,M).

Let us define

R = {(c, d) : d ∈ clk(āb,M) \ clk
∗,r+m(1)(ā,M) and

c ∈ clk
∗,r+m(1)−k(ā,M) and

{c, d} is an edge of M}.

How many members does R have? By 6.8 (with r+m(1)− k here standing
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for m⊗ there as k∗ ≥ k∗(k, l)) at most t members. But by ⊕1 above

R = {(c, d) : d ∈ clk(āb,M) \ clk
∗,r(ā,M) and

c ∈ clk
∗,r+m(1)−k(ā,M) and

{c, d} is an edge of M}.

But t(m+1)+1 < m(1)−k by the choice ofm(1) (and, of course, clk
∗,i(ā,M)

increase with i), hence for some m⊗ ∈ {r+1, . . . , r+m(1)−k−m} we have

⊕2 (c, d) ∈ R ⇒ c 6∈ clk
∗,m⊗+m(ā,M) \ clk

∗,m⊗−1(ā,M).

So

⊕3 r ≤ m
⊗ − 1 < m⊗ +m ≤ r +m(1)− k.

Let

B := {c ∈ clk
∗,m⊗−1(ā,M) : for some d we have (c, d) ∈ R} ∪ ā.

So by the above B = {c ∈ clk
∗,m⊗+m(ā,M) : (∃d)((c, d) ∈ R)} ∪ ā.

Let us check the demands (i)–(iv) of (∗) of 6.11; remember that we are

defining B∗ = (clk(āb,M) \ clk
∗,m⊗+m(ā,M)) ∪B, that is, the submodel of

M with this set of elements.

Clause (i): |B| ≤ t∗. As said above, |R| ≤ t, hence clearly |B| ≤ t +
lg(ā) ≤ t+ l ≤ t∗.

Clause (ii): ā ⊆ B ⊆ clk(B,M) ⊆ clk
∗,m⊗(ā,M). As by its definition

B ⊆ clk
∗,m⊗−1(ā,M), and k ≤ k∗, clearly clk(B,M) ⊆ clk

∗,m⊗(ā,M), and
B ⊆ clk(B,M) always and ā ⊆ B by its definition.

Clause (iii): Clearly

B = clk
∗,m⊗+m(ā,M) ∩ ((clk(āb,M) \ clk

∗,m⊗+m(ā,M)) ∪B)

= (clk
∗,m⊗+m(ā,M)) ∩B∗.

Now the “no edges” holds by the definitions of B and R.

Clause (iv): B ≤∗s B
∗. Clearly B ⊆ B∗ by the definition of B∗ before

the proof of clause (i). Toward contradiction assume ¬(B ≤∗s B
∗); then

4.17(2) holds for some D with B <i D ≤ B
∗; choose such a D with a

minimal number of elements. Note that as B ⊆ clk
∗,m⊗−1(ā,M) and B∗ ∩

clk
∗,m⊗+m(ā,M) = B, necessarily |D| > k∗ (and B <∗ D ≤ B∗). For every

d ∈ D\B, as d ∈ B∗, clearly d ∈ clk(āb,M), hence there is a set Cd ≤M with
|Cd| ≤ k such that Cd↾(āb) ≤i Cd and d ∈ Cd; note that Cd ⊆ cl

k(āb,M)
by the definition of clk, hence by the choice of B∗ and m⊗ and ⊕1 we have

Cd ⊆ B
∗ ∪ clk

∗,m⊗−1(ā,M). Let C ′d = Cd ∩ (B ∪ {b}) and C
′′
d = Cd ∩ B

∗.
Clearly Cd ∩ (āb) ≤ C

′
d ≤ C

′′
d ≤ Cd, hence C

′
d ≤i Cd. Now by clause (iii),
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C ′′d
M
⋃

C ′d

C ′d∪ (Cd \C
′′
d ), hence (by smoothness) we have C

′
di
≤i C

′′
di
. Of course,

|C ′′d | ≤ |Cd| ≤ k. For d ∈ B let Cd = C
′
d = C

′′
d = {d}.

We now choose a set Di, by induction on i ≤ i(∗), such that (letting
C∗∗i =

⋃

d∈Di
C ′′d ):

(a) D0 = B ∪ {b},
(b) j < i⇒ Dj ⊆ Di ⊆ D,
(c) |Di| ≤ k

∗
i ,

(d) if λ is an equivalence relation on C∗∗i \ B and for some d ∈ D \Di
one of the clauses below holds then there is such d ∈ Di+1, where

⊗1λ,d for some x ∈ C
′′
d \ C

∗∗
i , there are no y ∈ C

′′
d ∩ C

∗∗
i , j

∗ ∈ N and
〈yj : j ≤ j

∗〉 such that yj ∈ C
′′
d , yj∗ = x, y0 = y, {yj , yj+1} an

edge of M (actually an empty case, i.e., never occurs; see (∗)14
below),

⊗2λ,d there are x ∈ C
′′
d \ C

∗∗
i , y ∈ (C

∗∗
i \ C

′′
d ) ∪ B and y

′ ∈ C ′′d ∩ C
∗∗
i

such that {x, y} is an edge of M and y is connected by a path
〈y0, . . . , yj〉 inside C

′′
d to x so x = yj , y = y0 and [yi ∈ C

∗∗
i ≡

i = 0] and ¬(y′λy),
⊗3λ,d there is an edge {x1, x2} of M such that we have:

(A) {x1, x2} ⊆ C
′′
d ,

(B) {x1, x2} is disjoint from C
∗∗
i ,

(C) for s ∈ {1, 2} there is a path 〈ys,0, . . . , ys,js〉 in C
′′
d ,

ys,js = xs, [ys,j ∈ C
∗∗
i ≡ j = 0] and ¬(y1,0λy2,0),

(e) if λ is an equivalence relation on C∗∗i \ B to which clause (d) does
not apply but there are d1, d2 ∈ D satisfying one of the following,
then we can find such d1, d2 ∈ Di+1:

⊗4λ,d1,d2 for some x1 ∈ C
′′
d1
\ C∗∗i , x2 ∈ C

′′
d2
\ C∗∗i and y1 ∈ C

′′
d1
∩

C∗∗i , y2 ∈ C
′′
d2
∩ C∗∗i we have: for s = 1, 2 there is a path

〈ys,0, . . . , ys,js〉 in C
′′
ds
, ys,js = x, ys,0 = ys, [ys,j ∈ C

∗∗
i ⇔

j = 0] and x1 = x2 & ¬(y1λy2),
⊗5λ,d1,d2 for some x1, x2, y1, y2 as in ⊗

4
λ,d1,d2

we have ¬(y1λy2) and
{x1, x2} is an edge.

So |Di(∗)| ≤ k
∗/k (by the choice of k∗, i(∗) and clause (c)), hence C∗∗i(∗) :=

⋃

d∈Di(∗)
C ′′d has ≤ k

∗ members, āb ⊆ B ∪ {b} ⊆ D0 ⊆ C
∗∗
i(∗) ⊆ cl

k(āb,M)

and C∗∗i(∗) ∩ cl
k∗,m⊗+m(ā,M) = B ⊆ clk

∗,m⊗−1(ā,M). Hence necessarily

B ≤s C
∗∗
i(∗), so there is λ ∈ Ξ(B,C

∗∗
i(∗)). Let λi = λ↾(C

∗∗
i \B). Now

⊡ (B,C∗∗i , λi) ∈ Ξ(B,C
∗∗
i ).

[Why? Easy.]
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Case 1: For some i and an equivalence relation λi on Di \B, clauses (d)
and (e) are vacuous for λi. Let λ

∗
i be the set of pairs (x, y) from C

∗∗ \ B,
where C∗∗ =

⋃

d∈D C
′′
d , which satisfy (α) or (β), where

(α) x, y ∈ C∗∗i \B and xλiy,
(β) for some d ∈ D we have x ∈ C∗∗ \ C∗∗i , x ∈ C

′′
d , y ∈ C

∗∗
i ∩ C

′′
d and

there is a sequence 〈yj : j ≤ j
∗〉, j∗ ≥ 1, such that yj∗ = x, yj ∈ C

′′
d ,

y0 = y, {yj , yj+1} is an edge of M and [j > 0⇒ yj 6∈ C
∗∗
i ].

This in general is not an equivalence relation. Let

C⊗ = {x : for some (x1, x2) ∈ λ
∗
i we have x ∈ {x1, x2}},

λ+i = {(x1, x2) : for some y1, y2 ∈ Di we have

y1λy2, (x1, y1) ∈ λ
∗
i , (x2, y2) ∈ λ

∗
i }.

Now

(∗)1 λ
+
i is a set of pairs from C

⊗ with λ+i ↾Di = λi.
(∗)2 x ∈ C

⊗ ⇒ (x, x) ∈ λ+i .

[Why? Read (α) or (β) and the choice of λ+i .]

(∗)3 For every x ∈ C
⊗, for some y ∈ C∗∗i we have xλ

∗
i y.

[Why? Read the choice of λ+i , λ
∗
i .]

(∗)4 λ
+
i is a symmetric relation on C

⊗.

[Why? Read the definition of λ+i recalling λ is symmetric.]

(∗)5 λ
+
i is transitive.

[Why? Looking at the choice of λ∗i this is reduced to the case excluded in
(∗)6 below.]

(∗)6 If (x, y1), (x, y2) ∈ λ
∗
i , {y1, y2} ⊆ Di, x 6∈ Di, then y1λy2.

[Why? Because clause (e) in the choice of Di+1 is vacuous. More fully, oth-
erwise possibility ⊗4λ,d1,d2 holds for λi.]

(∗)7 For every x ∈ C
∗∗ \ C∗∗i , clause (β) applies to x ∈ C

⊗, that is,
C⊗ = C∗∗.

[Why? As x ∈ C∗∗ there is d ∈ D such that x ∈ C ′′d , hence by ⊗
1
λ,d of clause

(d) of the choice of Di+1 holds for x, so is not vacuous, contradicting the
assumption on i in the present case.]

(∗)8 λ
+
i is an equivalence relation on C

∗∗ \B.

[Why? Its domain is C∗∗ \ B by (∗)7, it is an equivalence relation on its
domain by (∗)1 + (∗)2 + (∗)4 + (∗)5.]

(∗)9 λ
+
i ↾C∗∗i = λi.

[Why? By the choice of λ+i , that is, by (∗)1.]
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(∗)10 Every λ
+
i -equivalence class is represented in C

∗∗
i .

[Why? By the choice of λ+i and λ
∗
i .]

(∗)11 If x1, x2 ∈ C
∗∗ \ B and ¬(x1λ

+
i x2) but {x1, x2} is an edge then

{x1, x2} ⊆ C
∗∗
i .

[Why? Assume {x1, x2} is a counterexample, so {x1, x2} * C∗∗i ; assume
x1 6∈ C

∗∗
i . Now for l = 1, 2 if xl 6∈ C

∗∗
i then we can choose dl ∈ Di and

yl ∈ C
′′
dl
∩ C∗∗i such that d witnesses that (xl, yl) ∈ λ

∗
i , that is, as in clause

(β) there is a path 〈yl,0, . . . , yl,jl〉 such that yl,0 = yl, yl,jl = xl and (j > 0
⇒ yl,j 6∈ C

∗∗
i ).

We separate into cases:

(A) x1, x2 6∈ C
∗∗
i , d1 = d2. This case cannot happen as ⊗

3
λ,d1
of clause

(d) is vacuous.

(B) x1, x2 6∈ C
∗∗
i , d1 6= d2. In this case by the vacuousness of ⊗

5
λi,d1,d2

of clause (e) we get a contradiction.

(C) x1 ∈ C
′′
dl
and x2 ∈ C

∗∗
i . By the vacuousness of ⊗

2
λi,d1
of clause (d)

we get a contradiction.

Altogether we have proved (∗)11.]

As λi ∈ Ξ(B,C
∗∗
i ), by (∗)8+(∗)9+(∗)10+(∗)11 and ⊡, it follows easily

that λ+i ∈ Ξ(B,C
∗∗), hence (see 4.16) B <∗s C

∗∗, so as B ⊆ D ⊆ C∗∗ we
have B <∗s D, the desired contradiction.

Case 2: For every i < i(∗), at least one of the clauses (d), (e) is non-
vacuous for λi. Let wi = wλi(B,C

∗∗
i ). For each i let 〈di,j : j < ji〉 list

Di+1 \ Di, such that: if clause (d) applies to λi then di,0 form a wit-
ness and if clause (e) applies to λi then di,0, di,1 form a witness. For
j ≤ ji let C

∗∗
i,j = C

∗∗
i ∪
⋃

s<j C
′′
di,s
, so C∗∗i,0 = C

∗∗
i and C

∗∗
i,ji
= C∗∗i+1. Let

wi,j = wλi(B,C
∗∗
i,j).

So it suffices to prove:

(A) wi,j ≥ wi,j+1,

(B) wi,0 − ε
∗ ≥ wi,1 or wi,1 − ε

∗ ≥ wi,2.

Let i < i(∗) and j < ji. Clearly C
∗∗
i,j+1 \ C

∗∗
i,j ⊆ C

′′
di,j
⊆ C∗∗i,j+1. Let

Ai,j = {x ∈ C
′′
di,j : x ∈ B or x/λ is not disjoint from C

∗∗
i,j}.

Clearly Ai,j \B is (λ↾C
′′
di,j
)-closed, hence Ai,j ≤

∗ C ′′di,j , C
′′
di,j
\Ai,j is disjoint

from C∗∗i,j and C
′
di,j
= Cdi,j ∩ (B ∪ {b}) ⊆ C

∗∗
i,j , and C

′
di,j
⊆ C ′′di,j . Hence

C ′di,j ⊆ Ai,j and Ai,j ≤
∗ C ′′di,j , but C

′
di,j
≤i C

′′
di,j
, so Ai,j ≤

∗
i C
′′
di,j
.

Clearly

(∗)12 wi,j+1 = wi,j +wλ(Ai,j , C
′′
di,j
)− αe1i,j − αe

2
i,j ,
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where
e1i,j = |{{x, y} : {x, y} an edge of M, {x, y} ⊆ Ai,j ,

¬(xλy) but {x, y} * C∗∗i,j}|,

e2i,j = |{{x, y} : {x, y} an edge of M, x ∈ C
′′
di,j \ C

∗∗
i,j ,

y ∈ C∗∗i,j \ C
′′
di,j but ¬(xλy)}|.

Note

(∗)13 wλ(Ai,j , C
′′
di,j
) can be zero if Ai,j = C

′′
di,j
and is ≤ −ε∗ otherwise.

[Why? As Ai,j ≤
∗
i C
′′
di,j
.]

(∗)14 In clause (d), ⊗
1
λ,d never occurs.

[Why? If x ∈ C ′′d is as there, let Y = {y ∈ C
′′
d : y, x are connected inM↾C ′′d }.

So x ∈ Y ⊆ C ′′d and Y ∩C
∗∗
i = ∅, and C

′
d = C

′′
d ∩(B∪{b}) = C

′′
d ∩C

∗∗
0 ⊆ C

∗∗
i .

Hence (C ′′d \ Y ) <
∗
i C

′′
d , but the equivalence relation {(y

′, y′′) : y′, y′′ ∈ Y }
exemplifies that this fails.]

Proof of (A). Easy by (∗)12, because wλ(Ai,j , C
′′
di,j
) ≤ 0 holds by (∗)13,

−αe1i,j ≤ 0, and −αe
2
i,j ≤ 0 as e

1
i,j , e

2
i,j are natural numbers.

Proof of (B). It suffices to prove that wi,0 6= wi,1 or wi,1 6= wi,2 (as
inequality implies the right order (by clause (A)) and the difference is ≥ ε∗

by definition of ε∗ (if wλ(Ai,1, C
′′
di,j
) 6= 0) and ≥ α (if e1i,j 6= 0 or e

2
i,j 6= 0).

But if wi,0 = wi,1, recalling (∗)14 it follows easily that clause (d) does not
apply to λi, and if wi,0 = wi,1 = wi,2 also clause (e) does not apply.
So (A), (B) hold, so does Case 2 and hence the claim. 6.11

6.14.Remark. (a) We could use smaller k∗ by building a tree 〈(Dt, D
+
t ,

Ct, λt) : t ∈ T 〉, where T is a finite tree with a root Λ,DΛ = ∅, D
+
Λ = B∪{b},

each λt is an equivalence relation on Ct\B and Ct =
⋃

{C ′′d : d ∈ Dt}∪B, s ∈
sucT (t) ⇒ D

+
t = Ds and D

+
t \Dt is {d} or {d1, d2}, witnessing clause (d)

or clause (e) for (Dt, λt) when t 6= Λ and

{(Ds, λs) : s ∈ sucT (t)}

= {(D+t , λ) : λ↾Dt = λt, λ an equivalence relation on D
+
t \B}.

(b) We can make the argument separated, that is, prove as a separate
claim that for any k and l there is k∗ such that: if A,B⊆M ∈K , |B|, |A|≤ l,
B ⊆ B∗, clk(A,M) \ clk(B,M) ⊆ B∗ \ B ⊆ clk(A,M) and (∀C)(B ⊆ C ⊆
B∗ ∧ |C| ≤ k∗ ⇒ B <s C) then B <s B

∗. This is a kind of compactness.

6.15.Conclusion. Requirements (A) of [I, 2.13(1)] and even (B) + (C)
of [I, 2.13(3)] hold.

Proof. Requirement (B) of [I, 2.13(3)] holds by 6.7. Requirement (A) of
[I, 2.13(2)] holds by 6.11 (and the previous sentence). 6.15
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6.16. Conclusion. (a) K is smooth and transitive and local and trans-
parent.

(b) K is simply nice (hence simply almost nice).
(c) K satisfies the 0-1 law.

Proof. (a) By 6.4.
(b) By 6.15 we know that K is simply nice.
(c) By 4.2 we know that for each k, for every random enough Mn,

clk(∅,Mn) is empty. Hence by [I, 2.19(1)] we get the desired conclusion. 6.16
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