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Weak generi types and overings of groups IbyLudomir Newelski and Marin Petrykowski (Wroªaw)
Abstrat. We introdue the notion of a weak generi type in a group. We improveour earlier results on ountable overings of groups and types.Introdution. Assume G is an ℵ0-saturated group, or even a grouptype-de�nable in an ℵ0-saturated struture. Stritly speaking, by a groupwe sometimes mean an expansion of a pure group struture. Assume G isovered by ountably many 0-type-de�nable sets Xn, n < ω. In [NP℄ weproved that in this ase some �nitely many of the sets Xn generate thegroup G in at most k = 3 steps. More preisely, we proved that(C1) for some �nite set A ⊆ G and some n < ω we have G = A ·Xn ·X

−1
n .So in a sense for an arbitrary ℵ0-saturated group G, k = 2.5 steps su�eto generate G by some �nitely many of the sets Xn, n < ω. In general, thisresult annot be improved (that is, k = 2 steps may not su�e). However,in [NP℄ we also proved that(C2) if G is abelian, then G = X<n ·X−1

<n for some n < ω, where X<n =
⋃

i<nXi.Thus in this ase k = 2 steps are enough.In this paper we give a new proof of (C1), using the notion of a weakgeneri type in a group. This new notion generalizes that of a generi type ina stable group, fundamental in stable model theory. Besides its appliabilityin larifying (C1) we predit it may play an important role in model theory,partiularly in unstable strutures (like the o-minimal ones).Regarding (C2), here we extend it in two ways. First, we generalize (C2)to any amenable group G, giving a ompletely new proof. Seondly, extending2000 Mathematis Subjet Classi�ation: Primary 03C45.Key words and phrases: generi type, weak generi type, overings of groups, amenablegroup.Researh supported by KBN grant 2 P03A 018 24.[201℄



202 L. Newelski and M. Petrykowskithe proof of (C2) from [NP℄, we prove a variant of (C2) for an arbitrarygroup G. This raises a fasinating possibility of existene of a ombinatorialounterpart of the Banah mean in any group. Unfortunately, thus far it isnot lear to us what suh a ounterpart should be.In [NP℄ we also gave model-theory-free versions of (C1) and (C2). Herewe do the same, giving model-theory-free versions of the results announedabove. They are in fat equivalent to their model-theoreti ounterparts, butless intuitive (at least to a model-theorist). Still, they may be appealing toa non-model-theorist.Assume p is a omplete type over ∅ in a omplete �rst order theory T .Let M be an ℵ0-saturated model of T . Assume p(M) × p(M) is overed byountably many 0-type-de�nable sets Xn, n < ω. We an regard p(M) asthe set of verties of a omplete direted graph Γ . Then the sets Xn, n < ω,may be regarded as a olouring of the set of edges of Γ into ountably manyolours (so that one edge may have more than one olour). In [NP℄ we provedthat in this ase(C1′) any a, b ∈ p(M) may be onneted by a path a, c1, c2, b of length 3so that the edges 〈a, c1〉, 〈c1, c2〉, 〈b, c2〉 lie in X<n for some n < ω.The proof in [NP℄ was a modi�ation of the proof of (C1) there.Here we introdue the notion of a -free and weakly -free extension of atype, generalizing the notion of a non-forking extension in a stable theory.Using this notion we give a new proof of (C1′). The notion of a weakly -freeextension orresponds to that of a weak generi type in a group in the samemanner as the proof of (C1′) in [NP℄ orresponds to the proof of (C1) there.We predit it may have more appliations in unstable strutures.Possible ounterparts of the extensions of (C2) announed above (likethe ase of amenable groups) in the ase of overings of types are moreproblemati, and we do not pursue them here. We onlude the paper witha set of problems.Throughout we use standard model-theoreti notation. The results onamenable groups are due to the seond author, the rest of the paper is dueto the �rst author.We would like to thank Gabriel Sabbagh for interesting onversations onthis paper.1. Weak generi types. In this setion we assume G is an ℵ0-saturatedgroup, or even a type-de�nable group in an ℵ0-saturated model of a omplete�rst order theory T . When G (or T ) is stable, the notion of a generi typeof elements of G was introdued by Poizat [Po℄. It beame a fundamentalnotion in geometri model theory. In the stable ase we an de�ne generitypes as follows [Wa, Pi℄.



Weak generi types and overings of groups I 203Definition 1.1. We say that a set X ⊆ G is (left) generi if some�nitely many left G-translates of X over G. We say that a formula ϕ(x) is(left) generi if the set ϕ(G) of elements of G realizing ϕ is (left) generi.Finally, we say that a type p(x) of elements of G is (left) generi if everyformula ϕ(x) with p(x) ⊢ ϕ(x) is (left) generi. By default, �generi� alwaysmeans �left generi�.In the stable ase left generi = right generi (de�ned by means of righttranslations) and eah partial generi type extends to a omplete generi type(over any set of parameters); moreover generi types may be haraterizedthere by means of forking and translation-invariant ranks.While De�nition 1.1 is appealing by its simpliity, it does not work wellin the unstable ontext. For instane, omplete generi types in the sense ofDe�nition 1.1 may not exist in general. So in simple theories generi typesare de�ned by extending the de�nition from the stable ase, whih refers toforking and ranks. However, in this paper we do apply De�nition 1.1 in thegeneral setting, and to overome its drawbaks we de�ne a weaker notion, stillapturing the sense of being a �not-so-small� subset of G. Suppose X = A∪Bis a generi subset of G. If B is not generi, then one ould argue that A is�not-so-small�. This justi�es the following de�nition.Definition 1.2. We say that a set A ⊆ G is weak generi if A ∪ B isgeneri for some non-generi B ⊆ G. We say that a formula ϕ(x) is weakgeneri if the set ϕ(G) is weak generi. A type p(x) of elements of G is weakgeneri if every formula ϕ(x) with p(x) ⊢ ϕ(x) is weak generi.We are interested mainly in the de�nable (weak) generi sets. For thesepurposes, the next lemma provides an alternative de�nition. In the asewhere G is type-de�nable in an ℵ0-saturated strutureM , in the next lemmaand also throughout the paper by a �de�nable� subset of G we mean a�relatively de�nable� subset of G.Lemma 1.3. Assume U is a de�nable subset of G. Then the followingonditions are equivalent.(1) U is weak generi.(2) For some �nitely many elements a0, . . . , an−1 ∈ G, the set ⋂

i<n aiU
cis not generi.(3) For some de�nable non-generi set V ⊆ G, the set U ∪ V is generi.Proof. (1)⇒(2). Assume U is weak generi. Hene for some non-generiset V ⊆ G, the set U ∪ V is generi, meaning that for some �nitely manyelements a0, . . . , an−1 ∈ G we have

⋃

i<n

ai(U ∪ V ) =
⋃

i<n

aiU ∪
⋃

i<n

aiV = G.



204 L. Newelski and M. PetrykowskiThis means that
⋂

i<n

aiU
c ⊆

⋃

i<n

aiV.Sine V is not generi, neither is ⋃

i<n aiV , and we are done.(2)⇒(3). Let V =
⋂

i<n aiU
c. We see that V is de�nable, not generi, andputting an = e (the neutral element of G), we �nd that G =

⋃

i≤n ai(U ∪V ),hene U ∪ V is generi.(3)⇒(1) is trivial.In the next lemma we give some basi properties of weak generi sets andtypes.Lemma 1.4.(1) If U1, U2 ⊆ G are not weak generi, then U1∪U2 is not weak generi.(2) Every (partial) weak generi type over A ⊆ G an be extended to aomplete weak generi type over A.Proof. (1) Let V ⊆ G be non-generi. Sine U2 is not weak generi, U2∪Vis not generi. Sine U1 is not weak generi, U1∪ U2 ∪ V is not generi. Hene
U1 ∪ U2 is not weak generi.(2) follows from (1).We see that weak generi types exist. By Lemma 1.4, the set

WGen(A) = {p ∈ S(A) : p is weak generi}is losed and non-empty in S(A). The next lemma explains the relationshipbetween weak generi types and generi types, provided the latter exist.Lemma 1.5.(1) If some weak generi type p(x) ∈ S(G) is generi, then all weakgeneri types q(x) ∈ S(A) are generi.(2) If there is just one weak generi type in S(A), then it is generi.Proof. (1) Suppose some weak generi type q(x) ∈ S(A) is not generi.Extending q to a weak generi type over G we an assume A = G. Then somede�nable generi set X ⊆ G an be divided into two non-generi de�nablesets A,B. Sine X is generi, some left G-translate X ′ of X belongs to p(x).Then the orresponding translates A′, B′ of A,B are also non-generi, andone of them belongs to p(x), hene p(x) is not generi.(2) A similar proof.By Lemma 1.5, in the stable ase weak generi = generi (for types andde�nable sets). As an example notie that if G = (G, ·, <, . . .) is o-minimal,then there are exatly two omplete weak generi types, orresponding to
+∞ and −∞, and they are not generi. Hene in (2) the assumption thatthere is only one weak generi type annot be weakened. Desription of



Weak generi types and overings of groups I 205weak generi types in other groups de�nable in o-minimal strutures is moreompliated; it will appear in a forthoming paper by the seond author.The next proposition shows that weak generiity is related to generat-ing G. We identify sets of types with subsets of the model onsisting of theelements realizing the types from these sets. That is, if P ⊆ S(∅), then some-times we identify P with the set P (G) =
⋃

{p(G) : p ∈ P}. Also, if P is open(losed, Borel et.), then we all the set P (G) open (losed, Borel, et.). Inpartiular, a losed subset of G is just a 0-type-de�nable one, and a lopensubset of G is just a 0-de�nable one. For a formula ϕ(x), [ϕ] denotes thelass of types ontaining ϕ. We adopt a similar notation for types.Proposition 1.6. Assume P ⊆ WGen(∅) is non-empty and relativelyopen. Then for some �nite A ⊆ G we have G = A · P (G) · P (G)−1.Proof. Choose a non-empty 0-de�nable subset U of G with P ⊇WGen(∅)
∩ [U ] 6= ∅. We an assume that P = WGen(∅)∩[U ]. Hene U is weak generi.Choose a de�nable non-generi set V ⊆ G suh that U∪V is generi. Choosea �nite set A ⊆ G with G = A · (U ∪ V ). We prove that
(∗) the set (U ∪ V ) \ P (G) is not generi.Suppose not. Then there is a �nite set B ⊆ G with B · ((U ∪ V ) \ P (G))
= G. By ompatness, for some 0-de�nable set W with P (G) ⊆ W ⊆ Uwe have B · ((U ∪ V ) \W ) = G, i.e. the set (U ∪ V ) \W is generi. Sine
(U ∪ V ) \W ⊆ V ∪ (U \W ), it follows that the set U \W is weak generi.But [U \W ] ∩ WGen(∅) = ∅, ontraditing Lemma 1.4(2).To �nish the proof, we show that G = A · P (G) · P (G)−1, that is, forevery g ∈ G there is some h ∈ P (G) with g · h ∈ A · P (G).If not, then there is some g ∈ G suh that for every h ∈ P (G) we have
g · h 6∈ A · P (G). Still g · h ∈ A · (U ∪ V ), hene g · h ∈ A · ((U ∪ V ) \ P (G))and P (G) ⊆ g−1 ·A · ((U ∪ V )) \ P (G)). We see that
U ∪ V = ((U ∪ V ) \ P (G)) ∪ P (G) ⊆ ({e} ∪ g−1 ·A) · ((U ∪ V ) \ P (G)),and G = A · ({e} ∪ g−1 ·A) · ((U ∪ V ) \ P (G)), ontraditing (∗).Using Proposition 1.6 we may give a new proof of [NP, Theorem 2.1℄,whih we restate as Corollary 1.7 below.Corollary 1.7. Assume an ℵ0-saturated group G is overed by some

0-type-de�nable sets Xn, n < ω. Then for some �nite A ⊆ G and some
n < ω we have G = A ·Xn ·X−1

n .Proof. At the level of types, S(∅) is overed by ountably many losedsets [Xn], n < ω. Hene by the Baire ategory theorem, for some n, theset [Xn] ∩ WGen(∅) has non-empty relative interior in WGen(∅). We applyProposition 1.6.



206 L. Newelski and M. PetrykowskiIf the theory of G is simple, generi types are usually de�ned via forking.Namely, we say that a formula ϕ(x, a) is generi in G if for every b ∈ G,the formula ϕ(b · x, a) does not fork over ∅ (see [Wa℄). Here we will all aformula with this property f-generi, to distinguish it from the notion fromDe�nition 1.1. Similarly, we all a type f-generi if every formula it impliesis f-generi. The next lemma shows that in simple theories �weak generi�and �f-generi� are related.Lemma 1.8. If Th(G) is simple and ϕ(x, a) is weak generi in G, then
ϕ(x, a) is f-generi.Proof. We may assume a = ∅. Let V = ϕ(G) and hoose a non-generide�nable set U ⊆ G with U ∪ V generi. Choose a �nite set A ⊆ G with
A · (U ∪ V ) = G. Suppose for ontradition that ϕ(x) is not f-generi. Theneah translate of V and also any union of �nitely many suh translates isnot f-generi (see [Wa℄). Let ψ(x) be a formula de�ning the set A · V . Sine
ψ is not f-generi, some left translate of ψ forks over ∅. In simple theories,forking = dividing, hene we �nd an in�nite indisernible sequene bi, i < ω,with ⋂

i bi ·A · V = ∅. So, for some n < ω we have ⋂

i<n bi ·A · V = ∅.To reah a ontradition, we will prove that U is generi. We know that
A · (U ∪ V ) = G. Hene also bi ·A · U ∪ bi ·A · V = G for every i < n. Thus

G \
⋃

i<n

bi ·A · U ⊆
⋂

i<n

bi ·A · V = ∅,meaning that ⋃

i<n bi ·A · U = G, a ontradition.Usually in the simple unstable ase, generi types (in the sense of De�ni-tion 1.1) do not exist in a group G; however, weak generi types do, and byLemma 1.8 they form a losed subset of the set of f-generi types. As usualwith simple theories, we know of no example where in a group G with simpletheory an f-generi formula is not weak generi.2. The ase where two steps su�e. Again assume G is an ℵ0-saturated group, overed by ountably many 0-type-de�nable sets Xn, n<ω.In [NP℄ and in Setion 1 we showed that in general G as a group is generatedby some �nitely many of the sets Xn in k = 2.5 steps. Sometimes k = 2 stepssu�e, that is, for some n, G = X<n ·X−1
<n, where X<n =

⋃

i<nXi. In [NP℄we proved that it is so when G is abelian or stable. Here we improve thisresult by replaing �abelian� with �amenable�. Also, we give a uniform prooffor both the amenable and stable ases.Reall [W℄ that a group G is amenable if there exists a �nitely additivemeasure µ on P(G) suh that µ(G) = 1 and µ is left-invariant (i.e. µ(g ·A) =
µ(A) for every g ∈ G and A ⊆ G). We all any suh µ a Banah mean on G.Amenable groups form a large lass, inluding solvable groups, and more



Weak generi types and overings of groups I 207generally all groups without a paradoxial deomposition. However, no non-abelian free group is amenable. Any stable group is also �amenable� in thefollowing weak sense.Proposition 2.1. Assume G is stable. Then there is a �nitely additiveleft-invariant measure µ with µ(G) = 1, de�ned on the algebra Def(G) of allde�nable subsets of G.Proof. Let G be the set of generi types of G (over acleq(∅)). As pointedout in [Ne1℄, G is a ompat topologial group, with the topology induedfrom S(acleq(∅)). The group operation is the independent multipliation oftypes: r1 ∗ r2 = stp(a1 · a2), where a1 and a2 are independent realizations of
r1, r2 respetively. The generi type of the onneted omponent G0 of G isthe identity element of G. Let ν be the Haar measure on G. Then ν induesa measure µ on Def(G) as follows. Let ϕ(x, a) be a formula. We assoiatewith ϕ the set

Vϕ = {r ∈ G : ϕ(x, a) belongs to the non-forking extension of r}.It is a relatively lopen subset of G. We de�ne µ(ϕ(G, a)) as ν(Vϕ). Thisworks.The proof of Proposition 2.1 shows that in fat µ may be extended to the
σ-algebra of sets generated by Def(G), and µ is σ-additive. We will not needthis, however. We will use the following lemma on �nitely additive measures.Lemma 2.2. Assume X is a set and µ is a �nitely additive �nite measureon an algebra A of subsets of X. Assume for some ε > 0 we have a family An,
n < ω, of sets from A with µ(An) > ε for all n. Then for some inreasingsequene (nk)k<ω of natural numbers, and eah i < ω,

µ(An0
∩ · · · ∩Ani

) > 0.Proof. First we prove that under the assumptions of the lemma,
(∗) there are n < ω and ε′ > 0 suh that the set {m : µ(An ∩Am) > ε′} isin�nite.If not, for every n < ω and ε′ > 0, the set {m : µ(An ∩ Am) > ε′} is �nite.Let k be a positive integer suh that µ(An) > 2/k for every n < ω. Put
n0 = 0 and for eah i = 1, . . . , k− 1 hoose reursively ni < ω so that for all
j < i, µ(Ani

∩Anj
) < 1/(ki). We have

1 ≥ µ
(

k−1
⋃

i=0

Ani

)

=
k−1
∑

i=0

µ
(

Ani
\

⋃

j<i

Anj

)

>
k−1
∑

i=0

(

2

k
−

1

k

)

= 1,

a ontradition.



208 L. Newelski and M. PetrykowskiHaving proved (∗), we de�ne reursively numbers nk, k < ω, so that foreah k < ω we have
(∗∗) for some ε′ > 0, the set Z = {m : µ(An0

∩ · · · ∩Ank
∩Am) > ε′} isin�nite.For k = 0 we de�ne n0 by (∗). For the reursion step, suppose we have de�ned

n0, . . . , nk so that (∗∗) holds. We will de�ne nk+1. Let X ′ = An0
∩ · · · ∩Ankand for m ∈ Z set A′

m = X ′ ∩ Am. We see that X ′ and A′
m,m ∈ Z, satisfythe assumptions of the lemma for the restrited µ, so that in this situation

(∗) holds. Let nk be the n furnished by (∗). This �nishes the onstrutionand the proof.Theorem 2.3. If G is stable or amenable, and G is overed by ountablymany 0-type-de�nable sets Xn, n < ω, then G = X<n ·X
−1
<n for some n < ω.Proof. Stability and amenability of G together imply that there exists a�nitely additive left-invariant measure µ on Def(G) with µ(G) = 1. For thesake of ontradition assume that for any n < ω we an �nd an ∈ G \X<n ·

X−1
<n. By ompatness there is a formula ϕn(x) suh that X<n ⊆ ϕn(G) and

an 6∈ ϕn(G) · ϕn(G)−1. We have
G = ¬ϕn(G) ∪ an · ¬ϕn(G).Sine µ(¬ϕn(G)) = µ(an · ¬ϕn(G)), it follows that µ(¬ϕn(G)) ≥ 1/2 foreah n < ω. By Lemma 2.2 we are able to hoose an inreasing sequene

(nk)k<ω with
µ(¬ϕn0

(G) ∩ · · · ∩ ¬ϕnk
(G)) > 0for every k < ω. On the other hand, {ϕnk

(G) : k < ω} is a family of de�nablesets overing G, so we an hoose a �nite subovering {ϕnk
(G) : k < K} (forsome K < ω). Then µ(

⋂

k<K ¬ϕnk
(G)) = µ(∅) = 0, a ontradition.In partiular, the onlusion of Theorem 2.3 holds when G is abelian(sine eah abelian group is amenable). This speial ase was already provedin [NP℄. However, the proof of Theorem 2.3 is ompletely di�erent. The proofin [NP℄ is in a way more diret and it does not refer to suh an ambiguousand ine�etive objet as a Banah mean on a group. One ould wonder if it ispossible to extend the proof from [NP℄ to deal not only with abelian groups,but also with some other amenable groups, like for instane the nilpotentor solvable ones. We have found however another striking way to generalizethe proof from [NP℄. For X ⊆ G and a, x ∈ G, let xa denote a−1xa and

Xa = {xa : x ∈ X}. We have the following theorem.Theorem 2.4. Assume G is an ℵ0-saturated group overed by ountablymany 0-type-de�nable sets Xn, n < ω. Then for some �nite set A ⊆ G and



Weak generi types and overings of groups I 209some n < ω we have
G =

⋃

a∈A

(X<n ·X−1
<n)a,

that is, G is overed by the set of a-onjugates of X<n ·X−1
<n, a ∈ A.When G is amenable, Theorem 2.4 follows from Theorem 2.3 (with A

= {e}). Before the proof we reall a onstrution from [Ne2, NP℄.AssumeX is a ompat topologial spae overed by a familyA of subsetsof X. We de�ne an inreasing sequene Zα, α ∈ {−1}∪Ord, of open subsetsof X. We put Z−1 = ∅, Zα+1 =
⋃

A∈A int(Zα ∪ A) and for limit α, Zα =
⋃

β<α Zβ. The sequene (Zα) is alled the open analysis of X with respetto A. By the Baire ategory theorem if A is a ountable family of losed setsovering X, then Zα = X for some α.Proof. The proof of Theorem 2.4 will be a modi�ation of the proof of[NP, Theorem 3.1℄, where G is abelian. Let Y = S(∅) and Yn = S(∅) ∩
[Xn(x)]. Let Zα, α ∈ {−1} ∪ Ord, be the open analysis of Y with respetto Yn, n < ω. So Zα = Y for some α. For a losed set C ⊆ Y let γ(C) bethe minimal ordinal (or −1) suh that C ⊆ Zγ(C). So γ(∅) = −1 and byompatness, for eah losed C, γ(C) equals −1, 0, or is a suessor ordinal.Suppose the theorem fails. We de�ne reursively 0-de�nable sets An ⊆ G,elements an ∈ G and losed sets Cn ⊆ Y, n < ω, so that the following hold.(a) Cn = {tp(a) : a ∈ An}.(b) For every U ⊆ n, aUana

−1
U is not of the form h1h

−1
2 for any h1, h2 ∈

G\An. Here aU = ai0 · · · aik−1
, where i0 < · · · < ik−1 is the inreasingenumeration of U . For U = ∅ we stipulate aU = e, the neutral elementof G.() For all k < ω and all i0 < · · · < ik < ω, if Y ∩ Ci0 ∩ · · · ∩ Cik−1

6= ∅,then
γ(Y ∩ Ci0 ∩ · · · ∩ Cik) < γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

).Assume we have de�ned Ai, Ci, ai for all i < n. We hoose N < ω so thatfor every k < ω and all i0 < · · · < ik < ω with Y ∩ Ci0 ∩ · · · ∩ Cik−1
6= ∅,

(Y ∩ Ci0 ∩ · · · ∩ Cik−1
) \ Zγ−1 ⊆ Y<N ,where γ = γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

).Let A = {aU : U ⊆ n}. Sine G 6=
⋃

a∈A(X<NX
−1
<N )a, by ompatnessthere is a formula ϕ(x) over ∅ suh that X<N ⊆ ϕ(G) and

G 6=
⋃

a∈A

(ϕ(G)ϕ(G)−1)a.

We put An = G \ϕ(G), hoose an ∈ G \
⋃

a∈A(ϕ(G)ϕ(G)−1)a and de�ne Cnaordingly. Then (a) and (b) hold. The hoie of N ensures ().



210 L. Newelski and M. PetrykowskiSine there is no in�nite dereasing sequene of ordinals, the family oflosed sets Cn, n < ω, has no in�nite subfamily with the �nite intersetionproperty. It follows that(d) Every in�nite set I ⊆ ω has a �nite subset I ′ with ⋂

n∈I′ An = ∅.Now we sketh the idea of the proof. If the sequene (An, an)n<ω is order-indisernible with respet to all relations
ai0 · · · aik−1

∈ Aj (i0 < · · · < ik−1 < ω, j < ω),then we easily reah a ontradition. Namely, for j 6∈ {i0, . . . , ik−1}, by (d)we have
h2 = ai0ai1 · · · aik−1

6∈ Aj .Say, i0 < · · · < il−1 < j < il < · · · < ik−1. If also h1 = ai0 · · · ail−1
ajail · · ·

aik−1
6∈ Aj , then

h1h
−1
2 = ai0 · · · ail−1

aja
−1
il−1

· · · a−1
i0would ontradit (b). So ai0 · · · ail−1

ajail · · · aik−1
∈ Aj . By indisernibility,

a0 · · · an ∈ A0 ∩ · · · ∩An for all n < ω, ontraditing (d) again.This reasoning would lead to a ontradition even if we had an in�nitesubsequene of (An, an)n<ω order-indisernible in the above sense. However,sine here we need indisernibility with respet to in�nitely many relations,we annot hope for suh a subsequene to exist. Instead, in [NP℄ we in-trodue a notion of (α, k)-indisernibility (where α < ω1, k < ω), whihapproximates full order-indisernibility.Let α be the order type of the set
Ω = {γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

) : k < ω and i0 < · · · < ik−1 < ω}.Sine Ω is ountable, α < ω1. Now we work with an (α, 0)-indiserniblesubsequene of (An, an)n<ω, reahing a ontradition preisely as in [NP℄.The proofs of Theorem 2.4 and its predeessor, [NP, Theorem 3.1℄, remainmysterious to us. Theorem 2.3 suggests that in the speial ase where G isabelian, Theorem 2.4 just tells us something about the amenability of G.But Theorem 2.4 is about an arbitrary group, possibly non-amenable. Thissuggests a possibility of �nding a ombinatorial ounterpart of the Banahmean in an arbitrary group. This may require improving Theorem 2.4 in away that we will try to suggest now.Corollary 1.7 says that for some �nite A ⊆ G and some n∗ < ω we have
G = A ·Xn∗ ·X−1

n∗ . Our feeling is that this means that Xn∗ is large in somesense. Now suppose we re�ne our overing, presenting eah Xn as a unionof ountably many 0-type-de�nable sets Xn,k, k < ω. If Xn∗ is large, thenone would expet that one of the sets Xn∗,k should also be large, that is, forsome �nite A′ ⊆ G and some k < ω we should have G = A′ ·Xn∗,k ·X−1
n∗,k.This may not be true.



Weak generi types and overings of groups I 211For example, one an onstrut reursively an in�nite subset B of Zsuh that every non-zero integer an be uniquely presented as a − b, where
a, b ∈ B. Moreover, we an ensure that B an be split into two disjoint sets
B0, B1 suh that for both sets B0 − B0 and B1 − B1 there are arbitrarilylong intervals disjoint from them. Consider the struture (Z,+) expandedby the prediates B,B0, B1. Let G be an ℵ0-saturated elementary extensionof (Z,+, B,B0, B1). Let X0 = B(G), and X1 = B(G)c. Then X0 −X0 = G.Let X0,0 = B0(G) and X0,1 = B1(G). Then X0 = X0,0 ∪X0,1, but for every�nite A ⊆ G we have G 6= A+X0,i −X0,i, i = 0, 1.However, the urrent proof of Corollary 1.7 suggests the right notion oflargeness here. Namely, we an onsider a 0-type-de�nable set X ⊆ G to belarge if WGen ∩ [X] has non-empty interior in WGen. Then if Xn∗ is large,then so is Xn∗,k for some k.Now assume G is amenable. By Theorem 2.3, G = X<n∗ · X−1

<n∗ forsome n∗. This suggests that X<n∗ is large in some sense. This should meanthat re�ning our overing Xn, n < ω, to a overing Xn,k, n, k < ω (asabove), it should be the ase that for some k∗ < ω, the set X<n∗,<k∗ =
⋃

i<n∗

⋃

j<k∗ Xi,j is large, meaning that G = X<n∗,<k∗ ·X−1
<n∗,<k∗ .This may fail. For example, assume G has a de�nable subgroup H ofindex 2. Let X1 = H \ {e} and X0 = G \X1. Then G = X0 ·X

−1
0 . However,if we split X0 into in�nitely many non-empty sets X0,k, k < ω, then it is nottrue that G = X0,<k ·X−1

0,<k for some k.We an orret this as follows. Assume µ is a Banah mean on G. For asubset X ⊆ G de�ne the �exterior� measure µ∗(X) by
µ∗(X) = inf{µ(U) : X ⊆ U ⊆ G and U is 0-de�nable}.We say that X is large if µ∗(X) > 1/2. Then one sees that if X is large and0-type-de�nable, then G = X · X−1. Atually, the set X0 from the aboveexample is not large, sine µ∗(X0) = 1/2. A ounterpart of Lemma 2.2 holdsfor µ∗ in plae of µ. Using this we see that if G is overed by 0-type-de�nablesets Xn, n < ω, then for some n∗ we have µ∗(X<n∗) > 1/2, i.e. X<n∗ is large(and G = X<n∗ ·X−1

<n∗). This notion is hereditary: if we onsider a re�nement
Xn,k, n, k < ω, of our overing and X<n∗ is large, then for some k∗ we have
µ∗(X<n∗,<k∗) > 1/2 (whene G = X<n∗,<k∗ ·X−1

<n∗,<k∗).We do not see how to make Theorem 2.4 hereditary in the same manner.We believe that �nding a way to do so ould reveal a notion of �largeness�whih would be a remote ombinatorial ounterpart of the Banah mean inan arbitrary group.Another argument for a possibility of generalizing the Banah mean is asfollows. In the speial ase of abelian group our original ompliated proofof Theorem 2.4 from [NP℄ was replaed here by an easier proof, using theBanah mean. Now, we have an equally ompliated proof of Theorem 2.4.



212 L. Newelski and M. PetrykowskiIt is possible that a simpli�ation of this proof (if it exists) would involve ageneral ounterpart of the Banah mean.Theorem 2.4 has an interesting orollary. Thus far we have onsideredarbitrary 0-type-de�nable sets Xn ⊆ G, possibly in a language larger thanthat of pure groups. For pure groups we an say more.Corollary 2.5. Assume Xn ⊆ G, n < ω, are 0-type-de�nable in thepure group language. Then G = X<n ·X−1
<n for some n < ω.Proof. By Theorem 2.4, for some n, some �nitely many onjugates of

X<n · X−1
<n over G. But sine we are in the pure group struture, for any

a ∈ G we have Xa
<n = X<n, so we are done.3. Model-theory-free versions. In this setion G is an arbitrary in�-nite group, X is a ompat topologial spae and f : G→ X is any funtionsuh that f [G] is dense in X. In this setting we prove the ounterparts of theresults from Setions 1 and 2. First we de�ne the notion of [weak℄ generiityin this new ontext.Assume U ⊆ X. We all U generi if G = A · f−1[U ] for some �niteset A ⊆ G. We all U weak generi if for some non-generi V ⊆ X, the set

U ∪ V is generi. We all a point p ∈ X [weak ℄ generi if every open set Uontaining p is [weak℄ generi. Let Gen and WGen be the sets of generi andweak generi points of X, respetively. The next lemma has a similar proofto Lemma 1.4.Lemma 3.1.(1) If U1, U2 ⊆ X are not weak generi, then U1∪U2 is not weak generi.(2) Both WGen and Gen are losed subsets of X, Gen ⊆ WGen and
WGen is non-empty.(3) Every open set U ontaining WGen is generi.Proof. For example, we will prove (3). Sine no point in X \ U is weakgeneri, by ompatness we an �nd �nitely many non-weak-generi opensets V0, . . . , Vk (for some k < ω) suh that U ∪ V0 ∪ · · · ∪ Vk = X. Then by(1) also V = V0∪· · ·∪Vk is open and not weak generi, and still U ∪V = X.Sine X is generi, so is U .For example, if G is a ompat topologial group, X = G and f = id,then any point p ∈ G is generi. Generi points not always exist, and this iswhy we deal with weak generi points instead. For example, assume G is theadditive group of the reals, X = G∪{+∞,−∞} is a 2-point ompati�ationof G, and f = id. Then −∞ and +∞ are the only weak generi points of X,and they are not generi. Our idea behind this de�nition is that if p ∈ Xis [weak℄ generi, then the group G is �onentrated� around p more thanaround a non-[weak℄-generi point. Also, we think that investigating the



Weak generi types and overings of groups I 213set of weak generi points reveals how similar the triple (G,X, f) is to thease of a ompat topologial group. The next proposition orresponds toProposition 1.6.Proposition 3.2. Assume S is a non-empty , relatively open subset of
WGen. Then there exists a �nite set A ⊆ G suh that G = A · f−1[U ] ·
(f−1[U ])−1 for every open set U ⊇ S.Proof. Using normality of X hoose a relatively open non-empty subset
S′ of S with cl(S′) ⊆ S. Then cl(S′) and WGen \ S are losed disjoint sets,hene there is an open set V ⊆X suh that cl(S′)⊆V and cl(V )∩WGen⊆S.Sine V is weak generi, there is a non-generi set W ⊆ X suh that
V ∪W is generi. Choose a �nite set A ⊆ G with G = A · f−1[V ∪W ]. Wewill prove that A satis�es our demands.So let U ⊇ S be open. By normality (working in the subspae U ∪ V ),there is an open set V ′ ⊆ V suh that

cl(V ′) ∩ U ∩ WGen = ∅ and U ∪ V = U ∪ V ′.Sine
cl(V ′) ∩ WGen ⊆ cl(V ) ∩ WGen ⊆ S ⊆ U ∩ WGen,we see that cl(V ′) ∩ WGen = ∅. This means that V ′ is not weak generi,hene V ′ ∪W is not generi.We will prove that G = A · f−1[U ] · (f−1[U ])−1. If not, then there issome g ∈ G suh that for every h ∈ f−1[U ] we have g · h 6∈ A · f−1[U ]. Still

g·h ∈ A·f−1[V ∪W ], hene g·h ∈ A·f−1[V ′∪W ] and h ∈ g−1·A·f−1[V ′∪W ].We see that f−1[U ] ⊆ g−1 ·A · f−1[V ′ ∪W ], hene
f−1[V ∪W ] ⊆ f−1[V ′ ∪W ] ∪ f−1[U ] ⊆ ({e} ∪ g−1 ·A) · f−1[V ′ ∪W ]and G = A · f−1[V ∪W ] = A · ({e} ∪ g−1 · A) · f−1[V ′ ∪W ]. So V ′ ∪W isgeneri, a ontradition.Corollary 3.3. Assume f : G → X, where G is a group and X is aompat topologial spae overed by ountably many losed sets Xn, n < ω.Then there exist a �nite set A ⊆ G and n < ω suh that for every open set

U ⊇ Xn we have G = A · f−1[U ] · (f−1[U ])−1.Proof. By the Baire ategory theorem, for some n the set S = Xn∩WGenhas non-empty relative interior in WGen, hene the onlusion follows fromProposition 3.2.Proposition 1.6 and Corollary 1.7 follow from Proposition 3.2 and Corol-lary 3.3. Namely assume for a moment that G is ℵ0-saturated. Then we antake X = S(∅) and f : G → X may be de�ned by f(a) = tp(a). Then thenotion of a [weak℄ generi type translates to that of a [weak℄ generi point,and a overing of G by 0-type-de�nable sets orresponds to a overing of
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X by losed sets, whene Proposition 3.2 and Corollary 3.3 apply. However,they are not really stronger than Proposition 1.6 and Corollary 1.7.To be more spei�, onsider the following situation. Assume that besides
f : G → X we have yet another funtion f ′ : G → X ′, where X ′ is also aompat topologial spae with f ′[G] dense in X ′, and there is a ontinuousfuntion h′ : X ′ → X suh that the following diagram ommutes:

X ′

h

��

G

f ′ ??�����

f ��?
??

??

XLet Gen′ and WGen′ denote the sets of generi and weak generi points of
X ′, respetively (with respet to f ′ : G′ → X ′).Lemma 3.4.

(1) WGen ⊆ h[WGen′].
(2) If h restrited to f ′[G] is 1-1, then WGen = h[WGen′].
(3) Gen ⊇ h[Gen′].Proof. (1) Assume p ∈ WGen \ h[WGen′]. Choose an open U ∋ p with

cl(U) ∩ h[WGen′] = ∅. Let U ′ = h−1[U ]. Then U ′ is open and cl(U ′) ∩
WGen′ = ∅. It follows that U is weak generi and U ′ is not weak generi.Choose a non-generi W ⊆ X with U ∪W generi. Let W ′ = h−1[W ]. Then
U ′ ∪W ′ = h−1[U ∪W ] is generi. Sine U ′ is not generi, we infer that W ′is generi, hene also W is generi, a ontradition.(2), (3) Similar proofs.The largest possible X ′ we an take in the above diagram (so that h is1-1 on f ′[G]) is the spae β(f [G]) (the spae of ultra�lters on f [G]). Then
f ′ : G→ X ′ is the funtion indued by f , and there is a natural ontinuousfuntion h : X ′ → X suh that the above diagram ommutes. By Lemma3.4(2), h[WGen′] = WGen. In this situation X ′ is 0-dimensional. We expand
G by prediates (f ′)−1[U ], where U ⊆ X ′ is lopen. Then WGen′ (henealso WGen) is a ontinuous image of the set of weak generi types of the
ℵ0-saturated extension of this expansion of G. In this way Proposition 3.2and Corollary 3.3 follow from Proposition 1.6 and Corollary 1.7.The largest possible X in f : G → X is the spae β(G) of ultra�lterson G (and then f maps g ∈ G to the prinipal ultra�lter generated by g).Then no point in X is generi. The other extreme is the ase where X is asingleton or X = G and f = id (in the ase where G is a ompat topologialgroup). Then any point is generi.



Weak generi types and overings of groups I 215Although the non-model-theoreti formulation of our results may be ofindependent interest, we think that the model-theoreti presentation is moreelegant here. The following theorem is slightly stronger than its model-theoreti version.Theorem 3.5. Assume f : G → X, where G is an amenable groupand X is a ompat spae overed by ountably many sets Xn, n < ω (notneessarily losed). Then there is an n < ω suh that for every open set
U ⊇

⋃

i<nXi we have G = f−1[U ] · (f−1[U ])−1.Proof. Let µ be a Banah mean on G. For the sake of ontraditionassume that for every n < ω we an �nd an open set Un ⊇ X<n suh that
G 6= f−1[Un] · (f−1[Un])−1. Let An = G \ f−1[Un] and hoose an ∈ G \
f−1[Un] · (f−1[Un])−1.Now if g ∈ G, then either g 6∈ f−1[Un] or a−1

n · g 6∈ f−1[Un], whih meansthat G = An ∪ an · An. Sine µ(An) = µ(an · An), we have µ(An) ≥ 1/2 foreah n < ω.By Lemma 2.2 we are able to hoose an inreasing sequene (nk) ofnatural numbers with µ(An0
∩ · · · ∩Ank

) > 0 for every k < ω. On the otherhand, {Unk
: k < ω} is a family of open sets overing the ompat spaeX, sowe an hoose a �nite subovering {Unk

: k < K}. Then {f−1[Unk
] : k < K}is a �nite family of sets overing G, so An0

∩ · · · ∩ AnK
= ∅. This impliesthat µ(An0

∩ · · · ∩AnK
) = 0, a ontradition.The next theorem orresponds to Theorem 2.4.Theorem 3.6. Assume f : G → X, where G is a group and X is aompat spae overed by ountably many losed sets Xn, n < ω. Then thereare a �nite set A ⊆ G and a natural number n suh that for every open set

U ontaining X<n we have
G =

⋃

a∈A

(f−1[U ] · (f−1[U ])−1)a.Proof. The proof is similar to that of Theorem 2.4. Suppose the theoremfails. Let Zα, α ∈ {−1} ∪ Ord, be the open analysis of X with respet to
Xn, n < ω. For a losed set C ⊆ X let γ(C) be the minimal number suhthat C ⊆ Zγ(C). We de�ne reursively losed sets Cn ⊆ X and elements
an ∈ G, n < ω, so that the following hold.(a) For every V ⊆ n, aV ana

−1
V 6∈ f−1[X \Cn] · (f−1[X \Cn])−1 (here aVis de�ned as in the proof of 2.4).(b) For all k < ω and all i0 < · · · < ik < ω with X ∩Ci0 ∩ · · ·∩Cik−1

6= ∅we have
γ(X ∩ Ci0 ∩ · · · ∩ Cik) < γ(X ∩ Ci0 ∩ · · · ∩ Cik−1

).



216 L. Newelski and M. PetrykowskiHaving de�ned Ci and ai for eah i < n we want to de�ne Cn and an. Theruial point of the reursive step is as follows. For a large natural number
N (hosen so as to satisfy (b)), there is an open set U ⊇ X<N suh that

G 6=
⋃

a∈A

(f−1[U ] · (f−1[U ])−1)a,where A = {aV : V ⊆ n}. Then we put Cn = X \ U and hoose
an ∈ G \

⋃

a∈A

(f−1[U ] · f−1[U ]−1)a.The rest of the proof is as before.4. An example. In this setion we are again interested in an ℵ0-saturat-ed group G overed by ountably many 0-type-de�nable sets Xn, n < ω.Suppose G \X<n ·X−1
<n is ountable for some n. Usually in model theory aountable subset of an ℵ0-saturated model is onsidered small. In partiular,in our ase, if G \X<n ·X−1

<n is ountable, then G \X<n ·X−1
<n ⊆ acl(∅). Soone ould wonder if in this situation there is a possibly larger n′ suh that

G = X<n′ ·X−1
<n′ . Here we give an example showing it may not be so.Let G be the free group with free generators en, n ≥ 0. We regardelements of G as irreduible words in letters e±1

n . Let {vk : k < ω} bean enumeration of G (without repetitions) suh that |vk| ≤ k. We de�newords wk ∈ G, k < ω, as follows.
• w0 = e = ε (the empty word, the neutral element of G).
• w2k+1 = w2k · el

j, where l = 1 +
∑

i<2k |wi| and j ∈ {0, 1, 2} is hosenso that neither w2k ends nor vk begins with e±1
j .

• w2k+2 = w2k+1vk.Lemma 4.1.
(1) Eah wk is an irreduible word.
(2) Eah wk is an initial segment of wk+1.
(3) Eah vk equals w−1

l · wt for some l, t.
(4) Eah vk equals w−1

l · wt for at most �nitely many distint l, t < ω.Proof. (1)�(3) are obvious. For (4) notie that if l 6= t, then in its irre-duible form the word w−1
l wt has length ≥ max{l, t}.For eah wk, k > 0, we de�ne a derived sequene of words wk,i as follows.We present wk as uv, where v is the longest su�x of wk in letters e±1

n , n > 2.Notie that wk−1 is an initial segment of u. Write v as xl−1xl−2 · · ·x0, where
l < ω and xi ∈ {e±1

n : n > 2} (v may be empty, then l = 0). We de�ne wk,ias
wk,i = uxl−1xl−2 · · ·xi for 0 < i < l,and if wk−1 6= u, then we additionally de�ne wk,l as u.



Weak generi types and overings of groups I 217In this way none of the words wk, k < ω, is a derived word.Lemma 4.2. If eah of u, v is derived or is one of the words {wk : k ≥ 0},then one of u, v is an initial segment of the other.Now we de�ne a ountable partition of G into sets An,m, where n ≥ −1and m ≥ 0.1. When m < n, we put Am,n = ∅.2. A−1,m = {wm} for m ≥ 0.3. We de�ne the sets An,m, m ≥ n ≥ 0, in two steps, assigning graduallyall elements of G distint from wm, m ≥ 0, to one of them.3(a) Consider a word wk, where k > 0, presented as uv,
v = xl−1xl−2 · · ·x0,as in the de�nition of derived words. Assume xl−1 is e±1

n (where
n > 2). If 0 ≤ i < l − 1 and xi is e±1

m (m > 2), then we inlude
wk,i+1 into Am′,n′ , where m′ = min(m,n) and n′ = max(m,n). If
u 6= wk−1 and so also wk,l = u is de�ned, we put wk,l into An,n.3(b) Assume a word w 6∈ {wk : k ≥ 0} was not inluded into any of thesets An,m in Step 3(a). Then w begins with some e±1

n and endswith some e±1
m . We inlude w into Am′,n′ , where m′ = min(m,n)and n′ = max(m,n).In this way we have de�ned a partition of G into sets An,m, n ≥ −1, m ≥ 0.We all the words wk, k ≥ 0, speial, and the words onsidered in Step 3(b)ommon.Now we desribe our example. We onsider the ountable ompat spae

X = ω ·ω+1, with the order topology. We identify the set of isolated pointsof X with the set of pairs (n,m) of integers, where n ≥ −1 and m ≥ 0. Morepreisely, we identify (−1,m) with α = m ∈ X and for n ≥ 0 we identify
(n,m) with α = ω(n + 1) + (m + 1). We an imagine the spae X as anin�nite array:

(−1, 0) (−1, 1) (−1, 2) . . . ω · 1

(0, 0) (0, 1) (0, 1) . . . ω · 2

(1, 0) (1, 1) (1, 2) . . . ω · 3... ... ... ...
ω · ωwhere the points ω · 1, ω · 2, ω · 3, . . . are limit points in their rows, and ω · ωis the limit point of them. Then we onsider a funtion f : G→ X given by

f(g) = (n,m) ⇔ g ∈ An,m.The example is an ℵ0-saturated group H, an elementary extension of the



218 L. Newelski and M. Petrykowskigroup G expanded by the prediates f−1[U ], where U ranges over the lopensubsets of X. To be more spei�, we mention expliitly some of these pred-iates.For an isolated α ∈ X let Pα(x) denote the prediate f−1[{α}] in G. For
α = ω · n, n > 0, let

Uα = {ω · (n− 1) +m : m > 0} ∪ {ω · n}and let Pα(x) denote the prediate f−1[Uα] in G.We de�ne 0-type-de�nable sets Xα, α ∈ X, in H. For an isolated α ∈ Xwe put Xα = Pα(H) (so Xα is de�nable). When α = ω · n, n > 0, we put
Xα = Pα(H) \

⋃

{Pβ(H) : β = ω · (n− 1) +m and m > 0}.Finally, for α = ω · ω we de�ne Xα as H \
⋃

{Pα(H) : α = ω · n and n > 0}.So Xα, α ∈ X, is a ountable overing of H by 0-type-de�nable sets. Wewill show that H \X−1
ω ·Xω is ountable.Indeed, Xω =

⋂

n Yn, where
Yn = Pω(H) \

⋃

0<m<n

A−1,m.Eah Yn is a 0-de�nable subset of H. By Lemma 4.1(3),(4) we see that
(Yn ∩ G)−1 · (Yn ∩ G) is a o-�nite subset of G. Sine H is an elementaryextension of the expansion of G, also Y −1

n · Yn is a o-�nite subset of H. Itfollows that X−1
ω ·Xω is a o-ountable subset of H.We will prove that

(∗) H 6= X−1
I ·XI for every �nite set I ⊆ X, where XI =

⋃

α∈I Xα.This is equivalent to the fat that for every �nite set I ⊆ X,
(∗∗) G 6= (f−1[U ])−1 · f−1[U ] for some open set U ⊇ I.To prove (∗∗), we an onsider a �nite set I of the form

IK = {(n,m) : n,m < K} ∪ {ω · n : 0 < n ≤ K} ∪ {ω · ω},where K < ω, sine any �nite subset of X is ontained in some IK . Thenfor eah M < ω the set
A(K,M) =

⋃

−1≤n<K

⋃

m<K

An,m ∪
⋃

−1≤n<K

⋃

m>M

An,m ∪
⋃

n>M

⋃

m<ω

An,m

equals f−1[U ] for some open set U ⊇ IK . So (∗∗) follows from the nextlemma.Lemma 4.3. For every K < ω there are N,M < ω suh that eN is equalto u−1v for no u, v ∈ A(K,M).



Weak generi types and overings of groups I 219Proof. Fix K < ω. Let N = K + 3, so N > 2. By Lemma 4.1, hoose
M > N so large that

eN 6= u−1 · v for any u, v ∈
⋃

m<K

A−1,m ∪
⋃

m>M

A−1,m.We laim that N and M satisfy our requirements in the lemma. Suppose forontradition that eN = u−1v for some u, v ∈ A(K,M). We will show thisis impossible by heking all ases.
Case 1: Both u, v are speial. Then eN 6= u−1v by the hoie of M .
Case 2: Both u, v are ommon. Then eN = u−1 · v implies one of u, vmust either begin or end with e±1

N . This is impossible by the hoie of N,M .
Case 3(a): u is speial , v is derived. Then u is an initial segment of v orvie versa. In the �rst ase v is put into AN,N at Step 3(a) of the onstrutionof An,m's, so v 6∈ A(K,M), a ontradition. The seond ase is impossibleby the hoie of wk, k ≥ 0.
Case 3(b): v is speial , u is derived. Similar to Case 3(a).
Case 3(): Both u, v are derived. Similar to Case 3(a).
Case 4. One of u, v is ommon and the other is speial or derived. A sim-ilar hek.Atually, we have obtained an example of an ℵ0-saturated group Hovered by ountably many 0-type-de�nable sets Xα, α ∈ X, suh that

H \X−1
ω ·Xω is ountable and H 6= X−1

I ·XI for every �nite set I ⊆ X. Ifwe replae the sets Xα by X−1
α , we get a overing suh that H \Xω ·X−1

ω isountable and H 6= XI ·X
−1
I for every �nite set I ⊆ X.5. Coverings of types. In this setion we onsider a omplete type

p(x) ∈ S(∅) in a omplete �rst-order theory T . We work in a monster model
C of T . We assume that p(C) × p(C) is overed by ountably many 0-type-de�nable sets Xn, n < ω. At the level of types this means that the spae
P = Sxy(∅) ∩ [p(x) ∪ p(y)] is overed by ountably many losed sets P ∩
[Xn(x, y)], n < ω. In this ase, as mentioned in the introdution, in [NP℄ wehave proved that(C1′) any a, b ∈ p(C) may be onneted by a path a, c1, c2, b of length 3so that the edges 〈a, c1〉, 〈c1, c2〉, 〈b, c2〉 lie in X<n for some n < ω.This statement and its proof are losely related to (C1). In Setion 1 wegave a new proof of (C1) (see Corollary 1.7), using (weak) generi types ina group. Here we give a new proof of (C1′), using a new notion of (weakly)-free extensions, generalizing non-forking extensions in the stable ase, and



220 L. Newelski and M. Petrykowskiorresponding to (weak) generi types in a group. To explain this orrespon-dene notie that to de�ne (weak) generi sets and types in a group all weneeded was just the transitive ation of G on itself by left translations. Hereinstead we have the ation of the group Aut(C) on C, whih is transitive on
p(C). This leads to the following de�nition, orresponding to De�nition 1.1.For U ⊆ C, the images of U under the automorphisms of C [�xing A ⊆ C℄are alled the onjugates of U [over A℄.Definition 5.1. We say that a set U ⊆ C is -free over p if p(C) isovered by �nitely many onjugates of U . We say that a formula ϕ(x) is-free over p if the set ϕ(C) is -free over p. We say that a type q(x) is -freeover p if every formula ϕ(x) with q(x) ⊢ ϕ(x) is -free over p.The  in �-free� stands for �overing�. In the stable ase, a formula ϕ(x)is -free over p i� p(x) ∪ {ϕ(x)} does not fork over ∅, and a formula ϕ(x)does not fork over ∅ i� ϕ(x) is -free over some q(x) ∈ S(∅). This follows e.g.from the open mapping theorem (see [Pi℄ for the bakground on forking instable theories). Hene in the stable ase -free = non-forking, and omplete-free extensions of p exist over any set A ⊆ C.In the simple and o-minimal ases this is not so. One ould say thatnon-forking loses there some of its overing properties from the stable ase.In partiular, omplete -free extensions may not exist (see e.g. the randomgraph and the o-minimal struture of the reals). As in Setion 1, to overomethis drawbak we weaken the de�nition.Definition 5.2. We say that a set U ⊆ C is weakly -free over p if U ∪Vis -free over p for some V ⊆ C that is not -free over p. We say that a formula
ϕ(x) is weakly -free over p if the set ϕ(C) is. A type q(x) is alled weakly-free over p if every formula ϕ(x) with q(x) ⊢ ϕ(x) is weakly -free over p.We are interested in the de�nable weakly -free sets (or even in relativelyde�nable subsets of p(C)). The next lemma provides an alternative de�nitionin this ase.Lemma 5.3. Assume U ⊆ C is de�nable. Then the following onditionsare equivalent.(1) U is weakly -free over p.(2) For some �nitely many onjugates Ui, i < n, of U the set ⋂

i<n U
c
iis not -free over p.(3) For some de�nable set V ⊆ C that is not -free over p, the union

U ∪ V is -free over p.Proof. See the proof of Lemma 1.3.Notie that Lemma 5.3 ould also be formulated for relatively de�nablesubsets of p(C). The next lemma orresponds to Lemma 1.4.



Weak generi types and overings of groups I 221Lemma 5.4.(1) If U1, U2 ⊆ C are not weakly -free over p, then U1∪U2 is not weakly-free over p.(2) If q(x) is a (partial) type over A ⊆ C that is weakly -free over p, thensome q′(x) ∈ S(A) extending q(x) is weakly -free over p. Neessarily ,
p(x) ⊆ q′(x).Let

Swcf,p(A) = {q ∈ S(A) : q is weakly -free over p}.We see that Swcf,p(A) is losed and non-empty. The next lemma orrespondsto Lemma 1.5.Lemma 5.5.(1) AssumeM is ℵ0-saturated. If some type in Swcf,p(M) is -free over p,then they all are.(2) If there is just one type in Swcf,p(A), then it is -free over p.Proof. (1) Suppose some type q(x) ∈ Swcf,p(M) is not -free over p. Thismeans that some M -de�nable set U ⊆ C that is -free over p an be dividedinto two M -de�nable sets A,B that are not -free over p. Say, U = ϕ(C,m),
A = ψ(C,m) and B = χ(C,m) for some formulas ϕ, ψ, χ and some m ⊆M .Then there are some �nitely many onjugates mi ⊆ M , i < n, suh that
p(x) ⊢

∨

i<n ϕ(x,mi). We will show that any type q′ ∈ Swcf,p(M) is not-free over p.Sine p(x) ⊆ q′(x), we see that q′(x) ⊢ ϕ(x,mi) for some i < n. Theneither q′(x) ⊢ ψ(x,mi) or q′(x) ⊢ χ(x,mi). Neither ψ(x,mi) nor χ(x,mi) is-free over p, hene q′ is not either.(2) A similar proof.As an example, notie that if T is o-minimal, then for any set of pa-rameters A, any non-algebrai type p(x) ∈ S1(∅) has just two extensions in
Swcf,p(A), and none of them is -free over p.We an de�ne (weakly) -free formulas over, and extensions of, a type
p′ ∈ S(A) for any A ⊆ C. Then we an say that a formula ϕ(x) is (weakly)-free over A if ϕ(x) is (weakly) -free over some p′(x) ∈ S(A). However, thenotion of weak -freeness does not, in general, have the nie properties ofnon-forking from the stable or simple ase.Reall that P denotes the spae Sxy(∅) ∩ [p(x) ∪ p(y)]. For any S ⊆ Pand a |= p let

Sa = {q(a, y) ∈ Sy(a) : q(a, y) ∈ S}.In partiular, Pa = Sy(a) ∩ [p(y)]. Notie that Sa is relatively open in Pa i�
S is relatively open in P . Let

Pwcf = {q(x, y) ∈ P : for a |= p, q(a, y) is weakly -free over p}.



222 L. Newelski and M. PetrykowskiThen Pwcf is losed, sine its omplement in P is relatively open in P . Notiethat in general q(x, y) ∈ Pwcf does not imply q(y, x) ∈ Pwcf , sine weak-freeness is not always symmetri. The next proposition orresponds toProposition 1.6.Proposition 5.6. Assume S ⊆ Pwcf is non-empty and relatively open.Then there are some �nitely many ci |= p, i < k, suh that for every b |= pthere is some d |= p suh that tp(b, d) ∈ S and tp(ci, d) ∈ S for some i < k.Proof. In this proof a �de�nable set� will mean a �relatively de�nablesubset of p(C) or of p(C)×p(C)�. We identify de�nable sets with the formulasthat (relatively) de�ne them.Choose a non-empty 0-de�nable set U ⊆ p(C) × p(C) with
S ⊇ Pwcf ∩ [U(x, y)].We an assume that S = Pwcf ∩ [U(x, y)]. Hene for any c |= p, U(c, y) isweakly -free over p. Choose a (relatively) de�nable set V = V (e,C) ⊆ p(C)that is not -free over p, but U ∪V is -free over p. Choose a �nite set (ci, ei),

i < k, of onjugates of (c, e) suh that
p(y) ⊢

∨

i<k

(U(ci, y) ∨ V (ei, y)).As in the proof of Proposition 1.6 we show that
(∗) the set (U(c,C) ∪ V (e,C)) \ S(c,C) is not -free over p.To �nish the proof, we show that for every b |= p there is some d ∈ S(b,C)with d ∈

⋃

i<k S(ci,C).If not, then there is some b |= p suh that d 6∈
⋃

i<k S(ci,C) for every
d ∈ S(b,C). Still d ∈

⋃

i<k(U(ci,C) ∪ V (ei,C)), and hene
S(b,C) ⊆

⋃

i<k

((U(ci,C) ∪ V (ei,C)) \ S(ci,C)).

Choose ek so that for ck = b, (ck, ek) and (c, e) are onjugate. Then we seethat
U(ck,C) ∪ V (ek,C) ⊆

⋃

i≤k

((U(ci,C) ∪ V (ei,C)) \ S(ci,C)),

hene the set on the right hand side is -free over p. Thus so also is the set
(U(c,C) ∪ V (e,C)) \ S(c,C), ontraditing (∗).Corollary 5.7. Assume S ⊆ Pwcf is non-empty and relatively open.Then there are some �nitely many types ri(x, y) ∈ P , i < k, suh thatfor every a, b |= p there are c, d |= p with tp(a, c) ∈ {ri : i < k} and
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tp(c, d), tp(b, d) ∈ S. Moreover , for every a |= p we an hoose ci |= ri(a, y),
i < k, so that for every b |= p there are c, d as above so that additionally
c ∈ {ci : i < k}.Proof. Let c0, . . . , ck−1 be as in the proof of Proposition 5.6. Let ri =
tp(c0, ci). Now onsider an arbitrary a |= p. Applying an automorphism of
C we an assume c0 = a. Then by Proposition 5.6 we are done.The next orollary was proved in [NP℄. Here we give a di�erent proof.Corollary 5.8. Assume P is overed by ountably many losed sets
Xn, n < ω. Then there are some �nitely many types ri ∈ P , i < k, anda natural number n suh that for every a, b |= p there are c, d |= p with
tp(a, c) ∈ {ri, i < k} and tp(c, d), tp(b, d) ∈ Xn.Proof. By the Baire ategory theorem some of the sets Xn ∩ Pwcf havenon-empty relative interior in Pwcf , so Corollary 5.7 applies.In the ase of a simple theory, weakly -free extensions are related tonon-forking extensions.Lemma 5.9. Assume T is simple and ϕ(x, a) is weakly -free over p ∈
S(∅). Then ϕ(x, a) does not fork over ∅.Proof. Choose a formula ψ(x, b) suh that ψ is not -free over p and
ϕ(x, a) ∨ ψ(x, b) is -free over p. So for some fi ∈ Aut(C), i < k, we have
p(x) ⊢ ϕ′(x, a′) ∨ ψ′(x, b′), where

ϕ′(x, a′) =
∨

i<k

ϕ(x, fi(a)) and ψ′(x, b′) =
∨

i<k

ψ(x, fi(b)).Then ψ′(x, b′) is still not -free over p. Suppose ϕ(x, a) forks over ∅. Then
ϕ′(x, a′) also forks over ∅, hene it divides over ∅. Thus for some gj ∈ Aut(C),
j < l, the set {ϕ′(x, gj(a

′)) : j < l} is inonsistent. We see that
p(x) ⊢

∨

j<l

ψ′(x, gj(b
′)),

hene ψ′(x, b′) is -free over p, a ontradition.Again, we do not know a simple theory where weak -freeness 6= non-forking.6. Open problems. We end this paper with a set of problems andquestions.
Problem 1. Find a group de�nable in a simple theory where weakgeneri 6= f-generi, or prove that in some ases still weak generi = f-generi.
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Problem 2. The �rst appliation of generi types was the fat that astable group G with regular generi types is abelian-by-�nite [Po℄. Is therea ounterpart of this result for weak generi types?
Problem 3. Find a simple theory where weak -freeness 6= non-forking,or prove that in some ases still weak -freeness = non-forking.
Problem 4. Determine the number k of steps needed to generate thegroup G (de�ned in the introdution) in the situation where G is de�nablein an o-minimal or simple theory. As we know, there are two possibilities:either k = 2 or k = 2.5. Is it true that in the o-minimal ase k = 2 holds?The ruial point here may be to realize how losely we may desribe (by atype-de�nable set) a free subgroup of G.
Problem 5. Assume G is an ℵ0-saturated group, overed by ountablymany sets Xn, n < ω. Corollary 1.7 says that in this ase G is generatedby �nitely many of them, in �nitely many steps. Is this still true if Xn areBorel? Can we still �nd a bound on the number of steps needed to generate

G (maybe depending on the Borel lass of the sets Xn)? This seems relatedto the question of how the notion of �rst Baire ategory is related to thegroup operation of G. In general, our results on ℵ0-saturated groups showsome similarity to those for ompat topologial groups.Assume G is a ompat topologial group, overed by ountably manyBorel sets Xn, n < ω. Then they have the Baire property (and are alsomeasurable with respet to the Haar measure). Hene there is some n < ωand some open non-empty set U ⊆ G suh that U \Xn is meager. It is easyto see that then G is generated by some �nitely many of Xn's in �nitelymany steps.
Problem 6. Strengthen Theorem 2.4 to make it hereditary. That is,de�ne a property C of subsets of an ℵ0-saturated group G suh that if atype-de�nable set X ⊆ G satis�es C, then G = X · X−1, and if X is splitinto ountably many type-de�nable sets Xn, n < ω, then for some n also

X<n satis�es C.
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