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Weak generic types and coverings of groups I
by

Ludomir Newelski and Marcin Petrykowski (Wroctaw)

Abstract. We introduce the notion of a weak generic type in a group. We improve
our earlier results on countable coverings of groups and types.

Introduction. Assume G is an Ng-saturated group, or even a group
type-definable in an Ng-saturated structure. Strictly speaking, by a group
we sometimes mean an expansion of a pure group structure. Assume G is
covered by countably many O-type-definable sets X,,, n < w. In [NP] we
proved that in this case some finitely many of the sets X, generate the
group G in at most k = 3 steps. More precisely, we proved that

(C1)  for some finite set A C G and some n < w we have G = A- X,,- X, 1.

So in a sense for an arbitrary Ng-saturated group G, k = 2.5 steps suffice
to generate G by some finitely many of the sets X,,n < w. In general, this
result cannot be improved (that is, k& = 2 steps may not suffice). However,
in [NP] we also proved that

(C2) if G is abelian, then G = X_,, - X_} for some n < w, where X, =
Uz’<n Xi‘
Thus in this case k = 2 steps are enough.

In this paper we give a new proof of (C1), using the notion of a weak
generic type in a group. This new notion generalizes that of a generic type in
a stable group, fundamental in stable model theory. Besides its applicability
in clarifying (C1) we predict it may play an important role in model theory,
particularly in unstable structures (like the o-minimal ones).

Regarding (C2), here we extend it in two ways. First, we generalize (C2)
to any amenable group G, giving a completely new proof. Secondly, extending
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the proof of (C2) from [NP], we prove a variant of (C2) for an arbitrary
group G. This raises a fascinating possibility of existence of a combinatorial
counterpart of the Banach mean in any group. Unfortunately, thus far it is
not clear to us what such a counterpart should be.

In [NP] we also gave model-theory-free versions of (C1) and (C2). Here
we do the same, giving model-theory-free versions of the results announced
above. They are in fact equivalent to their model-theoretic counterparts, but
less intuitive (at least to a model-theorist). Still, they may be appealing to
a non-model-theorist.

Assume p is a complete type over () in a complete first order theory 7.
Let M be an Rp-saturated model of T'. Assume p(M) x p(M) is covered by
countably many 0-type-definable sets X,,, n < w. We can regard p(M) as
the set of vertices of a complete directed graph I'. Then the sets X,,, n < w,
may be regarded as a colouring of the set of edges of I" into countably many
colours (so that one edge may have more than one colour). In [NP| we proved
that in this case

(C1") any a,b € p(M) may be connected by a path a,c1, ca,b of length 3
so that the edges (a,c1), {c1,c2), (b, c2) lie in X, for some n < w.

The proof in [NP] was a modification of the proof of (C1) there.

Here we introduce the notion of a c-free and weakly c-free extension of a
type, generalizing the notion of a non-forking extension in a stable theory.
Using this notion we give a new proof of (C1’). The notion of a weakly c-free
extension corresponds to that of a weak generic type in a group in the same
manner as the proof of (C1’) in [NP] corresponds to the proof of (C1) there.
We predict it may have more applications in unstable structures.

Possible counterparts of the extensions of (C2) announced above (like
the case of amenable groups) in the case of coverings of types are more
problematic, and we do not pursue them here. We conclude the paper with
a set of problems.

Throughout we use standard model-theoretic notation. The results on
amenable groups are due to the second author, the rest of the paper is due
to the first author.

We would like to thank Gabriel Sabbagh for interesting conversations on
this paper.

1. Weak generic types. In this section we assume G is an Ng-saturated
group, or even a type-definable group in an Ng-saturated model of a complete
first order theory 7. When G (or T') is stable, the notion of a generic type
of elements of G was introduced by Poizat [Po]. It became a fundamental
notion in geometric model theory. In the stable case we can define generic
types as follows [Wa, Pi].
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DEFINITION 1.1. We say that a set X C G is (left) generic if some
finitely many left G-translates of X cover G. We say that a formula ¢(z) is
(left) generic if the set p(G) of elements of G realizing ¢ is (left) generic.
Finally, we say that a type p(x) of elements of G is (left) generic if every
formula p(z) with p(x) - ¢(z) is (left) generic. By default, “generic” always
means “left generic”.

In the stable case left generic = right generic (defined by means of right
translations) and each partial generic type extends to a complete generic type
(over any set of parameters); moreover generic types may be characterized
there by means of forking and translation-invariant ranks.

While Definition 1.1 is appealing by its simplicity, it does not work well
in the unstable context. For instance, complete generic types in the sense of
Definition 1.1 may not exist in general. So in simple theories generic types
are defined by extending the definition from the stable case, which refers to
forking and ranks. However, in this paper we do apply Definition 1.1 in the
general setting, and to overcome its drawbacks we define a weaker notion, still
capturing the sense of being a “not-so-small” subset of G. Suppose X = AUB
is a generic subset of G. If B is not generic, then one could argue that A is
“not-so-small”. This justifies the following definition.

DEFINITION 1.2. We say that a set A C G is weak generic if AU B is
generic for some non-generic B C G. We say that a formula ¢(z) is weak
generic if the set ¢(G) is weak generic. A type p(z) of elements of G is weak
generic if every formula ¢(z) with p(x) F ¢(z) is weak generic.

We are interested mainly in the definable (weak) generic sets. For these
purposes, the next lemma provides an alternative definition. In the case
where G is type-definable in an Ny-saturated structure M, in the next lemma
and also throughout the paper by a “definable” subset of G we mean a
“relatively definable” subset of G.

LEMMA 1.3. Assume U is a definable subset of G. Then the following
conditions are equivalent.

(1) U is weak generic.

(2) For some finitely many elements ag, . ..,a,—1 € G, the set (), a;U°
18 not generic.

(3) For some definable non-generic set V- C G, the set UUV is generic.

Proof. (1)=-(2). Assume U is weak generic. Hence for some non-generic
set V' C @G, the set U UV is generic, meaning that for some finitely many
elements ag, ...,a,_1 € G we have

Ya@wuv)={Jaulu|JauV =0

<n <n <n
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This means that
ﬂ a;U° C U a;V.
<n <n
Since V' is not generic, neither is | J,_,, a;V/, and we are done.

(2)=(3). Let V ={),.,, a;U°. We see that V' is definable, not generic, and
putting a,, = e (the neutral element of GG), we find that G = J,,, a;(UUV),
hence U UV is generic.

(3)=(1) is trivial. =

In the next lemma we give some basic properties of weak generic sets and
types.

LEMMA 1.4.

(1) If Uy,Us C G are not weak generic, then Uy UUs is not weak generic.
(2) FEvery (partial) weak generic type over A C G can be extended to a
complete weak generic type over A.

Proof. (1) Let V' C G be non-generic. Since Us is not weak generic, UsUV
is not generic. Since U; is not weak generic, U1 U Us U V' is not generic. Hence
Uy U U; is not weak generic.

(2) follows from (1). =

We see that weak generic types exist. By Lemma 1.4, the set
WGen(A) = {p € S(A) : p is weak generic}

is closed and non-empty in S(A). The next lemma explains the relationship
between weak generic types and generic types, provided the latter exist.

LEMMA 1.5.

(1) If some weak generic type p(x) € S(G) is generic, then all weak
generic types q(x) € S(A) are generic.
(2) If there is just one weak generic type in S(A), then it is generic.

Proof. (1) Suppose some weak generic type q(z) € S(A) is not generic.
Extending ¢ to a weak generic type over G we can assume A = G. Then some
definable generic set X C G can be divided into two non-generic definable
sets A, B. Since X is generic, some left G-translate X’ of X belongs to p(x).
Then the corresponding translates A’, B’ of A, B are also non-generic, and
one of them belongs to p(z), hence p(z) is not generic.

(2) A similar proof. m

By Lemma 1.5, in the stable case weak generic = generic (for types and
definable sets). As an example notice that if G = (G, -, <,...) is o-minimal,
then there are exactly two complete weak generic types, corresponding to
+o00 and —oo, and they are not generic. Hence in (2) the assumption that
there is only one weak generic type cannot be weakened. Description of
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weak generic types in other groups definable in o-minimal structures is more
complicated; it will appear in a forthcoming paper by the second author.

The next proposition shows that weak genericity is related to generat-
ing G. We identify sets of types with subsets of the model consisting of the
elements realizing the types from these sets. That is, if P C S()), then some-
times we identify P with the set P(G) = [J{p(G) : p € P}. Also, if P is open
(closed, Borel etc.), then we call the set P(G) open (closed, Borel, etc.). In
particular, a closed subset of GG is just a O-type-definable one, and a clopen
subset of G is just a 0-definable one. For a formula ¢(z), [¢] denotes the
class of types containing ¢. We adopt a similar notation for types.

PROPOSITION 1.6. Assume P C WGen(()) is non-empty and relatively
open. Then for some finite A C G we have G = A - P(G) - P(G)™L.

Proof. Choose a non-empty 0-definable subset U of G with P D WGen())
N [U] # 0. We can assume that P = WGen(0)N[U]. Hence U is weak generic.
Choose a definable non-generic set V' C G such that UUV is generic. Choose
a finite set A C G with G = A - (U U V). We prove that

(%) the set (U UV)\ P(G) is not generic.

Suppose not. Then there is a finite set B C G with B - (UU V) \ P(G))
= (. By compactness, for some 0-definable set W with P(G) C W C U
we have B - (UUV)\ W) = G, i.e. the set (UUV)\ W is generic. Since
(UUV)\W CVU(U\W), it follows that the set U \ W is weak generic.
But [U \ W] N WGen(0) = ), contradicting Lemma 1.4(2).

To finish the proof, we show that G = A - P(G) - P(G)™!, that is, for
every g € G there is some h € P(G) with g-h € A- P(G).

If not, then there is some g € G such that for every h € P(G) we have
g-hgA-P(G). Stillg-he A-(UUV), hence g-he A- (UUV)\ P(Q))
and P(G) C g1 -A-(UUV))\ P(Q)). We see that

UUV =((UUV)\P(G)UP(G)C({e}ug™-A)-(UUV)\ PQ)),
and G=A-({e}ug t-A)-(UUV)\ P(Q)), contradicting (*). =

Using Proposition 1.6 we may give a new proof of [NP, Theorem 2.1],
which we restate as Corollary 1.7 below.

COROLLARY 1.7. Assume an Ng-saturated group G is covered by some
0-type-definable sets X,, n < w. Then for some finite A C G and some
n < w we have G =A- X, - X, L.

Proof. At the level of types, S() is covered by countably many closed
sets [Xp], n < w. Hence by the Baire category theorem, for some n, the
set [X,,] N WGen() has non-empty relative interior in WGen()). We apply
Proposition 1.6. =
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If the theory of G is simple, generic types are usually defined via forking.
Namely, we say that a formula ¢(z,a) is generic in G if for every b € G,
the formula ¢(b - x,a) does not fork over () (see [Wa]). Here we will call a
formula with this property f-generic, to distinguish it from the notion from
Definition 1.1. Similarly, we call a type f-generic if every formula it implies
is f-generic. The next lemma shows that in simple theories “weak generic”
and “f-generic” are related.

LEMMA 1.8. If Th(G) is simple and ¢(x,a) is weak generic in G, then
o(z,a) is f-generic.

Proof. We may assume a = (). Let V = ¢(G) and choose a non-generic
definable set U C G with U UV generic. Choose a finite set A C G with
A-(UUV) = G. Suppose for contradiction that ¢(z) is not f-generic. Then
each translate of V' and also any union of finitely many such translates is
not f-generic (see [Wal). Let ¢(x) be a formula defining the set A - V. Since
1 is not f-generic, some left translate of v forks over (). In simple theories,
forking = dividing, hence we find an infinite indiscernible sequence b;, i < w,
with (), b; - A-V = 0. So, for some n < w we have (,_, b; - A-V = {).

To reach a contradiction, we will prove that U is generic. We know that
A-(UUV)=G. Hence also b; - A-U Ub; - A-V = G for every i < n. Thus

G\Jb-A-UC(\bi-A-V =0,
<n <n

meaning that | J,_, b;- A-U = G, a contradiction. =

<n

Usually in the simple unstable case, generic types (in the sense of Defini-
tion 1.1) do not exist in a group G; however, weak generic types do, and by
Lemma 1.8 they form a closed subset of the set of f-generic types. As usual
with simple theories, we know of no example where in a group G with simple

theory an f-generic formula is not weak generic.

2. The case where two steps suffice. Again assume G is an Ng-
saturated group, covered by countably many 0-type-definable sets X,,, n <w.
In [NP] and in Section 1 we showed that in general G as a group is generated
by some finitely many of the sets X, in k = 2.5 steps. Sometimes k = 2 steps
suffice, that is, for some n, G = X, - X_}, where X_,, = Uicn Xi. In [NP]
we proved that it is so when G is abelian or stable. Here we improve this
result by replacing “abelian” with “amenable”. Also, we give a uniform proof
for both the amenable and stable cases.

Recall [W] that a group G is amenable if there exists a finitely additive
measure £ on P(G) such that 4(G) = 1 and p is left-invariant (i.e. u(g-A) =
w(A) for every g € G and A C ). We call any such p a Banach mean on G.
Amenable groups form a large class, including solvable groups, and more
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generally all groups without a paradoxical decomposition. However, no non-
abelian free group is amenable. Any stable group is also “amenable” in the
following weak sense.

PROPOSITION 2.1. Assume G is stable. Then there is a finitely additive
left-invariant measure p with u(G) = 1, defined on the algebra Def(G) of all
definable subsets of G.

Proof. Let G be the set of generic types of G (over acl®d()). As pointed
out in [Nel|, G is a compact topological group, with the topology induced
from S(acl®¥(())). The group operation is the independent multiplication of
types: 71 % ro = stp(aq - az), where a1 and ag are independent realizations of
1,79 respectively. The generic type of the connected component G of G is
the identity element of G. Let v be the Haar measure on G. Then v induces
a measure y on Def(G) as follows. Let ¢(x,a) be a formula. We associate
with ¢ the set

Vo ={r € G : ¢(z,a) belongs to the non-forking extension of r}.

It is a relatively clopen subset of G. We define pu(o(G,a)) as v(V,). This
works. m

The proof of Proposition 2.1 shows that in fact  may be extended to the
o-algebra of sets generated by Def(G), and p is o-additive. We will not need
this, however. We will use the following lemma on finitely additive measures.

LEMMA 2.2. Assume X is a set and i is a finitely additive finite measure
on an algebra A of subsets of X. Assume for some € > 0 we have a family A,
n < w, of sets from A with u(A,) > € for all n. Then for some increasing
sequence (nk)g<w of natural numbers, and each i < w,

p(Ang NN Ay,) > 0.
Proof. First we prove that under the assumptions of the lemma,

(¥)  there are n < w and &’ > 0 such that the set {m : u(A, N A,;,) > €'} is
infinite.

If not, for every n < w and ¢’ > 0, the set {m : u(A, N A,,) > &'} is finite.
Let k be a positive integer such that p(A4,) > 2/k for every n < w. Put

ng = 0 and for each ¢ = 1, ...,k — 1 choose recursively n; < w so that for all
J <, p(Ap; N Ay;) < 1/(ki). We have

u(Uan) = Sa(aUa) > S (2 1) -1

= = 1< =

a contradiction.
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Having proved (x), we define recursively numbers ng, k < w, so that for
each k < w we have

(xx)  for some &’ > 0, the set Z = {m : p(Ap, N---NA,, NAy) >c'}is
infinite.

For k = 0 we define ng by (x). For the recursion step, suppose we have defined
no, - . ., Nk so that (x%) holds. We will define ng4q. Let X' = A,,N---NA,,
and for m € Z set A}, = X' N A,;,. We see that X’ and A/ ,m € Z, satisfy
the assumptions of the lemma for the restricted u, so that in this situation
(*) holds. Let nj be the n furnished by (x). This finishes the construction
and the proof. =

THEOREM 2.3. If G is stable or amenable, and G is covered by countably
many 0-type-definable sets X, n < w, then G = X, - X;,ll for somen < w.

Proof. Stability and amenability of G together imply that there exists a
finitely additive left-invariant measure p on Def(G) with u(G) = 1. For the
sake of contradiction assume that for any n < w we can find a,, € G\ X<y, -
X;TIL. By compactness there is a formula ¢, (x) such that X, C ¢,(G) and
an & on(G) - on(G)~L. We have

G = —¢n(G) Uay - pn(G).

Since pu(—¢n(G)) = wulay - 7pn(G)), it follows that p(—p,(G)) > 1/2 for
each n < w. By Lemma 2.2 we are able to choose an increasing sequence
(nk)k<w with

p(2Png (G) N -+ N =, (G)) > 0

for every k < w. On the other hand, {¢,, (G) : k < w} is a family of definable
sets covering G, so we can choose a finite subcovering {¢,, (G) : kK < K} (for
some K < w). Then pu((,c g —¢n, (G)) = u(0) = 0, a contradiction. =

In particular, the conclusion of Theorem 2.3 holds when G is abelian
(since each abelian group is amenable). This special case was already proved
in [NP]. However, the proof of Theorem 2.3 is completely different. The proof
in [NP] is in a way more direct and it does not refer to such an ambiguous
and ineffective object as a Banach mean on a group. One could wonder if it is
possible to extend the proof from [NP] to deal not only with abelian groups,
but also with some other amenable groups, like for instance the nilpotent
or solvable ones. We have found however another striking way to generalize
the proof from [NP]. For X C G and a,z € G, let 2% denote ¢~ 'za and
X®={z%:x € X}. We have the following theorem.

THEOREM 2.4. Assume G is an Ng-saturated group covered by countably
many 0-type-definable sets X,,, n < w. Then for some finite set A C G and
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some n < w we have

G=JXan X0,
a€A

that is, G is covered by the set of a-conjugates of Xy, X;}l, a€ A.

When G is amenable, Theorem 2.4 follows from Theorem 2.3 (with A
= {e}). Before the proof we recall a construction from [Ne2, NP].

Assume X is a compact topological space covered by a family A of subsets
of X. We define an increasing sequence Z,, « € {—1}UOrd, of open subsets
of X. We put Z_1 = 0, Zoy1 = Upeqint(Zo U A) and for limit o, Z, =
Uﬁ<a Zg. The sequence (Z,) is called the open analysis of X with respect
to A. By the Baire category theorem if A is a countable family of closed sets
covering X, then Z, = X for some a.

Proof. The proof of Theorem 2.4 will be a modification of the proof of
[NP, Theorem 3.1], where G is abelian. Let Y = S(0)) and Y,, = S(0) N
[Xn(2)]. Let Zo, a € {—1} UOrd, be the open analysis of Y with respect
to Y,, n < w. So Z, =Y for some a. For a closed set C C Y let v(C) be
the minimal ordinal (or —1) such that C' C Z (. So 7(l)) = —1 and by
compactness, for each closed C, ~(C) equals —1, 0, or is a successor ordinal.

Suppose the theorem fails. We define recursively 0-definable sets A4,, C G,
elements a,, € G and closed sets C), C Y, n < w, so that the following hold.

(a) Cp, ={tp(a) :a € A,}.

(b) For every U C n, aUana(}l is not of the form h1h2_1 for any hq, ho €
G\ A,,. Here ay = aj, - - - aj,_,, where ig < --- < ij_1 is the increasing
enumeration of U. For U = () we stipulate ayy = e, the neutral element
of G.

(c) Forall k <w and all 49 < -+ < iy <w, if Y NCjyN---NCj,_, #0,
then

YYNCiyN---NCy) <y(YNCipyN---NCi_,).
Assume we have defined A;, C;, a; for all i < n. We choose N < w so that
for every k <w and all i < -+ < ip <w withY NC;,N---NCj,_, #0,
Y NCiyn---NCiy )\ Zy—1 € Yen,
where y =Y NCiyyN---NCi,_,).

Let A = {ay : U C n}. Since G # U,ca(X<nX_p)?, by compactness

there is a formula ¢(x) over () such that X.n C ¢(G) and
G# J@(@p(@))"
acA

We put A, = G\ ¢(G), choose a,, € G\ e4(0(G)p(G)™1)* and define C,
accordingly. Then (a) and (b) hold. The choice of N ensures (c).
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Since there is no infinite decreasing sequence of ordinals, the family of
closed sets Cj, n < w, has no infinite subfamily with the finite intersection
property. It follows that

(d) Every infinite set  C w has a finite subset I’ with (. An, = 0.

Now we sketch the idea of the proof. If the sequence (A, ap)n<, is order-
indiscernible with respect to all relations

aio---aikfleAj (2'0<---<ik_1<w,j<w),
then we easily reach a contradiction. Namely, for j & {ip,...,ix_1}, by (d)
we have
hQ = aioail s aik_l € Aj.
Say, ig < -+- < i1 < J <4 < -+ < ip_y. Ifalso hy = a4y ---a;,_,aja; -
a;, , € Aj, then

hlhgl =aj, - aiz-ﬂ]’“iil . -a;ol
would contradict (b). So aj, - - - ai,_,a;a; - --a;,_, € Aj;. By indiscernibility,
ap---ap € AgN---N A, for all n < w, contradicting (d) again.

This reasoning would lead to a contradiction even if we had an infinite
subsequence of (A, a,)n<w order-indiscernible in the above sense. However,
since here we need indiscernibility with respect to infinitely many relations,
we cannot hope for such a subsequence to exist. Instead, in [NP] we in-
troduce a notion of (a, k)-indiscernibility (where o < wi, K < w), which
approximates full order-indiscernibility.

Let « be the order type of the set

={H¥nNC,yn---NCj,_,):k<wandig < - <ip_1 <w}.

Since {2 is countable, @ < wj. Now we work with an («,0)-indiscernible
subsequence of (A, an)n<w, reaching a contradiction precisely as in [NP]. m

The proofs of Theorem 2.4 and its predecessor, [NP, Theorem 3.1], remain
mysterious to us. Theorem 2.3 suggests that in the special case where G is
abelian, Theorem 2.4 just tells us something about the amenability of G.
But Theorem 2.4 is about an arbitrary group, possibly non-amenable. This
suggests a possibility of finding a combinatorial counterpart of the Banach
mean in an arbitrary group. This may require improving Theorem 2.4 in a
way that we will try to suggest now.

Corollary 1.7 says that for some finite A C G and some n* < w we have
G=A X, - X' Our feeling is that this means that X, is large in some
sense. Now suppose we refine our covering, presenting each X, as a union
of countably many 0O-type-definable sets X,, ;, k¥ < w. If X« is large, then
one would expect that one of the sets X, should also be large, that is, for
some finite A’ C G and some k < w we should have G = A" - X« . - Xn_*l,k'
This may not be true.
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For example, one can construct recursively an infinite subset B of Z
such that every non-zero integer can be uniquely presented as a — b, where
a,b € B. Moreover, we can ensure that B can be split into two disjoint sets
By, By such that for both sets By — By and By — B; there are arbitrarily
long intervals disjoint from them. Consider the structure (Z,+) expanded
by the predicates B, By, By. Let G be an Ny-saturated elementary extension
of (Z,+,B,Bo,Bl). Let XO = B(G), and X1 = B(G)C Then XO - XO =G.
Let Xo,0 = Bo(G) and Xo1 = B1(G). Then X = Xo0U Xo,1, but for every
finite A C G we have G # A+ Xo; — Xo4, 1 =0, 1.

However, the current proof of Corollary 1.7 suggests the right notion of
largeness here. Namely, we can consider a 0-type-definable set X C G to be
large if WGen N [X] has non-empty interior in WGen. Then if X« is large,
then so is X, j, for some k.

Now assume G is amenable. By Theorem 2.3, G = X~ - X;}l* for
some n*. This suggests that X« is large in some sense. This should mean
that refining our covering X,,, n < w, to a covering X, 1, n,k < w (as
above), it should be the case that for some k* < w, the set X+« o4« =
Uicn= Uj<k;* X ; is large, meaning that G = X« <+ - X;’rlb*,<k‘*'

This may fail. For example, assume G has a definable subgroup H of
index 2. Let X1 = H \ {e} and X¢ = G\ X1. Then G = X, - X;; . However,
if we split X into infinitely many non-empty sets X, k¥ < w, then it is not
true that G = Xy <, - X()_,ik for some k.

We can correct this as follows. Assume p is a Banach mean on G. For a
subset X C G define the “exterior” measure p*(X) by

p(X) =inf{u(U): X CU C G and U is 0-definable}.

We say that X is large if ©*(X) > 1/2. Then one sees that if X is large and
0-type-definable, then G = X - X!, Actually, the set Xy from the above
example is not large, since u*(Xp) = 1/2. A counterpart of Lemma 2.2 holds
for u* in place of u. Using this we see that if G is covered by O-type-definable
sets X;,, n < w, then for some n* we have p*(Xp+) > 1/2,i.e. X« is large
(and G = Xy -X;}l*). This notion is hereditary: if we consider a refinement
Xnk, N,k <w, of our covering and X+ is large, then for some k* we have
W (Xens <) > 1/2 (whence G = X < 'erlz*,<k*)'

We do not see how to make Theorem 2.4 hereditary in the same manner.
We believe that finding a way to do so could reveal a notion of “largeness”
which would be a remote combinatorial counterpart of the Banach mean in
an arbitrary group.

Another argument for a possibility of generalizing the Banach mean is as
follows. In the special case of abelian group our original complicated proof
of Theorem 2.4 from [NP] was replaced here by an easier proof, using the

Banach mean. Now, we have an equally complicated proof of Theorem 2.4.
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It is possible that a simplification of this proof (if it exists) would involve a
general counterpart of the Banach mean.

Theorem 2.4 has an interesting corollary. Thus far we have considered
arbitrary 0O-type-definable sets X,, C G, possibly in a language larger than
that of pure groups. For pure groups we can say more.

COROLLARY 2.5. Assume X, C G, n < w, are 0-type-definable in the
pure group language. Then G = Xy, - X;,ll for some n < w.

Proof. By Theorem 2.4, for some n, some finitely many conjugates of
Xen - X 2711 cover (G. But since we are in the pure group structure, for any
a € G we have X¢ = X, so we are done. m

3. Model-theory-free versions. In this section G is an arbitrary infi-
nite group, X is a compact topological space and f : G — X is any function
such that f[G] is dense in X. In this setting we prove the counterparts of the
results from Sections 1 and 2. First we define the notion of [weak| genericity
in this new context.

Assume U C X. We call U generic if G = A - f~1[U] for some finite
set A C G. We call U weak generic if for some non-generic V' C X, the set
U UV is generic. We call a point p € X [weak] generic if every open set U
containing p is [weak| generic. Let Gen and WGen be the sets of generic and
weak generic points of X, respectively. The next lemma has a similar proof
to Lemma 1.4.

LEMmMmA 3.1.

(1) If Uy, Us C X are not weak generic, then Uy UUs is not weak generic.

(2) Both WGen and Gen are closed subsets of X, Gen C WGen and
WGen is non-empty.

(3) Ewvery open set U containing WGen is generic.

Proof. For example, we will prove (3). Since no point in X \ U is weak
generic, by compactness we can find finitely many non-weak-generic open
sets Vp, ..., Vi (for some k < w) such that U UVyU--- UV, = X. Then by
(1) also V.= VyU---UVj is open and not weak generic, and still UUV = X.
Since X is generic, so is U. =

For example, if G is a compact topological group, X = G and f = id,
then any point p € G is generic. Generic points not always exist, and this is
why we deal with weak generic points instead. For example, assume G is the
additive group of the reals, X = GU{+o00, —c0} is a 2-point compactification
of G, and f =id. Then —oco and +oo are the only weak generic points of X,
and they are not generic. Our idea behind this definition is that if p € X
is [weak| generic, then the group G is “concentrated” around p more than
around a non-|weak|-generic point. Also, we think that investigating the
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set of weak generic points reveals how similar the triple (G, X, f) is to the
case of a compact topological group. The next proposition corresponds to
Proposition 1.6.

PROPOSITION 3.2. Assume S is a non-empty, relatively open subset of
WGen. Then there exists a finite set A C G such that G = A - f~U] -
(f7LHU) ™! for every open set U O S.

Proof. Using normality of X choose a relatively open non-empty subset
S" of S with cl(S") C S. Then cl(S") and WGen \ S are closed disjoint sets,
hence there is an open set V' C X such that c¢l(S") CV and cl(V)NWGenCS.

Since V is weak generic, there is a non-generic set W C X such that
V UW is generic. Choose a finite set A C G with G = A - f~{[V U W]. We
will prove that A satisfies our demands.

So let U 2 S be open. By normality (working in the subspace U U V),
there is an open set V/ C V such that

A(VYNUNWGen=0 and UUV=UUV"

Since

c(V)NWGen C cl(V) N WGen C S C U N WGen,

we see that cl(V') N WGen = (). This means that V' is not weak generic,
hence V' U W is not generic.

We will prove that G = A - f~U] - (f7'[U])~!. If not, then there is
some g € G such that for every h € f~1[U] we have g-h & A - f~{[U]. Still
g-h € A-f7HVUW], hence g-h € A-f~{[V'UW]and h € g~ - A- f L V'UW].
We see that f~L[U] C gt A- f71[V/ U W], hence

fAvuwlc AV uwu iUl C ({efug™ - A) - fTHV U W]
and G=A-flHVUuW]=A4-{e}ugt-A) - f V' UW]. So V'UW is

generic, a contradiction. m

COROLLARY 3.3. Assume f : G — X, where G is a group and X is a
compact topological space covered by countably many closed sets X,, n < w.

Then there exist a finite set A C G and n < w such that for every open set
U D X, we have G = A- f~1[U] - (f~{U])~L.

Proof. By the Baire category theorem, for some n the set S = X, WGen
has non-empty relative interior in WGen, hence the conclusion follows from
Proposition 3.2. =

Proposition 1.6 and Corollary 1.7 follow from Proposition 3.2 and Corol-
lary 3.3. Namely assume for a moment that G is Ng-saturated. Then we can
take X = S(0) and f : G — X may be defined by f(a) = tp(a). Then the
notion of a [weak| generic type translates to that of a [weak| generic point,
and a covering of G by O-type-definable sets corresponds to a covering of
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X by closed sets, whence Proposition 3.2 and Corollary 3.3 apply. However,
they are not really stronger than Proposition 1.6 and Corollary 1.7.

To be more specific, consider the following situation. Assume that besides
f : G — X we have yet another function f’ : G — X', where X' is also a
compact topological space with f’[G] dense in X', and there is a continuous
function i’ : X’ — X such that the following diagram commutes:

X/

Let Gen’ and WGen’ denote the sets of generic and weak generic points of
X', respectively (with respect to f': G' — X').

LEMMmA 3.4.

(1) WGen C h[WGen'].
(2) If h restricted to f'|G] is 1-1, then WGen = h[WGen'].
(3) Gen D h[Gen].

Proof. (1) Assume p € WGen \ h[WGen']. Choose an open U > p with
cl(U) N h[WGen'] = (. Let U' = h~![U]. Then U’ is open and cl(U’) N
WGen' = (). It follows that U is weak generic and U’ is not weak generic.
Choose a non-generic W C X with U UW generic. Let W’ = h~}[W]. Then
U'UW' = h=YU U W] is generic. Since U’ is not generic, we infer that W’
is generic, hence also W is generic, a contradiction.

(2), (3) Similar proofs. =

The largest possible X’ we can take in the above diagram (so that h is
1-1 on f'[G]) is the space B(f[G]) (the space of ultrafilters on f[G]). Then
f': G — X' is the function induced by f, and there is a natural continuous
function h : X’ — X such that the above diagram commutes. By Lemma
3.4(2), h[WGen'] = WGen. In this situation X’ is 0-dimensional. We expand
G by predicates (f')~![U], where U C X' is clopen. Then WGen’ (hence
also WGen) is a continuous image of the set of weak generic types of the
Np-saturated extension of this expansion of G. In this way Proposition 3.2
and Corollary 3.3 follow from Proposition 1.6 and Corollary 1.7.

The largest possible X in f : G — X is the space 3(G) of ultrafilters
on G (and then f maps g € G to the principal ultrafilter generated by g).
Then no point in X is generic. The other extreme is the case where X is a
singleton or X = GG and f = id (in the case where G is a compact topological
group). Then any point is generic.
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Although the non-model-theoretic formulation of our results may be of
independent interest, we think that the model-theoretic presentation is more
elegant here. The following theorem is slightly stronger than its model-
theoretic version.

THEOREM 3.5. Assume f : G — X, where G is an amenable group
and X is a compact space covered by countably many sets X,,, n < w (not
necessarily closed). Then there is an n < w such that for every open set

U 2 Uicp Xi we have G = f7HU]- (f7H U]~

Proof. Let p be a Banach mean on G. For the sake of contradiction
assume that for every n < w we can find an open set U,, O X, such that
G # fYU - (fF7HUL) 7L Let A, = G\ f~!U,] and choose a,, € G\
f_l[Un] ’ (f_l[UnD_l-

Now if g € G, then either g ¢ f~1[U,] or a;;!-g & f~'[U,], which means
that G = A, Ua, - Ay. Since u(A,) = p(an - Ay), we have u(A,) > 1/2 for
each n < w.

By Lemma 2.2 we are able to choose an increasing sequence (ny) of
natural numbers with p(A,, N---N Ay, ) > 0 for every k < w. On the other
hand, {U,, : k < w} is a family of open sets covering the compact space X, so
we can choose a finite subcovering {U,,, : k < K}. Then {f1[U,,] : k < K}
is a finite family of sets covering G, so A,, N---N Ay, = 0. This implies
that p(Ap, N---N Ay, ) =0, a contradiction. =

The next theorem corresponds to Theorem 2.4.

THEOREM 3.6. Assume f : G — X, where G is a group and X is a
compact space covered by countably many closed sets X,, n < w. Then there
are a finite set A C G and a natural number n such that for every open set
U containing X, we have

G=Uu oo
acA
Proof. The proof is similar to that of Theorem 2.4. Suppose the theorem
fails. Let Z,, a € {—1} U Ord, be the open analysis of X with respect to
Xn, n < w. For a closed set C C X let v(C) be the minimal number such
that C C Z’y(C)' We define recursively closed sets C,, C X and elements
an € G, n < w, so that the following hold.

(a) For every V C n, avanay’ & f[X\Cul- (f 71X\ Cul) ™" (here ay
is defined as in the proof of 2.4).

(b) Forall k <wand all ig < -++ < iy <w with XNCjyN---NCj,_, #0
we have

'Y(chiom"'mcik)<’Y(chiom"'mcik,1)-
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Having defined C; and a; for each ¢ < n we want to define C,, and a,,. The
crucial point of the recursive step is as follows. For a large natural number
N (chosen so as to satisfy (b)), there is an open set U O Xy such that

¢ U ol gtion
acA
where A = {ay : V C n}. Then we put C,, = X \ U and choose

an € G\ | J U1 0T
a€A
The rest of the proof is as before. =

4. An example. In this section we are again interested in an Ny-saturat-
ed group G covered by countably many 0-type-definable sets X,, n < w.
Suppose G \ X<y, - X;}L is countable for some n. Usually in model theory a
countable subset of an Nyp-saturated model is considered small. In particular,
in our case, if G\ X, - X;,}L is countable, then G\ X, - X;,}L C acl(f). So
one could wonder if in this situation there is a possibly larger n’ such that
G=Xp - X;ll,. Here we give an example showing it may not be so.

Let G be the free group with free generators e,, n > 0. We regard
elements of G as irreducible words in letters efl. Let {v, : k < w} be
an enumeration of G (without repetitions) such that |vg| < k. We define
words wi € G, k < w, as follows.

e wy = e = ¢ (the empty word, the neutral element of G).

® Wop 1 = Wk - eé-, where | =1+ )", o, |w;| and j € {0,1,2} is chosen
so that neither woyy ends nor v begins with e]il.

® Wok42 = W2k4-1Vk-

LEMMA 4.1.

(1) Each wy, is an irreducible word.

(2) Each wy, is an initial segment of wy1.

(3) Each vy, equals wl_1 -wy for some [, 1.

(4) Each vy, equals wl_l -wy for at most finitely many distinct [,t < w.

Proof. (1)-(3) are obvious. For (4) notice that if [ # ¢, then in its irre-
ducible form the word w;, 'w; has length > max{l,t}. m

For each wy,, k > 0, we define a derived sequence of words wy, ; as follows.
We present wy, as uv, where v is the longest suffix of wy, in letters e,fl, n > 2.
Notice that wy_1 is an initial segment of u. Write v as x;_1x;_o - - - xg, where
| <wand z; € {ef! : n > 2} (v may be empty, then [ = 0). We define wy,;
as

Wi = Ux]—1T—2---; for 0 <i <,

and if wy_1 # u, then we additionally define wy,; as wu.
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In this way none of the words wy, k < w, is a derived word.

LEMMA 4.2. If each of u,v is derived or is one of the words {wy, : k > 0},
then one of u,v is an initial segment of the other.

Now we define a countable partition of G into sets A, ,,, where n > —1
and m > 0.

1. When m < n, we put A, ,, = 0.

2. A1 = {wp} for m > 0.

3. We define the sets A, ,»,, m > n > 0, in two steps, assigning gradually
all elements of G distinct from wy,, m > 0, to one of them.

3(a) Consider a word wy, where k > 0, presented as uv,

UV =2]1T]—2 """ X0,

as in the definition of derived words. Assume z;_ is ! (where

n>2).1f0<i<l—1andz;is ef! (m > 2), then we include
Wk i+1 into Ay 7, where m’ = min(m, n) and n’ = max(m, n). If
u # wy—1 and so also wy; = u is defined, we put wy,; into Ay, .
3(b) Assume a word w & {wy, : k > 0} was not included into any of the
sets Apm in Step 3(a). Then w begins with some e;! and ends
with some e, We include w into A, ,/, where m/ = min(m,n)
and n’ = max(m,n).
In this way we have defined a partition of G into sets A,, ,,, n > —1, m > 0.
We call the words wy, k > 0, special, and the words considered in Step 3(b)
common.
Now we describe our example. We consider the countable compact space
X = w-w+1, with the order topology. We identify the set of isolated points
of X with the set of pairs (n, m) of integers, where n > —1 and m > 0. More
precisely, we identify (—1,m) with a = m € X and for n > 0 we identify
(n,m) with @« = w(n + 1) + (m + 1). We can imagine the space X as an
infinite array:

(-1,0) (-1,1) (-1.,2) ... w-1
(0,0) (0,1) 0,1) ... w-2
(1,0) (1,1) (L,2) ... w-3
W w
where the points w-1,w-2,w-3,... are limit points in their rows, and w - w

is the limit point of them. Then we consider a function f : G — X given by

f(g) = (7’L, m) < g€ An,m-

The example is an Ng-saturated group H, an elementary extension of the
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group G expanded by the predicates f~1[U], where U ranges over the clopen
subsets of X. To be more specific, we mention explicitly some of these pred-
icates.

For an isolated a € X let P,(x) denote the predicate f~![{a}] in G. For
a=w-n,n>0,let
Up={w-(n=1)+m:m>0}U{w- n}
and let P,(z) denote the predicate f~![U,] in G.

We define 0-type-definable sets X, o € X, in H. For an isolated a € X
we put X, = P,(H) (so X, is definable). When @ = w - n, n > 0, we put

Xo = Po(H)\| {Ps(H): B=w(n—1)+m and m > 0}.

Finally, for « = w - w we define X, as H \ | J{Pa(H) : @« = w-n and n > 0}.
So X., a € X, is a countable covering of H by 0-type-definable sets. We
will show that H \ X! - X, is countable.
Indeed, X,, =(),, Yn, where

Yo=P,(H)\ |J A-1m.

0O<m<n

Each Y,, is a O-definable subset of H. By Lemma 4.1(3),(4) we see that
(Y,NG)™'- (Y, NG) is a co-finite subset of G. Since H is an elementary
extension of the expansion of G, also Y, ! -Y,, is a co-finite subset of H. It
follows that X1 - X, is a co-countable subset of H.

We will prove that

(x) H# X;l - X1 for every finite set 1 C X, where X; = |J,c; Xa-
This is equivalent to the fact that for every finite set I C X,
(%) G # (fHU])~t- f71U] for some open set U D I.
To prove (*x), we can consider a finite set I of the form
Ix ={(n,m):nm< K}U{w-n:0<n<K}U{w-w},

where K < w, since any finite subset of X is contained in some Ix. Then
for each M < w the set

ARM= ) U4mu U U 4mv U U 4m

—1<n<K m<K —1<n<K m>M n>M m<w

equals f~1[U] for some open set U D Ix. So (*x) follows from the next
lemma.

LEMMA 4.3. For every K < w there are N, M < w such that en is equal
to utv for no u,v € A(K, M).
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Proof. Fix K < w. Let N = K + 3, s0 N > 2. By Lemma 4.1, choose
M > N so large that

eN # uw™ v for any u, v € U A_1m U U A_1m.
m<K m>M
We claim that NV and M satisfy our requirements in the lemma. Suppose for
contradiction that ey = u~lv for some u,v € A(K, M). We will show this
is impossible by checking all cases.

CASE 1: Both u,v are special. Then ey # u~'v by the choice of M.

CASE 2: Both u,v are common. Then ey = u~! - v implies one of u,v

must either begin or end with eﬁl. This is impossible by the choice of N, M.

CASE 3(a): u is special, v is derived. Then u is an initial segment of v or
vice versa. In the first case v is put into Ay n at Step 3(a) of the construction
of Apm’s, so v & A(K, M), a contradiction. The second case is impossible
by the choice of wg, k > 0.

CASE 3(b): v is special, u is derived. Similar to Case 3(a).
CASE 3(c): Both u,v are derived. Similar to Case 3(a).

CASE 4. One of u, v is common and the other is special or derived. A sim-
ilar check. m

Actually, we have obtained an example of an Ng-saturated group H
covered by countably many O-type-definable sets X,, @ € X, such that
H\ X;l - X is countable and H # X;l - X7 for every finite set 1 C X. If
we replace the sets X, by X!, we get a covering such that H \ X,, - X! is
countable and H # X - XI_1 for every finite set I C X.

5. Coverings of types. In this section we consider a complete type
p(z) € S(0) in a complete first-order theory T. We work in a monster model
¢ of T. We assume that p(€) x p(€) is covered by countably many 0-type-
definable sets X,,, n < w. At the level of types this means that the space
P = S;y(0) N [p(z) Up(y)] is covered by countably many closed sets P N
[Xn(z,9)], n < w. In this case, as mentioned in the introduction, in [NP] we
have proved that

(C1') any a,b € p(€) may be connected by a path a,cy,c,b of length 3
so that the edges (a,c1), {c1, c2), (b, c2) lie in X, for some n < w.

This statement and its proof are closely related to (C1). In Section 1 we
gave a new proof of (C1) (see Corollary 1.7), using (weak) generic types in
a group. Here we give a new proof of (C1’), using a new notion of (weakly)
c-free extensions, generalizing non-forking extensions in the stable case, and
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corresponding to (weak) generic types in a group. To explain this correspon-
dence notice that to define (weak) generic sets and types in a group all we
needed was just the transitive action of G on itself by left translations. Here
instead we have the action of the group Aut(¢) on €, which is transitive on
p(€). This leads to the following definition, corresponding to Definition 1.1.
For U C €, the images of U under the automorphisms of € [fixing A C ¢]
are called the conjugates of U [over Al.

DEFINITION 5.1. We say that a set U C € is c-free over p if p(€) is
covered by finitely many conjugates of U. We say that a formula ¢(z) is
c-free over p if the set ¢(€) is c-free over p. We say that a type q(x) is c-free
over p if every formula ¢(x) with ¢(z) F ¢(z) is c-free over p.

The c in “c-free” stands for “covering”. In the stable case, a formula ¢ (z)
is c-free over p iff p(z) U {p(z)} does not fork over @), and a formula ¢(x)
does not fork over ) iff p(z) is c-free over some g(x) € S()). This follows e.g.
from the open mapping theorem (see [Pi] for the background on forking in
stable theories). Hence in the stable case c-free = non-forking, and complete
c-free extensions of p exist over any set A C €.

In the simple and o-minimal cases this is not so. One could say that
non-forking loses there some of its covering properties from the stable case.
In particular, complete c-free extensions may not exist (see e.g. the random
graph and the o-minimal structure of the reals). As in Section 1, to overcome
this drawback we weaken the definition.

DEFINITION 5.2. We say that a set U C € is weakly c-free over pif UUV
is c-free over p for some V' C € that is not c-free over p. We say that a formula
o(z) is weakly c-free over p if the set ¢(€) is. A type g(x) is called weakly
c-free over p if every formula ¢(x) with ¢(x) F ¢(x) is weakly c-free over p.

We are interested in the definable weakly c-free sets (or even in relatively
definable subsets of p(€)). The next lemma provides an alternative definition
in this case.

LEMMA 5.3. Assume U C € is definable. Then the following conditions
are equivalent.

(1) U is weakly c-free over p.

(2) For some finitely many conjugates U;, i < n, of U the set (,_, Uf
s mot c-free over p.

(3) For some definable set V. C € that is not c-free over p, the union
U UV is c-free over p.

Proof. See the proof of Lemma 1.3. =

Notice that Lemma 5.3 could also be formulated for relatively definable
subsets of p(€). The next lemma corresponds to Lemma 1.4.
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LEMMA 5.4.

(1) If Uy,Uy C € are not weakly c-free over p, then Uy UU; is not weakly
c-free over p.

(2) Ifq(z) is a (partial) type over A C € that is weakly c-free over p, then
some ¢'(z) € S(A) extending q(x) is weakly c-free over p. Necessarily,
p(@) € ¢'(z).

Let

Swet p(A) = {q € S(A) : q is weakly c-free over p}.

We see that Syc,p(A) is closed and non-empty. The next lemma corresponds
to Lemma 1.5.

LEMMA 5.5.

(1) Assume M is Ro-saturated. If some type in Syt p(M) is c-free over p,
then they all are.
(2) If there is just one type in Sycrp(A), then it is c-free over p.

Proof. (1) Suppose some type q(x) € Syerp(M) is not c-free over p. This
means that some M-definable set U C € that is c-free over p can be divided
into two M-definable sets A, B that are not c-free over p. Say, U = ¢(&€,m),
A =1(€,m) and B = x(€, m) for some formulas ¢, 9, x and some m C M.
Then there are some finitely many conjugates m; C M, i < n, such that
p(z) B Vicno(z,m;). We will show that any type ¢’ € Syerp(M) is not
c-free over p.

Since p(z) C ¢'(x), we see that ¢'(x) - @(x,m;) for some i < n. Then
either ¢'(x) b ¢ (x,m;) or ¢'(z) F x(x, m;). Neither ¢(x,m;) nor x(z,m;) is
c-free over p, hence ¢’ is not either.

(2) A similar proof. m

As an example, notice that if T is o-minimal, then for any set of pa-
rameters A, any non-algebraic type p(x) € S1(0) has just two extensions in
Swet,p(A), and none of them is c-free over p.

We can define (weakly) c-free formulas over, and extensions of, a type
p' € S(A) for any A C €. Then we can say that a formula ¢(x) is (weakly)
c-free over A if p(x) is (weakly) c-free over some p/(z) € S(A). However, the
notion of weak c-freeness does not, in general, have the nice properties of
non-forking from the stable or simple case.

Recall that P denotes the space Sz, (0) N [p(z) U p(y)]. For any S C P
and a = p let

Sa ={aqla,y) € Sy(a) : q(a,y) € S}.
In particular, P, = Sy(a) N [p(y)]. Notice that S, is relatively open in P, iff
S is relatively open in P. Let

Pyet = {q(z,y) € P : for a = p, q(a,y) is weakly c-free over p}.
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Then Pyt is closed, since its complement in P is relatively open in P. Notice
that in general q(z,y) € Pyt does not imply q(y,x) € Py, since weak
c-freeness is not always symmetric. The next proposition corresponds to
Proposition 1.6.

PROPOSITION 5.6. Assume S C Pyt is non-empty and relatively open.
Then there are some finitely many c; = p, @ < k, such that for every b = p
there is some d |=p such that tp(b,d) € S and tp(c;,d) € S for some i < k.

Proof. In this proof a “definable set” will mean a “relatively definable
subset of p(€) or of p(€) x p(€)”. We identify definable sets with the formulas
that (relatively) define them.

Choose a non-empty 0-definable set U C p(€) x p(€) with
S DO Pyt N[U(z,y)].

We can assume that S = Pyt N [U(x,y)]. Hence for any ¢ = p, U(c,y) is
weakly c-free over p. Choose a (relatively) definable set V = V (e, €) C p(€)
that is not c-free over p, but UUV is c-free over p. Choose a finite set (c;, €;),
i < k, of conjugates of (c, e) such that

'_ \/ Cz» \/ V eza ))
i<k

As in the proof of Proposition 1.6 we show that
(%) the set (U(c,€) UV (e, €))\ S(c, ) is not c-free over p.

To finish the proof, we show that for every b |= p there is some d € S(b, )
with d € | J;.;, S(ci, €).

If not, then there is some b |= p such that d ¢ |J,;;,
de S(b, Q) Still d € ;. (U(ci, €) UV (e;, €)), and hence

S(b,€) C | J(U(ei, &) UV (e, €)) \ S(ci, €)).

i<k

S(c;, @) for every

Choose ey, so that for ¢ = b, (c,ex) and (c,e) are conjugate. Then we see
that

Ulcg, €) UV (e, C) C U((U(ci, Q) UV(e;, @)\ S(c, €)),
i<k

hence the set on the right hand side is c-free over p. Thus so also is the set

(U(c, @)UV (e, €))\ S(c, €), contradicting (*). =

COROLLARY 5.7. Assume S C Py is non-empty and relatively open.
Then there are some finitely many types ri(xz,y) € P, i < k, such that
for every a,b |= p there are ¢,d = p with tp(a,c) € {r; : i < k} and
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tp(e,d), tp(b,d) € S. Moreover, for every a |= p we can choose ¢; = ri(a,y),
i < k, so that for every b |= p there are c,d as above so that additionally
ce{c i<k}

Proof. Let cg,...,cr_1 be as in the proof of Proposition 5.6. Let r; =
tp(co, ¢;). Now consider an arbitrary a = p. Applying an automorphism of
¢ we can assume ¢y = a. Then by Proposition 5.6 we are done. =

The next corollary was proved in [NP]. Here we give a different proof.

COROLLARY 5.8. Assume P is covered by countably many closed sets
Xn, n < w. Then there are some finitely many types r; € P, i < k, and
a natural number n such that for every a,b |= p there are ¢,d |= p with
tp(a,c) € {ri,i < k} and tp(c,d),tp(b,d) € X,,.

Proof. By the Baire category theorem some of the sets X,, N Pyt have

non-empty relative interior in Py, so Corollary 5.7 applies. =

In the case of a simple theory, weakly c-free extensions are related to
non-forking extensions.

LEMMA 5.9. Assume T is simple and o(x,a) is weakly c-free over p €
S(D). Then p(x,a) does not fork over (.

Proof. Choose a formula v (x,b) such that ¢ is not c-free over p and
o(x,a) V (x,b) is c-free over p. So for some f; € Aut(¢), i < k, we have
p(z) b ¢'(z,a’) V' (z,V), where

¢'(z,d") = \/ ¢z, fia)) and ¢'(z,t)) = \/ ¥(x, fi(b)).
i<k i<k
Then ¢'(z,V') is still not c-free over p. Suppose ¢(x,a) forks over (). Then

¢'(x,a’) also forks over (), hence it divides over (). Thus for some g; € Aut(<),
J <, the set {¢/(x,gj(a’)) : j <} is inconsistent. We see that

plx) =\ ¥ (z, g, (1)),
i<l
hence ¢’ (z, ') is c-free over p, a contradiction. =

Again, we do not know a simple theory where weak c-freeness # non-
forking.

6. Open problems. We end this paper with a set of problems and
questions.

PrROBLEM 1. Find a group definable in a simple theory where weak
generic # f-generic, or prove that in some cases still weak generic = f-generic.
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PROBLEM 2. The first application of generic types was the fact that a
stable group G with regular generic types is abelian-by-finite [Po|. Is there
a counterpart of this result for weak generic types?

PROBLEM 3. Find a simple theory where weak c-freeness # non-forking,
or prove that in some cases still weak c-freeness = non-forking.

PROBLEM 4. Determine the number k of steps needed to generate the
group G (defined in the introduction) in the situation where G is definable
in an o-minimal or simple theory. As we know, there are two possibilities:
either £ = 2 or kK = 2.5. Is it true that in the o-minimal case k£ = 2 holds?
The crucial point here may be to realize how closely we may describe (by a
type-definable set) a free subgroup of G.

PROBLEM 5. Assume G is an Rg-saturated group, covered by countably
many sets X,, n < w. Corollary 1.7 says that in this case G is generated
by finitely many of them, in finitely many steps. Is this still true if X, are
Borel? Can we still find a bound on the number of steps needed to generate
G (maybe depending on the Borel class of the sets X,,)? This seems related
to the question of how the notion of first Baire category is related to the
group operation of GG. In general, our results on Ng-saturated groups show
some similarity to those for compact topological groups.

Assume G is a compact topological group, covered by countably many
Borel sets X,,, n < w. Then they have the Baire property (and are also
measurable with respect to the Haar measure). Hence there is some n < w
and some open non-empty set U C G such that U \ X,, is meager. It is easy
to see that then GG is generated by some finitely many of X,,’s in finitely
many steps.

PROBLEM 6. Strengthen Theorem 2.4 to make it hereditary. That is,
define a property C of subsets of an Ng-saturated group G such that if a
type-definable set X C G satisfies C, then G = X - X!, and if X is split
into countably many type-definable sets X,, n < w, then for some n also
X, satisfies C.
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