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Weak generi
 types and 
overings of groups IbyLudomir Newelski and Mar
in Petrykowski (Wro
ªaw)
Abstra
t. We introdu
e the notion of a weak generi
 type in a group. We improveour earlier results on 
ountable 
overings of groups and types.Introdu
tion. Assume G is an ℵ0-saturated group, or even a grouptype-de�nable in an ℵ0-saturated stru
ture. Stri
tly speaking, by a groupwe sometimes mean an expansion of a pure group stru
ture. Assume G is
overed by 
ountably many 0-type-de�nable sets Xn, n < ω. In [NP℄ weproved that in this 
ase some �nitely many of the sets Xn generate thegroup G in at most k = 3 steps. More pre
isely, we proved that(C1) for some �nite set A ⊆ G and some n < ω we have G = A ·Xn ·X

−1
n .So in a sense for an arbitrary ℵ0-saturated group G, k = 2.5 steps su�
eto generate G by some �nitely many of the sets Xn, n < ω. In general, thisresult 
annot be improved (that is, k = 2 steps may not su�
e). However,in [NP℄ we also proved that(C2) if G is abelian, then G = X<n ·X−1

<n for some n < ω, where X<n =
⋃

i<nXi.Thus in this 
ase k = 2 steps are enough.In this paper we give a new proof of (C1), using the notion of a weakgeneri
 type in a group. This new notion generalizes that of a generi
 type ina stable group, fundamental in stable model theory. Besides its appli
abilityin 
larifying (C1) we predi
t it may play an important role in model theory,parti
ularly in unstable stru
tures (like the o-minimal ones).Regarding (C2), here we extend it in two ways. First, we generalize (C2)to any amenable group G, giving a 
ompletely new proof. Se
ondly, extending2000 Mathemati
s Subje
t Classi�
ation: Primary 03C45.Key words and phrases: generi
 type, weak generi
 type, 
overings of groups, amenablegroup.Resear
h supported by KBN grant 2 P03A 018 24.[201℄



202 L. Newelski and M. Petrykowskithe proof of (C2) from [NP℄, we prove a variant of (C2) for an arbitrarygroup G. This raises a fas
inating possibility of existen
e of a 
ombinatorial
ounterpart of the Bana
h mean in any group. Unfortunately, thus far it isnot 
lear to us what su
h a 
ounterpart should be.In [NP℄ we also gave model-theory-free versions of (C1) and (C2). Herewe do the same, giving model-theory-free versions of the results announ
edabove. They are in fa
t equivalent to their model-theoreti
 
ounterparts, butless intuitive (at least to a model-theorist). Still, they may be appealing toa non-model-theorist.Assume p is a 
omplete type over ∅ in a 
omplete �rst order theory T .Let M be an ℵ0-saturated model of T . Assume p(M) × p(M) is 
overed by
ountably many 0-type-de�nable sets Xn, n < ω. We 
an regard p(M) asthe set of verti
es of a 
omplete dire
ted graph Γ . Then the sets Xn, n < ω,may be regarded as a 
olouring of the set of edges of Γ into 
ountably many
olours (so that one edge may have more than one 
olour). In [NP℄ we provedthat in this 
ase(C1′) any a, b ∈ p(M) may be 
onne
ted by a path a, c1, c2, b of length 3so that the edges 〈a, c1〉, 〈c1, c2〉, 〈b, c2〉 lie in X<n for some n < ω.The proof in [NP℄ was a modi�
ation of the proof of (C1) there.Here we introdu
e the notion of a 
-free and weakly 
-free extension of atype, generalizing the notion of a non-forking extension in a stable theory.Using this notion we give a new proof of (C1′). The notion of a weakly 
-freeextension 
orresponds to that of a weak generi
 type in a group in the samemanner as the proof of (C1′) in [NP℄ 
orresponds to the proof of (C1) there.We predi
t it may have more appli
ations in unstable stru
tures.Possible 
ounterparts of the extensions of (C2) announ
ed above (likethe 
ase of amenable groups) in the 
ase of 
overings of types are moreproblemati
, and we do not pursue them here. We 
on
lude the paper witha set of problems.Throughout we use standard model-theoreti
 notation. The results onamenable groups are due to the se
ond author, the rest of the paper is dueto the �rst author.We would like to thank Gabriel Sabbagh for interesting 
onversations onthis paper.1. Weak generi
 types. In this se
tion we assume G is an ℵ0-saturatedgroup, or even a type-de�nable group in an ℵ0-saturated model of a 
omplete�rst order theory T . When G (or T ) is stable, the notion of a generi
 typeof elements of G was introdu
ed by Poizat [Po℄. It be
ame a fundamentalnotion in geometri
 model theory. In the stable 
ase we 
an de�ne generi
types as follows [Wa, Pi℄.



Weak generi
 types and 
overings of groups I 203Definition 1.1. We say that a set X ⊆ G is (left) generi
 if some�nitely many left G-translates of X 
over G. We say that a formula ϕ(x) is(left) generi
 if the set ϕ(G) of elements of G realizing ϕ is (left) generi
.Finally, we say that a type p(x) of elements of G is (left) generi
 if everyformula ϕ(x) with p(x) ⊢ ϕ(x) is (left) generi
. By default, �generi
� alwaysmeans �left generi
�.In the stable 
ase left generi
 = right generi
 (de�ned by means of righttranslations) and ea
h partial generi
 type extends to a 
omplete generi
 type(over any set of parameters); moreover generi
 types may be 
hara
terizedthere by means of forking and translation-invariant ranks.While De�nition 1.1 is appealing by its simpli
ity, it does not work wellin the unstable 
ontext. For instan
e, 
omplete generi
 types in the sense ofDe�nition 1.1 may not exist in general. So in simple theories generi
 typesare de�ned by extending the de�nition from the stable 
ase, whi
h refers toforking and ranks. However, in this paper we do apply De�nition 1.1 in thegeneral setting, and to over
ome its drawba
ks we de�ne a weaker notion, still
apturing the sense of being a �not-so-small� subset of G. Suppose X = A∪Bis a generi
 subset of G. If B is not generi
, then one 
ould argue that A is�not-so-small�. This justi�es the following de�nition.Definition 1.2. We say that a set A ⊆ G is weak generi
 if A ∪ B isgeneri
 for some non-generi
 B ⊆ G. We say that a formula ϕ(x) is weakgeneri
 if the set ϕ(G) is weak generi
. A type p(x) of elements of G is weakgeneri
 if every formula ϕ(x) with p(x) ⊢ ϕ(x) is weak generi
.We are interested mainly in the de�nable (weak) generi
 sets. For thesepurposes, the next lemma provides an alternative de�nition. In the 
asewhere G is type-de�nable in an ℵ0-saturated stru
tureM , in the next lemmaand also throughout the paper by a �de�nable� subset of G we mean a�relatively de�nable� subset of G.Lemma 1.3. Assume U is a de�nable subset of G. Then the following
onditions are equivalent.(1) U is weak generi
.(2) For some �nitely many elements a0, . . . , an−1 ∈ G, the set ⋂

i<n aiU
cis not generi
.(3) For some de�nable non-generi
 set V ⊆ G, the set U ∪ V is generi
.Proof. (1)⇒(2). Assume U is weak generi
. Hen
e for some non-generi
set V ⊆ G, the set U ∪ V is generi
, meaning that for some �nitely manyelements a0, . . . , an−1 ∈ G we have

⋃

i<n

ai(U ∪ V ) =
⋃

i<n

aiU ∪
⋃

i<n

aiV = G.



204 L. Newelski and M. PetrykowskiThis means that
⋂

i<n

aiU
c ⊆

⋃

i<n

aiV.Sin
e V is not generi
, neither is ⋃

i<n aiV , and we are done.(2)⇒(3). Let V =
⋂

i<n aiU
c. We see that V is de�nable, not generi
, andputting an = e (the neutral element of G), we �nd that G =

⋃

i≤n ai(U ∪V ),hen
e U ∪ V is generi
.(3)⇒(1) is trivial.In the next lemma we give some basi
 properties of weak generi
 sets andtypes.Lemma 1.4.(1) If U1, U2 ⊆ G are not weak generi
, then U1∪U2 is not weak generi
.(2) Every (partial) weak generi
 type over A ⊆ G 
an be extended to a
omplete weak generi
 type over A.Proof. (1) Let V ⊆ G be non-generi
. Sin
e U2 is not weak generi
, U2∪Vis not generi
. Sin
e U1 is not weak generi
, U1∪ U2 ∪ V is not generi
. Hen
e
U1 ∪ U2 is not weak generi
.(2) follows from (1).We see that weak generi
 types exist. By Lemma 1.4, the set

WGen(A) = {p ∈ S(A) : p is weak generi
}is 
losed and non-empty in S(A). The next lemma explains the relationshipbetween weak generi
 types and generi
 types, provided the latter exist.Lemma 1.5.(1) If some weak generi
 type p(x) ∈ S(G) is generi
, then all weakgeneri
 types q(x) ∈ S(A) are generi
.(2) If there is just one weak generi
 type in S(A), then it is generi
.Proof. (1) Suppose some weak generi
 type q(x) ∈ S(A) is not generi
.Extending q to a weak generi
 type over G we 
an assume A = G. Then somede�nable generi
 set X ⊆ G 
an be divided into two non-generi
 de�nablesets A,B. Sin
e X is generi
, some left G-translate X ′ of X belongs to p(x).Then the 
orresponding translates A′, B′ of A,B are also non-generi
, andone of them belongs to p(x), hen
e p(x) is not generi
.(2) A similar proof.By Lemma 1.5, in the stable 
ase weak generi
 = generi
 (for types andde�nable sets). As an example noti
e that if G = (G, ·, <, . . .) is o-minimal,then there are exa
tly two 
omplete weak generi
 types, 
orresponding to
+∞ and −∞, and they are not generi
. Hen
e in (2) the assumption thatthere is only one weak generi
 type 
annot be weakened. Des
ription of



Weak generi
 types and 
overings of groups I 205weak generi
 types in other groups de�nable in o-minimal stru
tures is more
ompli
ated; it will appear in a forth
oming paper by the se
ond author.The next proposition shows that weak generi
ity is related to generat-ing G. We identify sets of types with subsets of the model 
onsisting of theelements realizing the types from these sets. That is, if P ⊆ S(∅), then some-times we identify P with the set P (G) =
⋃

{p(G) : p ∈ P}. Also, if P is open(
losed, Borel et
.), then we 
all the set P (G) open (
losed, Borel, et
.). Inparti
ular, a 
losed subset of G is just a 0-type-de�nable one, and a 
lopensubset of G is just a 0-de�nable one. For a formula ϕ(x), [ϕ] denotes the
lass of types 
ontaining ϕ. We adopt a similar notation for types.Proposition 1.6. Assume P ⊆ WGen(∅) is non-empty and relativelyopen. Then for some �nite A ⊆ G we have G = A · P (G) · P (G)−1.Proof. Choose a non-empty 0-de�nable subset U of G with P ⊇WGen(∅)
∩ [U ] 6= ∅. We 
an assume that P = WGen(∅)∩[U ]. Hen
e U is weak generi
.Choose a de�nable non-generi
 set V ⊆ G su
h that U∪V is generi
. Choosea �nite set A ⊆ G with G = A · (U ∪ V ). We prove that
(∗) the set (U ∪ V ) \ P (G) is not generi
.Suppose not. Then there is a �nite set B ⊆ G with B · ((U ∪ V ) \ P (G))
= G. By 
ompa
tness, for some 0-de�nable set W with P (G) ⊆ W ⊆ Uwe have B · ((U ∪ V ) \W ) = G, i.e. the set (U ∪ V ) \W is generi
. Sin
e
(U ∪ V ) \W ⊆ V ∪ (U \W ), it follows that the set U \W is weak generi
.But [U \W ] ∩ WGen(∅) = ∅, 
ontradi
ting Lemma 1.4(2).To �nish the proof, we show that G = A · P (G) · P (G)−1, that is, forevery g ∈ G there is some h ∈ P (G) with g · h ∈ A · P (G).If not, then there is some g ∈ G su
h that for every h ∈ P (G) we have
g · h 6∈ A · P (G). Still g · h ∈ A · (U ∪ V ), hen
e g · h ∈ A · ((U ∪ V ) \ P (G))and P (G) ⊆ g−1 ·A · ((U ∪ V )) \ P (G)). We see that
U ∪ V = ((U ∪ V ) \ P (G)) ∪ P (G) ⊆ ({e} ∪ g−1 ·A) · ((U ∪ V ) \ P (G)),and G = A · ({e} ∪ g−1 ·A) · ((U ∪ V ) \ P (G)), 
ontradi
ting (∗).Using Proposition 1.6 we may give a new proof of [NP, Theorem 2.1℄,whi
h we restate as Corollary 1.7 below.Corollary 1.7. Assume an ℵ0-saturated group G is 
overed by some

0-type-de�nable sets Xn, n < ω. Then for some �nite A ⊆ G and some
n < ω we have G = A ·Xn ·X−1

n .Proof. At the level of types, S(∅) is 
overed by 
ountably many 
losedsets [Xn], n < ω. Hen
e by the Baire 
ategory theorem, for some n, theset [Xn] ∩ WGen(∅) has non-empty relative interior in WGen(∅). We applyProposition 1.6.



206 L. Newelski and M. PetrykowskiIf the theory of G is simple, generi
 types are usually de�ned via forking.Namely, we say that a formula ϕ(x, a) is generi
 in G if for every b ∈ G,the formula ϕ(b · x, a) does not fork over ∅ (see [Wa℄). Here we will 
all aformula with this property f-generi
, to distinguish it from the notion fromDe�nition 1.1. Similarly, we 
all a type f-generi
 if every formula it impliesis f-generi
. The next lemma shows that in simple theories �weak generi
�and �f-generi
� are related.Lemma 1.8. If Th(G) is simple and ϕ(x, a) is weak generi
 in G, then
ϕ(x, a) is f-generi
.Proof. We may assume a = ∅. Let V = ϕ(G) and 
hoose a non-generi
de�nable set U ⊆ G with U ∪ V generi
. Choose a �nite set A ⊆ G with
A · (U ∪ V ) = G. Suppose for 
ontradi
tion that ϕ(x) is not f-generi
. Thenea
h translate of V and also any union of �nitely many su
h translates isnot f-generi
 (see [Wa℄). Let ψ(x) be a formula de�ning the set A · V . Sin
e
ψ is not f-generi
, some left translate of ψ forks over ∅. In simple theories,forking = dividing, hen
e we �nd an in�nite indis
ernible sequen
e bi, i < ω,with ⋂

i bi ·A · V = ∅. So, for some n < ω we have ⋂

i<n bi ·A · V = ∅.To rea
h a 
ontradi
tion, we will prove that U is generi
. We know that
A · (U ∪ V ) = G. Hen
e also bi ·A · U ∪ bi ·A · V = G for every i < n. Thus

G \
⋃

i<n

bi ·A · U ⊆
⋂

i<n

bi ·A · V = ∅,meaning that ⋃

i<n bi ·A · U = G, a 
ontradi
tion.Usually in the simple unstable 
ase, generi
 types (in the sense of De�ni-tion 1.1) do not exist in a group G; however, weak generi
 types do, and byLemma 1.8 they form a 
losed subset of the set of f-generi
 types. As usualwith simple theories, we know of no example where in a group G with simpletheory an f-generi
 formula is not weak generi
.2. The 
ase where two steps su�
e. Again assume G is an ℵ0-saturated group, 
overed by 
ountably many 0-type-de�nable sets Xn, n<ω.In [NP℄ and in Se
tion 1 we showed that in general G as a group is generatedby some �nitely many of the sets Xn in k = 2.5 steps. Sometimes k = 2 stepssu�
e, that is, for some n, G = X<n ·X−1
<n, where X<n =

⋃

i<nXi. In [NP℄we proved that it is so when G is abelian or stable. Here we improve thisresult by repla
ing �abelian� with �amenable�. Also, we give a uniform prooffor both the amenable and stable 
ases.Re
all [W℄ that a group G is amenable if there exists a �nitely additivemeasure µ on P(G) su
h that µ(G) = 1 and µ is left-invariant (i.e. µ(g ·A) =
µ(A) for every g ∈ G and A ⊆ G). We 
all any su
h µ a Bana
h mean on G.Amenable groups form a large 
lass, in
luding solvable groups, and more
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 types and 
overings of groups I 207generally all groups without a paradoxi
al de
omposition. However, no non-abelian free group is amenable. Any stable group is also �amenable� in thefollowing weak sense.Proposition 2.1. Assume G is stable. Then there is a �nitely additiveleft-invariant measure µ with µ(G) = 1, de�ned on the algebra Def(G) of allde�nable subsets of G.Proof. Let G be the set of generi
 types of G (over acleq(∅)). As pointedout in [Ne1℄, G is a 
ompa
t topologi
al group, with the topology indu
edfrom S(acleq(∅)). The group operation is the independent multipli
ation oftypes: r1 ∗ r2 = stp(a1 · a2), where a1 and a2 are independent realizations of
r1, r2 respe
tively. The generi
 type of the 
onne
ted 
omponent G0 of G isthe identity element of G. Let ν be the Haar measure on G. Then ν indu
esa measure µ on Def(G) as follows. Let ϕ(x, a) be a formula. We asso
iatewith ϕ the set

Vϕ = {r ∈ G : ϕ(x, a) belongs to the non-forking extension of r}.It is a relatively 
lopen subset of G. We de�ne µ(ϕ(G, a)) as ν(Vϕ). Thisworks.The proof of Proposition 2.1 shows that in fa
t µ may be extended to the
σ-algebra of sets generated by Def(G), and µ is σ-additive. We will not needthis, however. We will use the following lemma on �nitely additive measures.Lemma 2.2. Assume X is a set and µ is a �nitely additive �nite measureon an algebra A of subsets of X. Assume for some ε > 0 we have a family An,
n < ω, of sets from A with µ(An) > ε for all n. Then for some in
reasingsequen
e (nk)k<ω of natural numbers, and ea
h i < ω,

µ(An0
∩ · · · ∩Ani

) > 0.Proof. First we prove that under the assumptions of the lemma,
(∗) there are n < ω and ε′ > 0 su
h that the set {m : µ(An ∩Am) > ε′} isin�nite.If not, for every n < ω and ε′ > 0, the set {m : µ(An ∩ Am) > ε′} is �nite.Let k be a positive integer su
h that µ(An) > 2/k for every n < ω. Put
n0 = 0 and for ea
h i = 1, . . . , k− 1 
hoose re
ursively ni < ω so that for all
j < i, µ(Ani

∩Anj
) < 1/(ki). We have

1 ≥ µ
(

k−1
⋃

i=0

Ani

)

=
k−1
∑

i=0

µ
(

Ani
\

⋃

j<i

Anj

)

>
k−1
∑

i=0

(

2

k
−

1

k

)

= 1,

a 
ontradi
tion.



208 L. Newelski and M. PetrykowskiHaving proved (∗), we de�ne re
ursively numbers nk, k < ω, so that forea
h k < ω we have
(∗∗) for some ε′ > 0, the set Z = {m : µ(An0

∩ · · · ∩Ank
∩Am) > ε′} isin�nite.For k = 0 we de�ne n0 by (∗). For the re
ursion step, suppose we have de�ned

n0, . . . , nk so that (∗∗) holds. We will de�ne nk+1. Let X ′ = An0
∩ · · · ∩Ankand for m ∈ Z set A′

m = X ′ ∩ Am. We see that X ′ and A′
m,m ∈ Z, satisfythe assumptions of the lemma for the restri
ted µ, so that in this situation

(∗) holds. Let nk be the n furnished by (∗). This �nishes the 
onstru
tionand the proof.Theorem 2.3. If G is stable or amenable, and G is 
overed by 
ountablymany 0-type-de�nable sets Xn, n < ω, then G = X<n ·X
−1
<n for some n < ω.Proof. Stability and amenability of G together imply that there exists a�nitely additive left-invariant measure µ on Def(G) with µ(G) = 1. For thesake of 
ontradi
tion assume that for any n < ω we 
an �nd an ∈ G \X<n ·

X−1
<n. By 
ompa
tness there is a formula ϕn(x) su
h that X<n ⊆ ϕn(G) and

an 6∈ ϕn(G) · ϕn(G)−1. We have
G = ¬ϕn(G) ∪ an · ¬ϕn(G).Sin
e µ(¬ϕn(G)) = µ(an · ¬ϕn(G)), it follows that µ(¬ϕn(G)) ≥ 1/2 forea
h n < ω. By Lemma 2.2 we are able to 
hoose an in
reasing sequen
e

(nk)k<ω with
µ(¬ϕn0

(G) ∩ · · · ∩ ¬ϕnk
(G)) > 0for every k < ω. On the other hand, {ϕnk

(G) : k < ω} is a family of de�nablesets 
overing G, so we 
an 
hoose a �nite sub
overing {ϕnk
(G) : k < K} (forsome K < ω). Then µ(

⋂

k<K ¬ϕnk
(G)) = µ(∅) = 0, a 
ontradi
tion.In parti
ular, the 
on
lusion of Theorem 2.3 holds when G is abelian(sin
e ea
h abelian group is amenable). This spe
ial 
ase was already provedin [NP℄. However, the proof of Theorem 2.3 is 
ompletely di�erent. The proofin [NP℄ is in a way more dire
t and it does not refer to su
h an ambiguousand ine�e
tive obje
t as a Bana
h mean on a group. One 
ould wonder if it ispossible to extend the proof from [NP℄ to deal not only with abelian groups,but also with some other amenable groups, like for instan
e the nilpotentor solvable ones. We have found however another striking way to generalizethe proof from [NP℄. For X ⊆ G and a, x ∈ G, let xa denote a−1xa and

Xa = {xa : x ∈ X}. We have the following theorem.Theorem 2.4. Assume G is an ℵ0-saturated group 
overed by 
ountablymany 0-type-de�nable sets Xn, n < ω. Then for some �nite set A ⊆ G and
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 types and 
overings of groups I 209some n < ω we have
G =

⋃

a∈A

(X<n ·X−1
<n)a,

that is, G is 
overed by the set of a-
onjugates of X<n ·X−1
<n, a ∈ A.When G is amenable, Theorem 2.4 follows from Theorem 2.3 (with A

= {e}). Before the proof we re
all a 
onstru
tion from [Ne2, NP℄.AssumeX is a 
ompa
t topologi
al spa
e 
overed by a familyA of subsetsof X. We de�ne an in
reasing sequen
e Zα, α ∈ {−1}∪Ord, of open subsetsof X. We put Z−1 = ∅, Zα+1 =
⋃

A∈A int(Zα ∪ A) and for limit α, Zα =
⋃

β<α Zβ. The sequen
e (Zα) is 
alled the open analysis of X with respe
tto A. By the Baire 
ategory theorem if A is a 
ountable family of 
losed sets
overing X, then Zα = X for some α.Proof. The proof of Theorem 2.4 will be a modi�
ation of the proof of[NP, Theorem 3.1℄, where G is abelian. Let Y = S(∅) and Yn = S(∅) ∩
[Xn(x)]. Let Zα, α ∈ {−1} ∪ Ord, be the open analysis of Y with respe
tto Yn, n < ω. So Zα = Y for some α. For a 
losed set C ⊆ Y let γ(C) bethe minimal ordinal (or −1) su
h that C ⊆ Zγ(C). So γ(∅) = −1 and by
ompa
tness, for ea
h 
losed C, γ(C) equals −1, 0, or is a su

essor ordinal.Suppose the theorem fails. We de�ne re
ursively 0-de�nable sets An ⊆ G,elements an ∈ G and 
losed sets Cn ⊆ Y, n < ω, so that the following hold.(a) Cn = {tp(a) : a ∈ An}.(b) For every U ⊆ n, aUana

−1
U is not of the form h1h

−1
2 for any h1, h2 ∈

G\An. Here aU = ai0 · · · aik−1
, where i0 < · · · < ik−1 is the in
reasingenumeration of U . For U = ∅ we stipulate aU = e, the neutral elementof G.(
) For all k < ω and all i0 < · · · < ik < ω, if Y ∩ Ci0 ∩ · · · ∩ Cik−1

6= ∅,then
γ(Y ∩ Ci0 ∩ · · · ∩ Cik) < γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

).Assume we have de�ned Ai, Ci, ai for all i < n. We 
hoose N < ω so thatfor every k < ω and all i0 < · · · < ik < ω with Y ∩ Ci0 ∩ · · · ∩ Cik−1
6= ∅,

(Y ∩ Ci0 ∩ · · · ∩ Cik−1
) \ Zγ−1 ⊆ Y<N ,where γ = γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

).Let A = {aU : U ⊆ n}. Sin
e G 6=
⋃

a∈A(X<NX
−1
<N )a, by 
ompa
tnessthere is a formula ϕ(x) over ∅ su
h that X<N ⊆ ϕ(G) and

G 6=
⋃

a∈A

(ϕ(G)ϕ(G)−1)a.

We put An = G \ϕ(G), 
hoose an ∈ G \
⋃

a∈A(ϕ(G)ϕ(G)−1)a and de�ne Cna

ordingly. Then (a) and (b) hold. The 
hoi
e of N ensures (
).
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e there is no in�nite de
reasing sequen
e of ordinals, the family of
losed sets Cn, n < ω, has no in�nite subfamily with the �nite interse
tionproperty. It follows that(d) Every in�nite set I ⊆ ω has a �nite subset I ′ with ⋂

n∈I′ An = ∅.Now we sket
h the idea of the proof. If the sequen
e (An, an)n<ω is order-indis
ernible with respe
t to all relations
ai0 · · · aik−1

∈ Aj (i0 < · · · < ik−1 < ω, j < ω),then we easily rea
h a 
ontradi
tion. Namely, for j 6∈ {i0, . . . , ik−1}, by (d)we have
h2 = ai0ai1 · · · aik−1

6∈ Aj .Say, i0 < · · · < il−1 < j < il < · · · < ik−1. If also h1 = ai0 · · · ail−1
ajail · · ·

aik−1
6∈ Aj , then

h1h
−1
2 = ai0 · · · ail−1

aja
−1
il−1

· · · a−1
i0would 
ontradi
t (b). So ai0 · · · ail−1

ajail · · · aik−1
∈ Aj . By indis
ernibility,

a0 · · · an ∈ A0 ∩ · · · ∩An for all n < ω, 
ontradi
ting (d) again.This reasoning would lead to a 
ontradi
tion even if we had an in�nitesubsequen
e of (An, an)n<ω order-indis
ernible in the above sense. However,sin
e here we need indis
ernibility with respe
t to in�nitely many relations,we 
annot hope for su
h a subsequen
e to exist. Instead, in [NP℄ we in-trodu
e a notion of (α, k)-indis
ernibility (where α < ω1, k < ω), whi
happroximates full order-indis
ernibility.Let α be the order type of the set
Ω = {γ(Y ∩ Ci0 ∩ · · · ∩ Cik−1

) : k < ω and i0 < · · · < ik−1 < ω}.Sin
e Ω is 
ountable, α < ω1. Now we work with an (α, 0)-indis
erniblesubsequen
e of (An, an)n<ω, rea
hing a 
ontradi
tion pre
isely as in [NP℄.The proofs of Theorem 2.4 and its prede
essor, [NP, Theorem 3.1℄, remainmysterious to us. Theorem 2.3 suggests that in the spe
ial 
ase where G isabelian, Theorem 2.4 just tells us something about the amenability of G.But Theorem 2.4 is about an arbitrary group, possibly non-amenable. Thissuggests a possibility of �nding a 
ombinatorial 
ounterpart of the Bana
hmean in an arbitrary group. This may require improving Theorem 2.4 in away that we will try to suggest now.Corollary 1.7 says that for some �nite A ⊆ G and some n∗ < ω we have
G = A ·Xn∗ ·X−1

n∗ . Our feeling is that this means that Xn∗ is large in somesense. Now suppose we re�ne our 
overing, presenting ea
h Xn as a unionof 
ountably many 0-type-de�nable sets Xn,k, k < ω. If Xn∗ is large, thenone would expe
t that one of the sets Xn∗,k should also be large, that is, forsome �nite A′ ⊆ G and some k < ω we should have G = A′ ·Xn∗,k ·X−1
n∗,k.This may not be true.
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overings of groups I 211For example, one 
an 
onstru
t re
ursively an in�nite subset B of Zsu
h that every non-zero integer 
an be uniquely presented as a − b, where
a, b ∈ B. Moreover, we 
an ensure that B 
an be split into two disjoint sets
B0, B1 su
h that for both sets B0 − B0 and B1 − B1 there are arbitrarilylong intervals disjoint from them. Consider the stru
ture (Z,+) expandedby the predi
ates B,B0, B1. Let G be an ℵ0-saturated elementary extensionof (Z,+, B,B0, B1). Let X0 = B(G), and X1 = B(G)c. Then X0 −X0 = G.Let X0,0 = B0(G) and X0,1 = B1(G). Then X0 = X0,0 ∪X0,1, but for every�nite A ⊆ G we have G 6= A+X0,i −X0,i, i = 0, 1.However, the 
urrent proof of Corollary 1.7 suggests the right notion oflargeness here. Namely, we 
an 
onsider a 0-type-de�nable set X ⊆ G to belarge if WGen ∩ [X] has non-empty interior in WGen. Then if Xn∗ is large,then so is Xn∗,k for some k.Now assume G is amenable. By Theorem 2.3, G = X<n∗ · X−1

<n∗ forsome n∗. This suggests that X<n∗ is large in some sense. This should meanthat re�ning our 
overing Xn, n < ω, to a 
overing Xn,k, n, k < ω (asabove), it should be the 
ase that for some k∗ < ω, the set X<n∗,<k∗ =
⋃

i<n∗

⋃

j<k∗ Xi,j is large, meaning that G = X<n∗,<k∗ ·X−1
<n∗,<k∗ .This may fail. For example, assume G has a de�nable subgroup H ofindex 2. Let X1 = H \ {e} and X0 = G \X1. Then G = X0 ·X

−1
0 . However,if we split X0 into in�nitely many non-empty sets X0,k, k < ω, then it is nottrue that G = X0,<k ·X−1

0,<k for some k.We 
an 
orre
t this as follows. Assume µ is a Bana
h mean on G. For asubset X ⊆ G de�ne the �exterior� measure µ∗(X) by
µ∗(X) = inf{µ(U) : X ⊆ U ⊆ G and U is 0-de�nable}.We say that X is large if µ∗(X) > 1/2. Then one sees that if X is large and0-type-de�nable, then G = X · X−1. A
tually, the set X0 from the aboveexample is not large, sin
e µ∗(X0) = 1/2. A 
ounterpart of Lemma 2.2 holdsfor µ∗ in pla
e of µ. Using this we see that if G is 
overed by 0-type-de�nablesets Xn, n < ω, then for some n∗ we have µ∗(X<n∗) > 1/2, i.e. X<n∗ is large(and G = X<n∗ ·X−1

<n∗). This notion is hereditary: if we 
onsider a re�nement
Xn,k, n, k < ω, of our 
overing and X<n∗ is large, then for some k∗ we have
µ∗(X<n∗,<k∗) > 1/2 (when
e G = X<n∗,<k∗ ·X−1

<n∗,<k∗).We do not see how to make Theorem 2.4 hereditary in the same manner.We believe that �nding a way to do so 
ould reveal a notion of �largeness�whi
h would be a remote 
ombinatorial 
ounterpart of the Bana
h mean inan arbitrary group.Another argument for a possibility of generalizing the Bana
h mean is asfollows. In the spe
ial 
ase of abelian group our original 
ompli
ated proofof Theorem 2.4 from [NP℄ was repla
ed here by an easier proof, using theBana
h mean. Now, we have an equally 
ompli
ated proof of Theorem 2.4.
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ation of this proof (if it exists) would involve ageneral 
ounterpart of the Bana
h mean.Theorem 2.4 has an interesting 
orollary. Thus far we have 
onsideredarbitrary 0-type-de�nable sets Xn ⊆ G, possibly in a language larger thanthat of pure groups. For pure groups we 
an say more.Corollary 2.5. Assume Xn ⊆ G, n < ω, are 0-type-de�nable in thepure group language. Then G = X<n ·X−1
<n for some n < ω.Proof. By Theorem 2.4, for some n, some �nitely many 
onjugates of

X<n · X−1
<n 
over G. But sin
e we are in the pure group stru
ture, for any

a ∈ G we have Xa
<n = X<n, so we are done.3. Model-theory-free versions. In this se
tion G is an arbitrary in�-nite group, X is a 
ompa
t topologi
al spa
e and f : G→ X is any fun
tionsu
h that f [G] is dense in X. In this setting we prove the 
ounterparts of theresults from Se
tions 1 and 2. First we de�ne the notion of [weak℄ generi
ityin this new 
ontext.Assume U ⊆ X. We 
all U generi
 if G = A · f−1[U ] for some �niteset A ⊆ G. We 
all U weak generi
 if for some non-generi
 V ⊆ X, the set

U ∪ V is generi
. We 
all a point p ∈ X [weak ℄ generi
 if every open set U
ontaining p is [weak℄ generi
. Let Gen and WGen be the sets of generi
 andweak generi
 points of X, respe
tively. The next lemma has a similar proofto Lemma 1.4.Lemma 3.1.(1) If U1, U2 ⊆ X are not weak generi
, then U1∪U2 is not weak generi
.(2) Both WGen and Gen are 
losed subsets of X, Gen ⊆ WGen and
WGen is non-empty.(3) Every open set U 
ontaining WGen is generi
.Proof. For example, we will prove (3). Sin
e no point in X \ U is weakgeneri
, by 
ompa
tness we 
an �nd �nitely many non-weak-generi
 opensets V0, . . . , Vk (for some k < ω) su
h that U ∪ V0 ∪ · · · ∪ Vk = X. Then by(1) also V = V0∪· · ·∪Vk is open and not weak generi
, and still U ∪V = X.Sin
e X is generi
, so is U .For example, if G is a 
ompa
t topologi
al group, X = G and f = id,then any point p ∈ G is generi
. Generi
 points not always exist, and this iswhy we deal with weak generi
 points instead. For example, assume G is theadditive group of the reals, X = G∪{+∞,−∞} is a 2-point 
ompa
ti�
ationof G, and f = id. Then −∞ and +∞ are the only weak generi
 points of X,and they are not generi
. Our idea behind this de�nition is that if p ∈ Xis [weak℄ generi
, then the group G is �
on
entrated� around p more thanaround a non-[weak℄-generi
 point. Also, we think that investigating the
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 points reveals how similar the triple (G,X, f) is to the
ase of a 
ompa
t topologi
al group. The next proposition 
orresponds toProposition 1.6.Proposition 3.2. Assume S is a non-empty , relatively open subset of
WGen. Then there exists a �nite set A ⊆ G su
h that G = A · f−1[U ] ·
(f−1[U ])−1 for every open set U ⊇ S.Proof. Using normality of X 
hoose a relatively open non-empty subset
S′ of S with cl(S′) ⊆ S. Then cl(S′) and WGen \ S are 
losed disjoint sets,hen
e there is an open set V ⊆X su
h that cl(S′)⊆V and cl(V )∩WGen⊆S.Sin
e V is weak generi
, there is a non-generi
 set W ⊆ X su
h that
V ∪W is generi
. Choose a �nite set A ⊆ G with G = A · f−1[V ∪W ]. Wewill prove that A satis�es our demands.So let U ⊇ S be open. By normality (working in the subspa
e U ∪ V ),there is an open set V ′ ⊆ V su
h that

cl(V ′) ∩ U ∩ WGen = ∅ and U ∪ V = U ∪ V ′.Sin
e
cl(V ′) ∩ WGen ⊆ cl(V ) ∩ WGen ⊆ S ⊆ U ∩ WGen,we see that cl(V ′) ∩ WGen = ∅. This means that V ′ is not weak generi
,hen
e V ′ ∪W is not generi
.We will prove that G = A · f−1[U ] · (f−1[U ])−1. If not, then there issome g ∈ G su
h that for every h ∈ f−1[U ] we have g · h 6∈ A · f−1[U ]. Still

g·h ∈ A·f−1[V ∪W ], hen
e g·h ∈ A·f−1[V ′∪W ] and h ∈ g−1·A·f−1[V ′∪W ].We see that f−1[U ] ⊆ g−1 ·A · f−1[V ′ ∪W ], hen
e
f−1[V ∪W ] ⊆ f−1[V ′ ∪W ] ∪ f−1[U ] ⊆ ({e} ∪ g−1 ·A) · f−1[V ′ ∪W ]and G = A · f−1[V ∪W ] = A · ({e} ∪ g−1 · A) · f−1[V ′ ∪W ]. So V ′ ∪W isgeneri
, a 
ontradi
tion.Corollary 3.3. Assume f : G → X, where G is a group and X is a
ompa
t topologi
al spa
e 
overed by 
ountably many 
losed sets Xn, n < ω.Then there exist a �nite set A ⊆ G and n < ω su
h that for every open set

U ⊇ Xn we have G = A · f−1[U ] · (f−1[U ])−1.Proof. By the Baire 
ategory theorem, for some n the set S = Xn∩WGenhas non-empty relative interior in WGen, hen
e the 
on
lusion follows fromProposition 3.2.Proposition 1.6 and Corollary 1.7 follow from Proposition 3.2 and Corol-lary 3.3. Namely assume for a moment that G is ℵ0-saturated. Then we 
antake X = S(∅) and f : G → X may be de�ned by f(a) = tp(a). Then thenotion of a [weak℄ generi
 type translates to that of a [weak℄ generi
 point,and a 
overing of G by 0-type-de�nable sets 
orresponds to a 
overing of
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X by 
losed sets, when
e Proposition 3.2 and Corollary 3.3 apply. However,they are not really stronger than Proposition 1.6 and Corollary 1.7.To be more spe
i�
, 
onsider the following situation. Assume that besides
f : G → X we have yet another fun
tion f ′ : G → X ′, where X ′ is also a
ompa
t topologi
al spa
e with f ′[G] dense in X ′, and there is a 
ontinuousfun
tion h′ : X ′ → X su
h that the following diagram 
ommutes:

X ′

h

��

G

f ′ ??�����

f ��?
??

??

XLet Gen′ and WGen′ denote the sets of generi
 and weak generi
 points of
X ′, respe
tively (with respe
t to f ′ : G′ → X ′).Lemma 3.4.

(1) WGen ⊆ h[WGen′].
(2) If h restri
ted to f ′[G] is 1-1, then WGen = h[WGen′].
(3) Gen ⊇ h[Gen′].Proof. (1) Assume p ∈ WGen \ h[WGen′]. Choose an open U ∋ p with

cl(U) ∩ h[WGen′] = ∅. Let U ′ = h−1[U ]. Then U ′ is open and cl(U ′) ∩
WGen′ = ∅. It follows that U is weak generi
 and U ′ is not weak generi
.Choose a non-generi
 W ⊆ X with U ∪W generi
. Let W ′ = h−1[W ]. Then
U ′ ∪W ′ = h−1[U ∪W ] is generi
. Sin
e U ′ is not generi
, we infer that W ′is generi
, hen
e also W is generi
, a 
ontradi
tion.(2), (3) Similar proofs.The largest possible X ′ we 
an take in the above diagram (so that h is1-1 on f ′[G]) is the spa
e β(f [G]) (the spa
e of ultra�lters on f [G]). Then
f ′ : G→ X ′ is the fun
tion indu
ed by f , and there is a natural 
ontinuousfun
tion h : X ′ → X su
h that the above diagram 
ommutes. By Lemma3.4(2), h[WGen′] = WGen. In this situation X ′ is 0-dimensional. We expand
G by predi
ates (f ′)−1[U ], where U ⊆ X ′ is 
lopen. Then WGen′ (hen
ealso WGen) is a 
ontinuous image of the set of weak generi
 types of the
ℵ0-saturated extension of this expansion of G. In this way Proposition 3.2and Corollary 3.3 follow from Proposition 1.6 and Corollary 1.7.The largest possible X in f : G → X is the spa
e β(G) of ultra�lterson G (and then f maps g ∈ G to the prin
ipal ultra�lter generated by g).Then no point in X is generi
. The other extreme is the 
ase where X is asingleton or X = G and f = id (in the 
ase where G is a 
ompa
t topologi
algroup). Then any point is generi
.
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overings of groups I 215Although the non-model-theoreti
 formulation of our results may be ofindependent interest, we think that the model-theoreti
 presentation is moreelegant here. The following theorem is slightly stronger than its model-theoreti
 version.Theorem 3.5. Assume f : G → X, where G is an amenable groupand X is a 
ompa
t spa
e 
overed by 
ountably many sets Xn, n < ω (notne
essarily 
losed). Then there is an n < ω su
h that for every open set
U ⊇

⋃

i<nXi we have G = f−1[U ] · (f−1[U ])−1.Proof. Let µ be a Bana
h mean on G. For the sake of 
ontradi
tionassume that for every n < ω we 
an �nd an open set Un ⊇ X<n su
h that
G 6= f−1[Un] · (f−1[Un])−1. Let An = G \ f−1[Un] and 
hoose an ∈ G \
f−1[Un] · (f−1[Un])−1.Now if g ∈ G, then either g 6∈ f−1[Un] or a−1

n · g 6∈ f−1[Un], whi
h meansthat G = An ∪ an · An. Sin
e µ(An) = µ(an · An), we have µ(An) ≥ 1/2 forea
h n < ω.By Lemma 2.2 we are able to 
hoose an in
reasing sequen
e (nk) ofnatural numbers with µ(An0
∩ · · · ∩Ank

) > 0 for every k < ω. On the otherhand, {Unk
: k < ω} is a family of open sets 
overing the 
ompa
t spa
eX, sowe 
an 
hoose a �nite sub
overing {Unk

: k < K}. Then {f−1[Unk
] : k < K}is a �nite family of sets 
overing G, so An0

∩ · · · ∩ AnK
= ∅. This impliesthat µ(An0

∩ · · · ∩AnK
) = 0, a 
ontradi
tion.The next theorem 
orresponds to Theorem 2.4.Theorem 3.6. Assume f : G → X, where G is a group and X is a
ompa
t spa
e 
overed by 
ountably many 
losed sets Xn, n < ω. Then thereare a �nite set A ⊆ G and a natural number n su
h that for every open set

U 
ontaining X<n we have
G =

⋃

a∈A

(f−1[U ] · (f−1[U ])−1)a.Proof. The proof is similar to that of Theorem 2.4. Suppose the theoremfails. Let Zα, α ∈ {−1} ∪ Ord, be the open analysis of X with respe
t to
Xn, n < ω. For a 
losed set C ⊆ X let γ(C) be the minimal number su
hthat C ⊆ Zγ(C). We de�ne re
ursively 
losed sets Cn ⊆ X and elements
an ∈ G, n < ω, so that the following hold.(a) For every V ⊆ n, aV ana

−1
V 6∈ f−1[X \Cn] · (f−1[X \Cn])−1 (here aVis de�ned as in the proof of 2.4).(b) For all k < ω and all i0 < · · · < ik < ω with X ∩Ci0 ∩ · · ·∩Cik−1

6= ∅we have
γ(X ∩ Ci0 ∩ · · · ∩ Cik) < γ(X ∩ Ci0 ∩ · · · ∩ Cik−1

).
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h i < n we want to de�ne Cn and an. The
ru
ial point of the re
ursive step is as follows. For a large natural number
N (
hosen so as to satisfy (b)), there is an open set U ⊇ X<N su
h that

G 6=
⋃

a∈A

(f−1[U ] · (f−1[U ])−1)a,where A = {aV : V ⊆ n}. Then we put Cn = X \ U and 
hoose
an ∈ G \

⋃

a∈A

(f−1[U ] · f−1[U ]−1)a.The rest of the proof is as before.4. An example. In this se
tion we are again interested in an ℵ0-saturat-ed group G 
overed by 
ountably many 0-type-de�nable sets Xn, n < ω.Suppose G \X<n ·X−1
<n is 
ountable for some n. Usually in model theory a
ountable subset of an ℵ0-saturated model is 
onsidered small. In parti
ular,in our 
ase, if G \X<n ·X−1

<n is 
ountable, then G \X<n ·X−1
<n ⊆ acl(∅). Soone 
ould wonder if in this situation there is a possibly larger n′ su
h that

G = X<n′ ·X−1
<n′ . Here we give an example showing it may not be so.Let G be the free group with free generators en, n ≥ 0. We regardelements of G as irredu
ible words in letters e±1

n . Let {vk : k < ω} bean enumeration of G (without repetitions) su
h that |vk| ≤ k. We de�newords wk ∈ G, k < ω, as follows.
• w0 = e = ε (the empty word, the neutral element of G).
• w2k+1 = w2k · el

j, where l = 1 +
∑

i<2k |wi| and j ∈ {0, 1, 2} is 
hosenso that neither w2k ends nor vk begins with e±1
j .

• w2k+2 = w2k+1vk.Lemma 4.1.
(1) Ea
h wk is an irredu
ible word.
(2) Ea
h wk is an initial segment of wk+1.
(3) Ea
h vk equals w−1

l · wt for some l, t.
(4) Ea
h vk equals w−1

l · wt for at most �nitely many distin
t l, t < ω.Proof. (1)�(3) are obvious. For (4) noti
e that if l 6= t, then in its irre-du
ible form the word w−1
l wt has length ≥ max{l, t}.For ea
h wk, k > 0, we de�ne a derived sequen
e of words wk,i as follows.We present wk as uv, where v is the longest su�x of wk in letters e±1

n , n > 2.Noti
e that wk−1 is an initial segment of u. Write v as xl−1xl−2 · · ·x0, where
l < ω and xi ∈ {e±1

n : n > 2} (v may be empty, then l = 0). We de�ne wk,ias
wk,i = uxl−1xl−2 · · ·xi for 0 < i < l,and if wk−1 6= u, then we additionally de�ne wk,l as u.



Weak generi
 types and 
overings of groups I 217In this way none of the words wk, k < ω, is a derived word.Lemma 4.2. If ea
h of u, v is derived or is one of the words {wk : k ≥ 0},then one of u, v is an initial segment of the other.Now we de�ne a 
ountable partition of G into sets An,m, where n ≥ −1and m ≥ 0.1. When m < n, we put Am,n = ∅.2. A−1,m = {wm} for m ≥ 0.3. We de�ne the sets An,m, m ≥ n ≥ 0, in two steps, assigning graduallyall elements of G distin
t from wm, m ≥ 0, to one of them.3(a) Consider a word wk, where k > 0, presented as uv,
v = xl−1xl−2 · · ·x0,as in the de�nition of derived words. Assume xl−1 is e±1

n (where
n > 2). If 0 ≤ i < l − 1 and xi is e±1

m (m > 2), then we in
lude
wk,i+1 into Am′,n′ , where m′ = min(m,n) and n′ = max(m,n). If
u 6= wk−1 and so also wk,l = u is de�ned, we put wk,l into An,n.3(b) Assume a word w 6∈ {wk : k ≥ 0} was not in
luded into any of thesets An,m in Step 3(a). Then w begins with some e±1

n and endswith some e±1
m . We in
lude w into Am′,n′ , where m′ = min(m,n)and n′ = max(m,n).In this way we have de�ned a partition of G into sets An,m, n ≥ −1, m ≥ 0.We 
all the words wk, k ≥ 0, spe
ial, and the words 
onsidered in Step 3(b)
ommon.Now we des
ribe our example. We 
onsider the 
ountable 
ompa
t spa
e

X = ω ·ω+1, with the order topology. We identify the set of isolated pointsof X with the set of pairs (n,m) of integers, where n ≥ −1 and m ≥ 0. Morepre
isely, we identify (−1,m) with α = m ∈ X and for n ≥ 0 we identify
(n,m) with α = ω(n + 1) + (m + 1). We 
an imagine the spa
e X as anin�nite array:

(−1, 0) (−1, 1) (−1, 2) . . . ω · 1

(0, 0) (0, 1) (0, 1) . . . ω · 2

(1, 0) (1, 1) (1, 2) . . . ω · 3... ... ... ...
ω · ωwhere the points ω · 1, ω · 2, ω · 3, . . . are limit points in their rows, and ω · ωis the limit point of them. Then we 
onsider a fun
tion f : G→ X given by

f(g) = (n,m) ⇔ g ∈ An,m.The example is an ℵ0-saturated group H, an elementary extension of the
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ates f−1[U ], where U ranges over the 
lopensubsets of X. To be more spe
i�
, we mention expli
itly some of these pred-i
ates.For an isolated α ∈ X let Pα(x) denote the predi
ate f−1[{α}] in G. For
α = ω · n, n > 0, let

Uα = {ω · (n− 1) +m : m > 0} ∪ {ω · n}and let Pα(x) denote the predi
ate f−1[Uα] in G.We de�ne 0-type-de�nable sets Xα, α ∈ X, in H. For an isolated α ∈ Xwe put Xα = Pα(H) (so Xα is de�nable). When α = ω · n, n > 0, we put
Xα = Pα(H) \

⋃

{Pβ(H) : β = ω · (n− 1) +m and m > 0}.Finally, for α = ω · ω we de�ne Xα as H \
⋃

{Pα(H) : α = ω · n and n > 0}.So Xα, α ∈ X, is a 
ountable 
overing of H by 0-type-de�nable sets. Wewill show that H \X−1
ω ·Xω is 
ountable.Indeed, Xω =

⋂

n Yn, where
Yn = Pω(H) \

⋃

0<m<n

A−1,m.Ea
h Yn is a 0-de�nable subset of H. By Lemma 4.1(3),(4) we see that
(Yn ∩ G)−1 · (Yn ∩ G) is a 
o-�nite subset of G. Sin
e H is an elementaryextension of the expansion of G, also Y −1

n · Yn is a 
o-�nite subset of H. Itfollows that X−1
ω ·Xω is a 
o-
ountable subset of H.We will prove that

(∗) H 6= X−1
I ·XI for every �nite set I ⊆ X, where XI =

⋃

α∈I Xα.This is equivalent to the fa
t that for every �nite set I ⊆ X,
(∗∗) G 6= (f−1[U ])−1 · f−1[U ] for some open set U ⊇ I.To prove (∗∗), we 
an 
onsider a �nite set I of the form

IK = {(n,m) : n,m < K} ∪ {ω · n : 0 < n ≤ K} ∪ {ω · ω},where K < ω, sin
e any �nite subset of X is 
ontained in some IK . Thenfor ea
h M < ω the set
A(K,M) =

⋃

−1≤n<K

⋃

m<K

An,m ∪
⋃

−1≤n<K

⋃

m>M

An,m ∪
⋃

n>M

⋃

m<ω

An,m

equals f−1[U ] for some open set U ⊇ IK . So (∗∗) follows from the nextlemma.Lemma 4.3. For every K < ω there are N,M < ω su
h that eN is equalto u−1v for no u, v ∈ A(K,M).



Weak generi
 types and 
overings of groups I 219Proof. Fix K < ω. Let N = K + 3, so N > 2. By Lemma 4.1, 
hoose
M > N so large that

eN 6= u−1 · v for any u, v ∈
⋃

m<K

A−1,m ∪
⋃

m>M

A−1,m.We 
laim that N and M satisfy our requirements in the lemma. Suppose for
ontradi
tion that eN = u−1v for some u, v ∈ A(K,M). We will show thisis impossible by 
he
king all 
ases.
Case 1: Both u, v are spe
ial. Then eN 6= u−1v by the 
hoi
e of M .
Case 2: Both u, v are 
ommon. Then eN = u−1 · v implies one of u, vmust either begin or end with e±1

N . This is impossible by the 
hoi
e of N,M .
Case 3(a): u is spe
ial , v is derived. Then u is an initial segment of v orvi
e versa. In the �rst 
ase v is put into AN,N at Step 3(a) of the 
onstru
tionof An,m's, so v 6∈ A(K,M), a 
ontradi
tion. The se
ond 
ase is impossibleby the 
hoi
e of wk, k ≥ 0.
Case 3(b): v is spe
ial , u is derived. Similar to Case 3(a).
Case 3(
): Both u, v are derived. Similar to Case 3(a).
Case 4. One of u, v is 
ommon and the other is spe
ial or derived. A sim-ilar 
he
k.A
tually, we have obtained an example of an ℵ0-saturated group H
overed by 
ountably many 0-type-de�nable sets Xα, α ∈ X, su
h that

H \X−1
ω ·Xω is 
ountable and H 6= X−1

I ·XI for every �nite set I ⊆ X. Ifwe repla
e the sets Xα by X−1
α , we get a 
overing su
h that H \Xω ·X−1

ω is
ountable and H 6= XI ·X
−1
I for every �nite set I ⊆ X.5. Coverings of types. In this se
tion we 
onsider a 
omplete type

p(x) ∈ S(∅) in a 
omplete �rst-order theory T . We work in a monster model
C of T . We assume that p(C) × p(C) is 
overed by 
ountably many 0-type-de�nable sets Xn, n < ω. At the level of types this means that the spa
e
P = Sxy(∅) ∩ [p(x) ∪ p(y)] is 
overed by 
ountably many 
losed sets P ∩
[Xn(x, y)], n < ω. In this 
ase, as mentioned in the introdu
tion, in [NP℄ wehave proved that(C1′) any a, b ∈ p(C) may be 
onne
ted by a path a, c1, c2, b of length 3so that the edges 〈a, c1〉, 〈c1, c2〉, 〈b, c2〉 lie in X<n for some n < ω.This statement and its proof are 
losely related to (C1). In Se
tion 1 wegave a new proof of (C1) (see Corollary 1.7), using (weak) generi
 types ina group. Here we give a new proof of (C1′), using a new notion of (weakly)
-free extensions, generalizing non-forking extensions in the stable 
ase, and
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orresponding to (weak) generi
 types in a group. To explain this 
orrespon-den
e noti
e that to de�ne (weak) generi
 sets and types in a group all weneeded was just the transitive a
tion of G on itself by left translations. Hereinstead we have the a
tion of the group Aut(C) on C, whi
h is transitive on
p(C). This leads to the following de�nition, 
orresponding to De�nition 1.1.For U ⊆ C, the images of U under the automorphisms of C [�xing A ⊆ C℄are 
alled the 
onjugates of U [over A℄.Definition 5.1. We say that a set U ⊆ C is 
-free over p if p(C) is
overed by �nitely many 
onjugates of U . We say that a formula ϕ(x) is
-free over p if the set ϕ(C) is 
-free over p. We say that a type q(x) is 
-freeover p if every formula ϕ(x) with q(x) ⊢ ϕ(x) is 
-free over p.The 
 in �
-free� stands for �
overing�. In the stable 
ase, a formula ϕ(x)is 
-free over p i� p(x) ∪ {ϕ(x)} does not fork over ∅, and a formula ϕ(x)does not fork over ∅ i� ϕ(x) is 
-free over some q(x) ∈ S(∅). This follows e.g.from the open mapping theorem (see [Pi℄ for the ba
kground on forking instable theories). Hen
e in the stable 
ase 
-free = non-forking, and 
omplete
-free extensions of p exist over any set A ⊆ C.In the simple and o-minimal 
ases this is not so. One 
ould say thatnon-forking loses there some of its 
overing properties from the stable 
ase.In parti
ular, 
omplete 
-free extensions may not exist (see e.g. the randomgraph and the o-minimal stru
ture of the reals). As in Se
tion 1, to over
omethis drawba
k we weaken the de�nition.Definition 5.2. We say that a set U ⊆ C is weakly 
-free over p if U ∪Vis 
-free over p for some V ⊆ C that is not 
-free over p. We say that a formula
ϕ(x) is weakly 
-free over p if the set ϕ(C) is. A type q(x) is 
alled weakly
-free over p if every formula ϕ(x) with q(x) ⊢ ϕ(x) is weakly 
-free over p.We are interested in the de�nable weakly 
-free sets (or even in relativelyde�nable subsets of p(C)). The next lemma provides an alternative de�nitionin this 
ase.Lemma 5.3. Assume U ⊆ C is de�nable. Then the following 
onditionsare equivalent.(1) U is weakly 
-free over p.(2) For some �nitely many 
onjugates Ui, i < n, of U the set ⋂

i<n U
c
iis not 
-free over p.(3) For some de�nable set V ⊆ C that is not 
-free over p, the union

U ∪ V is 
-free over p.Proof. See the proof of Lemma 1.3.Noti
e that Lemma 5.3 
ould also be formulated for relatively de�nablesubsets of p(C). The next lemma 
orresponds to Lemma 1.4.
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-free over p, then U1∪U2 is not weakly
-free over p.(2) If q(x) is a (partial) type over A ⊆ C that is weakly 
-free over p, thensome q′(x) ∈ S(A) extending q(x) is weakly 
-free over p. Ne
essarily ,
p(x) ⊆ q′(x).Let

Swcf,p(A) = {q ∈ S(A) : q is weakly 
-free over p}.We see that Swcf,p(A) is 
losed and non-empty. The next lemma 
orrespondsto Lemma 1.5.Lemma 5.5.(1) AssumeM is ℵ0-saturated. If some type in Swcf,p(M) is 
-free over p,then they all are.(2) If there is just one type in Swcf,p(A), then it is 
-free over p.Proof. (1) Suppose some type q(x) ∈ Swcf,p(M) is not 
-free over p. Thismeans that some M -de�nable set U ⊆ C that is 
-free over p 
an be dividedinto two M -de�nable sets A,B that are not 
-free over p. Say, U = ϕ(C,m),
A = ψ(C,m) and B = χ(C,m) for some formulas ϕ, ψ, χ and some m ⊆M .Then there are some �nitely many 
onjugates mi ⊆ M , i < n, su
h that
p(x) ⊢

∨

i<n ϕ(x,mi). We will show that any type q′ ∈ Swcf,p(M) is not
-free over p.Sin
e p(x) ⊆ q′(x), we see that q′(x) ⊢ ϕ(x,mi) for some i < n. Theneither q′(x) ⊢ ψ(x,mi) or q′(x) ⊢ χ(x,mi). Neither ψ(x,mi) nor χ(x,mi) is
-free over p, hen
e q′ is not either.(2) A similar proof.As an example, noti
e that if T is o-minimal, then for any set of pa-rameters A, any non-algebrai
 type p(x) ∈ S1(∅) has just two extensions in
Swcf,p(A), and none of them is 
-free over p.We 
an de�ne (weakly) 
-free formulas over, and extensions of, a type
p′ ∈ S(A) for any A ⊆ C. Then we 
an say that a formula ϕ(x) is (weakly)
-free over A if ϕ(x) is (weakly) 
-free over some p′(x) ∈ S(A). However, thenotion of weak 
-freeness does not, in general, have the ni
e properties ofnon-forking from the stable or simple 
ase.Re
all that P denotes the spa
e Sxy(∅) ∩ [p(x) ∪ p(y)]. For any S ⊆ Pand a |= p let

Sa = {q(a, y) ∈ Sy(a) : q(a, y) ∈ S}.In parti
ular, Pa = Sy(a) ∩ [p(y)]. Noti
e that Sa is relatively open in Pa i�
S is relatively open in P . Let

Pwcf = {q(x, y) ∈ P : for a |= p, q(a, y) is weakly 
-free over p}.
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losed, sin
e its 
omplement in P is relatively open in P . Noti
ethat in general q(x, y) ∈ Pwcf does not imply q(y, x) ∈ Pwcf , sin
e weak
-freeness is not always symmetri
. The next proposition 
orresponds toProposition 1.6.Proposition 5.6. Assume S ⊆ Pwcf is non-empty and relatively open.Then there are some �nitely many ci |= p, i < k, su
h that for every b |= pthere is some d |= p su
h that tp(b, d) ∈ S and tp(ci, d) ∈ S for some i < k.Proof. In this proof a �de�nable set� will mean a �relatively de�nablesubset of p(C) or of p(C)×p(C)�. We identify de�nable sets with the formulasthat (relatively) de�ne them.Choose a non-empty 0-de�nable set U ⊆ p(C) × p(C) with
S ⊇ Pwcf ∩ [U(x, y)].We 
an assume that S = Pwcf ∩ [U(x, y)]. Hen
e for any c |= p, U(c, y) isweakly 
-free over p. Choose a (relatively) de�nable set V = V (e,C) ⊆ p(C)that is not 
-free over p, but U ∪V is 
-free over p. Choose a �nite set (ci, ei),

i < k, of 
onjugates of (c, e) su
h that
p(y) ⊢

∨

i<k

(U(ci, y) ∨ V (ei, y)).As in the proof of Proposition 1.6 we show that
(∗) the set (U(c,C) ∪ V (e,C)) \ S(c,C) is not 
-free over p.To �nish the proof, we show that for every b |= p there is some d ∈ S(b,C)with d ∈

⋃

i<k S(ci,C).If not, then there is some b |= p su
h that d 6∈
⋃

i<k S(ci,C) for every
d ∈ S(b,C). Still d ∈

⋃

i<k(U(ci,C) ∪ V (ei,C)), and hen
e
S(b,C) ⊆

⋃

i<k

((U(ci,C) ∪ V (ei,C)) \ S(ci,C)).

Choose ek so that for ck = b, (ck, ek) and (c, e) are 
onjugate. Then we seethat
U(ck,C) ∪ V (ek,C) ⊆

⋃

i≤k

((U(ci,C) ∪ V (ei,C)) \ S(ci,C)),

hen
e the set on the right hand side is 
-free over p. Thus so also is the set
(U(c,C) ∪ V (e,C)) \ S(c,C), 
ontradi
ting (∗).Corollary 5.7. Assume S ⊆ Pwcf is non-empty and relatively open.Then there are some �nitely many types ri(x, y) ∈ P , i < k, su
h thatfor every a, b |= p there are c, d |= p with tp(a, c) ∈ {ri : i < k} and
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tp(c, d), tp(b, d) ∈ S. Moreover , for every a |= p we 
an 
hoose ci |= ri(a, y),
i < k, so that for every b |= p there are c, d as above so that additionally
c ∈ {ci : i < k}.Proof. Let c0, . . . , ck−1 be as in the proof of Proposition 5.6. Let ri =
tp(c0, ci). Now 
onsider an arbitrary a |= p. Applying an automorphism of
C we 
an assume c0 = a. Then by Proposition 5.6 we are done.The next 
orollary was proved in [NP℄. Here we give a di�erent proof.Corollary 5.8. Assume P is 
overed by 
ountably many 
losed sets
Xn, n < ω. Then there are some �nitely many types ri ∈ P , i < k, anda natural number n su
h that for every a, b |= p there are c, d |= p with
tp(a, c) ∈ {ri, i < k} and tp(c, d), tp(b, d) ∈ Xn.Proof. By the Baire 
ategory theorem some of the sets Xn ∩ Pwcf havenon-empty relative interior in Pwcf , so Corollary 5.7 applies.In the 
ase of a simple theory, weakly 
-free extensions are related tonon-forking extensions.Lemma 5.9. Assume T is simple and ϕ(x, a) is weakly 
-free over p ∈
S(∅). Then ϕ(x, a) does not fork over ∅.Proof. Choose a formula ψ(x, b) su
h that ψ is not 
-free over p and
ϕ(x, a) ∨ ψ(x, b) is 
-free over p. So for some fi ∈ Aut(C), i < k, we have
p(x) ⊢ ϕ′(x, a′) ∨ ψ′(x, b′), where

ϕ′(x, a′) =
∨

i<k

ϕ(x, fi(a)) and ψ′(x, b′) =
∨

i<k

ψ(x, fi(b)).Then ψ′(x, b′) is still not 
-free over p. Suppose ϕ(x, a) forks over ∅. Then
ϕ′(x, a′) also forks over ∅, hen
e it divides over ∅. Thus for some gj ∈ Aut(C),
j < l, the set {ϕ′(x, gj(a

′)) : j < l} is in
onsistent. We see that
p(x) ⊢

∨

j<l

ψ′(x, gj(b
′)),

hen
e ψ′(x, b′) is 
-free over p, a 
ontradi
tion.Again, we do not know a simple theory where weak 
-freeness 6= non-forking.6. Open problems. We end this paper with a set of problems andquestions.
Problem 1. Find a group de�nable in a simple theory where weakgeneri
 6= f-generi
, or prove that in some 
ases still weak generi
 = f-generi
.
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Problem 2. The �rst appli
ation of generi
 types was the fa
t that astable group G with regular generi
 types is abelian-by-�nite [Po℄. Is therea 
ounterpart of this result for weak generi
 types?
Problem 3. Find a simple theory where weak 
-freeness 6= non-forking,or prove that in some 
ases still weak 
-freeness = non-forking.
Problem 4. Determine the number k of steps needed to generate thegroup G (de�ned in the introdu
tion) in the situation where G is de�nablein an o-minimal or simple theory. As we know, there are two possibilities:either k = 2 or k = 2.5. Is it true that in the o-minimal 
ase k = 2 holds?The 
ru
ial point here may be to realize how 
losely we may des
ribe (by atype-de�nable set) a free subgroup of G.
Problem 5. Assume G is an ℵ0-saturated group, 
overed by 
ountablymany sets Xn, n < ω. Corollary 1.7 says that in this 
ase G is generatedby �nitely many of them, in �nitely many steps. Is this still true if Xn areBorel? Can we still �nd a bound on the number of steps needed to generate

G (maybe depending on the Borel 
lass of the sets Xn)? This seems relatedto the question of how the notion of �rst Baire 
ategory is related to thegroup operation of G. In general, our results on ℵ0-saturated groups showsome similarity to those for 
ompa
t topologi
al groups.Assume G is a 
ompa
t topologi
al group, 
overed by 
ountably manyBorel sets Xn, n < ω. Then they have the Baire property (and are alsomeasurable with respe
t to the Haar measure). Hen
e there is some n < ωand some open non-empty set U ⊆ G su
h that U \Xn is meager. It is easyto see that then G is generated by some �nitely many of Xn's in �nitelymany steps.
Problem 6. Strengthen Theorem 2.4 to make it hereditary. That is,de�ne a property C of subsets of an ℵ0-saturated group G su
h that if atype-de�nable set X ⊆ G satis�es C, then G = X · X−1, and if X is splitinto 
ountably many type-de�nable sets Xn, n < ω, then for some n also

X<n satis�es C.
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