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On the continuity of the Hausdorff dimension
of the Julia–Lavaurs sets

by

Ludwik Jaksztas (Warszawa)

Abstract. Let f0(z) = z2 + 1/4. We denote by E0 the set of parameters σ ∈ C for
which the critical point 0 escapes from the filled-in Julia set K(f0) in one step by the
Lavaurs map gσ. We prove that if σ0 ∈ ∂E0, then the Hausdorff dimension of the Julia–
Lavaurs set J0,σ is continuous at σ0 as the function of the parameter σ ∈ E0 if and only
if HD(J0,σ0) ≥ 4/3. Since HD(J0,σ) > 4/3 on a dense set of parameters which correspond
to preparabolic points, the lower semicontinuity implies the continuity of HD(J0,σ) on an
open and dense subset of ∂E0.

1. Introduction. For a polynomial f we define the filled-in Julia set
K(f) as the set of points that do not escape to infinity under iteration of f .
The boundary of K(f) is called the Julia set of f and denoted by J(f).

Put fε(z) = z2+1/4+ε. The function ε 7→ HD(J(fε)), where HD denotes
the Hausdorff dimension, is real-analytic on the set of hyperbolic parameters
(see [4]). We can also consider the function ε 7→ J(fε) with values in K(C),
the space of nonempty compact subsets of C equipped with the Hausdorff
metric. We know from [1] that this function is continuous on the set of
hyperbolic parameters.

Let us consider the set of real nonnegative parameters ε. The maps fε
are hyperbolic provided ε > 0, whereas f0 has a parabolic fixed point at
1/2, with multiplier 1. It is of interest to study the behaviour of J(fε) when
ε↘ 0. We know that the function ε 7→ J(fε) is not continuous at zero from
the right. The possible limits of J(fε) in the space K(C), which occur after
passing to a subsequence, are called Julia–Lavaurs sets. These sets depend on
a parameter σ ∈ R and will be denoted by J0,σ. For background information
see [1]. We recall some facts in the next section.

The function ε 7→ HD(J(fε)) is not continuous at zero either (see [2]).
If we choose a sequence of parameters εn so that J(fεn) converges in the
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Hausdorff metric to J0,σ for some σ, then also HD(J(fεn)) converges to
HD(J0,σ). It is a famous problem whether the Hausdorff dimension of J0,σ

depends on the parameter σ, and whether the limit limε↘0 d(ε) exists.
We can also define Julia–Lavaurs sets for parameters σ ∈ C, using the

so-called Lavaurs map gσ (Julia–Lavaurs sets depend in fact only on the
class of σ in the space C/Z). A parameter σ ∈ C is called hyperbolic if
the critical point 0 escapes from K(f0) under iteration of gσ. The set of
hyperbolic parameters is denoted by E . We are interested in its connected
component containing R, which is denoted by E0. Equivalently σ ∈ E0 if and
only if gσ(0) /∈ K(f0). The Hausdorff dimension of J0,σ can be treated as a
function of the parameter: σ 7→ HD(J0,σ). We will consider σ ∈ E0.

M. Urbański and M. Zinsmeister proved in [5] that if σn ∈ E0 converges
to σ0 ∈ ∂E0 along an external ray, then HD(J0,σn) converges to HD(J0,σ0).
They also showed that HD(J0,σ) is real-analytic on the set E (see [6]). We
will prove the following:

Theorem 1.1. The function σ 7→ HD(J0,σ) defined on the set E0 is
continuous at σ0 ∈ ∂E0 if and only if HD(J0,σ0) ≥ 4/3. Moreover the function
σ 7→ max{HD(J0,σ), 4/3} is continuous on ∂E0.

As a corollary we will get continuity on an open and dense subset of ∂E0.
We will use the following notation: A � B means that K−1 < A/B < K,

where the constant K > 1 does not depend on the parameter.

2. The Julia–Lavaurs set. Now we introduce so-called Fatou coordi-
nates. Note that the point 1/2, which is a parabolic fixed point of f0, is a
common point of the boundaries of the disks B(3/8, 1/8) and B(5/8, 1/8).

There exist holomorphic injective maps

φ− : B(3/8, 1/8)→ C, φ+ : B(5/8, 1/8)→ C
(attracting and repelling Fatou coordinate) for which

(2.1)
φ−(f0(z)) = φ−(z) + 1 provided z ∈ B(3/8, 1/8)

φ+(f0(z)) = φ+(z) + 1 provided z, f0(z) ∈ B(5/8, 1/8).

Moreover there exists a constant M > 0 such that

(2.2)
φ−(B(3/8, 1/8)) ⊃ {z : Re(z) > M},
φ+(B(5/8, 1/8)) ⊃ {z : Re(z) < −M}.

We can also assume that φ−(3/8) = φ+(5/8) = 0.
Using (2.1) the function φ− can be extended to the union of the preim-

ages of B(3/8, 1/8) under iterations of f0, that is, IntK(f0). The function
obtained is not injective, and has critical points at zero and at each preimage
of zero under fn0 , n ≥ 1.
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Denote by Ψ+ the inverse function of φ+. So, Ψ+ is defined only on
φ+(B(5/8, 1/8)), but if we take φ+(z) = Z then (2.1) leads to f0(Ψ+(Z)) =
Ψ+(Z + 1). This equation and (2.2) allow us to extend Ψ+ to the whole C.
This new function Ψ+ has a critical point at Z if and only if Ψ+(Z −n) = 0
for some n ∈ N \ {0}.

Let Tσ denote the translation Z 7→ Z + σ. The Lavaurs map gσ :
IntK(f0)→ C is

gσ = Ψ+ ◦ Tσ ◦ φ−.

Note that

(2.3) gσ ◦ f0 = f0 ◦ gσ = gσ+1.

The set of critical points of gσ consists of all points z for which fk0 (z) = 0
for all k ≥ 0 or gσ−n(z) = 0 for all n ∈ N \ {0}.

We say that a point z ∈ K(f0) escapes from K(f0) by (f0, gσ) if there
exists m ≥ 1 such that gmσ (z) is well defined and gmσ (z) /∈ K(f0). The
remaining points of K(f0) are called non-escaping (in particular J(f0) and
points whose forward trajectory under gσ hit J(f0)).

We define the filled-in Julia–Lavaurs set K0,σ as the set of all non-
escaping points from K(f0).

The boundary ∂K0,σ is called the Julia–Lavaurs set and is denoted
by J0,σ.

Proposition 2.1 ([1]). We have

J0,σ := {z : ∃m∈N, gmσ (z) ∈ J(f0)}.

If σ−σ′ ∈ Z then (2.3) leads to K0,σ = K0,σ′ . Thus, instead of σ one can
consider its class in C/Z.

A parameter σ is called hyperbolic if 0 escapes under gσ, that is, 0 /∈ K0,σ.
The set of all hyperbolic parameters will be denoted by E .

Theorem 2.2 ([1]). If σ ∈ E then

J0,σ = K0,σ.

The map gσ and the set J0,σ can also be defined as follows:

Proposition 2.3 ([5], [1]). If {εn}n∈N is a sequence of complex numbers
with positive real parts which converges to zero in such a way that there exists
a sequence of positive integers Nn →∞ such that

(2.4)
−π
√
εn

+Nn → σ,

then fNnεn converges to gσ almost uniformly on IntK(f0). Moreover, if σ ∈ E
then the set J(fεn) converges to J0,σ in the space K(C).
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Fig. 1. The Julia–Lavaurs set for σ ∈ ∂E0

Let us denote by E0 the connected component of E containing R. The set
E0 can also be defined as the set of parameters for which 0 escapes in one
step, i.e. gσ(0) /∈ K(f0). Further, we will consider the closure of the set E0.

Proposition 2.4 ([5]). If σ ∈ E0, then

J0,σ = K0,σ

and the map σ 7→ J0,σ is continuous on E0.

If σ ∈ E0 then the set g−1
σ (IntK(f0)) consists of countably many con-

nected components which are topological disks. For every x ∈ J0 such that
fn0 (x) = 1/2 for all n ≥ 0 there exist two components of g−1

σ (IntK(f0))
which have x in their boundaries. Denote by P̂+

1/2 and P̂−1/2 the closures of
the upper and the lower component respectively containing 1/2. The set

P1/2 = (P̂−1/2 ∪ P̂
+
1/2) ∩K0,σ
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will be called the butterfly at 1/2 and the sets P±1/2 = P̂±1/2 ∩ K0,σ will be
called the wings of the butterfly at 1/2.

If x is a preparabolic point, then we define the butterfly Px, and its
wings P+

x and P−x , as the preimages of P1/2, P+
1/2 and P−1/2 respectively. The

Julia–Lavaurs set is the union of J0 and the butterflies at 1/2 and at all the
preparabolic points. Clearly all the butterflies are pairwise disjoint if σ ∈ E0.

If σ ∈ ∂E0 then the butterflies and their wings can be defined analo-
gously, but they are not pairwise disjoint. For example, if Imσ > 0 then
we have P+

1/2 ∩ P
+
−1/2 = {0} (see Figure 1), whereas if Imσ < 0 then

P−1/2 ∩ P
−
−1/2 = {0}. Note that P+

−1/2 is the lower wing at −1/2, since by
definition f0(P+

−1/2) = P+
1/2.

3. Partition. First we assume that σ ∈ E0. Let A0,0 denote the closed
subset of J0,σ which contains −1/2 and lies between the external rays of
arguments 1

3 · 2π,
2
3 · 2π. In this section we describe (with more precision) a

partition of A0,0, which was defined in [5], and denoted by {An}.
We start with a partition of the whole set J0,σ (into the sets A0,0, Asp,q

where q ∈ Z if |p| ≥ 2, and q ≤ −1 if |p| = 1), called the DSZ partition. It
was defined in [2] and also used in [5], but we change the notation.

Let As1,−q and As−1,−q, where q ≥ 1, be the successive preimages of A0,0

under f q0 , in the upper and lower half-plane respectively. Notice that the
union of A0,0 and all the sets As±1,−q is equal to J0,σ \ P1/2.

Now we cut P+
1/2. For A

s
2,0 we take the closure of the “first” component

of g−1
σ (A0,0)∩P+

1/2 (there are infinitely many components), namely the com-
ponent with the property that any other component is included in fn0 (As2,0)
for some n ≥ 1. We define

As2,q := f q0 (As2,0) ∩ P+
1/2 for q ∈ Z

(note that gσ(As2,q) = As1,q if q ≤ −1, and gσ(As2,q) = f q0 (A0,0) if q ≥ 0), next

Asp,q := g2−p
σ (As2,q) ∩ P+

1/2 for p ≥ 3.

Thus we have defined the partition of P+
1/2 into the sets Asp,q where p ≥ 2.

The partition of P−1/2 can be described analogously, but we take p ≤ −2
and replace above p by |p|. The sets A0,0 and Asp,q form the DSZ partition
of J0,σ \ {1/2}. The DSZ partition can also be defined for σ ∈ ∂E0 by a
continuity argument.

Now we describe the partition {An} of the set A0,0.

Step 1. First we use only symmetry and the DSZ partition. Let s(z) =
−z and let Ap,q := s(Asp,q). Because the set J0,σ is symmetric with respect
to 0, the family Ap,q, where |p| ≥ 2, q ∈ Z, is a partition of P−1/2 ⊂ A0,0. In
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order to get a partition of A0,0 we define B as the set of all pairs (p, q) such
that q ∈ Z if |p| ≥ 2, and q ≤ −2 if |p| = 1. Then

A0,0 \ {−1/2} =
⋃

(p,q)∈B

Ap,q.

It follows from the construction that A0,0 can be carried onto Ap,q by a
map ϕp,q which is a composition of fn0 , g−kσ and s (or their suitable inverses).
Since gσ ◦ f0 = f0 ◦ gσ, the maps ϕp,q can be written in the following form:

ϕp,q = s ◦ f q0 ◦ g
1−|p|
σ : A0,0 → Ap,q.

If σ ∈ R, then {An} can be defined as the family {Ap,q}, (p, q) ∈ B. But
later on we will consider parameters in ∂E0, or close to ∂E0. In this case the
critical point 0 belongs, or is close, to wings of the butterflies, and thus the
partition {Ap,q} must be refined.

Step 3/2. The construction will be carried out under the assumption
σ ∈ ∂E0 and Imσ > 0.

If σ ∈ E0, then σ lies on a curve φ+(Γ ) ⊂ E0, which is the image of an
external ray Γ ⊂ C \K(f0). If Γ lands at z ∈ ∂K(f0) and σ0 = φ+(z), then
the curve γσ0 := φ+(Γ ) lands at σ0 ∈ ∂E0 (if σ > 0 then σ0 > 0). We define
the partition for σ ∈ E0 analogously as for σ0 ∈ ∂E0 (cf. [5]).

Recall that the assumption σ ∈ ∂E0, Imσ > 0 implies {0} = P+
1/2∩P

+
−1/2.

Changing σ by adding an integer (this does not change the set J0,σ) we can
also assume that 0 ∈ As2,0 (or if zero is a common point of two cylinders then
0 ∈ As2,0∩As2,1). Thus we also have 0 ∈ A2,0 and gσ(A2,0) = gσ(As2,0) = A0,0,
in particular gσ(0) ∈ A0,0.

Step 2. The sets Ap,q, where (p, q) ∈ B, are called cylinders of order 0.
We want each piece of the partition {An} (to be constructed) to be mapped
onto a “big” set (not necessarily A0,0) with bounded distortion by a compo-
sition of fn0 , gkσ and s.

First we assign to {An} all the cylinders of order 0 except A2,0 and its
two neighbours, i.e. A2,−1 and A2,1 which we need to partition additionally.

We assume first that σ ∈ ∂E0 does not correspond to a preparabolic point,
i.e. gσ(0) is not a preparabolic point. We cut the cylinders A2,0, A2,±1 into
cylinders of order 1, i.e. we take the images of Ap,q under ϕ2,0 and ϕ2,±1. In
the next step we keep all cylinders of order 1 except a piece which contains 0
and its two neighbours. We cut these three pieces into cylinders of order 2,
and so on.

If a parameter corresponds to a preparabolic point the procedure is the
same, until we reach the step for which 0 does not belong to any cylinder of
the iterated partition; we then stop the process.
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Lemma 3.1. Each piece of the partition {An} can be mapped by a compo-
sition of fn0 , g

k
σ and s with uniformly bounded distortion onto A0,0 or A2,−1.

Proof. Let σ ∈ ∂E0. First we consider the pieces An of the form Ap,q. So
we deal with (p, q) ∈ B \ {(2,−1), (2, 0), (2, 1)}.

If p ≥ 3 or p = 2 and q ≤ −2, then the maps ϕ−1
p,q do not have bounded

distortion, but using gp−2
σ ◦ f1−q

0 , the sets Ap,q can be mapped onto A2,−1.
In all the other cases ϕ−1

p,q has bounded distortion. More precisely:
If p ∈ {−1, 1}, then Ap,q can be mapped onto A0,0 using f−q0 ◦ s.
The set As−2,0 is far from the set of critical points, so each piece Ap,q,

where p ≤ −2, can be carried onto As−2,0 with bounded distortion and next,
using gσ, onto A0,0.

If p = 2 and q ≥ 2, then ϕ−1
p,q has bounded distortion although gσ and

f−q0 do not, because ϕ−1
p,q can be written as f0 ◦ gσ−3 ◦ f2−q

0 ◦ s. Indeed if
we subtract three from σ then there are no critical points in A2,2 (and its
neighbours).

Now we consider pieces of {An} which are cylinders of order greater
than 0. Let An be a cylinder of order k, and let I be a cylinder of order k−1
which contains An (I does not belong to {An}). Then I contains zero or is
a neighbour of such a cylinder.

It follows from the construction that the distortion of gσ is uniformly
bounded on the pieces of {An}. The image of I under gσ is a cylinder which
has nonempty intersection with the Julia set J(f0). Such a cylinder can
be mapped, using composition of ϕ−1

±1,q, onto A0,0 with uniformly bounded
distortion, whereas the image of gσ(An) is a set Ap,q which, as we have shown,
can be mapped with bounded distortion onto A0,0 or A2,−1.

If σ ∈ E0 then analogous considerations can be carried out.

We define cylinders of order two of the partition {An} as the preimages
of the sets An under the maps which carry pieces of the partition onto A0,0

or A2,−1. The new partition will be denoted by {A2
n}. Partitions of higher

order can be defined analogously and denoted by {Akn}.
The Schwarz lemma and Koebe distortion theorem imply the following

corollary:

Corollary 3.2. Each cylinder of the partition {Akn} for each k ≥ 1 can
be mapped by compositions of fn0 , g

m
σ and s with uniformly bounded distortion

onto A0,0 or A2,−1.

Remark 3.3. Each piece of {Akn} can be mapped by a composition of
ϕ−1
p,q onto A0,0, but the distortion is unbounded, so we cannot build an IFS.

Nevertheless this system can be improved in order to get a graph directed
Markov system as in [3], using the mappings of Corollary 3.2:
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Let {A0,0, A
s
2,−1} be the set of vertices. Now we define the partition {Ân}

of A0,0∪As2,−1. On the set A0,0 we take {Amn } form large enough. Then there
exists a family of uniform contractions φsn mapping A0,0 or A2,−1 onto each
piece of {Amn }. On the set As2,−1 we take a symmetric partition with respect
to A2,−1. Next, composing φsn with symmetry if necessary, for each piece of
{Ân} we obtain a contraction φn : Xn → Ân, where Xn ∈ {A0,0, A

s
2,−1}. The

family of contractions Sσ = {φn} forms a simple conformal graph directed
Markov system (see [3, pp. 1, 3, 71]).

Remark 3.4. Denote the limit set of Sσ by Λσ. The set Λσ is equal to
A0,0 ∪ As2,−1 up to some countable subset which consists of preimages of 0
(in the case σ ∈ ∂E0) and −1/2 under compositions of maps that form our
system. In particular, HD(Λσ) = HD(A0,0 ∪As2,−1) = HD(J0,σ).

4. Conformal measures and semicontinuity. A Borel probability
measure ω on J(fε) is said to be t-conformal for fε if for every Borel subset
A ⊂ J(fε),

(4.1) ω(fε(A)) =
�

A

|f ′ε|t dω

provided fε is injective on A.
If a measure ω is supported on J0,σ then we say that ω is t-conformal for

(f0, gσ) if (4.1) is satisfied for f0 and, under the assumption A ⊂ IntK(f0),
also for gσ (gσ is defined only on IntK(f0)).

Let first σ ∈ E0. Let {εn}n∈N satisfy (2.4). Then J(fεn) → J0,σ in K(C)
and for sufficiently large n the maps fεn are hyperbolic. So, there exist dεn-
conformal measures ωεn for fεn on the set J(fεn), where dεn = HD(J(fεn)).
Passing to a subsequence, we can get a weakly convergent sequence of mea-
sures which converges to a measure ωσ supported on the set J0,σ. Because gσ
is a limit of high iterates of fεn (see Proposition 2.3), ωσ is a dσ-conformal
measure for (f0, gσ), where dσ = limn→∞ dεn . It follows from [2] that dσ =
HD(J0,σ) and ωσ is atomless.

For σ ∈ E0, we conclude from [3] that there exists a dσ-conformal measure
ω̃σ for Sσ on its limit set Λσ (see Remark 3.4), where dσ = HD(J0,σ).

We know that for σ ∈ E0 the dσ-conformal measure ωσ for (f0, gσ) is
atomless. Thus ωσ|Λσ is positive and so, after normalization, we get a dσ-
conformal measure of the system Sσ, as its elements are compositions of f0,
gσ and s. The uniqueness leads to ω̃σ = ωσ|Λσ . On the other hand, using
f−1
0 and s, we can obtain ωσ as the extension of ω̃σ from Λσ to J0,σ. More
precisely, we reconstruct ωσ on the set As0,0 from A0,0 using s (ωσ coincides
with ω̃σ on As2,−1), whereas on the sets As±1,−1 the measure ωσ is defined as
|(f−1

0 )′ ◦ f0|dσ(f−1
0 )∗ω̃σ (up to normalization).
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For σ0 ∈ ∂E0 we can choose a sequence of parameters σn ∈ E0 which
converges to σ0 as in [5]. Namely, if σ0 = φ+(z) and Γz ⊂ C \K(f0) is an
external ray landing at z, then we take a sequence tending to σ0 along the
curve γσ0 = φ+(Γz). It was proved in [5] that the sequence of dσn-conformal
measures ω̃σn weakly converges to an atomless dσ0-conformal measure on
Λσ0 for Sσ0 , which by uniqueness is ω̃σ0 . The fact that limn→∞ dσn = dσ0

leads to limn→∞HD(J0,σn) = HD(J0,σ0). This is the continuity proved in [5].
Next, using f−1

0 and s in the same scheme as before (extending ω̃σ to ωσ
for σ ∈ E0), we define ωσ0 as the extension of ω̃σ0 from Λσ0 to J0,σ0 . Hence
ωσ0 is the weak limit of the extensions ωσn , therefore ωσ0 is dσ0-conformal
for (f0, gσ0). We see that ωσ0 is atomless, thus we have obtained:

Lemma 4.1. For every σ ∈ E0 there exists an atomless dσ-conformal
measure ωσ for (f0, gσ), where dσ = HD(J0,σ).

Remark 4.2. This atomless property follows in [5] from uniform (from
above) estimates of conformal measures, for σ in the external ray γσ0 , of
appropriate clusters of cylinders. The partitions for σ ∈ γσ0 are all combina-
torially the same. Compare Remark 5.2.

We shall also use the following lemma (standard in the rational functions
setting).

Lemma 4.3. Let ν± be d±-conformal measures for (f0, gσ) on J0,σ, where
d+ ≥ d−. Then, if ν+ is nonatomic, we have d+ = d−.

Proof. For every δ > 0, using cylinders of partitions {Akn}, we can con-
struct a cover {Bn} of A0,0 (minus some countable subset which consists
of preimages of 0 and −1/2 under suitable compositions of ϕp,q) such that
diam(Bn) < δ for every n ∈ N.

Each point belongs to at most two pieces of {Bn}, whereas each set Bn
can be mapped onto a “big” set (i.e. A0,0 or A2,−1) using a map ϕn, with
bounded distortion. Hence we get∑

n∈N
diam(Bn)d

± �
∑
n∈N
‖(ϕ−1

n )′‖d± .

Next, since ν± are d±-conformal (and ν±(A0,0), ν±(A2,−1) are positive),
bounded distortion leads to

(4.2)
∑
n∈N

diam(Bn)d
± �

∑
n∈N
‖(ϕ−1

n )′‖d± �
∑
n∈N

ν±(Bn).

Since the measure ν+ is nonatomic, we have
∑
ν+(Bn) = ν+(A0,0) > 0.

Thus, by (4.2), and next using the assumptions d+ ≥ d−, diam(Bn) < δ we
get

K ≤
∑
n∈N

diam(Bn)d
+ ≤ δd+−d−

∑
n∈N

diam(Bn)d
−
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for a constantK > 0. Letting δ → 0 we see that if d+ > d− then δd+−d− → 0,
which gives us a contradiction.

Let σn ∈ E0 be an arbitrary sequence of parameters tending to σ0 ∈ ∂E0
such that the sequence of measures ωσn weakly converges to a measure νσ0 .
The limit measure νσ0 is supported on J0,σ0 and is d+

σ0
-conformal for (f0, gσ0),

where d+
σ0

= limn→∞ dσn . Denote byNσ0 the set of all possible limit measures
for the parameter σ0.

Recall from [6] that the function σ 7→ HD(J0,σ) is real-analytic on E0.
Proposition 4.4. The function σ 7→ HD(J0,σ) is lower semicontinuous

on the set E0.

Proof. We will consider parameters σ ∈ ∂E0. In order to obtain lower
semicontinuity it is enough to prove that if νσ0 ∈ Nσ0 is a d+

σ0
-conformal

measure, then

(4.3) HD(J0,σ0) ≤ d+
σ0
.

In the same way as in the proof of Lemma 4.3, we can construct a cover
{Bn} of A0,0 such that diam(Bn) < δ. Next, we derive (4.2) and then con-
clude that ∑

n∈N
diam(Bn)d

+
σ0 ≤ K1

∑
n∈N

νσ0(Bn) ≤ K2

for certain constants K1, K2. We see that (4.3) follows from the above, and
the proof finished.

Note that lower semicontinuity implies continuity of HD(J0,σ) on a dense
Gδ subset of ∂E0. Theorem 1.1 will yield continuity on an open and dense
set.

5. Continuity of the dimension. Now we prove a key fact for obtain-
ing continuity of the Hausdorff dimension whenever HD(J0,σ) ≥ 4/3. It will
allow us to use Lemma 4.3.

Lemma 5.1. If σ0 ∈ ∂E0 and νσ0 ∈ Nσ0 is a d+
σ0
-conformal measure,

where d+
σ0
> 4/3, then νσ0 is atomless.

Remark 5.2. Notice that now the partitions for σn → σ0 can have dif-
ferent combinatorics, unlike for radial convergence (cf. Remark 4.2). Coping
with this is the main novelty of the present paper compared to [5].

Proof of Lemma 5.1. It follows from [2] (and also [5]) that νσ0 has no
atoms at parabolic (preparabolic) points. We must check critical (precriti-
cal) points, but it is enough to consider the critical point 0. All the other
points belong to the limit set Λσ0 of Sσ0 . In particular the derivatives of
compositions of the maps in Sσ0 tend to infinity, so there cannot be atoms.
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If νσ0 is a weak limit of a sequence {ωσn}n∈N, and νσ0 is d+
σ0
-conformal,

then d+
σ0

= limn→∞ dσn . Therefore, we conclude from Proposition 4.4 and
the assumption d+

σ0
> 4/3 that dσn > 4/3 + ε for some ε > 0 and all n large

enough.
Let Uσ(

√
R) denote the connected component of the preimage of the disk

B(gσ(0), R) under gσ, which contains 0. Then, uniformly in σ close to σ0,
for some constant C1, we have

B(0, C1

√
R) ⊂ Uσ(

√
R) ⊂ g−1

σ (B(gσ(0), R))

(0 is a critical point of degree two). In order to prove that there is no atom
at 0, it is enough to show that ωσ(Uσ(

√
R)) → 0 when R → 0, uniformly

in σ, provided HD(J0,σ) = dσ > 4/3 + ε.
Estimations will be carried out under the assumption that σ ∈ ∂E0 and σ

does not correspond to a preparabolic point (i.e. gσ(0) is not a preparabolic
point). Later on we will deduce the general case.

For each k ≥ 1, we will estimate the measure of the union of all cylinders
of order k which are pieces of {An} and have nonempty intersection with
Uσ(
√
R)∩A2,0. Let us denote this measure by ξk(

√
R). To simplify notation

we omit σ (we shall try to find a bound not depending on σ). The remain-
ing cylinders are included in Uσ(

√
R) ∩ A2,±1, and we can deal with them

analogously, so we have ωσ(Uσ(
√
R)) �

∑∞
k=1 ξk(

√
R).

Since 0 is the critical point of degree two, and for some constant K > 0,
diam(gσ(An)) < K dist(gσ(0), gσ(An)), it follows that

(5.1) diam(An) � dist(gσ(0), gσ(An))−1/2 diam(gσ(An)).

Step 1. First we estimate ξ1(
√
R). If gσ(0) ∈ A1,q∗ , then we denote by

A∗ the set B\{(1, q∗−1), (1, q∗), (1, q∗+1)}. We see that cylinders of order 1
included in A2,0 are of the form g−1

σ (Ap,q) where (p, q) ∈ A∗.
Since the Fatou coordinates behave like −1/z, analogously to [5, proof

of Proposition 5.1] or [2] we have

(5.2) dist(gσ(0), Ap,q) �
∣∣∣∣ 1
q + pi

− 1
q∗ + i

∣∣∣∣
provided gσ(0) ∈ A1,q∗ , (p, q) ∈ A∗. Next, because the diameters of the
cylinders are bounded in the Fatou coordinates, we also have

(5.3) diam(Ap,q) �
1

p2 + q2
.

If An = g−1
σ (Ap,q), (p, q) ∈ A∗, then combining (5.2), (5.3) with (5.1) we get

(5.4) diam(g−1
σ (Ap,q)) �

∣∣∣∣ 1
q + pi

− 1
q∗ + i

∣∣∣∣−1/2

(p2 + q2)−1.
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Because of (5.2), in order to estimate ξ1(
√
R) we can consider only cylin-

ders with indices from the set A∗R :=
{
(p, q) ∈ A∗ :

∣∣ 1
q+pi −

1
q∗+i

∣∣ < C2R
}
for

a suitable constant C2. Then by (5.4), writing for simplicity d instead of dσ,
for some constant K1 we obtain

ξ1(
√
R) < K1

∑
(p,q)∈A∗R

∣∣∣∣ 1
q + pi

− 1
q∗ + i

∣∣∣∣−d/2(p2 + q2)−d.

This sum will be estimated from above by an integral. Let I(z) := −1/z.
Writing Z instead of q + pi and taking

B∗R :=
{
z :

C3

(q∗)2 + 1
<

∣∣∣∣z − 1
q∗ + i

∣∣∣∣ < C4R

}
(where C3/((q∗)2 + 1) is related to the diameter of A1,q∗ , which is omitted),
for suitable constants C3, C4, K2 we obtain

ξ1(
√
R) < K2

�

I(B∗R)

∣∣∣∣ 1Z − 1
q∗ + i

∣∣∣∣−d/2|Z|−2d dl2(Z).

Taking Z = I(z) and 1
q∗+i = z∗, we get

ξ1(
√
R) < K2

�

B∗R

|z − z∗|−d/2|z|2d
∣∣∣∣ 1
z2

∣∣∣∣2 dl2(z) =
�

B∗R

|z − z∗|−d/2|z|2d−4 dl2(z).

Next, using the Hölder inequality, we estimate the above by( �

B∗R

|z − z∗|−
d
2
· 8−3d

d dl2(z)
) d

8−3d
( �

B∗R

|z|(2d−4)· 8−3d
8−4d dl2(z)

) 8−4d
8−3d

.

Because B∗R ⊂ B(z∗, C4R), the integrals can be taken over B(z∗, C4R) in-
stead of B∗R. Next, replacing |z| by |z − z∗| in the second integral, the value
can only increase, since the exponent is negative and the integral is taken
over a ball centred at z∗. Therefore ξ1(

√
R) can be estimated from above by( �

B(z∗,C4R)

|z − z∗|3d/2−4 dl2(z)
) d

8−3d
( �

B(z∗,C4R)

|z − z∗|3d/2−4dl2(z)
) 8−4d

8−3d
.

Passing to polar coordinates, and using the assumption that d = dσ > 4/3,
we get

(5.5) ξ1(
√
R) <

C4R�

0

r · r3d/2−4dr <
K3

3d/2− 2
R3d/2−2 < K4R

3d/2−2.

Step 2. Now we can estimate the measure of the set Uσ(
√
R)∩A2,0. Let

k0 be the least order of a cylinder which is a piece of {An} and has nonempty
intersection with Uσ(

√
R)∩A2,0. The family of all cylinders of order k0 which
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are pieces of {An} and have nonempty intersection with Uσ(
√
R)∩A2,0 will

be denoted by {Qn}. We estimate the measure of these cylinders in a similar
way to ξ1(

√
R). Let Ik denote the cylinder of order k containing 0 (Ik does

not belong to {An}). Then each Qn is included in Ik0−1 or its two neighbours,
which as before can be omitted.

We have gσ(Ik0−1) ⊂ A0,0 and gσ(Qn) ∩ B(gσ(0), R) 6= ∅. Moreover
gσ(Ik0−1) can be mapped with bounded distortion onto A0,0, while the cylin-
ders gσ(Qn) are mapped onto the sets Ap,q, and the union of those images
is included in a ball of radius C5R/diam(gσ(Ik0−1)) for suitable C5.

In order to estimate ξk0 , we use the already obtained estimate for ξ1,
taking into account scaling by diam(gσ(Ik0−1)) (up to a constant). We have

ξk0(
√
R) < K4 diam(gσ(Ik0−1))d/2ξ1

(√
C5R

diam(gσ(Ik0−1))

)
,

where the factor diam(gσ(Ik0−1))d/2 = diam(gσ(Ik0−1))d(−1/2+1) comes from
(5.1).

In the case of cylinders of order k > k0 we proceed analogously. So,
because images of cylinders are included in A0,0, we get

ξk(
√
R) < K5 diam(gσ(Ik−1))d/2 ξ1

(√
diam(A0,0)

)
.

The assumption d = dσ > 4/3+ε implies that the quantity ξ1(
√

diam(A0,0))
can be estimated by a constant, uniformly in σ. Thus, summing and using
(5.5), we obtain

ωσ(Uσ(
√
R)) < K6 diam(gσ(Ik0−1))d/2

(
C5R

diam(gσ(Ik0−1))

)3d/2−2

(5.6)

+K7

∑
k>k0

diam(gσ(Ik−1))d/2.

Since the diameter of Ik decreases at least as fast as a geometric sequence,
we have

ωσ(Uσ(
√
R)) < K8 diam(gσ(Ik0−1))2−dR3d/2−2(5.7)

+K9 diam(gσ(Ik0))
d/2,

which tends to zero uniformly in σ if d = dσ > 4/3 + ε (we can assume that
diam(gσ(Ik0)) < K10R). Recall that we assumed that σ ∈ ∂E0 and σ does
not correspond to a preparabolic point.

Step 3. If a parameter is related to a preparabolic point, then the order
of cylinders which intersect Uσ(

√
R)∩A2,0 is bounded. First we assume that

only cylinders of order 1 have nonempty intersection. In this case we take
q∗ = ∞ (the sets A∗ and B are equal), and next B∗R = B(z∗, C4R) \ {z∗},
where z∗ = 0. Then we can deduce the estimate (5.5).
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If all cylinders which intersect Uσ(
√
R)∩A2,0 have the same order then,

as before, using bounded distortion we reduce the problem to the case of
order 1. If the orders are not the same, then we obtain estimate (5.6), but
with a finite series.

If σ ∈ E0 then the same estimations can be carried out (see [5, Section 6]).
Finally, estimate (5.7) holds for every σ ∈ E0 provided d = dσ > 4/3,

which ends the proof.

Recall that σ corresponds to a preparabolic point if gσ(0) is a preparabolic
point. It follows from [5, Proposition 5.1] that

Proposition 5.3. If σ corresponds to a preparabolic point then HD(J0,σ)
> 4/3.

Proof of Theorem 1.1. We conclude from Proposition 4.4 that

(5.8) lim inf
σn→σ0

HD(J0,σn) ≥ HD(J0,σ0).

Next, the fact that parameters which correspond to preparabolic points are
dense in ∂E0 and Proposition 5.3 gives us

(5.9) lim sup
σn→σ0

HD(J0,σn) ≥ 4/3.

Now we prove that

(5.10) lim sup
σn→σ0

HD(J0,σn) ≤ max{HD(J0,σ0), 4/3}.

It is enough to show that if νσ0 ∈ Nσ0 is a d+
σ0
-conformal measure, then

d+
σ0

cannot be greater than max{HD(J0,σ0), 4/3}. If it is, then d+
σ0

> 4/3
and Lemma 5.1 implies that the measure νσ0 is atomless. So, it follows from
Lemmas 4.3 and 4.1 that d+

σ0
= HD(J0,σ0), which is a contradiction.

Thus (5.8), (5.10) gives us continuity of the Hausdorff dimension provided
HD(J0,σ0) ≥ 4/3.

If we assume that HD(J0,σ0) < 4/3, then combining (5.9) with (5.10), we
see that

lim sup
σn→σ0

HD(J0,σn) = 4/3.

Therefore the Hausdorff dimension is not continuous, but we obtain conti-
nuity of the function σ 7→ max{HD(J0,σ), 4/3}.

The lower semicontinuity (see Proposition 4.4) implies that the condition
HD(J0,σ0) > 4/3 is satisfied on an open subset of ∂E0. So, because of density
of parameters which correspond to preparabolic points and Proposition 5.3,
Theorem 1.1 gives us:

Corollary 5.4. The Hausdorff dimension of J0,σ as a function of the
parameter σ ∈ E0 is continuous on an open and dense subset of ∂E0, in
particular at all parameters which correspond to preparabolic points.
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