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Lifting di-analytic involutions of compact
Klein surfaces to extended-Schottky uniformizations

by

Rubén A. Hidalgo (Valparáıso)

Abstract. Let S be a compact Klein surface together with a di-analytic involution
κ : S → S. The lowest uniformizations of S are those whose deck group is an extended-
Schottky group, that is, an extended Kleinian group whose orientation preserving half is a
Schottky group. If S is a bordered compact Klein surface, then it is well known that κ can
be lifted with respect to a suitable extended-Schottky uniformization of S. In this paper,
we complete the above lifting property by proving that if S is a closed Klein surface, then
κ can also be lifted to a suitable extended-Schottky uniformization.

1. Introduction. A classical Riemann surface is a topological sur-
face without boundary together with an analytic structure. A closed Rie-
mann surface is a compact Riemann surface. A compact Klein surface is
either a non-orientable compact surface or a bordered orientable surface to-
gether with a di-analytic structure, that is, a collection of smooth coordinate
charts so that each transition function is either conformal or anticonformal.
A closed Klein surface is an unbordered compact Klein surface.

The basic theory of compact Klein surfaces and the functorial equivalence
between them and real algebraic curves can be found in [AG]. The case of
bordered compact Klein surfaces has been well studied in the literature (see
for instance [AG, BCG, BCNS, Ha, Ma]). On the other hand, the case of
closed Klein surfaces has not been studied in detail.

An anticonformal automorphism of a closed Riemann surface will be
called a reflection if it has fixed points (for instance, z 7→ z) and an imaginary
reflection otherwise (for instance, z 7→ −1/z). Each connected component
of fixed points of a reflection τ is called an oval or a mirror. A di-analytic
automorphism of a compact Klein surface is a self-homeomorphism which
in local coordinates is either conformal or anticonformal.
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If S is a compact Klein surface, then there is a closed Riemann surface
S+, an anticonformal involution τ : S+ → S+ and a regular (branched) cover
map P : S+ → S with deck group 〈τ〉. The surface S+ is known as a double
oriented cover of S and the genus of S+ is known as the algebraic genus
of S. Moreover, τ is a reflection if and only if S has non-empty boundary;
in fact, the number of boundary components of S is equal to the number of
ovals of τ . A classical result of Harnack [Ha] states that the number of ovals
is at most g+ 1, where g is the genus of S+. Any two double oriented covers
of S are conformally equivalent closed Riemann surfaces.

We denote by M̂ the group of conformal (Möbius transformations) and
anticonformal (extended Möbius transformations) automorphisms of the Rie-
mann sphere Ĉ and by M its index two subgroup of Möbius transformations.
If G < M̂, then we set G+ = G∩M. If G contains extended Möbius transfor-
mations, then G+ is of index two in G and is called the orientation preserv-
ing half of G. A Kleinian group is a discrete subgroup of M and an extended
Kleinian group is a discrete subgroup G of M̂ with G 6= G+. If G is either
a Kleinian group or an extended Kleinian group, then its region of discon-
tinuity is the open subset (maybe empty) Ω ⊂ Ĉ of points on which G acts
discontinuously. If K1 < K2 < M̂ and K1 has finite index in K2, then one is
a (extended) Kleinian group if and only if the other is; in which case both
have the same region of discontinuity [M1]. It follows that G is an extended
Kleinian group if and only if G+ is a Kleinian group; both share the same
region of discontinuity. Let G be an (extended) Kleinian group and let ∆
be a G-invariant connected component of its region of discontinuity Ω. We
say that a Kleinian group G+ acts freely on ∆ if no element of G+ has fixed
points in it (if ∆ = Ω, then we just say that G+ acts freely).

A uniformization of a closed Riemann surface S+ is a tuple (∆,G+, P :
∆→ S+), whereG+ is a Kleinian group,∆ is aG+-invariant connected com-
ponent of its region of discontinuity, G+ acts freely on ∆ and P : ∆ → S+

is a regular cover map with G+ as deck group. The collection of uniformiza-
tions of S+ is partially ordered: a uniformization (∆1, G

+
1 , P1 : ∆1 → S+)

is higher than a uniformization (∆2, G
+
2 , P2 : ∆2 → S+) if there is a cov-

ering map Q : ∆1 → ∆2 so that P1 = P2 ◦ Q. It is a well known fact
[M3] that the lowest uniformizations of S+ are given by the Schottky uni-
formizations, that is, when G+ is a Schottky group (in this case, ∆ is equal
to the region of discontinuity Ω of G+). If τ : S+ → S+ is a conformal
(respectively, anticonformal) involution, then it is possible to find a Schot-
tky uniformization, say (Ω,G+, P : Ω → S+), so that there is a Möbius
transformation (respectively, an extended Möbius transformation) τ̂ so that
τ̂(Ω) = Ω and τ ◦ P = P ◦ τ̂ (we say that τ lifts with respect to the above
Schottky uniformization). This result is due to Koebe [Ko2] in the case that
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τ is a reflection, to [HM1] in the case that τ is an imaginary reflection, and
to [K, H4] in the case that τ is a conformal involution. If K is the group
generated by G+ and τ̂ , then K is a Kleinian group (respectively, extended
Kleinian group) containing G+ as an index two subgroup.

A uniformization of a compact Klein surface S is a tuple (∆,G,P :
∆ → S), where G is an extended Kleinian group, ∆ is a G-invariant con-
nected component of its region of discontinuity, G+ acts freely on ∆ and
P : ∆→ S is a regular (branched) cover map with G as deck group. Again,
the collection of uniformizations of S is partially ordered. In [HM2] it was
proved that the lowest uniformizations of closed Klein surfaces are given by
the Klein–Schottky uniformizations (that is, G is a Klein–Schottky group).
In [H5] it is proved that the lowest uniformizations of compact Klein sur-
faces are given by the extended-Schottky uniformizations (that is, G is an
extended-Schottky group).

Let S be a compact Klein surface and let κ : S → S be a di-analytic
involution. We say that κ lifts with respect to an extended-Schottky uni-
formization of S, say (Ω,G, P : ∆ → S), if there is either a Möbius trans-
formation or an extended Möbius transformation, say κ̂, so that κ̂(Ω) = Ω
and κ ◦ P = P ◦ κ̂.

If S has non-empty boundary, then it was proved in [H3] that κ can
be lifted to a suitable extended-Schottky uniformization. In this paper, we
complete this lifting property to the closed Klein surface case.

Theorem 1.1. Let S be a compact Klein surface and let κ : S → S be
a di-analytic involution. Then there is an extended-Schottky uniformization
(Ω,G, P : Ω → S) for which κ lifts.

Notice that, by the definition of the lifting property, Theorem 1.1 is
equivalent to the following.

Theorem 1.2. Let S be a compact Klein surface and let κ : S → S be a
di-analytic involution. Then there exists an extended Kleinian group K, with
region of discontinuity Ω, containing as an index two subgroup an extended-
Schottky group G, such that S = Ω/G and K/G = 〈κ〉.

By the Poincaré extension [M1], every (extended) Möbius transforma-
tion extends naturally as an isometry of the hyperbolic three-space H3. The
interior M0 of a handlebody M , say of genus g, admits many different hy-
perbolic structures. Each of these structures on M0 is of the form H3/G+,
where G+ is a discrete group of Möbius transformations isomorphic to the
free group of rank g. The conformal boundary of such a hyperbolic struc-
ture is given by the Riemann surface (it may be empty) Ω/G+, where Ω is
the region of discontinuity of G+. The hyperbolic structures for which the
conformal boundary of M is a closed Riemann surface are exactly the ones
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when G+ is a Schottky group of rank g. In this three-dimensional setting,
Theorem 1.1 is equivalent to the following.

Theorem 1.3. Let S+ be a closed Riemann surface, let τ : S+ → S+ be
an anticonformal involution and let κ+ : S+ → S+ be a conformal involution
such that τ ◦ κ+ = κ+ ◦ τ . Then there is a handlebody M , whose interior
M0 has a hyperbolic structure with conformal boundary S+, such that both
κ+ and τ extend continuously as hyperbolic isometries of M0.

This paper is organized as follows. In Section 2 we recall most of the extra
definitions we need in the rest of the paper. In particular, in Section 2.7.2
we recall an invariant of di-analytic involutions, called the species, which
will be useful in the proof of Theorem 1.1, which is provided in Section 3.
As mentioned above, we only need to consider the case of closed Klein
surfaces. The proof is done by (i) explicit constructions of extended Kleinian
groups containing a Klein–Schottky group as an index two subgroup, (ii) the
use of notion of species and (iii) the use of quasiconformal deformation
theory. It would be interesting to provide the geometric structure of all
those extended Kleinian groups containing an index two extended-Schottky
subgroup. This will be pursued elsewhere. Finally, in Section 4 we provide
a sufficient condition for the oriented double cover of a closed Klein surface
to be hyperelliptic. This is related to a result due to Maskit [M2] which
states necessary and sufficient conditions for the oriented double cover of a
bordered compact Klein surface of genus zero to be hyperelliptic. We also
describe some other properties which may be of interest.

2. Preliminaries. In this section we provide some basic definitions,
not already provided in the introduction, and previous results needed in
this paper.

2.1. Di-analytic maps. A di-analytic map between two compact Klein
surfaces is a continuous map which is, in each local chart, either conformal or
anticonformal. Two compact Klein surfaces are called di-analytically equiva-
lent if there is a di-analytic homeomorphism between them. A di-analytic au-
tomorphism of a compact Klein surface is a di-analytic self-homeomorphism
of it. We denote by Aut(S) the group of di-analytic automorphisms of S. If
S+ is a closed Riemann surface, then Aut(S+) is the full group of conformal
and anticonformal automorphisms of S; in this case, we denote by Aut+(S+)
its subgroup of conformal automorphisms.

Let S be a compact Klein surface of algebraic genus g ≥ 2 and let
π : S+ → S be a double oriented cover of S. Any di-analytic automorphism
κ : S → S can be lifted to a conformal automorphism κ+ : S+ → S+, that
is, π ◦ κ+ = κ ◦ π. Another lifting of κ is provided by the anticonformal
automorphism τ ◦κ+. If κ+ is a hyperelliptic involution, then we say that κ
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is a hyperelliptic involution of S. Since the hyperelliptic involution is unique
on closed Riemann surfaces of genus g ≥ 2, the hyperelliptic di-analytic
involution is unique on compact Klein surfaces of algebraic genus g ≥ 2.

There is a natural equivalence between pairs (S, κ), where S is a compact
Klein surface and κ : S → S is a di-analytic automorphism of S, with triples
(S+, τ, κ+), where S+ is a closed Riemann surface, κ+ : S+ → S+ is a con-
formal automorphism and τ : S+ → S+ is an anticonformal automorphism
so that τ ◦ κ+ = κ+ ◦ τ .

2.2. Schottky and extended-Schottky groups. A Schottky group
of rank g is a Kleinian group G+ with non-empty region of discontinuity Ω,
isomorphic to a free group of rank g and containing no parabolic transfor-
mations. In this case, Ω/G+ turns out to be a closed Riemann surface of
genus g. Conversely, the retrosection theorem [B, Ko1] asserts that for every
closed Riemann surface S there is a Schottky group G+ so that Ω/G+ is
conformally equivalent to S.

An extended-Schottky group of rank g is an extended Kleinian group G
whose orientation preserving half G+ is a Schottky group of rank g; if G
contains no reflections, then it is called a Klein–Schottky group of rank g.

If Ω is the region of discontinuity of an extended-Schottky group G, say
of rank g, then Ω/G is a compact Klein surface of algebraic genus g (a closed
Klein surface if and only if G is a Klein–Schottky group) and S+ = Ω/G+

is its double oriented cover, which admits an anticonformal involution τ
(induced by any element of G−G+) so that S = S+/〈τ〉. Conversely, if S is
a compact Klein surface of algebraic genus g, then the results in [HM1, Ko1]
and quasiconformal deformation theory assert that there is an extended-
Schottky group G of rank g so that Ω/G is di-analytically equivalent to S.

2.3. Geometric structure of Klein–Schottky groups. In [HM1], it
was observed that a Klein–Schottky group of rank g is a free product, in the
sense of the Klein–Maskit combination theorems, of some m cyclic groups,
where the generators are imaginary reflections, and some n cyclic groups,
where the generators are glide-reflections (extended Möbius transformations
whose squares are hyperbolic), so that g = 2n + m − 1. We say that such
a Klein–Schottky group is an (m,n)-Klein–Schottky group. See Figure 1 for
an example of the structure of a (3, 2)-Klein–Schottky group.

An (m,n)-Klein–Schottky group is isomorphic to the group Z2 ∗
m· · · ∗Z2∗

Z ∗ n· · · ∗Z, so that the pair (m,n) is an algebraic (and also a geometric)
invariant of a Klein–Schottky group.

In the case of more general extended-Schottky groups, a similar decom-
position is known [HG], but we do not need it in this paper.
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Fig. 1. A (3, 2)-Klein–Schottky group

2.4. Lifting automorphisms. Let (∆,G,P : ∆→ S) be a uniformiza-
tion of S (either a closed Riemann surface or a compact Klein surface). A
group H < Aut(S) is said to lift with respect to (∆,G,P : ∆ → S) if for
every h ∈ H there is either a Möbius or an extended Möbius transformation
ĥ such that ĥ(∆) = ∆ and h ◦ P = P ◦ ĥ.

2.5. The case of closed Riemann surfaces. Let S+ be a closed
Riemann surface of genus g ≥ 2 and H < Aut+(S+). It is well known
that if H lifts with respect to some Schottky uniformization of S+, then
|H| ≤ 12(g−1) [H6, Z]. Moreover, each lifting ĥ is a Möbius transformation.
The group K generated by all these liftings is a Kleinian group containing
a Schottky group G+ of rank g as a normal subgroup so that H ∼= K/G+.
Necessary and sufficient conditions for H to be lifted with respect to a
suitable Schottky uniformization of S+ were provided in [H1].

2.6. The case of compact bordered Klein surfaces. Let S be a
compact bordered Klein surface and let H < Aut(S) be a group of di-
analytic automorphisms of S. Let us consider a double oriented cover S+,
an anticonformal involution τ : S+ → S+ and a branched cover π : S+ → S
with Deck(π) = 〈τ〉. We may liftH to obtain a group Ĥ < Aut+(S+). In [H3]
it was proved that there is a Schottky uniformization (Ω,G+, P : Ω → S+)
such that Ĥ lifts. Let K be the extended Kleinian group generated by G+

and all the liftings of the elements of Ĥ; so G+ �K. Let G be the subgroup
of K generated by G+ and the liftings of τ . Then G turns out to be an
extended-Schottky group with G+ as its orientation preserving half. In this
case, (Ω,G, π ◦ P : Ω → S) provides an extended-Schottky uniformization
of S for which H lifts. This, in particular, provides (i) Theorem 1.1 in the
case that S has non-empty boundary, and (ii) the well known fact that the
order of the full group of di-analytic automorphisms of a bordered compact
Klein surface of algebraic genus g ≥ 2 is at most 12(g − 1) [Ma].
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2.7. The case of closed Klein surfaces. Let S be a closed Klein
surface and let us consider a double oriented cover S+, an anticonformal
involution τ : S+ → S+ and a branched cover π : S+ → S with Deck(π)
= 〈τ〉.

There are examples of groups H < Aut(S) which cannot be realized by
Klein–Schottky uniformizations of S; for instance, if S has algebraic genus
g ≥ 2 and |H| > 12(g − 1).

Let κ : S → S be a given di-analytic involution. As already mentioned,
κ lifts to a conformal involution κ+ : S+ → S+ and to an anticonformal
involution τ ◦κ+ : S+ → S+, both commuting with τ . In particular, π◦κ+ =
κ ◦ π and 〈κ+, τ〉 ∼= Z2

2.
It is always possible to find a Kleinian group K0, with region of disconti-

nuityΩ, containing a Schottky groupG+ of index two such that S+ = Ω/G+

and with the property that κ+ is induced by K0 − G+. But it is not clear
at this point that we may find an extension K that contains K0 of index
two and G+ as a normal subgroup such that 〈κ+, τ〉 is induced by K −G+.
Theorem 1.1 states that this is possible.

If we set Ŝ = S+/〈κ+〉, then τ descends to an anticonformal involution
τ̂ : Ŝ → Ŝ. Of course, we have the natural identifications of Ŝ/〈τ̂〉 with
S/〈κ〉 and with S+/〈τ, κ+〉 and also the commutative diagram

(2.1)

S+ −−−−→ Ŝ = S+/〈κ+〉y y
S = S+/〈τ〉 −−−−→ S/〈κ〉 = Ŝ/〈τ̂〉 = S+/〈κ+, τ ◦ κ+〉

2.7.1. Fixed points. The di-analytic involution κ may have isolated and
non-isolated fixed points. The components of non-isolated fixed points are
simple closed curves called ovals of κ. Let h be the number of isolated fixed
points and let l be the number of ovals. We say in this case that κ is an
(h, l)-involution. An (h, 0)-involution will also be called an h-involution.

Notice (see diagram (2.1)) that κ is an (h, l)-involution if and only if
S/〈κ〉 is a compact Klein orbifold with exactly l border components and h
branch values of order 2; moreover, l > 0 if and only if τ ◦κ+ is a reflection.

Let us assume that κ is an (h, l)-involution. In this case, κ+ : S+ → S+

has exactly 2h fixed points which are permuted by the imaginary reflection τ .
It is well known [FK] that κ+ : S+ → S+ has at most 2g+2 fixed points (so
h ≤ g+ 1), and if it has exactly 2g+ 2 fixed points, then S+ is hyperelliptic
and κ+ is the hyperelliptic involution, that is, κ is the hyperelliptic involution
of S if h = g + 1.

Proposition 2.1. If the closed Klein surface S of algebraic genus g
admits an h-involution, then g is odd; in particular, h is even.
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Proof. Assume that g is even. Let γ be the genus of Ŝ = S+/〈κ+〉; that
is, 4γ = 2g+ 2− 2h (by the Riemann–Hurwitz formula); hence h is odd. As
l = 0, S/〈κ〉 is closed, so κ+ ◦ τ and τ̂ are both imaginary reflections (see
diagram (2.1)).

If γ is even, then we can find a single dividing loop Ŵ on Ŝ, where Ŵ is
τ̂ -invariant, and Ŵ does not pass through the projection of any of the fixed
points of κ+. Then there must be exactly h projections of these fixed points
on each side of Ŵ . However, since Ŵ is dividing, and h is odd, this means
that Ŵ lifts to a single loop W on S+, where W double covers Ŵ . Since
τ̂ preserves Ŵ , and acts as an involution on it, its lift τ has order 4 in its
action on W , which contradicts our assumption that τ is an involution.

If γ is odd, then there are two homologically dependent simple disjoint
loops, Ŵ1 and Ŵ2, on Ŝ, where τ̂ keeps each of these loops invariant, and
acts as an involution on each of them. As above, we can assume that no
projection of a fixed point of κ+ lies on either of these loops; so there are
exactly h of these points on either side of this pair of loops. Since h is odd,
a simple loop, homologous to the sum of Ŵ1 and Ŵ2, lifts to a single loop
that double covers it; from this it is not hard to conclude that each of these
two loops lifts to a single loop that double covers it. As above, this implies
that τ has order 4, contrary to our assumption that τ has order 2.

2.7.2. Species of di-analytic involutions. In [BCNS, S] a topological in-
variant for the (h, l)-involution κ : S → S, called the species of κ, is defined
as follows.

Let s− be the number of ovals of fixed points of κ which lift to exactly one
loop on S+ (twisted ovals) and let s+ be the number of ovals of fixed points
of κ which lift to exactly two loops on S+ (untwisted ovals); so l = s−+ s+.

If S/〈κ〉 is either (i) orientable or (ii) non-orientable and h + s− > 0,
then the species of κ is defined by the tuple (±;h; {s−, s+}) with “ + ” in
case (i) and “− ” in case (ii). In [BCNS] it is proved that

s− + h ≡ 0 mod 2.

If S/〈κ〉 is non-orientable and h + s− = 0, then the definition of the
species of κ is more technical. Define values r1, r2 ∈ {0, 1} so that r1 = 0 if
and only if S+/〈τ ◦ κ+〉 is orientable (i.e. τ ◦ κ+ is a reflection and its ovals
disconnect S+). Let Γ be an extended Kleinian group keeping invariant the
hyperbolic plane H2 and such that S = H2/Γ ; many authors then say that Γ
is a non-euclidean crystallographic (NEC) group. There is an anticonformal
isometry κ̃ of H2 which is a lift of κ. Set ∆ = 〈Γ, κ̃〉; then S/〈κ〉 = H2/∆.
There is a surjective homomorphism φ : ∆ → 〈κ〉 with kernel Γ . We set
r2 = 0 if and only if the number of canonical glide-reflection generators of
∆ that are mapped by φ to κ is odd. Notice that if r1 = 0, then ∆ has no
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glide-reflections, so r2 = 0. The species of κ, in this case, is defined by the
tuple (−; r1, r2; (s+)).

Theorem 2.2 ([BCNS]). The species classify κ up to topological equiv-
alence.

3. Proof of Theorem 1.1. As previously observed, we only need to
consider the case of closed Klein surfaces. Let S be a closed Klein surface
and κ : S → S be some (h, l)-involution.

By Theorem 2.2, we only need to construct an extended Kleinian groupK,
with region of discontinuity Ω, containing as an index two subgroup a Klein–
Schottky group G such that Ω/G is a closed Klein surface of the same
algebraic genus as S and with the property that K/G induces an (h, l)-
involution with the same species as κ. Once this is done, the same theorem,
together with quasiconformal deformation theory, provides the proof of our
theorem.

We notice that our construction, in each case, provides a family depend-
ing on the correct number of parameters which is invariant under quasicon-
formal deformation (with a suitable normalization). In particular, this also
provides explicit descriptions of the moduli of closed Klein surfaces in terms
of Klein–Schottky groups.

We divide this section into three subsections, one for the case that S/〈κ〉
is closed, that is, κ is an h-involution, and the other two for the case that
S/〈κ〉 is bordered, that is, κ is an (h, l)-involution with l > 0.

3.1. Closed situation. Let us assume that κ is an h-involution and
let us recall the diagram (2.1). As κ has only isolated fixed points, the quo-
tient S/〈κ〉 is compact without boundary. Since S/〈κ〉 = S+/〈κ+, τ ◦ κ+〉,
it follows that the anticonformal involution τ ◦ κ+ must be an imaginary
reflection. As a consequence of Proposition 2.1, h is even. In this case,
S/〈κ〉 = S+/〈τ, κ+〉 is topologically equivalent to the connected sum of
p ≥ 1 real projective planes, having h ≥ 0 branch values of order 2. The
only species that may appear in this case for κ are:

(−;h = 2m > 0; {s− = 0, s+ = 0}),
(−; r1 = 1; r2 = 0; (s+ = 0)),

(−; r1 = 1; r2 = 1; (s+ = 0)).

In this case, S has algebraic genus g = 2p+ h− 3.

3.1.1. Construction of the extended Kleinian group K. Choose p + m
pairwise disjoint circles, say L1, . . . , Lm, C1, . . . , Cp, bounding a common
domain D of connectivity p+m. If h = 0, then there are no Lj ’s.
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For i = 1, . . . ,m and j = 1, . . . , p, let θi (respectively, σj) be an ellip-
tic transformation of order 2 (respectively, an imaginary reflection) with
θi(Li) = Li (respectively, σj(Cj) = Cj) and θi(D) ∩ D = ∅ (respectively,
σj(D) ∩D = ∅).

Let K be the group generated by θ1, . . . , θm, σ1, . . . , σp (see Figure 2 in
the case m = 3 and p = 2).

D

L L
L

C
C

1 2
3

2

1

θ

θ

θ

σ σ

1

2

3

1 2

Fig. 2. The group K for m = 3 and p = 2

Then K ∼= Z2 ∗
m+p
· · · ∗Z2 is an extended Kleinian group with connected

region of discontinuity Ω and Ω/K is a non-orientable orbifold which is
topologically the connected sum of p real projective planes with h orbifold
points of order 2.

3.1.2. Construction of Klein–Schottky groups. If m > 0, then let G0⊂K
be the group generated by the transformations (see Figure 3)

σ1, . . . , σp, θ1 ◦ σ1 ◦ θ1, . . . , θ1 ◦ σp ◦ θ1, θ1 ◦ θ2, . . . , θ1 ◦ θm.

If m = 0, then let G1 ⊂ K be the subgroup generated by the transfor-
mations (see Figure 4)

σ2, . . . , σp, σ1 ◦ σ2 ◦ σ1, . . . , σ1 ◦ σp ◦ σ1.

If m = 0 and p ≥ 2, then let G2 ⊂ K be the subgroup generated by the
transformations (see Figure 5)

σ3, . . . , σp, σ1 ◦ σ3 ◦ σ1, . . . , σ1 ◦ σp ◦ σ1, σ2 ◦ σ1.

The group G0 is a Klein–Schottky group of type (2p,m − 1), G1 is a
Klein–Schottky group of type (2p− 2, 0) and G2 is a Klein–Schottky group
of type (2p − 4, 1). In this way, the closed Klein surface S∗j = Ω/Gj is a
closed Klein surface of algebraic genus g, for each j ∈ {0, 1, 2}.
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Fig. 3. The group G0 for m = 3 and p = 2. Two small circles inside the disc bounded by
L1 correspond to the reflections θ1 ◦ σ1 ◦ θ1 and θ1 ◦ σ2 ◦ θ1.
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Fig. 4. The group G1 for m = 0 and p = 3

We observe that, for j ∈ {0, 1, 2}, the group K/Gj is of order two gen-
erated by the class of θ1 (for j = 0) and the class of σ1 (for j = 2, 3), say
κ∗j : S∗j → S∗j . By the construction, the involution κ∗0 : S0 → S0 has the
species (−;h > 0; {0, 0}), and κ∗1 : S∗1 → S∗1 and κ∗2 : S∗2 → S∗2 have the
species (−; r1 = 1; r2 = 0; (s+ = 0)) and (−; r1 = 1; r2 = 1; (s+ = 0)),
respectively, as desired.

3.2. Bordered orientable situation. Let us assume now that κ is an
(h, l)-involution with l > 0 and S/〈κ〉 is orientable. In this case we have{

l = s+ + s− > 0,
s− + h ≡ 0 mod 2.
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Fig. 5. The group G2 for m = 0 and p = 4. Two small circles inside the disc bounded by
C1 correspond to the reflections σ1 ◦ σ3 ◦ σ1 and σ1 ◦ σ4 ◦ σ1.

The species of κ in this case has the form (+;h; {s−, s+}) and the quo-
tient S/〈κ〉 is a compact orientable surface of topological genus γ ≥ 0 with l
boundary components and h branch values of order 2. It follows that S has
algebraic genus g = 4γ + 2l + h − 3. Set m = [h/2], where [x] denotes the
integral part of x.

3.2.1. The construction of the group K. Let us consider a collection of
2γ+m+ s+ + 2s− circles, say A1, A

′
1, . . . , Aγ , A′γ , B1, . . . , Bm, C1, . . . , Cs+ ,

D, E1, . . . , E2s−−2, B such that

(i) A1, A
′
1, . . . , Aγ , A

′
γ , B1, . . . , Bm, C1, . . . , Cs+ ,D are pairwise disjoint,

and (with the exception of D) all contained in the same component
of the complement of D;

(ii) A1, A
′
1, . . . , Aγ , A

′
γ , B1, . . . , Bm, C1, . . . , Cs+ , E1, . . . , E2s−−2, B are

pairwise disjoint;
(iii) Ej and B both intersect D orthogonally;
(iv) the circles E1, . . . , E2s−−2, B are ordered consecutively in counter-

clockwise order with respect to the circle D.

The Aj ’s and A′j ’s are only considered if γ > 0. The Bj ’s are only
considered if m > 0. The Cj ’s are only considered if s+ > 0. The Ej ’s
are only considered if s− > 1. The circle B is only considered if h = 2m+ 1
and s− > 0, and D is only considered if s− > 0.

Let D be the common domain bounded by the circles A1, A′1, . . . , Aγ ,
A′γ , B1, . . . , Bm, C1, . . . , Cs+ , D, E1, . . . , E2s−−2 and B. This is a domain of
finite connectivity 2γ+m+s+ if s− = 0 and of connectivity 2γ+m+s+ +1
if s− > 0.

If s− > 0, then let H be either of the two disc components of Ĉ−D.
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Choose γ loxodromic transformations, say α1, . . . , αγ , m elliptic trans-
formations of order 2, say θ1, . . . , θm, s+ reflections, say τ1, . . . , τs+ , s− − 1
hyperbolic transformations, say β1, . . . , βs−−1, an elliptic transformation of
order 2, say θ, and a reflection, say τ0, so that:

(i) αj(D) ∩ D = ∅, θk(D) ∩ D = ∅, βi(D) ∩ D = ∅, θ(D) ∩ D = ∅;
(ii) αj(Aj) = A′j , θk(Bk) = Bk, βi(E2i) = E2i−1,

(iii) τj has Cj as the set of fixed points, θ(B) = B and τ0 has D as the
circle of fixed points;

(iv) if s− > 0, then both βj and θ keep H invariant.

Observe that, if s− > 0, then the group F generated by θ, β1, . . . , β2s−−2

is a Fuchsian group so that H/F is a sphere with s− holes and one special
point of order 2.

0

A

A’

B

C

E

E

D

B

α

τ

τ

β

θ
1

1

1

1

1

1

1

1

1

2

Fig. 6. The group K for γ = m = s+ = 1, h = 3 and s− = 2

Let K be the group generated by the transformations (see Figure 6)

α1, . . . , αγ , θ1, . . . , θm, τ1, . . . , τs+ , β1, . . . , βs−−1, θ, τ0.

It follows that K is an extended Kleinian group with connected region
of discontinuity Ω so that Ω/K is topologically equivalent to S/〈κ〉. The
genus γ is provided by the loxodromic transformations α1, . . . , αγ ; the points
of order 2 are provided by the elliptic transformations θ1, . . . , θm and B;
and the boundary loops are provided by the reflections τ1, . . . , τs+ and the
subgroup generated by the reflection τ0 and the hyperbolic transformations
β1, . . . , βs−−1.
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Moreover, K is the free product, in the sense of Klein–Maskit’s combi-
nation theorems [M1], of the γ cyclic groups generated by the loxodromic
transformations α1, . . . , αγ , the m cyclic groups of order two generated by
the elliptic transformations θ1, . . . , θm, the s+ cyclic groups of order two
generated by the reflections τ1, . . . , τs+ and the group generated by τ0 and
F (which is an HNN-extension of F by τ0).

2

2

2

Fig. 7. The quotient S/K for γ = m = s+ = 1, h = 3 and s− = 2

Let us consider the surjective homomorphism Φ : K → 〈a : a2 = 1〉 ∼= Z2

defined by Φ(αj) = 1 for j ∈ {1, . . . , γ}, Φ(θj) = a for j ∈ {1, . . . ,m},
Φ(τj) = a for j ∈ {0, 1, . . . , s+}, and Φ(θ) = a. Let us consider the index
two subgroup G = ker(Φ).

3.2.2. Case h = 2m ≥ 0, s− = 0. The index two subgroup G = ker(Φ)
is generated by the transformations

α1, . . . , αγ , τ1 ◦α1 ◦τ1, . . . , τ1 ◦αγ ◦τ1, θ1 ◦τ1, . . . , θm ◦τ1, τ2 ◦τ1, . . . , τs+ ◦τ1
(deleting the elements θk ◦ τ1 in case h = 0) and it is a (0, 2γ+m+ s+− 1)-
Klein–Schottky group of genus g such that the surface S∗ = Ω/G admits
an involution κ∗ : S∗ → S∗ (induced by τ1) such that S∗/〈κ∗〉 = Ω/K and
κ∗ has species (+;h; {0, s+}) as desired.

3.2.3. Case h = 2m ≥ 0, s− = 2t > 0. The index two subgroup G =
ker(Φ) is generated by the transformations

α1, . . . , αγ , τ0 ◦ α1 ◦ τ0, . . . , τ0 ◦ αγ ◦ τ0,
τ0 ◦ θ1, . . . , τ0 ◦ θm, τ0 ◦ τ1, . . . , τ0 ◦ τs+ , τ0 ◦ β1, . . . , τ0 ◦ βs−−1

and it is a (0, 2γ + m + l − 1)-Klein–Schottky group such that S∗ = Ω/G
is a non-orientable surface of algebraic genus g admitting an involution κ∗ :
S∗ → S∗ (induced by τ0) so that S∗/〈κ∗〉 = Ω/K and with species as
desired.

3.2.4. Case h = 2m+1, s− = 2t+1. The index two subgroupG = ker(Φ)
is generated by the transformations

α1, . . . , αγ , τ0 ◦ α1 ◦ τ0, . . . , τ0 ◦ αγ ◦ τ0, τ0 ◦ θ1, . . . , τ0 ◦ θm,
τ0 ◦ τ1, . . . , τ0 ◦ τs+ , τ0 ◦ β1, . . . , τ0 ◦ βs−−1, τ0 ◦ θ,
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and it is a (1, 2γ + m + l − 1)-Klein–Schottky group such that S∗ = Ω/G
is a non-orientable surface of algebraic genus g admitting an involution κ∗ :
S∗ → S∗ (induced by τ0) so that S∗/〈κ∗〉 = Ω/K and with species as
desired.

3.3. Bordered non-orientable situation. Let us assume now that κ
is an (h, l)-involution with l > 0 and S/〈κ〉 is non-orientable. In this case,
again we have {

l = s+ + s− > 0,
s− + h ≡ 0 mod 2.

The quotient S/〈κ〉 is a compact non-orientable surface of topological
genus p ≥ 1 with l boundary components and h branch values of order 2. It
follows that the algebraic genus of S is g = 2p+ 2l + h− 3.

3.3.1. Case h = s− = 0. The species in this case has the form (−; r1, r2;
(s+)), where s+ > 0. The construction is the same as for 3.2.2 with h = 0,
γ = p, eliminating the circles A′1, . . . , A

′
γ and replacing each loxodromic

transformation αj by an imaginary reflection ηj that interchanges the inside
and outside of the circle Aj .

3.3.2. Case h = 2l > 0, s− = 2t > 0. The species in this case has the
form (−;h; {s−, s+}). The construction is the same as for 3.2.3 with γ = p,
eliminating the circles A′1, . . . , A

′
γ and replacing each αj by an imaginary

reflection ηj that interchanges the inside and outside of Aj .

3.3.3. Case h = 2l + 1, s− = 2t + 1. The species in this case has the
form (−;h; {s−, s+}). The construction is the same as for 3.2.4 with γ = p,
eliminating the circles A′1, . . . , A

′
γ and replacing each αj by an imaginary

reflection ηj that interchanges the inside and outside of Aj .

4. Hyperelliptic surfaces. In [M2] B. Maskit obtained the following
geometrical description of a hyperelliptic Riemann surface.

Theorem 4.1 (Maskit [M2]). Let L1, . . . , Lg+1 be pairwise disjoint cir-
cles on the Riemann sphere bounding a common region D. Let G be the
extended-Schottky group generated by the reflections in these circles and let
S+ = Ω(G+)/G+. Then S+ is hyperelliptic if and only if there is a circle C
orthogonal to every Li, i = 1, . . . , g + 1.

One can view the above as a statement concerning Riemann surfaces
admitting maximal reflections, that is, reflections with the maximal number
of fixed curves.

One direction of Theorem 4.1 generalizes to Riemann surfaces admit-
ting imaginary reflections; it is not known if the other direction also holds.
First, let us notice that an imaginary reflection has no fixed points on
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the Riemann sphere Ĉ, but it has exactly one fixed point on the hyper-
bolic space H3 as it is the product of a reflection in a geodesic plane
in H3 with a rotation of angle π along a geodesic line orthogonal to the
plane.

Theorem 4.2. Let L1, . . . , Lg+1 be pairwise disjoint topological circles
on the Riemann sphere, bounding a common region D, where, for j =
1, . . . , g+1, there is an imaginary reflection σj : Lj → Lj with σj(D)∩D = ∅.
Let G = 〈σ1, . . . , σg+1〉 be the Klein–Schottky group generated by these imag-
inary reflections and set S+ = Ω(G+)/G+. If there is a hyperbolic plane
Σ ⊂ H3 containing the fixed point of every σj, j = 1, . . . , g + 1, then S+ is
hyperelliptic.

Proof. The proof is essentially obvious. Let τ0 denote the reflection in
the hyperbolic plane Σ. Since the fixed point of σj lies on Σ, we have
τ0 ◦ σi = σi ◦ τ0, i = 1, . . . , g + 1. It follows that, for each i = 1, . . . , g + 1,
τ0 ◦ σi normalizes G+, and so it projects to a conformal homeomorphism.
Of course, τ0 ◦ σi and τ0 ◦ σk project to the same conformal homeomor-
phism  : S+ → S+. Since τ0 and σi are commuting involutions,  is an
involution.

In the special case that the Li are all circles orthogonal to C (the
boundary circle of Σ), it is clear that the fixed points of τ0 ◦ σi lie on
Li; hence these 2g + 2 fixed points project to 2g + 2 distinct points on S,
from which it follows that  has at least 2g + 2 fixed points. This can occur
only if  has exactly 2g + 2 fixed points, and is the hyperelliptic involu-
tion.

Since the general case is a quasiconformal deformation of this special
case, we again find that  has at least 2g + 2 fixed points, and the same
result holds.

Let us consider a pair (S, ), where S is a hyperelliptic Klein surface
of algebraic genus g ≥ 2 and  is the hyperelliptic involution. Let S+ be
a double oriented Riemann surface of S and τ : S+ → S+ be an imagi-
nary reflection so that there is a regular di-analytic covering π : S+ → S
whose covering group is generated by τ . As previously noted, there is a
lifting + : S+ → S+ which turns out to be the hyperelliptic involution.
The quotient Ŝ = S+/〈+〉 is the Riemann sphere with exactly 2h branch
values of order 2 so that h = g + 1. In this way, we may now consider
the hyperelliptic Riemann surface S+ admitting an anticonformal automor-
phism.

Theorem 4.3. Let S+ be a hyperelliptic Riemann surface of genus g≥2,
with a hyperelliptic involution , and assume that S+ admits an imaginary
reflection τ : S+ → S+.
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(1) If g is even, then  ◦ τ is a reflection.
(2) If  ◦ τ is a reflection, then

(2.1) for g even, it has exactly one dividing oval of fixed points;
(2.2) for g odd, it has exactly two non-dividing ovals of fixed points,

both of them dividing S+.

Moreover, S+/〈, τ〉 turns out to be

(3) a closed disc with exactly g+1 points of order 2 in its interior if ◦τ
is a reflection;

(4) a projective plane with exactly g + 1 points of order 2 in its interior
if  ◦ τ is an imaginary reflection.

Remark 4.4. If the hyperelliptic Riemann surface S+ has odd genus, it
may happen that there is an imaginary reflection τ : S+ → S+ for which
◦τ : S+ → S+ still is an imaginary reflection. For instance, the hyperelliptic
Riemann surface of genus 3 defined by the algebraic curve

w2 = (z4 − a4)(z4 − 1/a4) (a8 6= 1)

admits three distinct imaginary reflections. Two of these have the property
that their composition is the hyperelliptic involution; the third, when com-
posed with the hyperelliptic involution, has two ovals of fixed points. The
first one, z 7→ −1/z̄, operates separately on each of the two sheets and has
no fixed points. The second is obtained from the first by composition with
the sheet interchange (the hyperelliptic involution), and the third is the
composition of the sheet interchange with the reflection z 7→ 1/z̄. Again,
the map z 7→ 1/z̄ operates separately on each of the sheets, and has an oval
of fixed points on each of them.

Corollary 4.5. Let S+
t be a hyperelliptic Riemann surface, of fixed

genus g ≥ 2, with a hyperelliptic involution t : S+
t → S+

t , admitting an
imaginary reflection τt : S+

t → S+
t , for t = 1, 2. If either

(1) both 1 ◦ τ1 and 2 ◦ τ2 are reflections, or
(2) both are imaginary reflections,

then there is an orientation-preserving homeomorphism ω : S+
1 → S+

2 , where
ω conjugates 1 to 2 and τ1 to τ2.

4.1. Proof of Theorem 4.3 and Corollary 4.5. Let us denote by
Q : S+ → Ĉ a branched holomorphic covering of degree two. Since the
hyperelliptic involution  : S+ → S+ is unique in the group of conformal
automorphisms of S+, ◦τ is an anticonformal involution and, in particular,
τ descends to an anticonformal involution τ̃ : Ĉ → Ĉ that permutes the
branch values of Q (the projection of the fixed points of ). Clearly, τ̃ is an
imaginary reflection if and only if  ◦ τ is also an imaginary reflection.



178 R. A. Hidalgo

Let us assume τ̃ is an imaginary reflection. In this case, we may assume
τ̃(z) = −1/z. An algebraic curve representing S+ is then given as

y2 = x

g∏
j=1

(x− aj)(x+ 1/aj)

where aj are different and contained in

∆ = {z ∈ C : 0 < |z| ≤ 1}.

In this case, τ or  ◦ τ has the form

N :=


x 7→ −1

x
,

y 7→ (−1)(g+1)/2 y

xg+1

( g∏
j=1

aj
aj

)1/2

.

If g is even, then N is clearly not of order 2 (its square is the hyperel-
liptic involution). It follows in this case that both τ̃ and  ◦ τ are reflections.
We have proved part (1) and (4) of Theorem 4.3. Observe also that we
may write down a quasiconformal diffeomorphism ω : Ĉ → Ĉ so that ω
normalizes x 7→ −1/x and sends the points a1, . . . , ag, −1/a1, . . . ,−1/ag
to (g + 1)-roots of unity. This observation also gives the proof of half of
Corollary 4.5.

To prove part (2) and (3) of Theorem 4.3, we must assume that  ◦ τ is
a reflection. We may also assume τ̃(z) = z. If some of the branch values of
Q are on the real line, then S+ will be represented by an algebraic curve of
the form

y2 = (x− λ1) . . . (x− λ2r)(x− a1)(x− a1) . . . (x− as)(x− as)

where λj ∈ R and Im(aj) > 0. But in this case the representations of τ and
 ◦ τ are given by

L :=
{
x 7→ x,

y 7→ y,
M :=

{
x 7→ x,

y 7→ −y.

Both have fixed points, for instance, x = λ1, y = 0, a contradiction to
the fact that τ is an imaginary reflection.

It follows that S+ is represented by an algebraic curve of the form

y2 = (x− a1)(x− a1) . . . (x− ag+1)(x− ag+1)

where Im(aj) > 0. In this case, L represents  ◦ τ and M represents τ , and
the result follows easily. This also yields the other half of Corollary 4.5.
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