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Abstract. We show that the first order structure whose underlying universe is C and
whose basic relations are all algebraic subsets of C2 does not have quantifier elimination.
Since an algebraic subset of C2 is either of dimension≤ 1 or has a complement of dimension
≤ 1, one can restate the former result as a failure of quantifier elimination for planar
complex algebraic curves. We then prove that removing the planarity hypothesis suffices
to recover quantifier elimination: the structure with the universe C and a predicate for
each algebraic subset of Cn of dimension ≤ 1 has quantifier elimination.

1. Introduction. The theory of structures generated by binary rela-
tions definable in an o-minimal structure was studied in [6]. In particular,
Theorem 3.2 of [6] implies the following proposition:

Proposition 1.1. Let M be an o-minimal structure with universe M ,
and let B(M) be the first order structure whose underlying set is M and
whose basic relations are all subsets of M2 which are ∅-definable in M. The
theory of B(M) has quantifier elimination.

As an immediate consequence of quantifier elimination, the structure
B(M) has trivial geometry (Lemma 1.8 in [6]).

Also, partially motivated by a restricted version of Zil’ber’s Conjecture,
various reducts of the field of complex numbers have been investigated (see
for example [3, 5, 8]), and it is natural to ask whether a complex analogue
of the previous proposition holds: does the structure B(CC), obtained by
equipping the universe C with a predicate for each complex algebraic con-
structible subset of C2, also eliminates quantifiers? Note that arity two is the
only arity where this question occurs: for arity three and more, we recover
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the full structure of a field on C and thus get quantifier elimination; as for
arity zero and one, elimination of quantifiers is clear.

Section 2 will answer this question negatively: it provides a counter-
example to the elimination of quantifiers for B(CC). Still, one may ask what
sets are definable in B(CC), and what is its (combinatorial) geometry. These
questions are answered in Section 3. Let C(CC) denote the first order struc-
ture whose underlying universe is C and whose basic relations are all the
subsets of cartesian products of C, definable in the field structure, of dimen-
sion ≤ 1 (the constructible curves). We first note that B(CC) is a reduct (in
the sense of definability) of C(CC). We then show that C(CC) eliminates its
quantifiers, and deduce that it has a trivial geometry. In particular B(CC)
is a proper reduct (in the sense of definability) of the field of complex num-
bers. The latter results are proven in the more general setting of geometric
structures. In Section 4 we discuss the role of algebraic closure versus de-
finable closure in this quantifier elimination. In Section 5, we generalize the
construction of Example 2.1 to higher arity: for any fixed natural number n
we consider the structure Cn(CC) on C whose basic relations are the subsets
of Cn, definable in the field of complex numbers, of dimension ≤ 1. We show
that none of the Cn(CC) has quantifier elimination (Example 2.1 shows this
fact for n = 2). Finally in Section 6, we discuss which sets are definable in
those structures (allowing quantifications).

Remark. After the paper had been submitted we discovered that a result
similar to our Theorem 3.5 was also proved recently by M. C. Laskowski [2].

2. Non-elimination for binary relations. Recall from the Introduc-
tion that B(CC) denotes the first order structure whose universe is C and
whose basic relations are all subsets of C2 which are C-definable in C, the
field of complex numbers. We show that B(CC) does not eliminate its quan-
tifiers:

Example 2.1. Let R be the binary definable relation

R(y, s) ⇔ ∃z (z 6= y ∧ y4 + y = z4 + z ∧ s = y + z)

and consider the ternary relation

T (s1, s2, s3) ⇔ ∃y (R(y, s1) ∧R(y, s2) ∧R(y, s3)).

The subset of C3 defined by the relation T is definable in B(CC) but is
not quantifier-free definable in B(CC).

Proof. LetM be a proper elementary extension of C and M its universe.
We fix (any) a ∈ M \ C, and let {ζ1, ζ2, ζ3, ζ4} be the four roots of the
polynomial X4 +X + a in M . Note that a is transcendental over C.
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We first claim that Aut(M/C) (the group of automorphisms of M fix-
ing C) acts totally transitively on the set {ζ1, ζ2, ζ3, ζ4} (which really has
four distinct elements). Since M is an algebraically closed field, every ele-
ment of Gal

(
X4 +X+a /C(a)

)
extends to an automorphism ofM, hence it

is sufficient to show that Gal
(
X4 +X+a /C(a)

)
is the symmetric group S4.

Galois theory (see for instance Theorem 13.4 in [7]) tells us that this
happens if and only if both the polynomial X4 + X + a and its resolvent
X3 − 4aX − 1 are irreducible over C(a) and the discriminant 256a3 − 27 is
not a square in C(a).

We show that X3 − 4aX − 1 is irreducible over C(a). Assume not; then
X3 − 4aX − 1 has a root in C(a), say α ∈ C(a). Let p(X), q(X) ∈ C[X]
be relatively prime polynomials such that α = p(a)/q(a). We have p3(a) −
4ap(a)q2(a) − q3(a) = 0, and since a is transcendental over C, the equality
p3(X) − 4Xp(X)q2(X) − q3(X) = 0 holds in C[X]. If γ ∈ C is a root of
q(X) then it follows from the above equation that p(γ) = 0. Since p, q are
relatively prime, they have no common roots, hence q must be a constant
polynomial. But then a would be algebraic over C, a contradiction.

Using the same arguments it is not hard to see that X2 − 256a3 − 27 is
irreducible and that X4 +X + a has no root in C(a).

To show that X4 + X + a is irreducible over C(a), it remains to prove
that it cannot be written as a product of two quadratic polynomials. Assume
X4+X+a = (X2+α1X+β1)(X2+α2X+β2) with αi, βi ∈ C(a). Expanding
the right side we obtain the equations

(i) α1 + α2 = 0, (ii) β2 + α1α2 + β1 = 0,
(iii) α1β2 + α2β1 = 1, (iv) β1β2 = a.

Combining (i) with (ii) and (iii), we get

β2 + β1 = −α2
1, β2 − β1 = 1/α1,

and therefore

4β1β2 = (β2 + β1)2 − (β2 − β1)2 = α4
1 − 1/α2

1.

By (iv), we have
4a = α4

1 − 1/α2
1.

If for a contradiction α1 belonged to C(a) then t = α2
1 would belong to C(a).

But by the previous equation we have t3−4at−1 = 0; this would contradict
the irreducibility over C(a) of X3 − 4aX − 1 proved earlier.

Thus the group Gal
(
X4 +X + a /C(a)

)
is S4.

Consider the two triplets (s1, s2, s3) and (s′1, s
′
2, s
′
3) of elements of M

defined by si = ζi + ζ4 for i = 1, 2, 3 and s′τ(1) = ζτ(2) + ζτ(3) for all τ ∈ S3

(see figure below).
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Any two triplets of distinct ζm’s are Aut(M/C)-conjugate, and we get

the elementary equivalence (si, sj) ≡C (s′k, s
′
l) (in the sense of C) for any

1 ≤ i 6= j ≤ 3 and any 1 ≤ k 6= l ≤ 3.
In particular the elementary equivalence for (i, j) = (k, l) ensures that if

T were quantifier-free definable in B(CC) then we would have T (s1, s2, s3) if
and only if T (s′1, s

′
2, s
′
3), so T would be equivalent to a boolean combination

of formulæ in CC, each involving only two of the three possible variables (say
indexed by (i, j)); such a formula would be satisfied by the corresponding
subtuple of (si, sj) if and only if it was satisfied by the subtuple (s′i, s

′
j).

But (s1, s2, s3) does satisfy T whereas we will show that (s′1, s
′
2, s
′
3) does

not. Suppose for a contradiction that T (s′1, s
′
2, s
′
3) holds; then there are

{ζ ′1, ζ ′2, ζ ′3, ζ ′4} such that ζ ′i
4 + ζ ′i = ζ ′j

4 + ζ ′j and s′i = ζ ′i + ζ ′4. Thus

−2ζ4 = 2(ζ1 + ζ2 + ζ3) = s′1 + s′2 + s′3 = ζ ′1 + ζ ′2 + ζ ′3 + 3ζ ′4 = 2ζ ′4
and

ζ ′i = s′i − ζ ′4 = s′i + ζ4 = ζ1 + ζ2 + ζ3 − ζi + ζ4 = −ζi.

Therefore

−a− 2ζi = ζ4
i − ζi = ζ ′i

4 + ζ ′i = ζ ′j
4 + ζ ′j = ζ4

j − ζj = −a− 2ζj

for all i 6= j; this contradicts the fact that the ζi’s are distinct.

We get a slightly stronger result than announced: Let B(C∅) denote the
first order structure whose universe is C and whose basic relations are all
subsets of C2 which are ∅-definable in C. Then B(C∅) defines subsets of C3

which are not quantifier-free definable in B(CC).

3. Elimination for curves. We have seen in the previous section that
existential quantifiers can be used to bind variables together and define
essentially non-binary algebraic relations from binary ones. Still one can ask
how complicated a set defined using only binary relations can be. Could it
be, for instance, that B(CC) and the full field structure C are interdefinable?
We will show that it is not the case.

First note that each subset of C2 definable in C (with parameters) is a
boolean combination of subsets of C2 definable in C (with parameters) of
dimension smaller than or equal to 1 and vice versa (where “dimension”
refers to the acl-dimension in the sense of C):
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Fact 3.1. Let X ⊆ C2 be definable in C, with parameters. Then either
dimX ≤ 1 or dim(C2 \X) ≤ 1.

By Fact 3.1, we can view Example 2.1 as showing that the theory of
C equipped with a predicate for each planar algebraic curve does not have
quantifier elimination.

However we will show that if we remove the requirement that the curves
are planar, the quantifier elimination holds. As a consequence, B(CC) will
be shown to have trivial geometry and thus to be a proper reduct of C.

The results of this section hold not only in C but also in the more gen-
eral setting of geometric structures. O-minimal structures, strongly minimal
structures (such as algebraically closed fields), p-adic fields or algebraically
closed valued fields with a predicate for their valuation ring are all geometric
structures.

Definition 3.2. Recall that the structure M is said to be a geometric
structure if it satisfies

(1) Exchange Property: a ∈ acl(bC) \ acl(C)⇒ b ∈ acl(aC);
(2) Uniform Finiteness Property: given a formula ψ, there is an integer k

such that for each tuple a the set {b | M |= ψ(b,a)} is either infinite
or of size ≤ k.

Note that this property is a property of the theory of M.

In what follows, we will work in a fixed geometric structure M and use
“dimension” for the acl-dimension of its definable sets: if Φ is a formula (with
parameters B) defining such a set X and M̃ is a saturated extension ofM,
the dimension of X is the maximal d for which there exists (a1, . . . , an)
satisfying Φ (in M̃) and a subtuple (ai1 , . . . , aid) of (a1, . . . , an) of length d
such that aij+1 /∈ acl({ai1 , . . . , aij} ∪ B). (This quantity is independent of
the choice of the formula Φ, the parameters B and the structure M̃.)

Definition 3.3. Let M be a geometric structure with universe M .
A set X ⊆ Mn definable with parameters from A ⊆ M , of dimension

≤ 1, will be called an (A-definable) n-curve.
An (A-definable) curve is an (A-definable) n-curve for some n.
A set C̃ ⊆Mm is said to be an (A-definable) cylinder based on an n-curve

if there are indices 1 ≤ i1 < · · · < in ≤ m and an A-definable n-curve C
such that C̃ = {(x1, . . . , xm) ∈Mm | (xi1 , . . . , xin) ∈ C}.

A set is called an (A-definable) curve-based cylinder if it is an (A-
definable) cylinder whose base is an n-curve for some n ∈ N.

Remark 3.4. These definitions reflect the fact that one needs to pay
attention to the variables used: the formula x1 = x2 viewed as a formula in
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the variables x1 and x2 defines a 2-curve but if we add a dummy variable
x3 it defines a cylinder based on a 2-curve, of dimension 2.

Dummy variables and cylinders allow one to think about “boolean com-
binations of curves” involving different sets of variables, as shown in Ex-
ample 2.1.

As previously announced, the aim of this section is to prove Theorem
3.5 which easily implies that the structure obtained by equipping C with
a predicate for each algebraic subset of C2 is a proper reduct of the field
structure.

Theorem 3.5. Let M be a geometric structure with universe M . The
structure C(Macl(∅)) obtained by equipping M with predicates for each acl(∅)-
definable curve has quantifier elimination.

Proof. Without loss of generality, we can assume that M is sufficiently
saturated.

By syntactic arguments, we only need to consider formulæ of the form

(1) ∃y
r∧
i=1

Ci(xi, y) ∧
r+s∧
j=r+1

¬Cj(xj , y)

where

• each xk denotes an lk-tuple of variables among (x1, . . . , xn), and
• each Ck denotes a formula in the (lk+1)-subtuple xky of free variables

among (x1, . . . , xn, y), defining an (lk + 1)-curve,

and prove that they define a boolean combination of acl(∅)-definable curve-
based cylinders.

In what follows C(w, y), Ci(w, y) and E(w, y) will denote formulæ with
distinguished last variable y, defining acl(∅)-definable (|w|+ 1)-curves. Sim-
ilarly φl(x) will denote a formula defining a boolean combination of acl(∅)-
definable curve-based cylinders. (Note that the bases of these cylinders may
involve different tuples of coordinates among those of x.)

Lemma 3.6. Any formula χ(x, y) of the form

(2)
r∧
i=1

Ci(xi, y)

is equivalent to a disjunction

(3) E(x′, y) ∨
L∨
l=1

(y = ql ∧ φl(x′))

where x′ is the subtuple of x of all those variables involved in some of
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the tuples xi (i = 1, . . . , r), q1, . . . , qL’s are elements of acl(∅), and M |=
E(x′, y)→

∧L
l=1 y 6= ql.

Proof. Consider ξγ in M |x|+1 such that χ(ξ, γ) holds and let the sub-
tuples ξi and ξ′ of ξ correspond, respectively, to the subtuples xi and x′

of x.
By the Exchange Property, either γ belong to acl(∅) or each coordinate

of ξ′ belongs to acl(γ). In the latter case, ξ′γ satisfies some formula defining
an acl(∅)-definable curve.

Since M is saturated enough, we deduce by compactness that for some
acl(∅)-definable curve C(x′, y) and q1, . . . , qL ∈ acl(∅) we have

M |= χ(x, y)→
( L∨
i=1

y = qi ∨ C(x′, y)
)
.

We can take

C(x′, y) ∧
r∧
i=1

Ci(xi, y) ∧
L∧
i=1

y 6= qi for E(x′, y)

and
r∧
i=1

Ci(xi, ql) for φl(x′), l = 1, . . . , L.

Lemma 3.7. Let d be a natural number. Any formula of the form

(4) ∃≥dy
r∧
i=1

Ci(xi, y)

defines a boolean combination of acl(∅)-definable curve-based cylinders.

Proof. By Lemma 3.6, the formula (4) is equivalent to some

∃≥dy E(x′, y) ∨
L∨
l=1

(y = ql ∧ φl(x′))

with E(x′, y)→
∧L
l=1 y 6= ql and the ql’s all distinct. It is thus also equivalent

to the disjunction of the formulæ

(∃≥ d−|eL| y E(x′, y)) ∧
(∧
l∈eL

φl(x′) ∧
∧
l /∈eL
¬φl(x′)

)
as L̃ ranges over the subsets of {1, . . . , L}.

Since for every e ∈ N the set {x′ | ∃≥ey E(x′, y)} has dimension ≤ 1,
any formula of the form ∃≥ey E(x′, y) defines a curve.
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We proceed by induction on s (the number of negations involved) to
show that any formula of the form

(1) ∃y
r∧
i=1

Ci(xi, y) ∧
r+s∧
j=r+1

¬Cj(xj , y)

defines a boolean combination of acl(∅)-definable curve-based cylinders.
The result is proved for s = 0 in Lemma 3.7. Fix s ≥ 1 and a formula

of the form (1), and suppose that the induction hypothesis holds for any
s′ < s.

Note first that (1) is equivalent to the formula

∃y
r∧
i=1

Ci(xi, y) ∧
r+s∧
j=r+1

¬
(
Cj(xj , y) ∧

r∧
i=1

Ci(xi, y)
)
.

This formula says that there is a y satisfying
∧r
i=1Ci(x

i, y) but not satisfying∨r+s
j=r+1(Cj(xj , y) ∧

∧r
i=1Ci(x

i, y)).
Thus (1) is equivalent to the disjunction of (5) and (6) below:

(5)
∨
d∈N

((
∃≥d+1y

r∧
i=1

Ci(xi, y)
)
∧
(
∃=dy

r+s∨
j=r+1

(
Cj(xj , y)∧

r∧
i=1

Ci(xi, y)
)))

(the case when there are only finitely many y’s satisfying the condition∨r+s
j=r+1(Cj(xj , y) ∧

∧r
j=iCi(x

i, y))) and the formula

(6)
r+s∨
j=r+1

((
∃∞y Cj(xj , y) ∧

r∧
i=1

Ci(xi, y)
)

∧
(
∃y

r∧
i=1

Ci(xi, y) ∧
r+s∧

k=r+1

¬Ck(xk, y)
))

(the case where there is some j > r for which there are infinitely many y’s
satisfying the Cj(xj , y) ∧

∧r
i=1Ci(x

i, y)).
Since the formula Cj(xj , y) defines a subset of M |x

j |+1 of dimension ≤ 1,
we get

∃∞y Cj(xj , y)↔
Pj∨
p=1

xj = rjp

for some finite collection of tuples rjp of elements of acl(∅). Thus (6) is
equivalent to a disjunction of formulæ of the form

(7) (xj0 = rj0p ) ∧ ∃y
r∧
i=1

Ci(xi, y) ∧ ¬Cj(rj0p , y) ∧
r+s∧
j=r+1
j 6=j0

¬Cj(xj , y).



Curves in geometric structures 189

Observe here that the formula ¬Cj0(rj0p , y) in the free variables xy is
not only the negation of a formula defining a curve-based cylinder with
parameters from acl(∅): the formula ¬Cj0(rj0p , y) in the free variables xy
also defines itself a curved-based cylinder definable over acl(∅) (for it only
concerns the distinguished variable y). Therefore the induction hypothesis
implies that each formula of the form (7) defines a boolean combination of
acl(∅)-definable curve-based cylinders.

It only remains to prove that the formula (5) is equivalent to a boolean
combination of curve-based cylinders. By the Uniform Finiteness Property
we can replace the infinite disjunction in (5) by a finite one.

Applying the Inclusion-Exclusion Formula for finite sets,∣∣∣ t⋃
h=1

Xh

∣∣∣ =
∑

H⊆{1,...t}

(−1)|H|+1
∣∣∣ ⋂
h∈H

Xh

∣∣∣,
we find that

∃=dy
r+s∨
j=r+1

(
Cj(xj , y) ∧

r∧
i=1

Ci(xi, y)
)

is equivalent to a boolean combination of formulæ of the form

∃=ey
∧
j∈J

Cj(xj , y) ∧
r∧
i=1

Ci(xi, y)

for some J ’s ranging over subsets of {r + 1, . . . , r + s}, and some natural
number e not larger than d. By Lemma 3.7, each of these last formulæ
is equivalent to a boolean combination of one-dimensional formulæ with
parameters in acl(∅).

Quantifier elimination for C(CC) (the structure obtained by equipping C
with a predicate for each curve C-definable in C) easily implies:

Corollary 3.8. The structure C(CC) has trivial geometry, that is, acl(A)
=
⋃
a∈A acl({a}) for all A ⊆ C.

In particular we get:

Corollary 3.9. The structure C(CC) is a proper reduct of C.

Since Fact 3.1 ensures that B(CC) (the structure obtained by equipping
C with a predicate for each subset of C2 which is C-definable in C; see
Section 2) is a reduct (in the sense of definability) of C(CC), the structure
B(CC) is a proper reduct (in the sense of definability) of the structure C
and has trivial geometry.
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4. Algebraic and definable closure. In the construction of Example
2.1, a key fact is that one cannot distinguish the four roots of the polyno-
mial X4 +X + a, which is an illustration of the fact that algebraic closure
and definable closure are two different notions in C. Proposition 4.1 below
ensures that this condition is needed: if we consider a geometric structure
M on the universe M for which acl() = dcl() then the structure C2(Macl(∅))
(whose universe is M and basic relations are all the acl(∅)-definable subsets
of M2 of dimension ≤ 1) eliminates its quantifiers.

Proposition 4.1. Consider a geometric structure M on the universe
M such that acl(A) = dcl(A) for all A ⊆M .

(i) Any subset of Mn of dimension ≤ 1 definable in M over acl(∅) is
a boolean combination of cylinders, each of whose base is either the
graph of a function of one variable ∅-definable in M or an element
of dcl(∅).

(ii) In particular the structure C2(M∅) on M generated by all ∅-definable
subsets of M2 of dimension ≤ 1 and the structure C(Macl(∅)) on
M generated by all acl(∅)-definable subsets of a cartesian product
of M of dimension ≤ 1 define the same sets and have quantifier
elimination.

Proof. In this setting, it is clear that a set is definable in M over acl(∅)
if and only if it is definable in M without parameters.

By the definition of dimension and the assumption that acl() = dcl(),
a formula in n variables that defines a one-dimensional set in M over ∅ is
equivalent to an infinite disjunction

(8)
n∨
i=1

∨
F∈F

x = F (xi)

where F is a set of ∅-definable 1-variable functions from M to Mn and
x = (x1, . . . , xn).

By compactness, we can extract an equivalent finite disjunction from (8),
which gives the first part of the proposition.

The second part easily follows (either from a direct argument or from
Theorem 3.5).

In Proposition 4.1, we noted that in the case of a geometric structure
M on the universe M with acl() = dcl(), the use of parameters in acl(∅) is
not needed in the statement of Theorem 3.5. These parameters are however
essential for Theorem 3.5 to hold in general: the theory of curves ∅-definable
in a geometric structure does not, in general, admit quantifier elimination.

Example 4.2. LetM = (M ; +, ·,m) be a saturated algebraically closed
valued field of characteristic 6= 2, in the language of fields with a unary
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predicate m for its maximal ideal (the structure is known to be geometric;
see for instance Section 4 in [4]).

Denote by i one of the two square roots of −1.
The formula ρ in the free variables (x, y) without parameters

∃z (z2 + 1 = 0 ∧ x− z ∈ m ∧ y − z ∈ m)

is equivalent to

(x− i ∈ m ∧ y − i ∈ m) ∨ (x+ i ∈ m ∧ y + i ∈ m),

which defines a boolean combination of acl(∅)-definable curve-based cylin-
ders in M2.

But ρ does not define a boolean combination of ∅-definable curve-based
cylinders.

Proof. Proceeding toward a contradiction suppose that such a boolean
combination exists. We can suppose that it is in disjunctive normal form
and each disjunctant is of the form

φ1(x) ∧ φ2(y) ∧ φ3(x, y) ∧ ¬φ4(x, y)

where

• φ1(x) and φ2(y) are formulæ without parameters in the language of
valued fields, and
• φ3(x, y) and φ4(x, y) each define a (possibly empty) subset of M2

definable in M without parameters, which is either the whole M2 or
of dimension ≤ 1.

Since the formula ρ defines a set of dimension 2, there is some disjunctant
such that φ3 is a tautology, the sets {x ∈ M | M |= φ1(x)} and {y ∈ M |
M |= φ2(y)} have dimension one (precisely one; not zero or −∞ !), and the
formula φ4 is not a tautology. Fix such a disjunctant.

Consider σ ∈ Aut(M/∅) sending i to −i. Let β ∈ M \ acl(∅) be such
that φ2(β) holds. We can find α such that

φ1(α) ∧ ¬φ4(α, β) ∧ ¬φ4(α, σ(β))

holds: since φ4 defines a set of dimension ≤ 1 and the elements β and σ(β)
are transcendental, the set {x ∈ M | M |= φ4(x, β) ∨ φ4(x, σ(β))} is finite
and cannot cover the infinite set {x ∈M | M |= φ1(x)}.

Since all φi’s are ∅-definable and φ2(β) holds, so does φ2(σ(β)). Therefore

φ1(α) ∧ φ2(β) ∧ ¬φ4(α, β) and φ1(α) ∧ φ2(σ(β)) ∧ ¬φ4(α, σ(β))

both hold.
The three points (α, β), (σ(α), σ(β)) and (α, σ(β)) would satisfy ρ, which

cannot be the case. Indeed suppose for instance that α and β belong to i+m.
Then σ(β) belongs to both −i+ m and α+ m = i+ m, which is impossible.
(The case when α and β belong to −i+ m is similar.)
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Example 4.3. We get a similar result in M = (C; +, · ) by considering

∃z (z2 + 1 = 0 ∧ u+ v = z ∧ w + t = z)

in the free variables (u, v, w, t).

5. Higher arities. For each n ∈ N, let Cn(CC) (respectively C(CC))
denote the structure on C whose basic definable sets are the subsets of Ck

for all k ≤ n (resp. for all k ∈ N), C-definable in C, of dimension ≤ 1.
Similarly, Cn(Cacl(∅)) (respectively C(Cacl(∅))) denotes the structure on C
whose basic definable sets are the subsets of Ck for all k ≤ n (resp. for all
k ∈ N), acl(∅)-definable in C, of dimension ≤ 1.

In Section 2, we showed that the structure C2(CC) does not have quan-
tifier elimination and therefore we obtained the existence of a constructible
curve in C3 that is not equivalent to a boolean combination of cylinders
whose bases are constructible curves in C2. Here we show:

Proposition 5.1. Given any natural number n ≥ 3 there exists an
(n + 1)-ary relation ∅-definable in C2(Cacl(∅)) which is not quantifier-free
definable in Cn−1(CC).

Proposition 5.1 and Example 2.1 show in particular that none of the
structures Cn(CC) has quantifier elimination, for n ≥ 2.

Since by Theorem 3.5 any set definable in C2(Cacl(∅)) is equivalent to a
boolean combination of cylinders whose bases are acl(∅)-definable curves of
Ck for some k ≤ n+ 1, we get:

Corollary 5.2. For any natural number n ≥ 2 there is a subset of
Cn+1, acl(∅)-definable in C, of dimension 1 which is not equivalent to any
boolean combination of cylinders whose bases are k-curves with k ≤
max{2, n− 1}, C-definable in C.

Let M be a sufficiently saturated extension of C with universe M .

Claim 5.3. There are two relations S(s1, . . . , sn, u) and T (t1, . . . , tn, u),
both ∅-definable in C2(Cacl(∅)), such that:

(A) if a ∈M \C, (s1, . . . , sn, a) satisfies S and (t1, . . . , tn, a) satisfies T ,
then

(sσ(1), . . . , sσ(n−1)) ≡C∪{a} (tσ(1), . . . , tσ(n−1))
for all injections σ from {1, . . . , n−1} to {1, . . . , n} (the elementary
equivalence being in the sense of ACF0),

(B) if a ∈M \ C, then the sets
{(u1 . . . , un) ∈Mn | M |= S(u1, . . . , un, a) ∧ ¬T (u1, . . . , un, a)}

and
{(u1 . . . , un) ∈Mn | M |= T (u1, . . . , un, a)}

are non-empty.
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The construction of such S and T and the proof that they satisfy these
requirements will be the object of Lemmata 5.7–5.9. Let us admit for the
moment their existence and prove Proposition 5.1.

Proof of Proposition 5.1. Suppose for a contradiction that T is equivalent
to a boolean combination of formulæ C-definable in C, each involving at most
n− 1 of the possible variables. Let U be one of these (n− 1)-ary relations.
Then there is some k ≤ n such that U does not involve the kth variable
(U should also either not involve the last variable or not involve the lth
variable for some l 6= k ≤ n).

Fix a ∈M \ C, (s, a) |= S and (t, a) |= T .
Since any subtuple of (s, a) of length ≤ n−1 is elementary equivalent to

the corresponding subtuple of (t, a), since the relation U involves at most
n− 1 variables, and since (t, a) |= U , we get (s, a) |= U .

The same being true for all such U , we get the implication

S(s, a)→ T (s, a),

a contradiction to (B).

Fix a natural number N . Given a ∈ M we denote by Θ(a) the set of
roots of the polynomial ZN + ZN−1 + a. The following lemma tells us that
the collection of sums of distinct elements of Θ(a) is in bijection with the
power set P(Θ(a)). This will allow us to encode some finite combinatorics
in M.

Lemma 5.4. Let a ∈ M \ C. For each natural number 1 ≤ k ≤ N , let
[Θ(a)]k be the collection of all subsets of Θ(a) of size k. Then the mapping
from [Θ(a)]k to M sending A to

∑
z∈A z is injective.

Proof. It follows from Galois theory (see the proof of Theorem 9 in [1])
that

Gal(ZN + ZN−1 + a /C(a)) = SN .

Suppose for a contradiction that we have subsets A 6= A′ of Θ(a) such
that |A| = |A′| and

∑
z∈A z =

∑
z∈A′ z. Without loss of generality we can

assume that |A| = |A′| is minimal; in particular this implies A ∩A′ = ∅.
If |A| = 1, we clearly have a contradiction. Thus we must have |A| > 1.
Assume first Θ(a) = A∪A′. Then −1 =

∑
z∈A z+

∑
z∈A′ z so

∑
z∈A z =

−1/2 ∈ C. Let ζ ∈ A and ζ ′ ∈ A′ be arbitrary and let σ be the element
of Gal(ZN + ZN−1 + a /C(a)) interchanging ζ and ζ ′ and fixing the other
roots. We have ∑

z∈A
z = −1/2 = σ(−1/2) =

∑
z∈A

σ(z),

hence ζ = ζ ′, contradicting the fact that A ∩A′ = ∅.
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We can thus assume A∪A′ 6= Θ(a). Let ζ ∈ A, ζ ′ ∈ Θ(a) \ (A∪A′) and
let σ be the permutation interchanging ζ and ζ ′ and fixing the other roots.
We have ∑

z∈A
σ(z) =

∑
α∈A′

σ(z) =
∑
z∈A′

z =
∑
z∈A

z,

which gives ζ = ζ ′, contradicting ζ ′ /∈ A.

We now generalize the combinatorial configuration “triangle versus star”
appearing in the figure of Example 2.1.

Definition 5.5. For n ∈ N we will denote by Ln the first order language
{P1, . . . , Pn} where each Pi is a unary predicate (L0 being the language of
pure equality).

Let n > 1 and F = 〈F ;F1, . . . Fn〉 be an Ln-structure (i.e. Fi is an
interpretation of Pi in F).

We say that F is symmetric if for any permutation σ ∈ Sn the structure
F is isomorphic to the Ln-structure 〈F ;Fσ(1), . . . , Fσ(n)〉 (i.e. there is a
bijection σ̃ : F → F such that γ ∈ Fi if and only if σ̃(γ) ∈ Fσ(i)).

Lemma 5.6. For any n > 1 there are finite symmetric Ln-structures
X = 〈X;X1, . . . , Xn〉 and Y = 〈Y ;Y1, . . . , Yn〉 such that X and Y are not
isomorphic, but their reducts to Ln−1 are isomorphic.

Proof. Set

X := {α ⊆ {1, . . . , n} | |α| is odd},
Y := {β ⊆ {1, . . . , n} | |β| is even}.

For each i ∈ {1, . . . , n}, let

Xi := {α ∈ X | i ∈ α} and Yj := {β ∈ Y | j ∈ β}.

One can easily verify that |X| = |Y | = 2n−1 and that the Ln-structures
X = 〈X;X1, . . . , Xn〉 and Y = 〈Y, Y1, . . . , Yn〉 are symmetric.

Consider the mapping Φ : X → Y given by

Φ(α) =
{
α \ {n} if n ∈ α,
α ∪ {n} else.

Clearly Φ is a bijection between X and Y and for 1 ≤ i ≤ n− 1, we have

(α ∈ Xi) ⇔ (i ∈ α) ⇔ (i ∈ Φ(α)) ⇔ (Φ(α) ∈ Yi).

That is, Φ is an isomorphism between the Ln−1-structures 〈X;X1, . . . , Xn−1〉
and 〈Y ;Y1, . . . , Yn−1〉.

Finally, to see that X and Y are not isomorphic (as Ln-structures), note
that one and only one of the two sets

⋂
1≤i≤nXi and

⋂
1≤j≤n Yj is non-empty:
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• if n is even then
⋂

1≤i≤nXi = ∅ and
⋂

1≤i≤n Yi = {1, . . . , n},
• if n is odd then

⋂
1≤i≤n Yi = ∅ and

⋂
1≤i≤nXi = {1 . . . , n}.

Therefore there is no bijection between X and Y sending each Xi to Yi.

For the rest of this section, we let X = 〈X;X1, . . . , Xn〉 and Y =
〈Y ;Y1, . . . , Yn〉 be two symmetric Ln-structures satisfying the conclusion of
Lemma 5.6. We let N = |X| = |Y | and, as in Lemma 5.4, we let Θ(a) denote
the set of roots of the polynomial ZN + ZN−1 + a. Note that if a ∈ M \ C
then ZN + ZN−1 + a has N distinct roots, and |Θ(a)| = |X| = |Y |.

Consider now the relations S′ and T ′ given by:

• S′(s1, . . . , sn, a) holds if and only if there is a bijection φ between X
and Θ(a) such that

for all 1 ≤ i ≤ n, si =
∑
α∈Xi

φ(α),

• T ′(t1, . . . , tn, a) holds if and only if there is a bijection ψ between Y
and Θ(a) such that

for all 1 ≤ i ≤ n, ti =
∑
β∈Yi

ψ(β).

Using Lemma 5.4 to transfer the combinatorial properties of X and Y, we
will show that these relations, definable in M, satisfy conditions (A) and
(B) of Claim 5.3.

Lemma 5.7. Fix a ∈ M \ C. Let φ be a bijection between X and Θ(a),
and ψ be a bijection between Y and Θ(a). For i ∈ {1, . . . , n}, let

si =
∑
α∈Xi

φ(α) and ti =
∑
β∈Yi

ψ(β).

Then the tuples (sσ(1), . . . , sσ(n−1)) and (tτ(1), . . . , tτ(n−1)) are elementary
equivalent over C ∪ {a} (in the theory of C) for all injections σ and τ from
{1, . . . , n− 1} to {1, . . . , n}.

Proof. By the choice of X and Y, there is a bijection λ between X and Y
that sends each set Xσ(i) to the corresponding set Yτ(i) for i = 1, . . . , n− 1.

But as noted in Lemma 5.4, the Galois group of ZN + ZN−1 + a over
C(a) is SN . Therefore the bijection φ(α) 7→ ψ(λ(α)) of Θ(a) extends to an
M-automorphism Λ of M fixing C ∪ {a}. We now have

tτ(i) =
∑

β∈Yτ(i)

ψ(β) =
∑

α∈Xσ(i)

ψ(λ(α)) = Λ
( ∑
α∈Xσ(i)

φ(α)
)

= Λ(sσ(i)),

so Λ sends (sσ(1), . . . , sσ(n−1)) to (tτ(1), . . . , tτ(n−1)); in particular these two
tuples are elementary equivalent over C ∪ {a} modulo the theory of C.
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Lemma 5.8. Let a ∈M \ C. Then the sets

{(u1, . . . , un) ∈Mn | M |= S′(u1, . . . , un, a) ∧ ¬T ′(u1, . . . , un, a)}

and
{(u1, . . . , un) ∈Mn | M |= T ′(u1, . . . , un, a)}

are non-empty.

Proof. Fix a ∈ M \ C. By definition of T ′, it is clear that there is
some (u1 . . . , un) ∈ Mn for which T ′(u1, . . . , un, a) holds. Similarly, we
can find some (s1, . . . , sn) ∈ Mn such that S′(s1, . . . , sn, a) holds. Suppose
T ′(s1, . . . , sn, a) also holds. Then we get some bijections φ : X → Θ(a) and
ψ : Y → Θ(a) such that

for all 1 ≤ i ≤ n,
∑
α∈Xi

φ(α) =
∑
β∈Yi

ψ(β).

By Lemma 5.4 we thus get φ(Xi) = ψ(Yi) for all 1 ≤ i ≤ n, so ψ−1 ◦ φ
would be an isomorphism between X and Y. This cannot be the case, hence
T ′(s1, . . . , sn, a) must fail.

It now remains to replace the formulæ S′ and T ′ by formulæ definable
in B(C∅):

Lemma 5.9. There are relations S(s1, . . . , sn, u) and T (t1, . . . , tn, u) de-
finable in B(C∅) such that for all a ∈M \ C we have:

(i) S(s1, . . . , sn, a) holds if and only S′(s1, . . . , sn, a) holds,
(ii) T (s1, . . . , sn, a) holds if and only T ′(s1, . . . , sn, a) holds.

Proof. Let R(u, v) be the binary relation that says that u is the sum of
N ′ = |X1| distinct roots of the polynomial ZN + ZN−1 − (vN + vN−1), one
of which is v. That is, R(u, v) holds if and only if

∃(z1, . . . , zN ′−1, z)
(
u = v +

N ′−1∑
k=1

zk ∧ v ∈ Θ(z) ∧
N ′−1∧
k=1

zk ∈ Θ(z)

∧
N ′−1∧
k=1

v 6= zk ∧
∧
k 6=l

zk 6= zl

)
.

The relation R is definable in C without parameters.
Let x be an N -tuple (xα)α∈X of variables indexed by X and consider

the (n+ 1)-ary relation S defined by

S(s1, . . . , sn, u)⇔
(
∃x

∧
α∈X

xα ∈ Θ(u) ∧
∧

α,α′∈X
α 6=α′

xα 6= xα′ ∧
∧
α∈Xi

R(si, xα)
)
.
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Let y be an N -tuple (yβ)β∈Y of variables indexed by Y and consider the
(n+ 1)-ary relation T defined by

T (t1, . . . , tn, u) ⇔
(
∃y

∧
β∈Y

yβ ∈ Θ(u) ∧
∧

β,β′∈Y 2

β 6=β′

yβ 6= yβ′ ∧
∧
β∈Yj

R(tj , yβ)
)
.

These relations are definable in B(C∅) (the relations R and “z ∈ Θ(u)”
being binary). We will show that they satisfy conditions (i) and (ii) of the
lemma.

Fix a∈M\C. It is clear that if S′(s1, . . . , sn, a) holds then S(s1, . . . , sn, a)
holds. Conversely, let (s1, . . . , sn) ∈Mn be such that S(s1, . . . , sn, a) holds.
By the definition of S, we can find a bijection φ : X → Θ(a) and, for each i
and each α 3 i, an injection φi,α : Xi → Θ(a), such that for each 1 ≤ i ≤ n,

si =
∑
α′∈Xi

φi,α(α′) and φi,α(α) = φ(α).

Fix such an i. Consider α and α′ in Xi. By Lemma 5.4, φi,α and φi,α′ have the
same range and therefore φ(α′) belongs to the range of φi,α for all α′ ∈ Xi.
Thus φ(Xi) = φi,α(Xi) for some (in fact all) α ∈ Xi and

si =
∑
α∈Xi

φ(α).

The proof of (ii) is similar.

Putting Lemmata 5.9, 5.7 and 5.8 together, we get, as announced in
Claim 5.3, two relations S and T definable in B(C∅) that satisfy conditions
(A) and (B).

6. Definability. Since Example 2.1 and Proposition 5.1 show that for
any fixed n ≥ 2, there are sets definable in C(CC) (the structure on C
whose basic relations are all the algebraic curves, of any arity) which are not
quantifier-free definable in Cn(CC) (the structure on C whose basic relations
are all the algebraic curves of Cn), it is natural to ask if all the sets definable
in C(CC) are definable in some Cn(CC) (allowing quantifiers, this time).

Proposition 6.1. The two structures C3(CC) and C(CC) define the same
sets.

Proof. By quantifier elimination for C(CC), it suffices to show that any
algebraic curve is definable in C3(CC). But it is well known that any affine
curve Y ⊂ Cn is bi-rational to a planar curve X ⊂ C2 (see for example
Chapter I, Section 3.3, Theorem 5 of [9]). Let φ = (φ1, . . . , φn) be such an
isomorphism. Each restriction of φi to X is a basic definable set in C3(CC),
thus the graph Γ of the restriction of φ to X is (quantifier-free) definable
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in C3(CC), and Y , which is the union of the projection of Γ on the last n
coordinates and finitely many points, is definable in C3(CC).

Remark 6.2. From the proof, we see that the depth of alternation of
quantifier for formulæ in the language with a symbol for each algebraic
curve of C3 is at most 1. The lack of quantifier elimination implies that this
maximal depth is realized.

Question 6.3. Is C2(CC) a proper reduct (in the sense of definability)
of C(CC)?
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