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Small profinite m-stable groups

by

Frank O. Wagner (Lyon)

Abstract. A small profinite m-stable group has an open abelian subgroup of finite
M-rank and finite exponent.

1. Introduction. In a series of papers [7]–[12], Ludomir Newelski has
developed the theory of multiplicity in analogy to the theory of indepen-
dence. The basic set-up is that of a profinite structure (which may be thought
of as a hyperdefinable set of algebraic hyperimaginaries), where he defines
the notion of m-independence similarly to forking independence. This notion
is automorphism invariant, symmetric, and transitive; if the ambient theory
is small (with only countably many pure types), it also satisfies extension
over finite sets. The corresponding foundation rank M has similar proper-
ties to Lascar rank in stability theory; a structure is m-stable (really, this
should be m-superstable) if every type has ordinalM-rank. Newelski asked
two questions:

(1) M-gap conjecture: In a small profinite structure,M(o) is either
finite or ∞ for any orbit o.

(2) Does any small profinite group have an open abelian subgroup?

In this paper we shall prove the M-gap conjecture for groups, and answer
question (2) affirmatively in the m-stable case. In fact, we show:

Theorem 1. A small m-stable profinite group has an open abelian sub-
group, and is of finite M-rank.

The line of argument follows the ideas in [4], where it is shown that a
supersimple ω-categorical group is finite-by-abelian-by-finite of finite SU -
rank (which in turn was inspired by the ω-stable case [1]). It also borrows
some techniques of the bad group analysis from [3, 6, 13].
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2. Profinite structures. We shall quickly review the basic definitions
and properties we shall use. For a more detailed exposition, the reader may
consult [11] or [12].

Definition 1. A profinite topological space is a compact Hausdorff topo-
logical space U together with a system (Ei : i < ω) of refining equivalence
relations with finitely many classes, such that:

• each Ei is closed (as a subset of U2 with the product topology),
• the Ei-classes form a basis of open sets for the topology.

(More generally, one should have a directed system of equivalence relations,
but we shall restrict ourselves to the countable case.)

Let Aut∗0(U) be the topological group of automorphisms of U preserving
all equivalence relations (Ei : i < ω), whose basic open subgroups are the
stabilizers of finite subsets of U . A profinite structure is a pair 〈U,Aut∗(U)〉,
where Aut∗(U) is a closed subgroup of Aut∗0(U); the group Aut∗(U) is called
the structure group.

For a finite set A of parameters, let Aut∗(U/A) be the group of automor-
phisms in Aut∗(U) fixing A pointwise. A subset X of U is A-invariant if it
is invariant under Aut∗(U/A); it is A-closed if it is closed and A-invariant.
If A = ∅, it is usually omitted. A set is ∗-closed if it is A-closed for some
finite A.

If a is a finite tuple of elements of U , the orbit of a under Aut∗(U/A) is
denoted by o(a/A).

Thus A-closed sets correspond to A-type-definable sets in ordinary model
theory, and orbits correspond to types; moreover orbits are closed. Note that
Newelski says A-definable instead of A-closed. As one really should say A-
type-definable (the complement of a ∗-closed set need not be ∗-closed), we
prefer our terminology.

Definition 2. A profinite structure is small if there are only countably
many orbits on finite tuples over ∅.

Equivalently, we may ask that there are only countably many orbits on
finite tuples, or just 1-orbits, over any finite set of parameters.

Remark 2. In a small profinite structure, every A-closed set contains
an open orbit over A.

Definition 3. The structure U eq is obtained from U in the following
way. For any ∅-closed equivalence relation on some Un we adjoin a new
(imaginary) sort UE = Un/E, and a new function πE : Un → UE mapping a
tuple to its E-class. U is identified with U=. Then Aut∗(U) acts continuously
on every sort, and hence on U eq (with the disjoint union topology). Every
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sort (with the induced structure group) is again a profinite structure, and
U eq is a many-sorted profinite structure.

Fact 3 [11, Proposition 1.4]. Let G be a group interpretable in a profi-
nite structure U eq, i.e. its domain and the graphs of multiplication and in-
version are A-closed for some finite A. Then G is a profinite group, i.e.
there are A-invariant open normal subgroups Gi with

⋂
i<ω Gi = {1} whose

cosets form a basis of open sets for a compact Hausdorff topology.

Example. Let G be an ω-saturated ω-homogeneous group (possibly
with additional structure), and (Gi : i < ω) a system of ∅-definable normal
subgroups of finite index. Put G0 =

⋂
i<ω Gi. Then G/G0 (with the induced

structure group) is a profinite group; if G is small, so is G/G0. A subset of
G/G0 is A-closed iff it is induced by an A-type-definable subset of G.

From now on, U will denote an infinite small profinite structure, and G
an infinite small profinite group. A, B, . . . will be finite sets of parameters,
and a, b, . . . finite tuples (from U eq or Geq, respectively).

Fact 4 [11, Lemma 2.2 and Proposition 2.3]. An A-invariant subgroup
of G is A-closed. The group generated by any family of A-invariant sets is
A-closed , and generated in finitely many steps from finitely many sets. There
is no infinite increasing chain of A-invariant subgroups of G. In particular
all characteristic subgroups of G are ∅-closed , and the ascending (upper)
central series of G becomes stationary after finitely many steps.

Corollary 5 [11, Proposition 2.4]. The intersection G∩acl(A) is finite
for all (finite) A. In particular , G is locally finite.

Proof. G ∩ acl(A) is an A-invariant subgroup, hence A-closed, and gen-
erated in finitely many steps from finitely many finite sets in G ∩ acl(A).

Definition 4. A tuple a ∈ U is m-independent of B over A, denoted by
a m|̂

A
B, if o(a/AB) is open in o(a/A). TheM-rank M is the least function

from the collection of all orbits to the ordinals together with ∞ satisfying

M(a/A) ≥ α+ 1 if there is B ⊇ A with a m6 |̂
A
B and M(a/B) ≥ α.

A theory is m-stable if every type has ordinal M-rank.

Fact 6 ([11, Fact 1.10], [12, Lemma 1.5]). In a small profinite struc-
ture U ,

(1) m-independence is symmetric and transitive,
(2) if a ∈ acl(A), then a m|̂

A
B for all B,

(3) for any a,A,B there is some a′ ∈ o(a/A) with a′ m|̂
A
B,

(4) M(a/A, b) +M(b/A) ≤M(a, b/A) ≤M(a/A, b)⊕M(b/A).
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Definition 5. Let H be a ∗-closed subgroup of G. A ∗-closed subset X
of H is generic (for H) if it is open in H. In particular, an orbit is generic
(for H) if it is open in H.

Generic orbits exist by smallness (Remark 2); it is easy to see that if o
and o′ are generic orbits for H, then M(o) = M(o′). We define M(H) =
M(o), where o is any generic orbit for H. In fact, the same reasoning works
for coset spaces G/H, and M(G/H) =M(o), where o is any orbit open in
G/H.

Remark 7. For two m-independent generic elements g, h of H the in-
verse g−1 and the product gh are both generic, and gh is m-independent
of g and of h (over any parameter set A).

Fact 6(4) immediately implies part (1) of Fact 8 below:

Fact 8 [11, Lemma 2.6]. Let H be a ∗-closed subgroup of G.

(1) M(H) +M(G/H) ≤M(G) ≤M(H)⊕M(G/H).
(2) H is open in G iff H has finite index in G.
(3) If G is m-stable, then H is open in G iff M(H) =M(G).

Hence if G is m-stable, there is no infinite descending chain of ∗-closed
subgroups, each of infinite index in its predecessor.

Here are two results whose proofs are more involved.

Fact 9 [11, Corollary 3.2]. If G is m-stable, then G has an infinite ∗-
closed abelian subgroup.

Fact 10 [11, Theorem 3.3]. If G is m-stable and soluble, then G has an
open nilpotent subgroup.

Recall that two groups are commensurable if their intersection has finite
index in either of them.

Lemma 11. Let Ha be an a-closed subgroup of G, and suppose there
is a′ ∈ o(a) with a′ m|̂ a such that Ha and Ha′ are commensurable. Let
E be the equivalence relation on o(a) given by E(a′, a′′) if Ha′ and Ha′′

are commensurable. Then E is closed , with finitely many classes, all of
which are open; moreover , there is n < ω such that if E(a′, a′′) holds, then
|Ha′ : Ha′ ∩Ha′′ | ≤ n.

Proof. Put Y = o(a′/a). By homogeneity, o(a) is covered by ∅-conjugates
of Y ; by compactness finitely many conjugates suffice. This shows that E
has finitely many classes, which are all open, so E is closed.

Moreover, if a1, a2 ∈ Y , then the index of Hai ∩ Ha in Hai and in Ha

equals the index of Ha′ ∩Ha in Ha and in Ha′ , for i = 1, 2. It follows that
the index of Ha1 ∩Ha2 in Ha1 and in Ha2 is bounded independently of the
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choice of a1, a2. Since the same bound holds for all conjugates of Y , the
lemma follows.

Note that the E-class aE of a is a canonical parameter for the conjugacy
class of Ha in Geq.

We finish this section with two purely group-theoretic theorems.

Fact 12 [5, Hauptsatz 7.6]. Let G be a finite group, and H a proper
nontrivial subgroup such that H ∩ Hg = {1} for all g ∈ G − H. Then
N := G − ⋃g∈G(H − {1})g is a normal subgroup of G with G = NH and
N ∩H = {1}.

Fact 13 [14, 2, 16, Theorem 4.2.4]. Let G be any group, and H a family
of uniformly commensurable subgroups. Then there is a subgroup N of G, a
finite extension of a finite intersection of groups in H (and hence commen-
surable with them), such that N is invariant under all automorphisms of G
fixing H setwise.

3. Small profinite groups of finite M-rank. Let G be a profinite
group.

Definition 6. A subgroup H of G is minimal if it is infinite, ∗-closed,
and every ∗-closed subgroup of infinite index in H is finite.

Note that in an m-stable profinite group every ∗-closed infinite subgroup
of minimalM-rank is minimal, so every ∗-closed subgroup contains a mini-
mal one. By Fact 9 a minimal group has an open abelian subgroup.

Definition 7. Let A and B be abelian minimal subgroups of G. A vir-
tual isogeny f between A and B is a ∗-closed isomorphism f : D/K → I/C,
where D is open in A, I is open in B, and K and C are both finite. Two
virtual isogenies f1 and f2 are equivalent , denoted by f1 ∼ f2, if the derived
maps from D1 ∩D2 to (I1 + I2)/(C1 +C2) agree on an open subgroup of A.

Note that f1 and f2 are equivalent iff their graphs are commensurable.
Equivalence of virtual isogenies is a congruence with respect to addition
and composition (whenever composition makes sense). Moreover, an open
subgroup, or a finite extension of a virtual isogeny (i.e. of the graph, as a
subgroup of A × B), is again a virtual isogeny, which is equivalent to the
original one.

It is standard that in a minimal group G, the family of virtual autogenies
(isogenies from G to G) modulo equivalence, with addition and composition
as operations, forms the set of invertible (nonzero) elements of a division
ring R. (See [15] for this, and related results on virtual iso- and endogenies
in small groups.)
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Lemma 14. If G is small , then R is locally finite; for every a-closed
virtual autogeny fa the equivalence relation E(x, y) on o(a) given by fx ∼ fy
is ∗-closed and has finitely many classes, which are all open.

Proof. Let f be a finite tuple of virtual autogenies of G, and a a finite
set of parameters over which f is defined. As G is locally finite, we may
replace every f ∈ f by a finite extension, and assume that it is defined on
the whole of G (we may have to increase a to do this). Choose g ∈ G with
g m|̂ a. For any f, f ′ ∈ 〈f〉 we have f(g), f ′(g) ∈ acl(a, g)∩G, which is finite.
But if f(g) = f ′(g), then g ∈ ker(f − f ′); as g 6∈ acl(a), the kernel of f − f ′
must be infinite, whence open by minimality, and f ∼ f ′.

It follows that R is locally finite, whence a (commutative) field. If fa
is an a-closed virtual autogeny, then every ∅-conjugate of fa has the same
order as fa modulo equivalence; as there are only finitely many elements in
R of that order, there must be a′ m|̂ a with fa ∼ fa′ . The rest follows from
Lemma 11.

In particular, we can consider the equivalence class (fa)∼ of a virtual
autogeny as an imaginary element aE .

Theorem 15. Let G be a small profinite abelian group of finiteM-rank.
Then any ∗-closed subgroup of G is commensurable with one invariant over
some finite tuple in acl(∅).

Proof. Consider first a minimal subgroup A of G; say it is a-closed for
some parameter a. By the finiteness of rank, there exist finitely many con-
jugates of A, say (Ai : i < n), such that every conjugate of A intersects
A0 :=

∑
i<nAi in a subgroup of finite index. We may choose the Ai almost

linearly independent, i.e. Ai ∩
∑

j 6=iAj is finite for all i < n. Fix virtual
isogenies fij from Ai to Aj (whenever they exist), and let a be a finite set
of parameters over which all of this is invariant.

Now consider another conjugate A′ of A. Since A′ ∩ A0 is infinite by
maximality of n, there must be some minimal i = i(A′) < n such that
Ai∩(A′+

∑
k 6=iAk) is infinite; because A and therefore Ai are both minimal,

|Ai : Ai∩ (A′+
∑

k 6=iAk)| is finite. For every j 6= i with Aj ∩ (A′+
∑

k 6=j Ak)
infinite we define a virtual isogeny r(A′, j) from Ai to Aj via: r(A′, j)(x)
:= {y ∈ Aj : x − y ∈ A′ +

∑
k 6=i,j Ak} = Aj ∩ (x + A′ +

∑
k 6=i,j Ak) (it

is easy to check from minimality that this is indeed a virtual isogeny). If
Aj ∩ (A′ +

∑
k 6=j Ak) is finite, we put r(A′, j) = 0. Suppose now A′′ is such

that i(A′′) = i(A′), and r(A′, j) and r(A′′, j) are equivalent virtual isogenies
for all j 6= i(A′) with r(A′, j) 6= 0 or r(A′′, j) 6= 0. One can check that then
A′ and A′′ must be commensurable.

By smallness we may choose A′ such that X := o(a′/a) is open in
o(a) = o(a′) (where the lower case letter denotes the parameter of the upper
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case group); note that if a′′ ∈ X, then i(A′′) = i(A′) =: i. Consider the
equivalence relation Fj(a′, a′′) on X given by fji ◦ r(A′, j) ∼ fji ◦ r(A′′, j)
for a fixed j. Since fji ◦ r(A′, j) defines a virtual autogeny of Ai for all
a′ ∈ X, by Lemma 14 there are only finitely many Fj-classes. Hence there is
a′′ ∈ X with a′′ m|̂

a
a′ such that Fj(a′, a′′) holds for all j, so A′ and A′′ are

commensurable. But a′ m|̂ a′′; by Lemma 11 there are only finitely many
commensurability classes among the ∅-conjugates of A, and each of them is
uniformly commensurable.

By Fact 13 there is a ∗-closed subgroup Ac commensurable with A and
invariant under all automorphisms of G fixing the commensurability class
of A. In other words, if e ∈ acl(∅) is the canonical parameter for the conju-
gacy class of A, then Ac is e-closed. This proves the assertion for minimal
groups.

If H ≤ G is ∗-closed but not minimal, then by m-stability it contains a
minimal subgroup A which is commensurable with some acl(∅)-definable Ac.
But HAc/Ac is a subgroup of G/Ac of smaller M-rank; by induction it is
commensurable with an e′-closed group Hc/A

c, for some e′ ∈ acl(∅), whose
preimage Hc in G is as required.

Lemma 16. If G is small and all centralizers of elements have finite
index , then G has an open abelian subgroup.

Proof. As G∩acl(∅) is finite, we may replace G by an open subgroup and
assume G ∩ acl(∅) = {1}. For any g ∈ G, since CG(g) has finite index in G,
we get [g,G] ⊆ acl(g). If g m|̂ g′, then [g, g′] ∈ acl(g)∩acl(g′) = acl(∅) = {1}.
Since every element g′ of G can be written as g′ = g1g2 with g m|̂ g1 and
g m|̂ g2, we obtain [g, g′] = [g, g1g2] = [g, g2][g, g1]g2 = 1.

Proposition 17. A small profinite group of finite M-rank has an open
abelian subgroup.

Proof. Suppose not, and let G be a counterexample of minimalM-rank
possible.

Claim. G has an open soluble subgroup.

Proof of Claim. Suppose not. Note that if H were an infinite ∗-closed
subgroup of infinite index in G with open normalizer, then NG(H)/H and
H would have open abelian normal subgroups by inductive hypothesis, and
G would have a 2-soluble open subgroup, a contradiction. Let K be the
subgroup of all elements g whose centralizer CG(g) has finite index in G; this
subgroup is ∅-invariant and hence closed by Fact 4. Moreover, K contains
all finite subgroups whose normalizer is open in G. As K is characteristic
and cannot have finite index by Lemma 16, it is finite; after replacing G by
an open subgroup intersecting K trivially, we may assume that G has no
nontrivial closed subgroup of infinite index whose normalizer is open in G.
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G contains a minimal subgroup, and hence a ∗-closed abelian subgroup
B, say, which we may take of maximal M-rank possible; adding finitely
many parameters, we assume B is ∅-closed. Suppose B ′ is another ∗-closed
abelian subgroup such that B ∩ B′ has infinite index in B′. Now CG(b)
is b-closed for any b ∈ B ∩ B′; since it contains B and B′, it has greater
M-rank than B by theM-rank inequalities. It therefore has no open abelian
subgroup, and must be of finite index in G by inductive hypothesis, whence
b = 1.

Let N be the subgroup of all g ∈ G such that Bg is commensurable
with B. It is ∅-invariant, and hence ∅-closed by Fact 4; note that the com-
mensurability is uniform by Lemma 11: just consider Bg and Bg′ for generic
m-independent g, g′ ∈ N . By Fact 13 there is a ∗-closed normal subgroup
of N commensurable with B, so N cannot be open in G by the first para-
graph of the proof of the claim. Hence N has an open abelian subgroup
by inductive hypothesis, and B is open in N by maximality of M-rank.
It follows that there is an open H ≤ G such that N ∩ H ≤ B. Then
M(B∩H) =M(B) and B∩H is commensurable with (B∩H)g if and only
if B is commensurable with Bg, i.e. for g ∈ N . As N ∩H = B ∩H, we may
thus replace G by H and assume that B ∩Bg = {1} for any g ∈ G−B.

IfG0 is a finite subgroup of G such that B0 := B∩G0 is proper nontrivial,
then B0∩Bg

0 = {1} for all g ∈ G0−B0. Suppose that there is a G-conjugate
Bg such that B1 := G0 ∩ Bg is nontrivial, but not G0-conjugate to B0. As
B0 and B1 are self-normalizing in G0, and all G0-conjugates of B0 or B1
intersect trivially, we get

|G0| ≥ |G0/B0|(|B0| − 1) + |G0/B1|(|B1| − 1) + 1

≥ 2|G0| − |G0/B0| − |G0/B1|+ 1,

whence |G0/B0|+ |G0/B1| > |G0|. We may assume |B0| ≥ |B1|, and obtain

|G0/B1| ≥ |G0/B0| > |G0/B1|(|B1| − 1) ≥ |G0/B1|,
a contradiction. Hence all B-conjugates intersecting G0 nontrivially are al-
ready conjugate in G0.

Consider X := G−⋃g∈G(B − {1})g. By the preceding paragraph, if G0
is a finite subgroup of G with B0 := G0 ∩ B nontrivial, then X ∩ G0 =
G0 −

⋃
g∈G0

(B0 − {1})g; by Fact 12 this is a nontrivial normal subgroup
of G0. As G is locally finite, X is a nontrivial normal subgroup of G, which
is invariant over the parameters used to define B, and thus ∗-closed by
Fact 4. Since it intersects B trivially, it cannot be open, contradicting the
conclusion of the first paragraph of the proof of the claim. This proves the
assertion.

By Fact 10 we may assume that G is nilpotent.

Claim. We may assume that G′ ≤ Z(G).
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Proof of Claim. By Fact 4 the subgroups Zn(G) in the upper central se-
ries are ∅-closed for all n ≥ 1, and there is some minimal n such that Zn(G)
is infinite. Replacing G by an open subgroup intersecting Zn−1(G) trivially,
we may assume n = 1. But now M(G/Z(G)) < M(G); by inductive hy-
pothesis G/Z(G) has an open abelian subgroup H/Z(G) whose preimage H
in G satisfies H ′ ≤ Z(H).

For g ∈ G put Hg := {(hZ(G), [h, g]) : hZ(G) ∈ G/Z(G)}, a subgroup
of G/Z(G)× Z(G). Since G/Z(G)×Z(G) is abelian, Hg is commensurable
with an e-closed group for some e ∈ acl(∅) by Theorem 15. If π1 denotes
the projection onto the first coordinate, then [h, g] = [h, g′] for any hZ(G) ∈
π1(Hg ∩Hg′), whence [h, g′g−1] = 1. However, we may choose g and g′ to be
two independent generic elements such that Hg and Hg′ are commensurable.
Then π1(Hg ∩Hg′) is a subgroup of finite index in G/Z(G), and g′g−1 is a
generic element of G with |G : CG(g′g−1)| finite.

The set of all g ∈ G such that CG(g) has finite index in G is a subgroup
of G, which is ∅-invariant and closed; since it contains a generic element,
it has finite index in G. Replacing G by an open subgroup, we finish by
Lemma 16.

Definition 8. A Morley sequence in an orbit o over A is a sequence
(ai : i < ω) of elements in the orbit such that ai m|̂

A
(aj : j < i) and

ak ∈ o(ai/A, aj : j < i) for all i ≤ k < ω.

Note that if o is over A, then in an m-stable theory there must be a finite
k < ω such thatM(A/ai : i < k) is minimal possible. Then A m|̂

(ai:i<k)
ak;

as ak m|̂
A

(ai : i < k), the orbit o(ak/ai : i < k) is parallel to o (meaning
that they have a common non-m-forking extension).

Theorem 18. The M-gap conjecture holds for small profinite groups:
There is no orbit o in a small profinite group with ω ≤ M(o) < ∞. In
particular , a small profinite m-stable group has finite M-rank.

Proof. Let G be a small profinite group containing a 1-orbit o of infinite
M-rank α < ∞. Taking m-forking extensions if necessary, we may assume
α = ω; adding parameters, we suppose that o is over ∅. The subgroup
of elements of finite M-rank is ∅-invariant and hence closed by Fact 4; it
follows that there is a bound n < ω on the M-rank of a 1-orbit over ∅
of finite M-rank. Let o′ be an m-forking extension of o of M-rank > n,
and (ai : i < ω) a Morley sequence in o′. Then there is k < ω such that
o(ak/ai : i < k) is parallel to o′ and hence has M-rank > n; it follows that
there is a minimal k < ω such that over (ai : i ≤ k) there is a 1-orbit of
M-rank > n. We add (ai : i < k) to the language. Then n is the maximal
M-rank of a 1-orbit of finite M-rank over ∅, and there is m > n which is
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the maximal M-rank of a 1-orbit of finite M-rank over a single realization
of o(ak) (which again we call o).

We repeat: Let o′ be an m-forking extension of o of M-rank > m, and
(ai : i < ω) a Morley sequence in o′. Let a = (ai : i < k) be a maximal initial
segment of (ai : i < ω) which is m-independent over ∅. The groups H(ai) of
elements of finite rank over ai are closed for all i ≥ k, and conjugate under
Aut∗(G/a). Let H be the closed group of elements of finite rank over a, ak.
Then H(ai) ≤ H for i ≥ k, so there are only finitely many commensurability
classes for H(ai) with i ≥ k by Theorem 15. Hence there are i > j ≥ k such
that H(ai) and H(aj) are commensurable. ButM(ai/aj) ≥M(o′) > m, so
ai

m|̂ aj by the choice of m; by Lemma 11 and Fact 13 there is an imaginary
e ∈ acl(ai) ∩ acl(aj) = acl(∅) and an e-closed subgroup N commensurable
with H(ai). But then for a generic element g ∈ N we getM(g) =M(g/e) =
M(N) =M(H(ai)) = m > n, a contradiction.

This concludes the proof of Theorem 1.

Corollary 19. A small profinite m-stable group has finite exponent.

Proof. By Theorem 1, we may replace G by an open subgroup and as-
sume it is abelian. Let o be an open orbit in G; by local finiteness its elements
have finite order n, say. Then the group generated by o is open in G and
has exponent n.
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Mathématiques
21 avenue Claude Bernard
69622 Villeurbanne Cedex, France
E-mail: wagner@desargues.univ-lyon1.fr

Received 22 August 2002;
in revised form 10 January 2003


