Small profinite m-stable groups

by

Frank O. Wagner (Lyon)

Abstract. A small profinite m-stable group has an open abelian subgroup of finite \mathcal{M} -rank and finite exponent.

1. Introduction. In a series of papers [7]–[12], Ludomir Newelski has developed the theory of multiplicity in analogy to the theory of independence. The basic set-up is that of a profinite structure (which may be thought of as a hyperdefinable set of algebraic hyperimaginaries), where he defines the notion of *m*-independence similarly to forking independence. This notion is automorphism invariant, symmetric, and transitive; if the ambient theory is small (with only countably many pure types), it also satisfies extension over finite sets. The corresponding foundation rank \mathcal{M} has similar properties to Lascar rank in stability theory; a structure is *m*-stable (really, this should be m-superstable) if every type has ordinal \mathcal{M} -rank. Newelski asked two questions:

(1) \mathcal{M} -GAP CONJECTURE: In a small profinite structure, $\mathcal{M}(o)$ is either finite or ∞ for any orbit o.

(2) Does any small profinite group have an open abelian subgroup?

In this paper we shall prove the \mathcal{M} -gap conjecture for groups, and answer question (2) affirmatively in the m-stable case. In fact, we show:

THEOREM 1. A small m-stable profinite group has an open abelian subgroup, and is of finite \mathcal{M} -rank.

The line of argument follows the ideas in [4], where it is shown that a supersimple ω -categorical group is finite-by-abelian-by-finite of finite *SU*-rank (which in turn was inspired by the ω -stable case [1]). It also borrows some techniques of the bad group analysis from [3, 6, 13].

²⁰⁰⁰ Mathematics Subject Classification: 20E18, 03C45.

Key words and phrases: profinite group, small theory, m-stability.

The author would like to thank Ludomir Newelski for helpful remarks.

2. Profinite structures. We shall quickly review the basic definitions and properties we shall use. For a more detailed exposition, the reader may consult [11] or [12].

DEFINITION 1. A profinite topological space is a compact Hausdorff topological space U together with a system $(E_i : i < \omega)$ of refining equivalence relations with finitely many classes, such that:

- each E_i is closed (as a subset of U^2 with the product topology),
- the E_i -classes form a basis of open sets for the topology.

(More generally, one should have a directed system of equivalence relations, but we shall restrict ourselves to the countable case.)

Let $\operatorname{Aut}_0^*(U)$ be the topological group of automorphisms of U preserving all equivalence relations $(E_i : i < \omega)$, whose basic open subgroups are the stabilizers of finite subsets of U. A profinite structure is a pair $\langle U, \operatorname{Aut}^*(U) \rangle$, where $\operatorname{Aut}^*(U)$ is a closed subgroup of $\operatorname{Aut}_0^*(U)$; the group $\operatorname{Aut}^*(U)$ is called the structure group.

For a finite set A of parameters, let $\operatorname{Aut}^*(U/A)$ be the group of automorphisms in $\operatorname{Aut}^*(U)$ fixing A pointwise. A subset X of U is A-invariant if it is invariant under $\operatorname{Aut}^*(U/A)$; it is A-closed if it is closed and A-invariant. If $A = \emptyset$, it is usually omitted. A set is *-closed if it is A-closed for some finite A.

If a is a finite tuple of elements of U, the orbit of a under $\operatorname{Aut}^*(U/A)$ is denoted by o(a/A).

Thus A-closed sets correspond to A-type-definable sets in ordinary model theory, and orbits correspond to types; moreover orbits are closed. Note that Newelski says A-definable instead of A-closed. As one really should say A-type-definable (the complement of a *-closed set need not be *-closed), we prefer our terminology.

DEFINITION 2. A profinite structure is *small* if there are only countably many orbits on finite tuples over \emptyset .

Equivalently, we may ask that there are only countably many orbits on finite tuples, or just 1-orbits, over any finite set of parameters.

REMARK 2. In a small profinite structure, every A-closed set contains an open orbit over A.

DEFINITION 3. The structure U^{eq} is obtained from U in the following way. For any \emptyset -closed equivalence relation on some U^n we adjoin a new (imaginary) sort $U_E = U^n/E$, and a new function $\pi_E : U^n \to U_E$ mapping a tuple to its *E*-class. U is identified with $U_{=}$. Then $\text{Aut}^*(U)$ acts continuously on every sort, and hence on U^{eq} (with the disjoint union topology). Every sort (with the induced structure group) is again a profinite structure, and U^{eq} is a many-sorted profinite structure.

FACT 3 [11, Proposition 1.4]. Let G be a group interpretable in a profinite structure U^{eq} , i.e. its domain and the graphs of multiplication and inversion are A-closed for some finite A. Then G is a profinite group, i.e. there are A-invariant open normal subgroups G_i with $\bigcap_{i<\omega} G_i = \{1\}$ whose cosets form a basis of open sets for a compact Hausdorff topology.

EXAMPLE. Let G be an ω -saturated ω -homogeneous group (possibly with additional structure), and $(G_i : i < \omega)$ a system of \emptyset -definable normal subgroups of finite index. Put $G^0 = \bigcap_{i < \omega} G_i$. Then G/G^0 (with the induced structure group) is a profinite group; if G is small, so is G/G^0 . A subset of G/G^0 is A-closed iff it is induced by an A-type-definable subset of G.

From now on, U will denote an infinite small profinite structure, and G an infinite small profinite group. A, B, \ldots will be finite sets of parameters, and a, b, \ldots finite tuples (from U^{eq} or G^{eq} , respectively).

FACT 4 [11, Lemma 2.2 and Proposition 2.3]. An A-invariant subgroup of G is A-closed. The group generated by any family of A-invariant sets is A-closed, and generated in finitely many steps from finitely many sets. There is no infinite increasing chain of A-invariant subgroups of G. In particular all characteristic subgroups of G are \emptyset -closed, and the ascending (upper) central series of G becomes stationary after finitely many steps.

COROLLARY 5 [11, Proposition 2.4]. The intersection $G \cap \operatorname{acl}(A)$ is finite for all (finite) A. In particular, G is locally finite.

Proof. $G \cap \operatorname{acl}(A)$ is an A-invariant subgroup, hence A-closed, and generated in finitely many steps from finitely many finite sets in $G \cap \operatorname{acl}(A)$.

DEFINITION 4. A tuple $a \in U$ is *m*-independent of *B* over *A*, denoted by $a \stackrel{m}{\longrightarrow}_A B$, if o(a/AB) is open in o(a/A). The *M*-rank *M* is the least function from the collection of all orbits to the ordinals together with ∞ satisfying

 $\mathcal{M}(a/A) \geq \alpha + 1$ if there is $B \supseteq A$ with $a \overset{mv}{\downarrow}_A B$ and $\mathcal{M}(a/B) \geq \alpha$.

A theory is *m*-stable if every type has ordinal \mathcal{M} -rank.

FACT 6 ([11, Fact 1.10], [12, Lemma 1.5]). In a small profinite structure U,

- (1) *m*-independence is symmetric and transitive,
- (2) if $a \in \operatorname{acl}(A)$, then $a \stackrel{m}{\longrightarrow}_A B$ for all B,
- (3) for any a, A, B there is some $a' \in o(a/A)$ with $a' \stackrel{m}{\longrightarrow} B$,
- (4) $\mathcal{M}(a/A, b) + \mathcal{M}(b/A) \leq \mathcal{M}(a, b/A) \leq \mathcal{M}(a/A, b) \oplus \mathcal{\hat{\mathcal{M}}}(b/A).$

DEFINITION 5. Let H be a *-closed subgroup of G. A *-closed subset X of H is *generic* (for H) if it is open in H. In particular, an orbit is *generic* (for H) if it is open in H.

Generic orbits exist by smallness (Remark 2); it is easy to see that if o and o' are generic orbits for H, then $\mathcal{M}(o) = \mathcal{M}(o')$. We define $\mathcal{M}(H) = \mathcal{M}(o)$, where o is any generic orbit for H. In fact, the same reasoning works for coset spaces G/H, and $\mathcal{M}(G/H) = \mathcal{M}(o)$, where o is any orbit open in G/H.

REMARK 7. For two m-independent generic elements g, h of H the inverse g^{-1} and the product gh are both generic, and gh is m-independent of g and of h (over any parameter set A).

Fact 6(4) immediately implies part (1) of Fact 8 below:

FACT 8 [11, Lemma 2.6]. Let H be a *-closed subgroup of G.

(1) $\mathcal{M}(H) + \mathcal{M}(G/H) \le \mathcal{M}(G) \le \mathcal{M}(H) \oplus \mathcal{M}(G/H).$

(2) H is open in G iff H has finite index in G.

(3) If G is m-stable, then H is open in G iff $\mathcal{M}(H) = \mathcal{M}(G)$.

Hence if G is m-stable, there is no infinite descending chain of *-closed subgroups, each of infinite index in its predecessor.

Here are two results whose proofs are more involved.

FACT 9 [11, Corollary 3.2]. If G is m-stable, then G has an infinite *-closed abelian subgroup.

FACT 10 [11, Theorem 3.3]. If G is m-stable and soluble, then G has an open nilpotent subgroup.

Recall that two groups are *commensurable* if their intersection has finite index in either of them.

LEMMA 11. Let H_a be an a-closed subgroup of G, and suppose there is $a' \in o(a)$ with $a' \stackrel{m}{\longrightarrow} a$ such that H_a and $H_{a'}$ are commensurable. Let E be the equivalence relation on o(a) given by E(a', a'') if $H_{a'}$ and $H_{a''}$ are commensurable. Then E is closed, with finitely many classes, all of which are open; moreover, there is $n < \omega$ such that if E(a', a'') holds, then $|H_{a'} : H_{a'} \cap H_{a''}| \leq n$.

Proof. Put Y = o(a'/a). By homogeneity, o(a) is covered by \emptyset -conjugates of Y; by compactness finitely many conjugates suffice. This shows that E has finitely many classes, which are all open, so E is closed.

Moreover, if $a_1, a_2 \in Y$, then the index of $H_{a_i} \cap H_a$ in H_{a_i} and in H_a equals the index of $H_{a'} \cap H_a$ in H_a and in $H_{a'}$, for i = 1, 2. It follows that the index of $H_{a_1} \cap H_{a_2}$ in H_{a_1} and in H_{a_2} is bounded independently of the

choice of a_1, a_2 . Since the same bound holds for all conjugates of Y, the lemma follows.

Note that the *E*-class a_E of *a* is a canonical parameter for the conjugacy class of H_a in G^{eq} .

We finish this section with two purely group-theoretic theorems.

FACT 12 [5, Hauptsatz 7.6]. Let G be a finite group, and H a proper nontrivial subgroup such that $H \cap H^g = \{1\}$ for all $g \in G - H$. Then $N := G - \bigcup_{g \in G} (H - \{1\})^g$ is a normal subgroup of G with G = NH and $N \cap H = \{1\}$.

FACT 13 [14, 2, 16, Theorem 4.2.4]. Let G be any group, and \mathfrak{H} a family of uniformly commensurable subgroups. Then there is a subgroup N of G, a finite extension of a finite intersection of groups in \mathfrak{H} (and hence commensurable with them), such that N is invariant under all automorphisms of G fixing \mathfrak{H} setwise.

3. Small profinite groups of finite \mathcal{M} **-rank.** Let G be a profinite group.

DEFINITION 6. A subgroup H of G is *minimal* if it is infinite, *-closed, and every *-closed subgroup of infinite index in H is finite.

Note that in an m-stable profinite group every *-closed infinite subgroup of minimal \mathcal{M} -rank is minimal, so every *-closed subgroup contains a minimal one. By Fact 9 a minimal group has an open abelian subgroup.

DEFINITION 7. Let A and B be abelian minimal subgroups of G. A virtual isogeny f between A and B is a *-closed isomorphism $f: D/K \to I/C$, where D is open in A, I is open in B, and K and C are both finite. Two virtual isogenies f_1 and f_2 are equivalent, denoted by $f_1 \sim f_2$, if the derived maps from $D_1 \cap D_2$ to $(I_1 + I_2)/(C_1 + C_2)$ agree on an open subgroup of A.

Note that f_1 and f_2 are equivalent iff their graphs are commensurable. Equivalence of virtual isogenies is a congruence with respect to addition and composition (whenever composition makes sense). Moreover, an open subgroup, or a finite extension of a virtual isogeny (i.e. of the graph, as a subgroup of $A \times B$), is again a virtual isogeny, which is equivalent to the original one.

It is standard that in a minimal group G, the family of virtual autogenies (isogenies from G to G) modulo equivalence, with addition and composition as operations, forms the set of invertible (nonzero) elements of a division ring R. (See [15] for this, and related results on virtual iso- and endogenies in small groups.) LEMMA 14. If G is small, then R is locally finite; for every a-closed virtual autogeny f_a the equivalence relation E(x, y) on o(a) given by $f_x \sim f_y$ is *-closed and has finitely many classes, which are all open.

Proof. Let \overline{f} be a finite tuple of virtual autogenies of G, and \overline{a} a finite set of parameters over which \overline{f} is defined. As G is locally finite, we may replace every $f \in \overline{f}$ by a finite extension, and assume that it is defined on the whole of G (we may have to increase \overline{a} to do this). Choose $g \in G$ with $g \stackrel{m}{\longrightarrow} \overline{a}$. For any $f, f' \in \langle \overline{f} \rangle$ we have $f(g), f'(g) \in \operatorname{acl}(\overline{a}, g) \cap G$, which is finite. But if f(g) = f'(g), then $g \in \ker(f - f')$; as $g \notin \operatorname{acl}(\overline{a})$, the kernel of f - f' must be infinite, whence open by minimality, and $f \sim f'$.

It follows that R is locally finite, whence a (commutative) field. If f_a is an a-closed virtual autogeny, then every \emptyset -conjugate of f_a has the same order as f_a modulo equivalence; as there are only finitely many elements in R of that order, there must be $a' \stackrel{m}{\longrightarrow} a$ with $f_a \sim f_{a'}$. The rest follows from Lemma 11.

In particular, we can consider the equivalence class $(f_a)_{\sim}$ of a virtual autogeny as an imaginary element a_E .

THEOREM 15. Let G be a small profinite abelian group of finite \mathcal{M} -rank. Then any *-closed subgroup of G is commensurable with one invariant over some finite tuple in $\operatorname{acl}(\emptyset)$.

Proof. Consider first a minimal subgroup A of G; say it is *a*-closed for some parameter a. By the finiteness of rank, there exist finitely many conjugates of A, say $(A_i : i < n)$, such that every conjugate of A intersects $A^0 := \sum_{i < n} A_i$ in a subgroup of finite index. We may choose the A_i almost linearly independent, i.e. $A_i \cap \sum_{j \neq i} A_j$ is finite for all i < n. Fix virtual isogenies f_{ij} from A_i to A_j (whenever they exist), and let \overline{a} be a finite set of parameters over which all of this is invariant.

Now consider another conjugate A' of A. Since $A' \cap A^0$ is infinite by maximality of n, there must be some minimal i = i(A') < n such that $A_i \cap (A' + \sum_{k \neq i} A_k)$ is infinite; because A and therefore A_i are both minimal, $|A_i : A_i \cap (A' + \sum_{k \neq i} A_k)|$ is finite. For every $j \neq i$ with $A_j \cap (A' + \sum_{k \neq j} A_k)$ infinite we define a virtual isogeny r(A', j) from A_i to A_j via: r(A', j)(x) $:= \{y \in A_j : x - y \in A' + \sum_{k \neq i,j} A_k\} = A_j \cap (x + A' + \sum_{k \neq i,j} A_k)$ (it is easy to check from minimality that this is indeed a virtual isogeny). If $A_j \cap (A' + \sum_{k \neq j} A_k)$ is finite, we put r(A', j) = 0. Suppose now A'' is such that i(A'') = i(A'), and r(A', j) and $r(A'', j) \neq 0$ or $r(A'', j) \neq 0$. One can check that then A' and A'' must be commensurable.

By smallness we may choose A' such that $X := o(a'/\overline{a})$ is open in o(a) = o(a') (where the lower case letter denotes the parameter of the upper

case group); note that if $a'' \in X$, then i(A'') = i(A') =: i. Consider the equivalence relation $F_j(a', a'')$ on X given by $f_{ji} \circ r(A', j) \sim f_{ji} \circ r(A'', j)$ for a fixed j. Since $f_{ji} \circ r(A', j)$ defines a virtual autogeny of A_i for all $a' \in X$, by Lemma 14 there are only finitely many F_j -classes. Hence there is $a'' \in X$ with $a'' \stackrel{m}{\longrightarrow}_{\overline{a}} a'$ such that $F_j(a', a'')$ holds for all j, so A' and A'' are commensurable. But $a' \stackrel{m}{\longrightarrow} a''$; by Lemma 11 there are only finitely many commensurability classes among the \emptyset -conjugates of A, and each of them is uniformly commensurable.

By Fact 13 there is a *-closed subgroup A^c commensurable with A and invariant under all automorphisms of G fixing the commensurability class of A. In other words, if $e \in \operatorname{acl}(\emptyset)$ is the canonical parameter for the conjugacy class of A, then A^c is e-closed. This proves the assertion for minimal groups.

If $H \leq G$ is *-closed but not minimal, then by m-stability it contains a minimal subgroup A which is commensurable with some $\operatorname{acl}(\emptyset)$ -definable A^c . But HA^c/A^c is a subgroup of G/A^c of smaller \mathcal{M} -rank; by induction it is commensurable with an e'-closed group H_c/A^c , for some $e' \in \operatorname{acl}(\emptyset)$, whose preimage H^c in G is as required.

LEMMA 16. If G is small and all centralizers of elements have finite index, then G has an open abelian subgroup.

Proof. As $G \cap \operatorname{acl}(\emptyset)$ is finite, we may replace G by an open subgroup and assume $G \cap \operatorname{acl}(\emptyset) = \{1\}$. For any $g \in G$, since $C_G(g)$ has finite index in G, we get $[g, G] \subseteq \operatorname{acl}(g)$. If $g \stackrel{m}{\coprod} g'$, then $[g, g'] \in \operatorname{acl}(g) \cap \operatorname{acl}(g') = \operatorname{acl}(\emptyset) = \{1\}$. Since every element g' of G can be written as $g' = g_1g_2$ with $g \stackrel{m}{\coprod} g_1$ and $g \stackrel{m}{\coprod} g_2$, we obtain $[g, g'] = [g, g_1g_2] = [g, g_2][g, g_1]^{g_2} = 1$.

PROPOSITION 17. A small profinite group of finite \mathcal{M} -rank has an open abelian subgroup.

Proof. Suppose not, and let G be a counterexample of minimal \mathcal{M} -rank possible.

CLAIM. G has an open soluble subgroup.

Proof of Claim. Suppose not. Note that if H were an infinite *-closed subgroup of infinite index in G with open normalizer, then $N_G(H)/H$ and H would have open abelian normal subgroups by inductive hypothesis, and G would have a 2-soluble open subgroup, a contradiction. Let K be the subgroup of all elements g whose centralizer $C_G(g)$ has finite index in G; this subgroup is \emptyset -invariant and hence closed by Fact 4. Moreover, K contains all finite subgroups whose normalizer is open in G. As K is characteristic and cannot have finite index by Lemma 16, it is finite; after replacing G by an open subgroup intersecting K trivially, we may assume that G has no nontrivial closed subgroup of infinite index whose normalizer is open in G. G contains a minimal subgroup, and hence a *-closed abelian subgroup B, say, which we may take of maximal \mathcal{M} -rank possible; adding finitely many parameters, we assume B is \emptyset -closed. Suppose B' is another *-closed abelian subgroup such that $B \cap B'$ has infinite index in B'. Now $C_G(b)$ is b-closed for any $b \in B \cap B'$; since it contains B and B', it has greater \mathcal{M} -rank than B by the \mathcal{M} -rank inequalities. It therefore has no open abelian subgroup, and must be of finite index in G by inductive hypothesis, whence b = 1.

Let N be the subgroup of all $g \in G$ such that B^g is commensurable with B. It is \emptyset -invariant, and hence \emptyset -closed by Fact 4; note that the commensurability is uniform by Lemma 11: just consider B^g and $B^{g'}$ for generic m-independent $g, g' \in N$. By Fact 13 there is a *-closed normal subgroup of N commensurable with B, so N cannot be open in G by the first paragraph of the proof of the claim. Hence N has an open abelian subgroup by inductive hypothesis, and B is open in N by maximality of \mathcal{M} -rank. It follows that there is an open $H \leq G$ such that $N \cap H \leq B$. Then $\mathcal{M}(B \cap H) = \mathcal{M}(B)$ and $B \cap H$ is commensurable with $(B \cap H)^g$ if and only if B is commensurable with B^g , i.e. for $g \in N$. As $N \cap H = B \cap H$, we may thus replace G by H and assume that $B \cap B^g = \{1\}$ for any $g \in G - B$.

If G_0 is a finite subgroup of G such that $B_0 := B \cap G_0$ is proper nontrivial, then $B_0 \cap B_0^g = \{1\}$ for all $g \in G_0 - B_0$. Suppose that there is a G-conjugate B^g such that $B_1 := G_0 \cap B^g$ is nontrivial, but not G_0 -conjugate to B_0 . As B_0 and B_1 are self-normalizing in G_0 , and all G_0 -conjugates of B_0 or B_1 intersect trivially, we get

$$\begin{aligned} |G_0| &\geq |G_0/B_0|(|B_0|-1) + |G_0/B_1|(|B_1|-1) + 1 \\ &\geq 2|G_0| - |G_0/B_0| - |G_0/B_1| + 1, \end{aligned}$$

whence $|G_0/B_0| + |G_0/B_1| > |G_0|$. We may assume $|B_0| \ge |B_1|$, and obtain

 $|G_0/B_1| \ge |G_0/B_0| > |G_0/B_1|(|B_1| - 1) \ge |G_0/B_1|,$

a contradiction. Hence all *B*-conjugates intersecting G_0 nontrivially are already conjugate in G_0 .

Consider $X := G - \bigcup_{g \in G} (B - \{1\})^g$. By the preceding paragraph, if G_0 is a finite subgroup of G with $B_0 := G_0 \cap B$ nontrivial, then $X \cap G_0 = G_0 - \bigcup_{g \in G_0} (B_0 - \{1\})^g$; by Fact 12 this is a nontrivial normal subgroup of G_0 . As G is locally finite, X is a nontrivial normal subgroup of G, which is invariant over the parameters used to define B, and thus *-closed by Fact 4. Since it intersects B trivially, it cannot be open, contradicting the conclusion of the first paragraph of the proof of the claim. This proves the assertion.

By Fact 10 we may assume that G is nilpotent.

CLAIM. We may assume that $G' \leq Z(G)$.

Proof of Claim. By Fact 4 the subgroups $Z_n(G)$ in the upper central series are \emptyset -closed for all $n \geq 1$, and there is some minimal n such that $Z_n(G)$ is infinite. Replacing G by an open subgroup intersecting $Z_{n-1}(G)$ trivially, we may assume n = 1. But now $\mathcal{M}(G/Z(G)) < \mathcal{M}(G)$; by inductive hypothesis G/Z(G) has an open abelian subgroup H/Z(G) whose preimage H in G satisfies $H' \leq Z(H)$.

For $g \in G$ put $H_g := \{(hZ(G), [h, g]) : hZ(G) \in G/Z(G)\}$, a subgroup of $G/Z(G) \times Z(G)$. Since $G/Z(G) \times Z(G)$ is abelian, H_g is commensurable with an *e*-closed group for some $e \in \operatorname{acl}(\emptyset)$ by Theorem 15. If π_1 denotes the projection onto the first coordinate, then [h, g] = [h, g'] for any $hZ(G) \in$ $\pi_1(H_g \cap H_{g'})$, whence $[h, g'g^{-1}] = 1$. However, we may choose g and g' to be two independent generic elements such that H_g and $H_{g'}$ are commensurable. Then $\pi_1(H_g \cap H_{g'})$ is a subgroup of finite index in G/Z(G), and $g'g^{-1}$ is a generic element of G with $|G : C_G(g'g^{-1})|$ finite.

The set of all $g \in G$ such that $C_G(g)$ has finite index in G is a subgroup of G, which is \emptyset -invariant and closed; since it contains a generic element, it has finite index in G. Replacing G by an open subgroup, we finish by Lemma 16. \blacksquare

DEFINITION 8. A Morley sequence in an orbit o over A is a sequence $(a_i : i < \omega)$ of elements in the orbit such that $a_i \stackrel{m}{\longrightarrow}_A (a_j : j < i)$ and $a_k \in o(a_i/A, a_j : j < i)$ for all $i \le k < \omega$.

Note that if o is over A, then in an m-stable theory there must be a finite $k < \omega$ such that $\mathcal{M}(A/a_i : i < k)$ is minimal possible. Then $A \overset{m}{\longrightarrow}_{(a_i:i < k)} a_k$; as $a_k \overset{m}{\longrightarrow}_A (a_i : i < k)$, the orbit $o(a_k/a_i : i < k)$ is parallel to o (meaning that they have a common non-m-forking extension).

THEOREM 18. The \mathcal{M} -gap conjecture holds for small profinite groups: There is no orbit o in a small profinite group with $\omega \leq \mathcal{M}(o) < \infty$. In particular, a small profinite m-stable group has finite \mathcal{M} -rank.

Proof. Let G be a small profinite group containing a 1-orbit o of infinite \mathcal{M} -rank $\alpha < \infty$. Taking m-forking extensions if necessary, we may assume $\alpha = \omega$; adding parameters, we suppose that o is over \emptyset . The subgroup of elements of finite \mathcal{M} -rank is \emptyset -invariant and hence closed by Fact 4; it follows that there is a bound $n < \omega$ on the \mathcal{M} -rank of a 1-orbit over \emptyset of finite \mathcal{M} -rank. Let o' be an m-forking extension of o of \mathcal{M} -rank > n, and $(a_i : i < \omega)$ a Morley sequence in o'. Then there is $k < \omega$ such that there is a minimal $k < \omega$ such that over $(a_i : i \leq k)$ there is a 1-orbit of \mathcal{M} -rank > n. We add $(a_i : i < k)$ to the language. Then n is the maximal \mathcal{M} -rank of a 1-orbit of finite \mathcal{M} -rank of a 1-orbit of finite \mathcal{M} -rank over \emptyset , and there is a minimal k < w such that over $(a_i : i \leq k)$ there is a 1-orbit of \mathcal{M} -rank of a 1-orbit of finite \mathcal{M} -rank over \emptyset , and there is m > n which is

the maximal \mathcal{M} -rank of a 1-orbit of finite \mathcal{M} -rank over a single realization of $o(a_k)$ (which again we call o).

We repeat: Let o' be an m-forking extension of o of \mathcal{M} -rank > m, and $(a_i : i < \omega)$ a Morley sequence in o'. Let $\overline{a} = (a_i : i < k)$ be a maximal initial segment of $(a_i : i < \omega)$ which is m-independent over \emptyset . The groups $H(a_i)$ of elements of finite rank over a_i are closed for all $i \ge k$, and conjugate under $\operatorname{Aut}^*(G/\overline{a})$. Let H be the closed group of elements of finite rank over \overline{a}, a_k . Then $H(a_i) \le H$ for $i \ge k$, so there are only finitely many commensurability classes for $H(a_i)$ with $i \ge k$ by Theorem 15. Hence there are $i > j \ge k$ such that $H(a_i)$ and $H(a_j)$ are commensurable. But $\mathcal{M}(a_i/a_j) \ge \mathcal{M}(o') > m$, so $a_i \stackrel{m}{\longrightarrow} a_j$ by the choice of m; by Lemma 11 and Fact 13 there is an imaginary $e \in \operatorname{acl}(a_i) \cap \operatorname{acl}(a_j) = \operatorname{acl}(\emptyset)$ and an e-closed subgroup N commensurable with $H(a_i)$. But then for a generic element $g \in N$ we get $\mathcal{M}(g) = \mathcal{M}(g/e) = \mathcal{M}(N) = \mathcal{M}(H(a_i)) = m > n$, a contradiction.

This concludes the proof of Theorem 1.

COROLLARY 19. A small profinite m-stable group has finite exponent.

Proof. By Theorem 1, we may replace G by an open subgroup and assume it is abelian. Let o be an open orbit in G; by local finiteness its elements have finite order n, say. Then the group generated by o is open in G and has exponent n.

References

- W. Baur, G. Cherlin and A. Macintyre, *Totally categorical groups and rings*, J. Algebra 57 (1979), 407–440.
- [2] G. M. Bergman and H. W. Lenstra, Jr., Subgroups close to normal subgroups, ibid. 127 (1989), 80–97.
- [3] L.-J. Corredor, Bad groups of finite Morley rank, J. Symbolic Logic 54 (1989), 768–773.
- [4] D. Evans and F. O. Wagner, Supersimple ω-categorical groups and theories, ibid. 65 (2000), 767–776.
- [5] B. Huppert, Endliche Gruppen, Springer, Berlin, 1967.
- [6] A. Nesin, Non-soluble groups of Morley rank 3, J. Algebra 124 (1989), 199–218.
- [7] L. Newelski, *M*-rank and meager groups, Fund. Math. 150 (1996), 149–171.
- [8] —, *M*-gap conjecture and m-normal theories, Israel J. Math. 106 (1998), 285–311.
- [9] —, Geometry of *-finite types, J. Symbolic Logic 64 (1999), 1375–1395.
- [10] —, m-normal theories, Fund. Math. 170 (2001), 141–163.
- [11] —, Small profinite groups, J. Symbolic Logic 66 (2001), 859-872.
- [12] —, Small profinite structures, Trans. Amer. Math. Soc. 354 (2002), 925–943.
- [13] B. P. Poizat, Groupes Stables, Nur Al-Mantiq Wal-Ma'rifah, Villeurbanne, 1987.
- [14] G. Schlichting, Operationen mit periodischen Stabilisatoren, Arch. Math. (Basel) 34 (1980), 97–99.

- [15] F. O. Wagner, Quasi-endomorphisms in small stable groups, J. Symbolic Logic 58 (1993), 1044–1051.
- [16] —, Simple Theories, Math. Appl. 503, Kluwer, Dordrecht, 2000.

Institut Girard Desargues Université Claude Bernard (Lyon-1) Mathématiques 21 avenue Claude Bernard 69622 Villeurbanne Cedex, France E-mail: wagner@desargues.univ-lyon1.fr

> Received 22 August 2002; in revised form 10 January 2003