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Abstract. We study the homomorphism induced on cohomology by the maximal
equicontinuous factor map of a tiling space. We will see that in degree one this map is
injective and has torsion free cokernel. We show by example, however, that, in degree one,
the cohomology of the maximal equicontinuous factor may not be a direct summand of
the tiling cohomology.

1. Introduction. An effective procedure for studying the properties of
a tiling, or point-pattern, T of Rn is to consider the space Ω (called the hull
of T ) of all tilings that, up to translation, are locally indistinguishable from
T . Dynamical properties of the action of Rn on Ω, by translation, corre-
spond to combinatorial properties of T . Regularity assumptions on T guar-
antee that the dynamical system (Ω,Rn) is compact and minimal. There
is then a maximal equicontinuous factor (Ωmax,Rn), with semiconjugacy
π : Ω → Ωmax; Ωmax is a compact abelian group on which Rn acts by trans-
lation and every equicontinuous factor of (Ω,Rn) is a factor of (Ωmax,Rn).

The relationship between the hull of a tiling and its maximal equicontin-
uous factor is of fundamental importance in certain aspects of tiling theory.
For example, if T is a (sufficiently well-behaved) distribution of “atoms”
in Rn, the diffraction spectrum of T is pure point (that is, T is a perfect
quasicrystal) if and only if the dynamical spectrum of (Ω,Rn) is pure dis-
crete ([LMS], [D]), if and only if the factor map π is a.e. one-to-one (with
respect to Haar measure, [BaKe]).

In this article we study the properties of the homomorphism π∗ induced
by the factor map π in cohomology. This is directly motivated by a re-
cent formulation of the Pisot Substitution Conjecture ([BG]) in terms of
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the homological properties of π∗. More generally, cohomology has long been
a primary tool for understanding the structure of Ω ([AP], [S1], [FHK])
and, at least for tilings with a non-trivial discrete component of dynamical
spectrum, the pull-back of the cohomology of the maximal equicontinuous
factor represents a sort of skeleton supporting the rest of the cohomology
of Ω.

The maximal equicontinuous factor of a tiling dynamical system is al-
ways a torus or solenoid so its cohomology (as a ring) is determined by its
degree one cohomology. Consequently, our focus will be on π∗ in degree one
(this is also the important degree for deformation theory ([CS], [Ke2]) and
the Pisot Substitution Conjecture), though we will have something to say in
higher degrees for projection patterns, in which cohomology is tied to com-
plexity. The main result is that π∗ is injective in degree one with torsion-free
cokernel. We will show by example, however, that the first cohomology of
the maximal equicontinuous factor is not necessarily a direct summand of
the first cohomology of Ω.

Let us say a few words about our methods. Given a continuous map
f : Ω → T of the hull to the unit circle, and a vector v ∈ Rn, there is a
Schwartzman winding number τ(f)(v) of f with respect to the R-action T ′ 7→
T ′ − tv on Ω in direction v ([Sch]). This defines a functional, v 7→ τ(f)(v),
which depends only on the homotopy class of f . As the group of homotopy
classes of maps of Ω to T is naturally isomorphic with the first integer
cohomology H1(Ω) of Ω, τ provides a homomorphism from H1(Ω) to Rn∗.
We will see that the degree one cohomology of the maximal equicontinuous
factor can be identified with the group E of continuous eigenvalues of the
Rn-action on Ω. Each eigenvalue, in turn, determines a functional on Rn.
With these identifications, τ ◦ π∗ is the identity, establishing that π∗ is
injective in degree one.

The homomorphism τ described above is the degree one part of the
Ruelle–Sullivan map ([KP]). In the top degree n, τ has an interpretation
as the homomorphism that assigns to each finite patch of a tiling T its
frequency of occurrence in T . The range of τ is then the frequency module
freq(Ω) of Ω and its kernel is the group Inf(Ω) of infinitesimals with respect
to a natural order on the top degree cohomology. In the special case of one-
dimensional tilings, we have two related short exact sequences with H1(Ω)
in the middle:

0→ E π∗−→ H1(Ω)→ cokerπ∗ → 0

and

0→ Inf(Ω)→ H1(Ω)
τ→ freq(Ω)→ 0.

This situation is considered, in the context of symbolic substitutions,
in [AR]. We consider tilings that arise from substitutions, as well as tilings
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that arise from projection methods. For almost canonical projection tilings,
both of these sequences split. We will give conditions under which this is
true for substitution tilings, as well as examples in which one, or both, do
not split.

In the next section, we briefly review the basics of substitution tilings,
projection methods, tiling cohomology, and the construction of the max-
imal equicontinuous factor. In Section 3 we consider the map induced in
cohomology by the maximal equicontinuous factor map, and in Sections 4
and 5 we restrict consideration to almost canonical projection patterns and
substitution tilings, respectively.

2. Preliminaries

2.1. Tilings and their properties. We will use the formulations and
terminology of [BaKe] and just recall here what is necessary to set up the
notation.

An n-dimensional tiling is an infinite collection of tiles which cover Rn
and have pairwise disjoint interiors. Here a tile is a compact subset of Rn
which is the closure of its interior. A tile may carry a mark in case a dis-
tinction between geometrically congruent tiles is necessary. A (finite) patch
is a finite collection of tiles with pairwise disjoint interiors. Its diameter is
the diameter of the set covered by its tiles.

The translation group Rn acts on tiles, patches and tilings as on all
geometric objects of Rn and we denote this action by t · O or O − t with
t ∈ Rn and O the geometric object. A collection Ω of tilings of Rn has
(translationally) finite local complexity (FLC) if for each R there are only
finitely many translational equivalence classes of patches P ⊂ T ∈ Ω with
diameter smaller than R. A single tiling T has FLC if {T} has FLC. Finite
local complexity of tilings will be a standing assumption in this article and
we will not repeat it.

We say that a collection Ω of tilings of Rn constitutes an n-dimensional
tiling space if Ω has FLC, is closed under translation, and is compact in the
tiling metric d. In this metric two tilings are close if a small translate of
one agrees with the other in a large neighborhood of the origin. The main
example of a tiling space is the hull of an FLC tiling T :

ΩT = {T ′ : T ′is a tiling of Rn and

every patch of T ′ is a translate of a patch of T}.

If the translation action on Ω is free (i.e., T − v = T ⇒ v = 0), then Ω
is said to be non-periodic, and T is called non-periodic if its hull is non-
periodic.
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Of particular interest for us are repetitive tilings which have the property
that for each finite patch P of T the set of occurrences of translates of P
in T is relatively dense. If T is repetitive, then the action of Rn on ΩT by
translation is minimal.

Another property which we will require occasionally is the existence of
frequencies of patches in a tiling. The frequency of a patch P (up to transla-
tion) in T is the density of the set of occurrences of translates of P in T , and
being able to define this properly, independent of the limiting procedure, is
equivalent to the unique ergodicity of the dynamical system (Ω,Rn). We
denote, then, the unique ergodic measure by µ.

Let p be a puncture map; that is, p assigns to each tile τ a point
p(τ) ∈ τ so that p(τ + v) = p(τ) + v. If a tiling T has FLC then the
set of its punctures p(T ) = {p(τ) : τ ∈ T} is a Delone set, i.e., a sub-
set of Rn which is uniformly discrete and relatively dense. The puncture
map p defines a discrete hull Ξ = {T ′ ∈ ΩT : 0 ∈ p(T ′)}; Ξ is also ref-
ered to as the canonical transversal as it is transversal in ΩT to the Rn-
action reducing it to the so-called tiling groupoid G = {(ω, t) ∈ Ξ × Rn :
ω − t ∈ Ξ} with multiplication (ω, t)(ω′, t′) = (ω, t + t′) provided ω′ =
ω − t.

The definitions we have made for tilings all have analogs for Delone sets
and whether we deal with tilings or Delone sets is mainly a matter of con-
venience. One could, for instance, represent a tiling T by the Delone set of
its punctures, or a Delone set by its Voronoi tiling, and the topological dy-
namical systems (Ω,Rn) are unchanged. Whereas substitutions are usually
and more intuitively presented by tilings, the projection method produces
Delone sets which are often referred to as projection patterns (or, under more
general circumstances, model sets).

2.2. Substitution tilings. Suppose that A = {ρ1, . . . , ρk} is a set of
translationally inequivalent tiles (called prototiles) in Rn and Λ is an ex-
panding linear isomorphism of Rn, that is, all eigenvalues of Λ have mod-
ulus strictly greater than 1. A substitution on A with expansion Λ is a
function Φ : A → {P : P is a patch in Rn} with the properties that,
for each i ∈ {1, . . . , k}, every tile in Φ(ρi) is a translate of an element
of A, and Φ(ρi) covers the same set as Λ(ρi). Such a substitution nat-
urally extends to patches whose elements are translates of prototiles by
Φ({ρi(j) + vj : j ∈ J}) :=

⋃
j∈J(Φ(ρi(j)) + Λvj). A patch P is allowed

for Φ if there is an m ≥ 1, an i ∈ {1, . . . , k}, and a v ∈ Rn with P ⊂
Φm(ρi) − v. The substitution tiling space associated with Φ is the collec-
tion ΩΦ := {T : T is a tiling of Rn and every finite patch in T is allowed
for Φ}. Clearly, translation preserves allowed patches, so Rn acts on ΩΦ by
translation.
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The substitution Φ is primitive if for each pair ρi, ρj of prototiles there
is a k ∈ N so that a translate of ρi occurs in Φk(ρj). If Φ is primitive then
ΩΦ is repetitive.

If Φ is primitive and ΩΦ is FLC and non-periodic then ΩΦ is compact
in the tiling metric, Φ : ΩΦ → ΩΦ is a homeomorphism, and the transla-
tion action on ΩΦ is minimal and uniquely ergodic [AP, So]. In particular,
ΩΦ = ΩT for any T ∈ ΩΦ. All substitutions will be assumed to be primitive,
aperiodic and FLC.

2.3. Almost canonical projection patterns. We describe here al-
most canonical projection patterns without going into details which the
reader may find in [FHK].

Consider a regular lattice Γ ⊂ Rn × Rn⊥ such that Rn is in irrational
position with respect to Γ , and a window K which is a compact polyhedron.
Let π‖ : Rn × Rn⊥ → Rn be the projection onto the first factor and π⊥ :
Rn×Rn⊥ → Rn⊥ be the projection onto the second factor. Define the set S
of singular points in Rn⊥ by

S :=
⋃
γ∈Γ

(∂K − π⊥(γ))

where ∂K denotes the boundary of K. We assume that

• the restrictions of π‖ and π⊥ to Γ are one-to-one,
• the restrictions of π‖ and π⊥ to Γ have dense image,
• there exists a finite set of affine hyperplanes {Wi}i∈I of codimension 1

in Rn
⊥

such that S may be alternatively described as

S =
⋃
i∈I

⋃
γ∈Γ

(Wi − π⊥(γ)).

We call the hyperplanes Wi−π⊥(γ), i ∈ I, γ ∈ Γ , cut planes. By the second

assumption S is a dense subset of Rn⊥ but of zero Lebesgue measure. The
last assumption means that, given a face f of K, the union of all π⊥(Γ )-
translates of f contains the affine hyperplane spanned by f ; in particular the
faces of K have rational orientation with respect to π⊥(Γ ) and the stabilizer
{γ ∈ Γ : Wi − π⊥(γ) = Wi} of an affine hyperplane Wi must have rank at
least n⊥ − 1.

We also assume (for simplicity) that 0 is not a singular point. Then the
set

PK := {π‖(γ) : γ ∈ Γ, π⊥(γ) ∈ K}

is a repetitive Delone set, called the projection pattern with window K.

With the above rather restrictive assumptions made on the window K
the projection pattern is called almost canonical. There are standard ways
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to turn PK into a tiling which is mutually locally derivable from PK . For
instance the dual of the Voronoi tiling defined by PK will do it.

2.4. Tiling cohomology and the order structure on the top de-
gree. We are interested in the cohomology of a tiling (or pattern) T . This
cohomology can be defined in various equivalent ways, for instance as the
Čech cohomology H(Ω) of the hull Ω of T or as (continuous cocycle) coho-
mology H(G) of the tiling groupoid G (after [Re]). The equivalence between
the two formulations of tiling cohomology can be seen by either realizing that
Ω is a classifying space for the groupoid, or by a further reduction: From the
work of Sadun–Williams [SW] we know that we can deform the tiling into a
tiling by decorated cubes without changing the topological structure of the
hull (the hull of the tiling by cubes is homeomorphic to the original one). It
then follows that the tiling groupoid of the tiling by cubes is a transformation
groupoid Ξ ′×Zn which is continuously similar to G [Re, FHK]. Here Ξ ′ is the
canonical transversal of the tiling by cubes. Like Ξ it is a compact totally dis-
connected space. It then follows quickly thatH(G) ∼= H(Ξ ′×Zn) and, by def-
inition of the groupoid cohomology, H(Ξ ′×Zn) is the dynamical cohomology
H(Zn, C(Ξ ′,Z)) which is the cohomology of the group Zn with coefficients
in the integer-valued continuous (and hence locally constant) functions.

Now what the construction of [SW] actually does on the level of spaces
is to realize Ω as a fiber bundle over an n-torus whose typical fiber is Ξ ′

such that the above Zn action corresponds to the holonomy action induced
by the fundamental group of the torus. In other words, Ω is the mapping
torus of that Zn action. It follows (as is seen for instance from the Serre
spectral sequence) that H(Zn, C(Ξ ′,Z)) is isomorphic to H(Ω).

In the highest non-vanishing degree, namely in degree n, Hn(G) is the
group of co-invariants,

Hn(G) ∼= C(Ξ,Z)/B,

where B is the subgroup generated by differences of indicator functions of
the form 1U −1U−t, U ⊂ Ξ a clopen subset and t ∈ Rn such that U − t ⊂ Ξ.

The group of co-invariants carries a natural order: an element is positive
whenever it is represented by a positive function in C(Ξ,Z). Moreover, the
order structure is preserved under groupoid isomorphism, and hence the
ordered group of co-invariants is a topological invariant for the tiling system.

Let us assume that the tiling system is strictly ergodic. Hence the Rn
action on Ω as well as the groupoid action on Ξ are minimal and uniquely
ergodic. Let ν be the unique ergodic measure on Ξ. Then 1U 7→ ν(U) factors
through C(Ξ,Z)/B and hence, combined with the isomorphism Hn(Ω) ∼=
C(Ξ,Z)/B, defines a group homomorphism

τ : Hn(Ω)→ R.
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Now the order can be described by saying that x ∈ Hn(Ω) is positive when-
ever τ(x) ≥ 0. We say that an element x is infinitesimal if it is neither
strictly positive nor strictly negative, which is hence the case if and only if
τ(x) = 0. We denote the set of infinitesimal elements by Inf(Ω).

It is well known that a basis of the topology of Ξ is given by the accep-
tance domains on patches, that is, by subsets containing all tilings which
have a given patch at the origin. It follows from this (and the unique ergod-
icity) that ν(UP ) is the frequency of occurrence of the patch P in T where
UP is the acceptance domain of P . Let us denote by freq(Ω) the subgroup
of R generated by the frequencies of finite patches in T . We thus have an
exact sequence

(1) 0→ Inf(Ω)→ Hn(Ω)
τ→ freq(Ω)→ 0,

which splits if freq(Ω) is finitely generated.

2.5. The maximal equicontinuous factor and eigenvalues. Let
(X,G) be a minimal dynamical system with compact Hausdorff space X and
abelian group G action. There is a maximal equicontinuous factor (Xmax, G)
of that system—unique up to conjugacy—and this factor can be obtained
from the continuous eigenvalues of the action. In fact, a continuous eigen-
function of a dynamical system (X,G) is a non-zero function f ∈ C(X) for
which there exists a (continuous) character χ ∈ Ĝ such that

f(t · x) = χ(t)f(x).

We call χ the eigenvalue of f . To stress that this eigenvalue is an eigen-
value to a continuous function (as opposed to an L2-function) one also calls
it a continuous eigenvalue. But we will here consider only eigenvalues to
continuous eigenfunctions and so drop that adjective.

The set E of all eigenvalues forms a subgroup of the Pontryagin dual Ĝ
of G. We consider E with discrete topology. Then the Pontryagin dual Ê of
E is a compact abelian group and the maximal equicontinuous factor can be
identified with it, Xmax

∼= Ê . The factor map π : X → Ê is then given by
x 7→ jx, where jx : E → T1 is defined by jx(χ) = fχ(x), and the G-action

on ϕ ∈ Ê is given by (t · ϕ)(χ) = χ(t)ϕ(χ). Here fχ is the eigenfunction to
eigenvalue χ normalized in such a way that fχ(x0) = 1 where x0 ∈ X is
some chosen point used to normalize all eigenfunctions.

3. The factor map and cohomology. We are interested in the map
in cohomology induced by the factor map π:

π∗ : Hk(Ê)→ Hk(X).

(If nothing else is said this means integer-valued Čech cohomology.) In par-
ticular, we consider the kernel and cokernel of π∗. The situation is extremely
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simple in degree 0: X and Xmax are connected and so their cohomology in
degree 0 is Z, and π∗ is an isomorphism in that degree. The situation is
very complicated in degrees larger than one, and we will only be able to say
something for almost canonical projection patterns. This will be done in the
next section. In this section we will concentrate on degree 1, which is im-
portant for deformation theory [SW, CS, Ke2, Bo] and for the homological
version of the Pisot conjecture [BBJS, BG].

3.1. The cohomology of the maximal equicontinuous factor.
Note that the group E of eigenvalues is at most countable. This follows
from the fact that L2(X,µ) is separable (for any ergodic invariant probabil-
ity measure µ), and eigenfunctions to distinct eigenvalues are orthogonal in
that Hilbert space.

We suppose that E is torsion free, which is certainly the case if Ĝ is tor-
sion free, in particular thus if G = Rn. As an abelian group E is a Z-module
and we may consider the exterior algebra ΛE , which is a graded ring.

As is well-known, H1(S1) is a free abelian group of rank one. We pick a
generator γ ∈ H1(S1) (which amounts to choosing an orientation). Given an
element of χ ∈ E , which we may view as a character on Ê , χ : Ê → S1, χ∗(γ)
defines an element inH1(Ê) and thus a group homomorphism  : E → H1(Ê),
(χ) = χ∗(γ).

Theorem 1. Λ : ΛE → H(Ê) is a graded ring isomorphism.

Proof. As E is countable and torsion free we can write it as E =
lim−→(En, in+1

n ) where En is free abelian of finite rank and in+1
n : En → En+1

is an injective group homomorphism (1). We denote by in : En → E the
corresponding group inclusion. It follows that Ê = lim←−(Ên, în+1

n ). Now Ên
is a torus whose dimension equals the rank of En and so its cohomology is
generated as a ring by its degree 1 elements, which, in turn, are the ele-
ments of the form (χ), χ ∈ En. This shows that H(Ên) ∼= ΛEn with ring
isomorphism given by Λ : ΛEn → H(Ên). Hence H(Ê) = lim−→H(En, in+1

n
∗
) ∼=

lim−→(ΛEn, Λin+1
n ) = ΛE .

3.2. Injectivity of π∗ in degree one. Let [X,S1] denote the set of
homotopy classes of maps from X to the circle S1 := {z ∈ C : |z| = 1}.
This is an abelian group (known as the Bruschlinsky group of X) under the
operation [f ]+[g] := [fg], and the map [f ] 7→ f∗(γ) is a natural isomorphism
between [X,S1] and H1(X) (see, for example, [PT]). If we take X = Ê ,
the maximal equicontinuous factor, then H1(Ê) = E and the isomorphism
E ∼= [Ê , S1] is given by χ 7→ [χ], where we view χ as a character on Ê via

(1) E = {gn, n ∈ N} and we may take En to be the group generated by {g1, . . . , gn}.
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Pontryagin duality. The naturality of the isomorphism implies that

H1(Ê)
π∗ // H1(X)

[Ê , S1]
π∗ // [X,S1]

commutes.

We now suppose that G = Rn and X = Ω is a tiling space. Then R̂n is
isomorphic to Rn∗, the dual of Rn as a vector space, the map Rn∗ 3 β 7→
e2πıβ ∈ R̂n providing a group isomorphism. We define E = {β : e2πıβ ∈ E},
calling it also the group of eigenvalues, let ı : E ↪→ Rn∗ be the inclusion,
and θ : E → [Ω,S1] be the composition θ(β) = π∗([e2πıβ]). If fβ is an eigen-
function to eigenvalue β, normalized so that its modulus is everywhere 1,
then θ(β) = [fβ]. Indeed, by minimality any two eigenfunctions differ by a
multiplicative constant and hence are homotopic.

The Lie algebra of G = Rn is Rn. Let Hk(Rn, C∞(Ω,R)) be the Lie
algebra cohomology of Rn = Lie(G) with values in C∞(Ω,R) which are
continuous functions that are smooth with respect to the derivative d de-
fined by the Lie algebra action. Since any continuous function on Ω can be
approximated in the sup norm by a smooth function, we can define a group
homomorphism

ψ : [Ω,S1]→ H1(Rn, C∞(Ω,R)), ψ([f ]) =
1

2πı
f−1df,

using a smooth representative. Given an ergodic invariant probability mea-
sure µ on Ω we can define the homomorphism

Cµ : H1(Rn, C∞(Ω,R))→ Rn∗, Cµ(α) =
�

Ω

α(ω) dµ(ω).

The composition τ = Cµ ◦ ψ is the degree 1 part of the Ruelle–Sullivan
map of [KP]. We mention that τ([f ])(v) is also known as the Schwartzman
winding number of f with respect to the R-action T 7→ T − tv on Ω.

Lemma 2. τ ◦ θ : E → Rn∗ is given by τ ◦ θ = ı.

Proof. Since f−1β dfβ = 2πıβ, a constant function, we have Cµ(ψ(θ(β)))
= β.

Corollary 3. π∗ is injective in degree 1.

Proof. τ ◦ θ is injective and factors through the degree 1 part of π∗.

Remark. Lemma 2 is actually the degree 1 part of a more general re-
sult which can be obtained with the help of the full Ruelle–Sullivan map
τ : H(Ω) → ΛRn∗. The composition τ ◦ π∗ ◦ Λ : ΛE → ΛRn∗ is Λı. In
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particular im τ ◦ π∗ = Λı(E). The proof of these statements is a slight gen-
eralization of the one given in [KP, Thm. 13]. In degree n we may identify
ΛnRn∗ ∼= R and obtain the same map as above (justifying this way the
double use of τ in the notation).

3.3. The cokernel of π∗ in degree one. We start with the remark
that H1(Ω) is torsion free, as follows from the universal coefficient theorem.
In higher degrees, Hk(Ω) may contain torsion.

Lemma 4 (Krasinkiewicz [Kr]). Suppose that f : Ω → S1 is continuous
and suppose that there are 0 6= k ∈ Z and a continuous g : Ω → S1 such
that [f ] = k[g] ∈ [Ω,S1]. Then there is a continuous f̃ : Ω → S1 so that

f = f̃k.

Proof. Let pk : S1 → S1 be the k-fold covering map pk(z) := zk. By
assumption we have [f ] = [pk ◦ g]. Let H : Ω × I → S1 be a homotopy from

h := pk ◦ g to f . Then h̃ := g is a lift of h. Being a covering map, pk has the
homotopy lifting property, so there is a homotopy H̃ : Ω × I → S1 from h̃
to some function f̃ such that H̃(·, 0) = h̃ and pk ◦ H̃ = H. It follows that
pk ◦ f̃ = f .

Theorem 5. The cokernel of the homomorphism π∗ : H1(Ê) → H1(Ω)
is torsion free.

Proof. The statement of the theorem is equivalent to saying that the
cokernel of θ : E → H1(Ω) is torsion free. Let [f ] ∈ [Ω,S1] ∼= H1(Ω),
k ∈ N, and β ∈ E be such that k[f ] = θ(β) = [fβ]. By Lemma 4 there is an

f̃β : Ω → S1 so that fβ = pk ◦ f̃β. Then k([f̃β] − [f ]) = 0. Since H1(Ω) is

torsion free, [f̃β] = [f ]. We claim that f̃β is an eigenfunction with eigenvalue
β/k.

By continuity of f̃β it is enough to verify the equation f̃β(T0 − x) =

exp(2πıβ(x)/k)f̃β(T0) for some T0. We have fβ(T0−x)=exp(2πıβ(x))fβ(T0)

for all x ∈ Rn, thus f̃kβ (T0−x) = exp(2πıβ(x))f̃kβ (T0). Taking the kth root we

obtain f̃β(T0 − x) = u(x) exp(2πıβ(x)/k)f̃β(T0) where u(x) is a kth root of

unity. Continuity of f̃β requires that u(x) = 1. Hence f̃β is an eigenfunction

with eigenvalue β/k. Hence θ(β/k) = [f̃β] = [f ] and coker θ is torsion free.

Corollary 6. If cokerπ∗ is finitely generated then H1(Ω) is isomor-
phic to the direct sum of E with cokerπ∗.

Proof. Under the assumption we have cokerπ∗ ∼= Zl for some finite l, as
it is torsion free.

If H1(Ω) is not finitely generated then it is not always the direct sum of
E with cokerπ∗, as the example in 5.3.1 shows.
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4. Almost canonical projection patterns. To obtain a Cantor fiber
bundle for almost canonical projection tilings we do not actually use the
approach of Sadun & Williams via a deformation of the tiling, but rather
consider a variant of the “rope dynamical system” of [Ke1] (see [FHK]).
This way we obtain a different Cantor fiber bundle, whose fiber we shall
denote by C. The conclusion that tiling cohomology can be formulated as
group cohomology of a Zn-action on C remains valid and we have the benefit
that the structure of C allows for a calculation of the cohomology groups.
C can be obtained from the set of singular points S by disconnecting Rn⊥

along the cut planes Wi − π⊥(γ) and moding out the action of a subgroup

of π⊥(Γ ) of rank n⊥. This subgroup Zn⊥ should be a direct summand,

i.e. π⊥(Γ ) = Zn⊥ ⊕ Zn, and it should span Rn⊥ , but it can otherwise be

chosen arbitrarily. So C = Fc/Zn
⊥

, where Fc is the so-called cut-up space

obtained by disconnecting Rn⊥ , and the other summand Zn yields the action
on C. We refer the reader to [FHK, GHK2] for the precise definition of the
disconnecting procedure, mentioning here only that it can be obtained via
an inverse limit: For any finite collection of cut planes, disconnecting Rn⊥

along these cut planes means taking out the cut planes so that the remaining
part of Rn⊥ falls into several connected components and then completing
separately these connected components to obtain a closed space. The inverse
limit is just geared to make that work for infinitely many cut planes.

To do the actual computation it is more convenient to work with homol-
ogy. Using Poincaré duality for group (co-)homology and the fact that Zn⊥

acts freely on Fc one obtains

Hk(Zn, C(C,Z)) ∼= Hn−k(Zn, C(C,Z)) ∼= Hn−k(Γ,Cn⊥),

where Cn⊥ is the Z-module generated by indicator functions on polyhedra
whose faces belong to cut planes and γ ∈ Γ acts on such a function by pull-
back of the translation with π⊥(γ). Intersections of cut planes are affine
subspaces of smaller dimension and we call such an affine space a singular
space. On each singular subspace L, say of dimension k, we have a similar
structure to that on Rn⊥ : The intersections of the cut planes with L are affine
subspaces of codimension 1 in L. We let Ck be the module generated by
indicator functions on k-dimensional polyhedra in a k-dimensional singular
space whose faces belong to cut planes.

The polyhedral structure and the fact that Rn⊥ is contractible give rise
to an acyclic complex Cn⊥ → Cn⊥−1 → · · · → C0 of Γ -modules whose
differential is reminiscent of the boundary map in polyhedral complexes.
As a result the homology H∗(Γ,Cn⊥) may be computed by breaking the
complex into n⊥ short exact sequences

0→ C0
k → Ck → C0

k−1 → 0, 0 ≤ k < n⊥,
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with C0
k equal to the image of the boundary map δ : Ck+1 → Ck, which is,

of course, the same as the kernel of δ : Ck → Ck−1 (and thus Cn⊥ = C0
n⊥−1),

and C0
−1 = Z. Each such short exact sequence gives rise to a long exact

sequence in homology and in particular to a connecting homomorphism
γk : Hp(Γ,C

0
k−1)→ Hp−1(Γ,C

0
k). We now recall:

Theorem 7 ([BaKe]). The maximal equicontinuous factor Ê of a pro-

jection pattern is naturally isomorphic to the torus Rn × Rn⊥/Γ .

Hence, upon identifying Rn × Rn⊥ with its dual we have E = Γ and
so we may identify Hp(Ê) = ΛpΓ = Hp(Γ,Z) ∼= Hn+n⊥−p(Γ,Z), the last
identification by Poincaré duality.

Theorem 8 ([GHK2]). Under the identifications Hp(Ω)∼=Hn−p(Γ,Cn⊥)

and Hp(Ê) ∼= Hn+n⊥−p(Γ,Z) the map π∗ : Hp(Ê) → Hp(Ω) gets identified
with the composition of connecting maps γn⊥−1 ◦ · · · ◦ γ0 : Hn+n⊥−p(Γ,Z)→
Hn−p(Γ,Cn⊥).

4.1. Injectivity of π∗. We now have the tools at hand to find out in
which degrees π∗ is injective. In fact, the long exact sequence in homology
corresponding to the above exact sequence is

→ Hp(Γ,Ck)
δ′∗−→ Hp(Γ,C

0
k−1)

γk−→ Hp−1(Γ,C
0
k)→

where δ′ is the boundary map with target space restricted to its image.
Thus γk is injective whenever δ′∗ = 0. Now the module Ck decomposes as
Ck =

⊕
θ∈Ik C

θ
k ⊗ Z[Γ/Γ θ] where Ik indexes the set of Γ -orbits of singular

spaces of dimension k and Γ θ ⊂ Γ is the subgroup stabilizing the singular
space of orbit type θ. It follows that Hp(Γ,Ck) =

⊕
θ∈Ik Hp(Γ

θ, Cθk). Since

the singular spaces which make up Cθk are k-dimensional, Hp(Γ
θ, Cθk) = 0 if

p > k. But we also have Hp(Γ
θ, Cθk) = 0 if p > rkΓ θ−dimRΓ θ, because Γ θ

contains a subgroup of rank dimRΓ θ which acts freely on Cθk . To summarize

Hp(Γ,Ck) = 0 if p > min{k, rk}
where rk=maxθ∈Ik(rkΓ θ−dimRΓ θ). In particular, γn⊥−1 : Hp+1(Γ,C

0
n⊥−2)

→ Hp(Γ,Cn⊥) ∼= Hn−p(Ω) is injective if p ≥ min{n⊥ − 1, rn⊥−1}.
We now consider first the case in which the ranks of the stabilizers are

minimal. Since the stabilizer of Wi must have rank at least n⊥ − 1, the
minimal case is rn⊥−1 = 0, which then implies that rk = 0 for all k. This is
in fact the generic case and it corresponds to the pattern having maximal
complexity among almost canonical projection patterns; that is, the growth
exponent for the complexity function is n⊥n [Ju]. We see from the above
that Hp(Γ,C

θ
k) = 0 if p > 0 and therefore π∗ is injective in all degrees. But

Hk(Ω) is infinitely generated except if n⊥ = 1.
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The situation is different if we require that the cohomology is finitely
generated. By the results of [FHK] and [Ju] this is precisely the case if
ν := (n+ n⊥)/n⊥ is an integer and the rank of the stabilizer of a singular
plane is ν times its dimension, i.e. rk = (ν−1)k ≥ k. We find it interesting to
note that this case corresponds to the case of minimal complexity, that is, the
number of patches of size R grows polynomially with exponent n [Ju]. This
yields the bound that π∗ : Hk(Ê)→ Hk(Ω) is injective if k ≤ n− n⊥ + 1 =
(ν − 2)n+ 1. Furthermore, the calculations done in [FHK] (for codimension
3 patterns) show that this is the best possible bound: π∗ is never injective
in degree k > (ν − 2)n + 1. In particular, for the standard tilings like the
Penrose, Ammann–Beenker, Socolar, and the icosahedral tilings, ν = 2, and
hence π∗ is injective only in degree 0 and 1.

4.2. On the cokernel of π∗. We consider here only the case of finitely
generated cohomology. It comes not as a surprise that then cokerπ∗ is also
finitely generated (see [FHK]). It can, however, have torsion in higher de-
grees [GHK1, GHK2]: the Tübingen Triangle Tiling is an example of a 2-
dimensional tiling which has torsion in its second cohomology.

A more subtle question is whether π∗ is always onto a direct summand,
that is, whether the exact sequence

(2) 0→ Hk(Ê)
π∗−→ Hk(Ω)→ cokerπ∗ → 0

splits and hence the torsion in the tiling cohomology agrees with the torsion
of cokerπ∗. While this is generally true if n⊥ ≤ 2, it remains an open question
in higher codimension.

4.3. The frequency module. In this section we will prove that the
frequency module, freq(Ω), of an almost canonical projection pattern is
always finitely generated and hence the sequence (2) splits.

We start with some known background material. It is known that the
factor map π is almost everywhere one-to-one and the measure on Ω is the
push forward of the (normalized) Haar-measure on Ê . This implies that the

frequency module is generated by the volumes of all polyhedron in Rn⊥

whose faces lie in S. Here the volume of a polyhedron is measured with
the help of the Lebesgue measure normalized so that the window K has
volume 1.

Theorem 9. The frequency module freq(Ω) of an almost canonical pro-
jection pattern is finitely generated.

Proof. We call a point x ∈ Rn⊥ a cut point if it is the unique point in
the intersection of n⊥ cut planes. Clearly, any polyhedron whose faces lie
in S has vertices which are cut points. Given that the cut points are dense
we may subdivide any such polyhedron into simplices of dimension n⊥ such
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that all vertices of the simplices are cut points (we do not care whether
the newly introduced faces lie in S). The theorem thus follows if we can
show that the Z-module of volumes of all n⊥-simplices whose vertices are
cut points is finitely generated.

Denote by P the set of cut points. We claim that P − P is contained in
a finitely generated Z-module. Suppose first that x, y ∈ P lie in a common
singular space L of dimension 1 and both on the intersection with the same
class of cut plane, i.e. {x} = L∩(Wi−π⊥(γx)) and {y} = L∩(Wi−π⊥(γy)).
Then x − y belongs to πLWi

(Γ ), the projection along Wi onto L of π⊥(Γ ).
This group is, of course, finitely generated and since there are only finitely
many Wi we see that (P ∩ L)− (P ∩ L) is contained in a finitely generated
Z-module. Now we can go from any cut point x to any other cut point
y along singular lines, and since there are only finitely many directions of
singular lines, x− y lies in a finitely generated Z-module M , say.

The volume of an n⊥-simplex with vertices (x0, . . . , xn⊥) is one half of
the determinant of the n⊥ vectors xi−x0, i = 1, . . . , n⊥, which all lie in M .
Hence the determinant also lies in a finitely generated Z-module.

Corollary 10. For almost canonical projection patterns the sequence
(2) splits.

5. Substitution tilings. We recall quickly how to calculate the coho-
mology of a substitution tiling space Ω = ΩΦ referring the reader to [AP]
for more details.

The collared Anderson–Putnam complex Y is an n-dimensional CW-
complex whose n-cells are collared prototiles. Two of these cells are glued
along (n−1)-faces if some translates of the corresponding collared prototiles
meet along a translate of that face in some tiling in Ω. There is a natural
map p : Ω → Y assigning to a tiling the point in Y which corresponds to
the position of the origin 0 in the collared tile of the tiling that contains 0.
Furthermore, the substitution Φ induces a continuous surjection F : Y → Y
with p ◦ Φ = F ◦ p. By the universality property of the inverse limit, p in-
duces a map p̂ : Ω → lim←−(Y, F ) where lim←−(Y, F ) denotes the inverse limit

of the stationary system · · · → Y
F−→ Y

F−→ Y . It is shown in [AP] that p̂
is a homeomorphism that conjugates Φ with the shift F̂ on lim←−(Y, F ) and

hence p̂ : Hk(lim←−(Y, F )) → Hk(Ω) is an isomorphism. By the continuity

property of Čech cohomology, Hk(lim←−(Y, F )) is naturally isomorphic with

lim−→(Hk(Y ), F ∗). This direct limit is computable and we are interested in the
case k = 1.

H1(Y ) is a free abelian group of finite rank, and so the stationary system

H1(Y )
F ∗−−→ H1(Y )

F ∗−−→ · · · is of the form ZN A−→ ZN A−→ · · · for some N and



Maximal equicontinuous factors 257

N × N integer matrix A. Let ER(A) =
⋂
nA

nQN be the eventual range
of A. We have ER(A) = QN if A has non-vanishing determinant, but always
ER(A) = ANQN . Then

lim−→(ZN , A) = {v ∈ ER(A) : ∃n Anv ∈ ZN} =
⋃
n

Ã−nΣ,

where Σ = ER(A) ∩ ZN and Ã is the restriction of A to ER(A).

If the substitution forces its border then the above construction works
already if one considers non-collared tiles [AP] for the construction of the
Anderson–Putnam complex Y . In the one-dimensional context, that is, for a
substitution which can be symbolically defined on an alphabet of N letters,
and for a substitution which forces its border in the sense that all substi-
tuted tiles start with the same tile and all end with the same tile (that is,
the symbolic substitution has a common prefix and a common suffix), one
may replace the Anderson–Putnam complex Y simply by a bouquet, X, of
circles, one circle for each letter. In this case, H1(X) ∼= ZN and the matrix

A representing H1(X)
F ∗−−→ H1(X) in the basis provided by the cohomol-

ogy classes of the circles is the transpose of the incidence matrix for the
substitution. It turns out that, at least for determining the cohomology, we
may also work with the bouquet X as long as the symbolic substitution has
either a common prefix or a common suffix [AR, BD1].

5.1. One-dimensional irreducible substitutions. For one-dimen-
sional tilings the first cohomology group arises in both exact sequences, the
degree 1 version of the sequence (2), namely

(3) 0→ E
θ−→ H1(Ω)→ coker θ → 0,

and, assuming unique ergodicity, the sequence (1):

0→ Inf(Ω)→ H1(Ω)
τ−→ freq(Ω)→ 0.

Some of the main results of [AR] give complete information about the struc-
ture of the above sequences in the context of one-dimensional primitive,
irreducible substitutions of FLC. The work in [AR] starts with symbolic
substitutions which are then realized geometrically by assigning a length
to each symbol so as to realize it as an interval. Our case is slightly more
restrictive, and can be compared if the lengths of the symbols are obtained
from the left Perron–Frobenius vector of the substitution matrix. The re-
sults of [AR] require generally that the substitution forces its border on one
side in the sense that the symbolic substitution has a common prefix.

A further assumption made on the substitution is that the characteristic
polynomial of its substitution matrix is irreducible or, what amounts to
the same, the dilation factor λ is an algebraic integer of degree equal to
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the number of prototiles (letters). One simply says that the substitution is
irreducible in that case.

Theorem 11 ([AR]). Consider a one-dimensional substitution tiling
with common prefix. Assume furthermore that the substitution is irreducible.
Then Inf(Ω) = 0. Moreover, if its dilation factor is a Pisot number then
coker θ = 0.

Note that combined with Solomyak’s result ([So]) on the existence of
eigenfunctions, this yields a dichotomy: Either λ is a Pisot number and then
coker θ = 0, or λ is not a Pisot number and then E = 0.

Hence we see that in one dimension, under the assumptions of irreducibil-
ity and common prefix, the two exact sequences (1) and (3) are completely
degenerate. We will see below in the examples that the situation is not at all
like this if we look at non-irreducible substitutions. Also, the results on pro-
jection patterns indicate that this behavior is restricted to one-dimensional
tilings.

5.2. On the splitting of the exact sequence (3). For substitution
tilings, there is a simple criterion guaranteeing that the sequence (3) splits.
Clearly, if F ∗ is an isomorphism in degree 1 then H1(Ω) = H1(Y ), and
since the latter is finitely generated, we deduce from Corollary 6 that the
sequence (3) splits. But we can do better.

Recall that the homeomorphism Φ : Ω → Ω defined by a substitution
on the substitution tiling space satisfies

Φ(T − v) = Φ(T )− Λ(v).

Let f be an eigenfunction with eigenvalue β ∈ E. Then

f(Φ(T − v)) = e2πıβ(Λ(v))f(Φ(T )),

showing that f ◦ Φ is an eigenfunction with eigenvalue ΛTβ. It follows that
Φ∗θ(β) = [f ◦ Φ] = θ(ΛTβ), i.e. θ intertwines the action of ΛT on E with
that of Φ∗ on H1(Ω). Thus, Φ∗ induces a homomorphism Φ̄∗ on coker θ.
We now work with rational coefficients, i.e. rational cohomology. Then,
since H1(Y ;Q) is a finite-dimensional vector space, also H1(Ω;Q) and thus
cokerQ θ = H1(Ω;Q)/θ(E⊗ZQ) are finite-dimensional and so we can view Φ̄∗

as a finite matrix with rational coefficients, which we denote by Ā. Of course,
this matrix depends on the choice of basis, but its determinant does not.

Proposition 12. Suppose that Ā is as above and that det(Ā) = ±1.
Then the sequence (3) splits with H1(Ω) ∼= E ⊕ Zl, l = dim cokerQ θ.

Proof. Recall from above that we may identify H1(Y ) = ZN and F ∗ = A
so that H1(Ω) ∼= {v ∈ ER(A) : ∃n Anv ∈ Σ} where Σ = ZN ∩ ER(A). We
now let ERZ := {v ∈ ER(A) : ∃n Anv ∈ Σ} and denote by VZ ⊂ ERZ the
subgroup corresponding to θ(E) under the above isomorphism. Then (3)
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can be identified with

(4) 0→ VZ ↪→ ERZ → ERZ/VZ → 0

and our aim is to show that there is a splitting map s : ERZ → VZ.
Note that H1(Ω;Q) ∼= ER(A) and let V denote the subspace correspond-

ing to θ(E⊗ZQ) under this isomorphism; V is the rational span of VZ. Then
Ā can be seen as the linear map induced on W = ER(A)/V by A. Let πW de-
note the natural projection of ER(A) onto W and let Γ := πW (Σ). Then Σ
and Γ are forward invariant under A and Ā, respectively, and it follows from
det(Ā) = ±1 that Ā restricts to an isomorphism of Γ . Working with rational
vector spaces, the corresponding exact sequence 0→ V → ER(A)→W → 0
splits and there is a linear map s′ : W → ER(A) such that πW ◦ s′ = id.
Let πV : ER(A)→ V be the projection onto V with kernel s′(W ). We claim
that πV (ERZ) = VZ, which then shows that the restriction of πV to ERZ is
a splitting map s for the sequence (4).

By Theorem 5, ERZ/VZ is torsion free and hence VZ = V ∩ERZ. Indeed,
if x ∈ V ∩ ERZ, there is p such that px ∈ VZ and thus, if x /∈ VZ, it would
map to a p-torsion element in the quotient ERZ/VZ. So we only need to
show that πV (ERZ) ⊂ ERZ.

Let x ∈ ERZ, i.e. x ∈ ER(A) and there is n such that Anx ∈ Σ. We have
Anx = v + γ with v = πV (Anx) ∈ V and γ = s′ ◦ πW (Anx) ∈ s′(Γ ). Hence
Ã−nAnx = Ã−nv + Ã−nγ ∈ V + s′(Γ ) as Ã, the restriction of A to ER(A),
is an isomorphism of ER(A) preserving V and inducing an isomorphism Ā
on Γ . So we may write x = v′ + γ′ with v′ ∈ V and γ′ ∈ s′(Γ ). Then
v′ = πV (x) and so we get AnπV (x) = An(x)−Anγ′ ∈ Σ.

By a result of [KS] (see also [BG]), the collection of eigenvalues of the
linear transformation A|V equals the collection of all algebraic conjugates of
the eigenvalues of the linear inflation Λ. Moreover, the multiplicity of any λ
as an eigenvalue of Λ is no larger than the multiplicity of λ as an eigenvalue
of A. A non-unit determinant of Ā implies the existence of a non-unit (and
non-zero) eigenvalue of A that has multiplicity greater than its multiplicity
as an eigenvalue of Λ (see the example in 5.3.1).

Corollary 13. Suppose that every eigenvalue of A that is not an alge-
braic unit has the same multiplicity as it does as an eigenvalue of Λ. Then
the sequence (3) splits, as in Proposition 12.

5.3. Examples of non-irreducible substitutions. We present one-
dimensional substitution tilings for which the sequences (1) and/or (3) do
not split.

Note that by Lemma 2 the group Inf(Ω) of infinitesimal elements neces-
sarily has trivial intersection with the image of θ and so the sum Inf(Ω)+im θ
is direct.
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5.3.1. Non-splitting example. We consider the substitution

a 7→ abb, b 7→ aaa,

whose letters have equal length when realized as tiles of a one-dimensional
tiling. We fix this length to be 1; this fixes the action of R on the contin-
uous hull Ω. The expansion matrix is Λ = (3). By Host’s characterization

of the eigenvalues, β ∈ E if and only if β3n mod 1
n→∞−−−→ 0, which is clearly

only possible if β3n ∈ Z for some n and hence E = Z[1/3]. It is not dif-
ficult to write down an eigenfunction f1 for β = 1: take any T0 ∈ Ω and
define f1(T0− t) = exp(2πıt). Given that all tiles have length 1, the value of
f1(T0− t) depends only on the relative position of the tile on 0 (f is strongly
pattern equivariant) and hence f extends by continuity to Ω. But the substi-
tution is aperiodic and primitive and hence recognizable. This means that
one can recognize the three-letter words in any T ∈ Ω which arise from
a substitution of a letter and hence also f3−n(T0 − t) = exp(2πı3−nt) is
strongly pattern equivariant and so extends. In particular, and as it should
be, [f3−n ] = [f1 ◦ Φn].

Note that the substitution has a common prefix. As explained above, the
first cohomology group of Ω is therefore given by the direct limit defined by
the transpose of the incidence matrix of the substitution, which is

A =

(
1 2

3 0

)
.

Since this matrix is invertible over the rationals, we obtain

H1(Ω) ∼=
⋃
n∈N

A−nZ2 =
⋃
n∈N

1

5

(
1 −2

1 3

)(
3−n 0

0 (−2)−n

)(
3 2

−1 1

)
Z2

= Z[1/3]

(
1

1

)
+ Z[1/2]

(
−2

3

)
+

4⋃
k=1

(
k

0

)
.

Taking into account the isomorphism between [Ω,S1] and H1(Ω) it is easily
seen that [f1] corresponds to the element

(
1
1

)
and consequently [f3−n ] is

represented as A−n
(
1
1

)
= 3−n

(
1
1

)
. Thus

θ(E) = Z[1/3]

(
1

1

)
.

We now consider the map τ , which, according to the general theory
[AR], is given by the pairing τ(x) = 〈ν, x〉 with the left Perron–Frobenius
eigenvector ν of A normalized to ν1 + ν2 = 1. This is ν = 1

5(3, 2). So

τ(A−nv) =
1

5
· 3−n(3v1 + 2v2).
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It follows that

freq(Ω) = im τ =
1

5
Z[1/3] and Inf(Ω) = ker τ = Z[1/2]

(
−2

3

)
.

In particular, im θ and Inf(Ω) are subgroups of H1(Ω) with trivial inter-
section but they generate only a subgroup of index 5 in H1(Ω). Likewise,
τ ◦ θ(E) = Z[1/3] is a subgroup of index 5 in im τ .

Proposition 14. Neither of the exact sequences (1) or (3) splits.

Proof. Suppose the sequence (3) splits. There is then a Z-module ho-
momorphism s :

⋃
n∈NA

−nZ2 → E with s ◦ θ = id. This s extends to a
Q-linear map s : Q2 ∼=

⋃
n∈NA

−nZ2⊗ZQ→ Q ∼= Z[1/3]⊗ZQ. There is then
a w ∈ Q2 so that s(v) = 〈w, v〉 for all v ∈ Q2.

Since each element ofZ[1/2]
(−2

3

)
is infinitely divisible by 2 in

⋃
n∈NA

−nZ2,

also s(v) = 〈w, v〉 is infinitely divisible by 2 in Z[1/3] for each v ∈ Z[1/2]
(−2

3

)
.

This means that w is orthogonal to Z[1/2]
(−2

3

)
, say w = t

(
3
2

)
with t ∈ Q.

Then s
((

1
0

))
=
〈
t
(
3
2

)
,
(
1
0

)〉
= 3t must lie in Z[1/3]; that is, t ∈ Z[1/3]. Let

t = t0/3
n0 with t0, n0 ∈ Z. Now the restriction of s to θ(E) = Z[1/3]

(
1
1

)
is

surjective (since s ◦ θ = id) so there is an x ∈ Z[1/3]
(
1
1

)
, say x = x0/3

m0
(
1
1

)
,

with x0,m0 ∈ Z, so that s
(
x
(
1
1

))
=
〈
t
(
3
2

)
, x
(
1
1

)〉
= (t0/3

n0)(x0/3
m0)5 = 1.

But this implies that 5 divides 3.
The argument for the sequence (1) is completely similar, one only has to

interchange the roles of the eigenvectors of A.

5.3.2. Period doubling. We consider the substitution

a 7→ ab, b 7→ aa,

whose letters have equal length when realized as tiles of a one-dimensional
tiling. We fix this length to be 1; this fixes the action of R on the continuous
hull Ω. The expansion matrix is Λ = (2). As above one sees that E = Z[1/2]
and that f2−n(T0− t) = exp(2πı2−nt) is strongly pattern equivariant and so
extends to an eigenfunction to eigenvalue 2−n.

The transpose of the incidence matrix of the substitution is

A =

(
1 1

2 0

)
.

Since the substitution has a common prefix we get

H1(Ω) ∼=
⋃
n∈N

A−nZ2 =
⋃
n∈N

1

3

(
1 −1

1 2

)(
2−n 0

0 (−1)−n

)(
2 1

−1 1

)
Z2

= Z[1/2]

(
1

1

)
+ Z

(
−1

2

)
+

2⋃
k=0

(
k

0

)
.
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As above one sees that [f2−n ] is represented as A−n
(
1
1

)
= 2−n

(
1
1

)
. Thus

θ(E) = Z[1/2]

(
1

1

)
.

We now consider the map τ . The left Perron–Frobenius eigenvector of A
normalized to ν1 + ν2 = 1 is ν = 1

3(2, 1). So

τ(A−nv) =
1

3
· 2−n(2v1 + 1v2).

It follows that

freq(Ω) =
1

3
Z[1/2] and Inf(Ω) = Z

(
−1

2

)
.

Hence im θ + Inf(Ω) is a subgroup of index 3 in H1(Ω).

Proposition 15. The exact sequence (3) splits and hence H1(Ω) ∼=
Z[1/2] ⊕ Z. This splitting does not respect the order as the infinitesimal
elements form an index 3 subgroup of the second summand.

Proof. Observe that coker θ is given by the quotient
⋃
n∈NA

−nZ2/∼
where x ∼ y if there exist k, n such that x − y = 2−n · k

(
1
1

)
. It follows

that
(
3
0

)
∼
(−1

2

)
, A−1

(
1
0

)
=
(
0
1

)
∼ −

(
1
0

)
, and A−2

(
1
0

)
= 1

2

(
1
−1
)
∼
(
1
0

)
. Thus,

coker θ is generated by the equivalence class of the element
(
1
0

)
. In particular

it is finitely generated and so the sequence splits.
Now it is clear that the infinitesimal elements form an index 3 subgroup

of the second summand. The only possible orderings on Z are the trivial
order, in which case all elements are infinitesimal, or the standard order, in
which case only 0 is infinitesimal. The above splitting of H1(Ω) is thus not
an order preserving splitting into a direct sum of ordered groups.

Proposition 16. The exact sequence (1) does not split.

Proof. The proof is like the above: Suppose the sequence

0→ Z ψ−→
⋃
n∈N

A−nZ2 → 1

3
Z[1/2]→ 0

splits, where ψ(1) =
(

1
−2
)
. There is then a Z-module homomorphism

s :
⋃
n∈NA

−nZ2 → Z with s ◦ ψ = id. This s extends to a Q-linear map
s : Q2 ∼=

⋃
n∈NA

−nZ2 ⊗Z Q→ Q ∼= Z⊗Z Q. There is then a w ∈ Q2 so that
s(v) = 〈w, v〉 for all v ∈ Q2.

Since each element of Z[1/2]
(
1
1

)
is infinitely divisible by 2 in

⋃
n∈NA

−nZ2,

also s(v) = 〈w, v〉 is infinitely divisible by 2 in Z for each v ∈ Z[1/2]
(
1
1

)
.

This means that w is orthogonal to
(
1
1

)
, say w = t

(
1
−1
)

with t ∈ Q. Then

s
((

1
0

))
=
〈
t
(

1
−1
)
,
(
1
0

)〉
= t must lie in Z; that is, t ∈ Z. Now the restriction of
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s to ψ(Z) = Z
(

1
−2
)

is surjective so there is an x ∈ Z such that s
(
x
(

1
−2
))

=〈
t
(

1
−1
)
, x
(

1
−2
)〉

= tx3 = 1. But this implies that 1/3 is an integer.

5.3.3. Thue–Morse. We finally consider the Thue–Morse substitution

1 7→ 11̄, 1̄ 7→ 1̄1,

whose letters have equal length when realized as tiles of a one-dimensional
tiling. We fix this length to be 1; this fixes the action of R on the continuous
hull Ω. The expansion matrix is Λ = (2).

The substitution does not force its border and so we use the technique
of collared tiles (the bracketed tile is the actual tile, the other two are the
collar):

a := 1(1̄)1, b := 1̄(1̄)1, c := 1(1̄)1̄,

ā := 1̄(1)1̄, b̄ := 1(1)1̄, c̄ := 1̄(1)1.

The Anderson–Putnam complex Γ has six edges, namely the collared tiles
which we orient to the right in the tiling, and four vertices v, v̄, w, w̄. Indeed
w is the vertex at the end of c and the beginning of b̄ (and w̄ is the vertex
at the end of c̄ and the beginning of b), and v is the vertex at the end of b,
ā and the beginning of a, c (and v̄ is the vertex at the end of b̄, a and the
beginning of ā, c̄). The cohomology of Γ is thus that of the complex

0→ Z4 δT−→ Z6 → 0,

where (2)

δ =


1 1 0 −1 0 −1
−1 0 −1 1 1 0
0 −1 1 0 0 0
0 0 0 0 −1 1

 .

In particular, H1(Γ ) ∼= Z3. We now have to determine the matrix A corre-
sponding to the endomorphism induced by the substitution on H1(Γ ). The
latter reads on collared tiles as follows:

a 7→ bc̄, b 7→ ac̄, c 7→ bā, ā 7→ b̄c, b̄ 7→ āc, c̄ 7→ b̄a,

which has incidence matrix σ = (σij) (with σij equal to the number of tiles
of type i in the supertile of type j) given by

σ =


0 1 0 0 0 1
1 0 1 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 0 0

 .

(2) We use the bases a, b, c, ā, b̄, c̄, and v, v̄, w, w̄.
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We find that the left eigenvectors of σ which are not in im δT are:

(1 1 1 1 1 1) to eigenvalue 2,

(1 1 1 −1 −1 −1) to eigenvalue 0,

(1 −1 0 1 −1 0) to eigenvalue −1.

It follows that the eventual range of the endomorphsim A induced by σT

on Z6/im δT has dimension 2 and that the restriction Ã of A to its essen-
tial range is obtained by row-reducing the above left eigenvectors of σ to
eigenvalues 2 and −1 with respect to the rows spanning im δT + kerσT . The
result is (2 4 0 0 0 0), the left eigenvector of σ modulo 〈im δT , kerσT 〉
to eigenvalue 2, and (2 −2 0 0 0 0) the one to eigenvalue −1. It fol-
lows that

Ã =
1

3

(
1 1

2 −1

)(
2 0

0 −1

)(
1 1

2 −1

)
=

(
0 1

2 1

)
.

Hence

H1(Ω) ∼=
⋃
n

Ã−nZ2 = Z[1/2]

(
1

2

)
+ Z

(
1

−1

)
+

2⋃
k=1

(
k

0

)
.

As above, one sees that E = Z[1/2] and that f2−n(T0−t) = exp(2πı2−nt)
is strongly pattern equivariant and so extends to an eigenfunction to eigen-
value 2−n. Furthermore the eigenfunction f1 represents the class in H1(Ω)
given by the class of (1, 1, 1, 1, 1, 1)T modulo 〈im δT , kerσT 〉 which corre-
sponds to (2, 4)T in

⋃
n Ã
−nZ2. Hence

θ(E) = Z[1/2]

(
1

2

)
.

More generally, since τ(v) = 0 for any left eigenvector of σ to an eigenvalue
different from 2, the map τ :

⋃
n Ã
−nZ2 → R is given by τ((2, 4)T ) = 1 and

τ((1,−1)T ) = 0. It follows that

τ(A−nv) =
1

6
· 2−n(v1 + v2),

freq(Ω) = 1
3Z[1/2], and Inf(Ω) = Z

(
1
−1
)
. Now the same calculation as for

the period doubling sequence yields:

Proposition 17. The exact sequence (3) splits and hence H1(Ω) ∼=
Z[1/2] ⊕ Z. This splitting does not respect the order, as the infinitesimal
elements form an index 3 subgroup of the second summand. The exact se-
quence (1) does not split.

The factors 1/5, 1/3, and 1/3 that appear in the frequency modules in
the examples of 5.3.1, 5.3.2, and 5.3.3 are explained by a reduced resultant
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in [S2]. If the characteristic polynomial of the action of the substitution
homeomorphism on H1(Ω) is factored as p(t) = q(t)r(t), with q(t) the mini-
mal polynomial of the dilation factor, then q(t) and r(t) are relatively prime.
The intersection of Z with the ideal (q(t), r(t)), generated by q(t) and r(t) in
Z[t], is a principal ideal in Z, say Z∩ (q(t), r(t)) = (D). The integer D is the
reduced resultant of q(t) and r(t). For example, in 5.3.1, p(t) = (t−3)(t+2),
and D = 5, whence the 1/5. (We are indebted to the referee for pointing
this out to us.)

5.4. The action of the substitution on first cohomology. As a
final observation, let us consider complex-valued cohomology looking at pos-
sibly complex eigenvalues of the action of Φ∗ on the first cohomology. It is
shown in [BG] that all eigenvalues of Λ are also eigenvalues of Φ∗.

Theorem 18. The image of τ is invariant under the action of ΛT . More-
over, suppose that Φ∗x = λx for some cohomology element x ∈ H1(Ω,C).
If τ(x) 6= 0 then λ must be an eigenvalue of Λ.

Proof. Note that, by unique ergodicity,

Cµ(α) = lim
k→∞

1

µ(Ik)

�

Ik

α(T0 − x) dν(x)

where Ik = [−k, k]n is the cube of side length 2k centered at 0 and ν is
the Lebesgue measure. This holds for any T0. We have Φ∗(f−1df)(T0−x) =
ΛT f−1(Φ(T0) − Λx)df(Φ(T0) − Λx). Hence Cµ(Φ∗(f−1df)) = ΛTCµ(f−1df)
implying that τ([f ◦ Φ]) = ΛT τ([f ]). So if x is an eigenvector of Φ∗ to
eigenvalue λ and τ(x) 6= 0 then τ(x) is an eigenvector of ΛT to λ.

Thus, if x is in a generalized eigenspace of Φ∗ corresponding to an eigen-
value that is not also an eigenvalue of Λ, then x ∈ ker τ . In the case n = 1,
such x ∈ [Ω,S1] must be infinitesimal (see Subsection 2.4 and the example
in 5.3.2).
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