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For Coxeter groups z|g| is a coefficient
of a uniformly bounded representation

by

Tadeusz Januszkiewicz (Wrocław)

Abstract. We prove the theorem in the title by constructing an action of a Coxeter
group on a product of trees.

Introduction. Recall [1] that a Coxeter system (Γ,W ) is a group Γ
with a distinguished set of generators wi ∈ W and relations w2

i = 1 =
(wiwj)mij , where mij is zero (and then there is no relation between wi and
wj) or an integer ≥ 2. The Coxeter system gives rise to a function |g| on Γ ,
defined as the minimal length of the word in wi’s representing g. We call it
the length function. Abusing language we will refer to Coxeter systems as
Coxeter groups.

The purpose of this paper is to prove the following:

Theorem 1. Let (Γ,W ) be a finitely generated Coxeter group, and |g|
the (word) length function on Γ . Then for any complex number z such that
|z| < 1, the function z|g| is a coefficient of a uniformly bounded representa-
tion λz.

Actually we provide a slightly larger family of representations.
Theorem 1 is proved by studying cocycles and relating the natural space

on which Γ acts to actions on trees, following [5, 7, 3]. The representa-
tions λz are deformations of the left regular representation. They depend
holomorphically on z and are unitary for real z. In general they are not
unitarizable: this happens if and only if the Coxeter group is a product of
finite and affine Coxeter groups, that is, iff it is amenable. In the case when
the natural complex on which Γ acts is essentially a tree, i.e. if Γ is vir-
tually free, the representation λz is a compact perturbation of the regular
representation. This is not true for higher dimensional Coxeter groups (and
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one already sees that in the right angled case), but definitely the operators
(λz − λ)(g) have small support (compared to l2(Γ )).

Theorem 2. Finitely generated Coxeter groups are weakly amenable.

This is the extension of a theorem of Alain Valette from right angled
to all Coxeter groups. Since the arguments in Valette’s paper can now be
repeated verbatim with the help of Theorem 1, we refer the reader to [8]
and skip the argument.

Acknowledgements. I am grateful to Michael Davis and Ryszard
Szwarc for useful discussions. The results in this paper were obtained (but
not published) independently, using a slightly different method, by Frédéric
Haglund, Frédéric Paulin and Alain Valette. This paper was written after
Gero Fendler’s talk, where he announced that z|g| is a coefficient for Coxeter
groups of large type. I then noticed that my old argument from [3] can be
extended to general Coxeter groups.

The complex. The construction below, due to Michael Davis, is de-
scribed fully in [2]. For any Coxeter group (Γ,W ) there is a cell complex
C(Γ ) on which Γ acts properly. It is defined as follows: cells are indexed
by right cosets Γ/ΓS , where ΓS is a finite group generated by a subset S
of W . A cell [γ] is a face of [η] if [γ] ⊂ [η] as cosets. Its vertices correspond
to elements of Γ , edges are indexed by cosets Γ/{1, s}, with s running over
the set of generators, etc. It might be called the Cayley complex of Γ , since
its 1-skeleton is the Cayley graph of (Γ,W ).

The obvious action of Γ on C(Γ ) coming from the left action of Γ on
itself is a reflection group action. Any reflection (i.e. an element conjugate
to a generator in W ) has its mirror of fixpoints. Any mirror is two-sided, i.e.
its complement has two components. The closures of connected components
of the complement of the union of all mirrors are called chambers.

The word length function from the introduction has a pleasant inter-
pretation in terms of C(Γ ). It counts the number of mirrors separating the
chamber F from the chamber gF , or the shortest path in the one-skeleton
of C(Γ ) between vertex e and vertex g.

There are more delicate length functions |g|i which count how many
times a generator from the conjugacy class of wi occurs in the shortest word
expressing g in terms of generators from W , or, equivalently, how many
mirrors conjugate to the mirror of wi lie between F and gF . It is clear that
|g| = ∑n

i=1 |g|i where n is the number of conjugacy classes of generators.

Trees. Even though Γ often does not admit a nontrivial action on a
tree, its normal torsion free subgroups do. It turns out that Γ acts on a
product of finitely many trees.
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Lemma 1 ([4]). Let Γ0 be a normal torsion free subgroup of Γ . Then
for each mirror H and every γ0 ∈ Γ0, H ∩ γ0(H) is either H or the empty
set.

Observe that such a Γ0, even with the additional property of being of
finite index in Γ , exists by the Selberg Lemma. The proof of the lemma is
just a few lines, so I repeat it.

Proof. Let h be the reflection in H, and consider the product of reflec-
tions g = hγ0hγ

−1
0 . If H ∩ γ0(H) is nonempty, g is a torsion element. On

the other hand since Γ0 is normal, g is in Γ0, hence it is the identity. Thus
h commutes with γ0, and H = γ0(H).

We use Lemma 1 to construct a tree with a Γ0-action. Let H be the
set of orbits for the Γ0-action on the set of all mirrors. Fix an h ∈ H.
Define a graph Th as follows. Its vertices are the connected components of
C(Γ ) − ⋃s Γ0(s) where s runs through the mirrors in h. Two vertices are
joined by an edge if the components are adjacent in C(Γ ), i.e. if their closures
intersect. Lemma 1 guarantees that different Γ0-conjugates of h are disjoint.

Lemma 2 ([3]). Th is a tree.

Proof. Any loop λ in Th lifts to a path in C(Γ ) which can be closed up to
a loop Λ without crossing the h-mirror. The projection of Λ is again λ. Since
C(Γ ) is contractible (cf. [2]), it follows that Λ, and hence λ, is homologous
to zero and thus Th is a tree.

There is an obvious simplicial map from C(Γ ) to Th, given on vertices
by g 7→ [g]h, that is, mapping a chamber to the connected component of
C(Γ )−⋃s Γ0(s) it belongs to. Clearly this map is Γ0-equivariant. We take
the diagonal of the family µ : C(Γ ) → ∏

h Th to get a Γ0-equivariant em-
bedding of the Davis complex into the product of trees. The beauty of this
map lies in

Lemma 3. The map µ is a Γ -equivariant embedding.

Proof. First notice that Γ , in fact Γ/Γ0, acts on H. An element g maps
the tree Th to Tg(h) simplicially. Thus Γ acts on

∏
h Th by permuting the fac-

tors of the product. Explicitly g(xh1 , . . . , xhn) = (gxg−1(h1), . . . , gxg−1(hn)).
Now equivariance of µ is obvious. To see that it is an embedding, notice that
two vertices of C(Γ ) differ iff they are separated by some mirror, say in h;
thus their images in Th are different.

The map µ, being an equivariant embedding, induces an isometric equiv-
ariant embedding µ∗ : l2(Γ ) → ⊗

h l
2(vertices(Th)) of Hilbert spaces by

µ∗(δx) =
⊗

h δ[x]h . Note that we do not claim existence of maps l2(Γ ) →
l2(vertices(Th)).
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Remark. An example of Γ0 as above is the trivial group. Then the map
given by Lemma 3 is an equivariant embedding into the (usually infinite)
product of intervals. It is convenient to restrict to finite index subgroups to
avoid the discussion of infinite products and tensor products. We will use
this crucially in norm estimates. For finite groups the embedding is related
to the action of Γ on roots.

Cocycles. Let G be a group acting on a space X, and π : G→ GL(V )
be its representation on some vector space V .

Definition. A cocycle on (X,G) twisted by π is a map c : X × X →
GL(V ) such that

1. c(x, x) = id,
2. c(x, y)c(y, z) = c(x, z),
3. c(gx, gy) = π(g)c(x, y)π(g)−1.

Property 2 is called the chain rule, property 3 equivariance. One should
think of this definition as follows. The action of G on X and V gives rise to
a “bundle” over X/G,

V → X ×G V → X/G.

Here X ×G V = (X × V )/G with the diagonal G-action on the product.
A cocycle c is a parallel translation in this bundle lifted to the “covering”
X → X/G. The convention is that c(x, y) maps the fiber over y to the fiber
over x. Then we have the associated monodromy representation

πc(g) = c(x0, gx0)π(g).

It is straightforward to check that it is indeed a representation of G on V .
It is also called the deformation of π by c.

Cocycles have good functorial properties. An equivariant map f : Y →
X of G-spaces pulls back a cocycle on X to one on Y by f ∗c(y1, y2) =
c(f(y1), f(y2)). Also a group homomorphism H → G turns a G-cocycle into
an H-cocycle.

Crucial use will be made of the tensor product construction. Let
(Xi, Gi, Vi, πi, ci)i=1,...,n be a finite family of cocycles. Then

⊗
i ci is a co-

cycle for the action of
∏
iGi on

∏
iXi twisted by the representation

⊗
i πi

on
⊗

i Vi. It is explicitly given by
⊗
i

ci{(x1, . . . , xn), (y1, . . . , yn)}(v1 ⊗ . . .⊗ vn)

= c1(x1, y1)(v1)⊗ . . .⊗ c1(xn, yn)(vn).

In case some of the spaces and cocycles coincide, the tensor product cocy-
cle has an additional symmetry. One adds to the group

∏
iGi permutations

switching simultaneously factors of
∏
Xi and of

⊗
Vi.
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Cocycles on trees and their tensor products. On a tree T with a
G-action we have the cocycle pvz provided by the construction of Pimsner
and Valette. In fact it is a cocycle for the full automorphism group of a tree.
We will not discuss it here in detail, but rather refer to [5, 7]. Briefly, consider
the space l2(vertices(T )) with the obvious unitary representation π of G
induced by the G-action on T . Fix complex numbers a, z with a2 + z2 = 1,
and define a cocycle on adjacent vertices and on the basis of l2 as follows
(and then extend using the chain rule and linearity):

pvz(p, q)(δr) =




δr if r 6= p, q,
aδp − zδq if p = r,
zδp + aδq if q = r.

It is a pleasant computation that pvz is indeed a cocycle twisted by π.
Now for each h ∈ H we fix a complex number zh and take the tensor

product cocycle
⊗

pvzh . We want it to be twisted by the representation
of Γ on

⊗
h l

2(vertices(Th)). Actually for an arbitrary choice of zh we will
only get a cocycle twisted by the representation of Γ0, but if we insist that
the Γ/Γ0-action should take the pvzh cocycle on Th to pvzg(h)

on Tg(h), i.e.
zh = zg(h), we end up with the tensor product cocycle for Γ . This is related
to the additional symmetries of tensor powers.

The orbits of Γ on H correspond to conjugacy classes of generators.
Thus we should denote our tensor product cocycle by pvz1,...,zn , with indices
running over conjugacy classes of generators. But in computations that are
coming up, we prefer to index the cocycle and representation with elements
of H, with the understanding that the parameters on conjugate mirrors are
equal.

We adopt a similar convention for the monodromy representation de-
noted by πz1,...,zn . Specializing z1 = . . . = zn = z we get the cocycle pvz
and the monodromy representation πz.

We are now interested in the matrix coefficients of πz1,...,zn . Recall that
µ∗δe is the image of the basis vector δe ∈ l2(Γ ) in

⊗
h l

2(vertices(Th)).

Lemma 4.

〈πz1,...,zn(g)(µ∗(δe)), µ∗(δe)〉 =
∏

i

z
|g|i
i .

Specializing, we get

〈πz(g)(µ∗(δe)), µ∗(δe)〉 = z|g|.

To get more transparent formulas, we abuse the notation, and write g for
µ(g) and δg for µ∗(δg) in the proof of Lemma 4 below. One should remember
that the computation takes place in the product of trees. The element g acts
in the dual role of a group element and a vertex of C(Γ ).
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Proof. We argue by induction (compare [7]). For g = e there is nothing
to prove. Then assume gs is an element of length |g|+ 1. We have

〈πz1,...,zn(gs)(µ∗(δe)), µ∗(δe)〉 = 〈pvz1,...,zn(e, gs)π(gs)(δe), δe〉
= 〈pvz1,...,zn(e, gs)(δgs), δe〉 = 〈pvz1,...,zn(e, g) pvz1,...,zn(g, gs)(δgs), δe〉
= 〈pvz1,...,zn(e, g)πz1,...,zn(g) pvz1,...,zn(e, s)(δs), δe〉
= 〈pvz1,...,zn(e, g)πz1,...,zn(g)(zsδe + aδs), δe〉
= 〈pvz1,...,zn(e, g)(zδg + aδgs), δe〉
= zs〈pvz1,...,zn(e, g)δg, δe〉+ as〈pvz1,...,zn(e, g)δgs, δe〉
= zs〈pvz1,...,zn(e, g)π(g)δe, δe〉

= zs〈πz1,...,zn(g)δe, δe〉 = zs
∏

i

z|g|i =
∏

i

z
|gs|i
i .

The vanishing of the term as〈pvz1,...,zn(e, g)δgs, δe〉 comes from the lo-
cality of the cocycle: associate to the element

pvz1,...,zn(e, g)µ∗(δgs) =
∑

av1,...,vnδv1 ⊗ . . . ,⊗δvn
the subset in the product of trees, consisting of those (v1, . . . , vn) for which
av1,...,vn 6= 0 (its support). Each element in this subset is at distance at most
|g| from µ∗δgs, hence each is orthogonal to µ∗δe.

Now we estimate norms. Here for the first time we crucially use the fact
that Γ0 is of finite index.

Lemma 5.

‖πz1,...,zn‖ = ‖pvz1,...,zn ‖ = ‖⊗ pvzh ‖ ≤
∏

h∈H

2|1− z2
h|

1− |zh|
.

Proof. The last inequality is the estimate of the norms of cocycles com-
ing from trees, adapted by A. Valette from [5]. The last term is a finite
product.

Lemma 5 finishes the proof of a slightly stronger version of Theorem 1:

Theorem 1a. Let (Γ,W ) be a finitely generated Coxeter group, and |g|i
the ith (word) length function on Γ counting the occurrences of the conju-
gates of the ith generator in the minimal presentation of g. Then for any
complex numbers zi such that |zi| < 1, the function

∏
i z
|g|i is a coefficient

of a uniformly bounded representation πz1,...,zn .

Final remarks. 1. Denote by P the map which sends δg to

πz1,...,zn(g)(δe) = pvz1,...,zn(e, g)(δg).
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It is bounded, but not unitary; in fact its inverse is unbounded. Let Λ denote
the space spanned by the image of P. A straightforward computation shows
that P intertwines the regular representation on l2(Γ ) with the represen-
tation πz1,...,zn restricted to Λ. We denote the latter by λz1,...,zn . Clearly it
is the representation one should be interested in. An additional appeal of
λz1,...,zn comes from

Lemma 6. The representation λz1,...,zn does not depend on the choice of
the subgroup Γ0 used in its construction.

Proof. We only have to prove the assertion for a subgroup Γ1 of Γ0.
Consider H0 = Mirrors /Γ0 and H1 = Mirrors /Γ1 with the obvious map
p : H1 →H0.

We have a map ν : Th0 →
∏
h1∈p−1(h0) Th1 , obtained by taking the

diagonal of the family of maps Th0 → Th1 (each of these maps acts on
vertices by sending a connected component of the complement of the h0-
mirrors to the connected component of the complement of the h1-mirrors it
belongs to). The map between trees is only Γ1-equivariant but the diagonal is
Γ0-equivariant (and

∏
H0
Th →

∏
H1
Th1 is Γ -equivariant). The map ν is an

embedding and induces a map ν∗ : l2(vertices(Th0)) →⊗
l2(vertices(Th1))

on l2 spaces.
The space

∏
h1∈p−1(h0)Th1 carries the tensor product cocycle

⊗
pvz(Th1).

It is straightforward to check that it preserves the image of ν∗.
If we restrict the group from Aut(

∏
Th1) to Aut(Th) and pull back by

µ, the resulting cocycle is pvz(Th).
We finish the proof by observing that the map µΓ1 : C(Γ ) → ∏

H1
Th1

is the composition of µΓ0 and ν.

Specializing to zi = 0 one sees that λz1,...,zn is a deformation of the
regular representation of G. In general the cocycle does not preserve the
subspace µ∗(l2(Γ )), thus the space on which λz1,...,zn acts varies with zi
inside

⊗
h l

2(vertices(Th)).
One can write down λz1,...,zn on l2(Γ ) projecting it orthogonally from Λ

to l2(Γ ). The projection is bounded and its inverse is bounded since it is the
map x 7→ x⊕P⊥(x), where P⊥ is the composition of P with the projection
onto the complement of l2(Γ ).

2. Example: the symmetric group S3. Here we have three reflections,
and embedding maps into the three-cube. Each reflection inverts the sign of
its coordinate and flips the others. The embedding µ is

e 7→ (−−−); s 7→ (+−−); t 7→ (−+−);

st 7→ (+−+); ts 7→ (−+ +); sts = tst 7→ (+ + +);

Note that (− − +) and (+ + −) are not in the image of µ. The vectors
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pvz(e, g)(δg) are

e 7→ (−−−); s 7→ z(−−−) + a(+−−); t 7→ z(−−−) + a(−+−);

st 7→ z2(−−−) + az{(+−−) + (−−+)}+ a2(+−+);

ts 7→ z2(−−−) + az{(−+−) + (−−+)}+ a2(−+ +);

tst = sts 7→ z3(−−−) + az2{(−+−) + (−−+) + (+−−)}
+ a2z{(−+ +) + (+ +−) + (+−+)}+ a3(+ + +).

With the benefit of hindsight of this example one can guess, and then
prove by induction, the form of the embedding in general: Let γ(g)h denote
the geodesic in the tree Th running from (e)h to (g)h, p1 = (e)h, . . . , pk =
(g)h its vertices and zhγ(g)h =

∑k
i=0 z

k−i
h aihpi. Then

πz1,...,zn(g)(δe) = pvz1,...,zn(e, g)(δg) =
⊗

h

zhγ(g)h.

3. The representations we obtain are sometimes unitarizable. This hap-
pens if and only if all the trees Th are either intervals or real lines. That
in turn happens if and only if Γ is a product of finite and affine Coxeter
groups, that is, iff the group is amenable.
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