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On the non-extendibility
of strongness and supercompactness
through strong compactness

by

Arthur W. Apter (New York, NY)

Abstract. If k is either supercompact or strong and § < k is «a strong or a super-
compact for every a < k, then it is known § must be (fully) strong or supercompact. We
show this is not necessarily the case if k is strongly compact.

1. Introduction and preliminaries. A well-known result of Magidor
[16] states that if k is supercompact and § < k is «a supercompact for all
a < K, then ¢ is supercompact. Indeed, the following is true.

LeEmMA 1.1 (Folklore). If k is a strong cardinal and § < k is either «
strong, a strongly compact, or « supercompact for every a < k, then § must
be (fully) strong, strongly compact, or supercompact.

Proof. Let A > k be a cardinal so that A = 3, and let v = J,()\). Take
j:V — M as an elementary embedding witnessing the v strongness of «.
Since V E “§ is either « strong, a strongly compact, or o supercompact
for every @ < k” and 0 < k, M FE “j(6) = ¢ is either « strong, a strongly
compact, or a supercompact for every o < j(k)”. In particular, because
J(k) >~y > X\ M E “§ is either A strong, A strongly compact, or A super-
compact”. As V, C M, V F “J is either A strong, A strongly compact, or A
supercompact” as well. Since A may be chosen arbitrarily large, this proves
Lemma 1.1. =

We observe that Lemma 1.1 has a local version. Specifically, if  is mea-
surable and § < k is either « strong, a strongly compact, or a supercompact
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for a < K, then § is either k + 1 strong, x strongly compact, or k super-
compact. The proof is essentially the same as the one given above, with
J replaced by an elementary embedding witnessing «’s measurability, and
the observation that the s closure of M with respect to V is enough to
ensure that ¢ is either x + 1 strong, « strongly compact, or x supercompact
inV.

Key to the proof of Lemma 1.1 is the fact that the inner model M
contains a large chunk of the universe V', something which will be true if
K is either supercompact or, more weakly, strong. It is not necessarily the
case, however, that if x is only strongly compact, then there is an elementary
embedding witnessing any degree of strong compactness into an inner model
M containing any more of V' than V. ;. Thus, we can ask the following
question: If x is a non-supercompact strongly compact cardinal and § < k
is either a supercompact or « strong for every a < k, then must ¢ be either
(fully) supercompact or strong? Note that by a theorem of Di Prisco [7], the
answer to the analogue of this question if § is a strongly compact for every
a < K is yes.

The purpose of this paper is to show that the answer to the above ques-
tion is no. Specifically, we prove the following two theorems.

THEOREM 1. Suppose V E “ZFC + k1 < ko are supercompact”. There
is then a partial ordering P € V so that VF E “ZFC + ko is strongly
compact but not supercompact + k1 is a supercompact for every a < kg +
K1 18 not supercompact”.

THEOREM 2. Suppose V E “ZFC + & is supercompact”. There is then
a partial ordering € V and a strong cardinal § < k so that V¥ E “ZFC +
K 1s strongly compact but not supercompact + § is o strong for every a <k +
6§ is not strong”.

Before giving the proofs of Theorems 1 and 2, we briefly mention some
preliminary information. Essentially, our notation and terminology are stan-
dard, and when this is not the case, this will be clearly noted. For a < (8
ordinals, [a, 5], [a, B), (o, 5], and («a, B) are as in standard interval notation.

When forcing, ¢ > p will mean that g is stronger than p. If G is V-generic
over P, we will use both V[G] and V¥ to indicate the universe obtained by
forcing with P. If = € V[G], then & will be a term in V' for z. We may, from
time to time, confuse terms with the sets they denote and write x when we
actually mean &, especially when x is some variant of the generic set G, or
x is in the ground model V.

If x is a cardinal and PP is a partial ordering, P is k-directed closed if
for every cardinal 6 < k and every directed set (p, : o < §) of elements
of P (where (po : a < §) is directed if any two elements p, and p, have
a common upper bound of the form p,) there is an upper bound p € P.
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P is k-strategically closed if in the two-person game in which the players
construct an increasing sequence (p, : a < k), where player I plays odd
stages and player II plays even and limit stages (choosing the trivial condi-
tion at stage 0), player II has a strategy which ensures the game can always
be continued. Note that if P is x-strategically closed and f : kK — V is a
function in V¥, then f € V. P is <k-strategically closed if in the two-person
game in which the players construct an increasing sequence (p, : @ < k),
where player I plays odd stages and player II plays even and limit stages
(again choosing the trivial condition at stage 0), player II has a strategy
which ensures the game can always be continued.

Suppose £ < X are regular cardinals. A partial ordering P y that will
be used in this paper is the partial ordering for adding a non-reflecting sta-
tionary set of ordinals of cofinality x to A. Specifically, P, x = {s: s is a
bounded subset of A consisting of ordinals of cofinality s so that for every
a < A, s N« is non-stationary in a}, ordered by end-extension. Two things
which can be shown (see [5] or [2]) are that P, ) is J-strategically closed
for every 0 < A, and if G is V-generic over P, », in V[G], a non-reflecting
stationary set S = S[G] = U{S, : p € G} C X of ordinals of cofinality « has
been introduced. It is also virtually immediate that [P, y is k-directed closed.

We mention that we are assuming familiarity with the large cardinal no-
tions of measurability, strongness, strong compactness, and supercompact-
ness. Interested readers may consult [12] for further details. Also, unlike [12],
we will say that the cardinal s is A strong for A > « if thereis j: V — M
an elementary embedding having critical point x so that j(x) > |Vi| and
Vi € M. As always, k is strong if  is A strong for every A > k.

2. The proof of Theorem 1. Let V F “ZFC + k1 < ko are super-
compact”. Without loss of generality, by first using an iteration of Laver’s
partial ordering of [13] (such as the one given in [1]) to force x; for i = 1,2
to have its supercompactness indestructible under k;-directed closed forc-
ing, then employing an Easton support iteration to add to every measurable
cardinal § > ko a non-reflecting stationary set of ordinals of cofinality ko,
and then forcing with a ki-directed closed partial ordering to ensure GCH
holds at and above k1, we may also assume that V F “No cardinal A > ko
is measurable 4+ k1’s supercompactness is indestructible under xi-directed
closed forcing + 2° = 6 for every cardinal § > #1”. The fact that no cardi-
nal above kg is measurable in V follows from the Gap Forcing Theorem of
[10] and [11].

Take now Py as the Easton support iteration of length xo which adds,
to every measurable cardinal § € (k1,k2), a non-reflecting stationary set
of ordinals of cofinality x;. Py can be defined so as to have cardinality ko.
Since V E “No cardinal A > ko is measurable + 2% = §+ for every cardinal



0 > k1", a theorem of Magidor (whose proof is given in Theorem 2 of [3]) tells
us that Vo E “There are no measurable cardinals in the interval (x1, x2)
+ K9 is strongly compact”. It then immediately follows that VE “Kkg is not
22 = ﬁ; supercompact”. Further, since Py, by its definition, is kq-directed
closed, VFo £ “k; is supercompact”.

Work in V) = VP’ For the remainder of this paper, for o« an arbitrary
ordinal, let A, be the least measurable cardinal above «. Since Vi E “kq is
supercompact + Ko is the least measurable cardinal above 17, by reflection,
A ={d < Ky : 6 is As supercompact} is unbounded in x1. Therefore, we may
define Py in Vj as the Easton support iteration of length k1 which first adds a
Cohen subset of w and then adds, to every § € A, a non-reflecting stationary
set, of ordinals of cofinality w. In analogy to the definition of Py, P; can be
defined so as to have cardinality x.

1 .
LEMMA 2.1. Vi =V E “ is a supercompact for every a < ko ”.

Proof. Let n < ko be an arbitrary inaccessible cardinal in the interval
(K1,kK2), and let j : Vo — M be an elementary embedding witnessing the
1 supercompactness of k1 so that M F “k; is not i supercompact”. Since
1 is below the least measurable cardinal above k1, M FE “k; is not A,
supercompact”. This means j(P;) = P; * Q, where Q is a term for a partial
ordering that does not add a non-reflecting stationary set of ordinals of
cofinality w to k1, and the least M-cardinal above x; to which Q is forced
to add a non-reflecting stationary set of ordinals of cofinality w must also
be above 7.

Let Gog be Vj-generic over Py, and let H be Vj[Gpl-generic over Q.
Standard arguments show that M[Go] remains 1 closed with respect to
Vo[Go]. Further, j7Gog C G * H. This means that in Vy[Go|[H], j lifts to
J : Vo[Go] — M[Gy|[H]. By its definition, the closure properties of M[Gy],
and the last sentence of the preceding paragraph, H is Vy|[Go|-generic over
a partial ordering which is n-strategically closed in both V4[Gp] and M[Go].
Therefore, Vp[Go] E “k1 is a supercompact for every a < n”. Since n was
chosen as an arbitrary inaccessible cardinal in the interval (k1,k2), this
proves Lemma 2.1. m

We remark that by the observation made immediately following the proof
of Lemma 1.1, Lemma 2.1 actually shows that s is ko supercompact in Vj.

LEMMA 2.2. V] = VO]P>1 E “k1 is not 272 = /ﬁ; supercompact”.

Proof. We begin by noting that V; = VOHDl F “kg is the least measurable
cardinal above k1 4+ kg is strongly compact but is not 272 = /@;r supercom-
pact”. This follows by the fact x5 is both the least measurable and least
strongly compact cardinal above k1 in Vj, the fact that P; has cardinality

k1 < K2 in Vp, and the Lévy—Solovay results [14].
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Work in V4. For any «, write P; = Qg Q1 , where Qg adds non-reflecting
stationary sets of ordinals of cofinality w to cardinals at most o, and Q is a
term for the rest of ;. Since |Qp| < 2% < A4, the results of [14] and the fact
IFQ, “Qy is Ao-strategically closed” together imply that ()\a)v‘) = (Aa)vl.

Write P; = P/« where |P'| = w and IFps “pr g N;-strategically closed”.
In Hamkins’ terminology of [9], [10], and [11], P; “admits a gap at X;”, so
by the Gap Forcing Theorem of [10] and [11], any cardinal 6 which is As
supercompact in V7 had to have been As supercompact in Vj. Since by its
definition, forcing with P; over Vy destroys the weak compactness of any
cardinal 0 < k1 that was A\s; supercompact in Vj, the preceding sentence
implies that V; = V§ " E “No cardinal § < K1 is As supercompact”. This
immediately implies that V3 F “k; is not 272 = n; supercompact”, since
otherwise, by choosing k£ : V1 — N as an elementary embedding witnessing
the 2”2 supercompactness of k1 and reflecting the fact that N F “k; is ko
supercompact and ko is the least measurable cardinal above k1", we would
infer that {§ < k1 :  is Ay supercompact} is unbounded in k1 in V;. This
proves Lemma 2.2. =

By defining P = Pq * P;, Lemmas 2.1 and 2.2 complete the proof of
Theorem 1. m

We conclude Section 2 with some observations. It is possible to change
the definition of P; so as to ensure 1 will satisfy a greater degree of super-
compactness in V1. If, e.g., we modify the definition of P; so that we add
non-reflecting stationary sets of ordinals of cofinality w to every cardinal
0 < k1 which is J5(As) supercompact (and by the supercompactness of 1,
there are unboundedly in k; many such cardinals), then in Vi, k1 will be
Ty, (k2) supercompact but not 203 (w215 = 93x1(w2) — (2, (k)™ super-
compact. However, due to the restrictions on the proof of Theorem 2 of [3],
we need to know that V E “No cardinal A > k9 is measurable”. No such
restrictions, however, are required in the proof of Theorem 2 of this paper,
which we give below.

3. The proof of Theorem 2. Let V E “ZFC + k is supercompact”.
By Lemma 2.1 of [4] and the succeeding remark, we know that {§ < k : ¢
is a strong cardinal} is unbounded in k. Without loss of generality, by first
forcing GCH, then choosing a strong cardinal é < x, and then forcing with
Gitik and Shelah’s indestructibility partial ordering of [8] (which can be
defined so as to have cardinality §), we may further assume that V E“GCH
holds for cardinals at and above § + § is a strong cardinal whose strongness
is indestructible under forcing with an iteration of Prikry forcing as defined
by Magidor in [15] which adds Prikry sequences to cardinals above 6”.



Take now Py as Magidor’s iterated Prikry forcing of [15] which adds, to
every measurable cardinal v € (§, k), a Prikry sequence. By the indestruc-
tibility properties of V and Magidor’s work of [15], VFo =V, E“GCH holds
for cardinals at and above d + § is a strong cardinal + « is strongly compact
+ There are no measurable cardinals in the interval (J, x)”. As in the proof
of Theorem 1, Vy F “k is not 2* = kT supercompact”.

Work in V4. Since V, F “§ is strong + « is the least measurable cardinal
above 0”7, by reflection, B = {y < ¢ : v is A, strong} is unbounded in 4.
Therefore, in analogy to the proof of Theorem 1, we may define P; in V} as
the Easton support iteration which begins by adding a Cohen subset of w
and then adds, to every v € B, a non-reflecting stationary set of ordinals
of cofinality w. As in the proof of Theorem 1, P; can be defined so as to
have cardinality 0. By the preceding paragraph, this has as an immediate
consequence that in V7, GCH holds for cardinals at and above .

LEMMA 3.1. VOIP1 = V1 E 9 is a strong for every a < k7.

Proof. The proof is very similar to the proof of Lemma 2.5 of [4]. We
use the notation and terminology from the introductory section of [6]. Fix
1n > §, 7 < Kk an inaccessible cardinal which is not also a Mahlo cardinal. Let
7 : Vo — M be an elementary embedding witnessing the 1 + 1 strongness
of § generated by a (d,n + 1)-extender of width § so that M E “0 is not
1+ 1 strong”, and let ¢ : Vo — N be the elementary embedding witnessing
the measurability of 4 generated by the normal ultrafilter Y = {x C §: 0 €
j(x)}. We then have the commutative diagram

Vo ] M

N

where j = k o ¢ and the critical point of k is above J.

Since 7 is below the least measurable cardinal above § and 7 is not a
Mahlo cardinal, M F “There are no measurable cardinals in the interval
(6,m] + ¢ is not As strong”. Define o to be the least cardinal in M above
0 which is A\, strong. By the next to last sentence, we can now infer that
0> 1.

Define f : 6 — ¢ as f(a) = The least inaccessible cardinal above A.
By our choice of n and the preceding paragraph, § < n < j(f)(9) < o.
Observe that p is also the least M-cardinal above § to which j(IP1) adds a
non-reflecting stationary set of ordinals of cofinality w.

Note now that M ={j(g)(a) : a € [p*]<*, dom(g)=[0]""!, ¢ : [5]'" =V}
= {k(i(9))(a) : a € [1]™°, dom(g) = [3]"), g : [#]""| — Vb}. By defining y =
i(f)(9), we have k(y) = k(i(f)(d)) = j(f)(d) > n*. This means j(g)(a) =
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K(i(9)(@) = k(i(9)I0]")(a), ie, M = {k(R)(a) : a € [17] h € N,
dom(h) = Mla\’ h: [’y}‘al — N}. By elementariness, we must have N F “§
is not As strong and 6 < v = i(f)(d) < 6o = The least cardinal ¢ in N
above § which is A¢ strong = The least cardinal to which i(P;) — ¢ adds a
non-reflecting stationary set of ordinals of cofinality w”, since M E “k(0) = §
is not A\s strong and k(0) = d < k(y) = k(i(f)(9)) = 7(f)(0) < k(dp) = 0".
Therefore, £ can be assumed to be generated by an N-extender of width
v e (5, 50) ) )

Write i(P1) = P; *Qg, where Qq is a term for the portion of i(P;) adding
non-reflecting stationary sets of ordinals of cofinality w to N-cardinals in the
interval [8,4(d)). Since N E “§ is not A5 strong”, Qy is actually a term for a
partial ordering adding non-reflecting stationary sets of ordinals of cofinality
w to N-cardinals in the interval (d,i(9)), or more precisely, to N-cardinals
in the interval [dg,i(d)).

Let Gy be Vy-generic over IP1. By the definition of P; and the fact GCH
holds in Vp for cardinals at and above §, N[Go] F “|Qo| = i(0) + [2%| =
i(6T) = (¢(6))"”. As N is an ultrapower via a normal measure over ¢, this
means Vo E “|(i(6))"] = 617, so we can let (D, : o < 6T) € Vy[Go] be
an enumeration of the dense open subsets of Qg present in N[Gy]. For the
purposes of the argument to be given below, we also assume that (D, :
a < &%) has been defined so that for every dense open subset D C Qo
found in N[Gy], for some odd ordinal § + 1, D = Dgy;. Further, since
Vo E “|P1| = §7, standard arguments show that N[Gg] remains 0 closed with
respect to Vo[Go]. Therefore, as N[Go] F “Qq is <dT-strategically closed”,
this fact is true in Vj[Go] as well.

We can now construct an N|[Gpl-generic object, G7, in Vj[Go| as follows.
Players I and II play a game of length §*. The initial pair of moves is gener-
ated by player II choosing the trivial condition gy and player I responding by
choosing ¢; € D;y. Then, at an even stage o+ 2, player II picks q4+2 > qa+1
by using some fixed strategy S, where g,+1 was chosen by player I to be so
that got1 € Dot1 and ga41 > ¢ If o is a limit ordinal, player IT uses S to
pick g, extending each gg for 5 < a. By the <d"-strategic closure of Q in
both N[Gy] and V[Go], the sequence (g, : @ < 67) as just described exists.
By construction, G5 = {p € Qp : Ja < 6 [go > p]} is our N|[G]-generic
object over Qq. Since "Gy C G * G5, i lifts to i : Vo[Go] — N|[Go][G7], and
since k"Gy = Go and k(6) = 0, k lifts to k : N[Go] — M[Gy]. By Fact 3 of
Section 1.2.2 of [6], k : N[Go] — M[Gy] can also be assumed to be generated
by an extender of width v € (9, do).

In analogy to the above, write j(P;) = Py * Q;. By the last sentence of
the preceding paragraph and the fact Jp is the least N-cardinal to which
Qy is forced to add a non-reflecting stationary set of ordinals of cofinality
w, we can use Fact 2 of Section 1.2.2 of [6] to infer that H = {p € Q :



dg € K'GY [q > p|} is M[Go]-generic over k(Qg) = Qq. Thus, k lifts to
k: N[Go|[GF] — M[Gy|[H], and we get the new commutative diagram
Vo[Go) : MGy [H]
N[Go][G1]

Since ¢ > 7, the M-cardinals to which Q1 is forced to add non-reflecting
stationary sets of ordinals of cofinality w lie in the interval (n™, j(d)). There-
fore, as V41 € M, V,11[Go] € M[Gy], and as Q; adds non-reflecting sta-
tionary sets of ordinals of cofinality w to certain inaccessible M-cardinals in
the interval (n™,j(9)), V;+1[Go] is the set of all sets of rank below 7 + 1 in
M|[Gy][H]. Hence, j is an n+ 1 strong embedding. Since 7 was an arbitrary
non-Mahlo inaccessible cardinal below &, this proves Lemma 3.1. =

We remark that by the observation made immediately following the proof
of Lemma 1.1, Lemma 3.1 actually shows that § is k + 1 strong in V.

LEMMA 3.2. Vi E % is not k + 2 strong”.

Proof. We argue in analogy to the proof of Lemma 2.2. We again begin
by noting that V; = VOP1 F “k is the least measurable cardinal above § +
k is strongly compact but is not 2% = k™ supercompact”. This follows by
the fact x is both the least measurable and least strongly compact cardinal
above 0 in Vj, the fact that IP; has cardinality 6 < k in Vj, and the results
of [14].

Work in Vj. As in the proof of Lemma 2.2, for any ordinal «, (A,

o
(Aa)"*. Also, we can once more write P; = P’ « P, where [P’| = w and
IFps “pr s Ni-strategically closed”. As before, P; “admits a gap at N;”, so
by the Gap Forcing Theorem of [10] and [11], any cardinal ¢ which is A¢
strong in V; had to have been ¢ strong in Vj. Since by its definition, forcing
with Py over Vg destroys the weak compactness of any cardinal ¢ < § that
was A¢ strong in Vp, the preceding sentence implies that V; = VO]P)1 F “No
cardinal ¢ < d is A¢ strong”. This immediately implies that V; F “J is not
Kk 4+ 2 strong”, since otherwise, by choosing ¢ : Vi — M™ as an elementary
embedding witnessing the x + 2 strongness of § and reflecting the fact that
M* E “) is k strong and k is the least measurable cardinal above §”, we
would infer that {{ < ¢ : ¢ is A¢ strong} is unbounded in ¢ in V;. This

proves Lemma 3.2. =

By defining P = Pq * P;, Lemmas 3.1 and 3.2 complete the proof of
Theorem 2. =
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We conclude Section 3 and this paper with several observations. First,
as the referee has essentially indicated, if V F “ZFC+ GCH+ § < k are so
that ¢ is strong and « is strongly compact”, then we may force over V' with
the partial ordering P as just defined in order to obtain the conclusions of
Theorem 2. In addition, as before, it is possible to change the definition of Py
so as to ensure § will satisfy a greater degree of strongness in V7. If, e.g., we
change the definition of P; so that we add non-reflecting stationary sets of
ordinals of cofinality w to every cardinal ¢ < ¢ which is 3-(A¢) strong (and
by the strongness of J, there are unboundedly in § many such cardinals),
then in V;, 6 will be Js(k) strong but not Js(k) + 1 strong. Also, since
Magidor’s proof from [15] that iterated Prikry forcing preserves the strong
compactness of k is valid regardless of the large cardinal structure of the
universe above x, unlike Theorem 1, there is no need to do an initial forcing
to ensure that V' F “No cardinal A > x is measurable”.

Finally, we note that under the same hypotheses as in Theorem 1, i.e.,
that V E “ZFC 4 k1 < kg are supercompact”, it is possible to modify the
definition of the partial ordering P of Theorem 1 so that VF E “ZFC + ko
is strongly compact but not supercompact + k1 is a supercompact for every
a < ko + K1 is not supercompact + «; is strong”. To do this, we observe
that Lemma 2.1 of [4] and the succeeding remark actually imply that if
j : V. — M is an elementary embedding witnessing (at least) the 2*~1 su-
percompactness of k1, then M F “k; is a strong cardinal and s; is Ay,
supercompact”, meaning that A = {§ < k1 : ¢ is a strong cardinal and ¢ is
As supercompact} is unbounded in k1. Therefore, if Py is as in the definition
given in the proof of Theorem 1, Vy = Vo, and P; is defined in Vj as the
Easton support iteration of length x; which first adds a Cohen subset of w
and then adds, to every € A, a non-reflecting stationary set of ordinals of
cofinality w, the exact same arguments as before show that V¥ E “ZFC +
Ko is strongly compact but not supercompact + k1 is a supercompact for
every a < k”. If in the proof of Lemma 2.2, we replace the property “J is
As supercompact” with “J is a strong cardinal and J is As supercompact”,
then the same proof as given in Lemma 2.2 remains valid and shows V¥ = “k;
is not 22 = k3 supercompact”. Further, if we choose A\ > k5 as any cardinal
so that A =X, =3, and j : Vj — M as an elementary embedding witness-
ing the A strongness of k1 so that M F “k; is not A strong”, then either the
argument given in the proof of Lemma 2.5 of [4] or the one in the proof of
Lemma 3.1 shows that VOIP1 = VP E “k; is A strong”. Since A may be chosen
arbitrarily large, this means that V¥ E “k; is strong”. And, in analogy to
what was mentioned in the concluding remarks of Section 2, it is possible to
change the definition of P; to ensure that x; witnesses a greater degree of su-
percompactness in V', assuming that the cardinals to which non-reflecting
stationary sets of ordinals of cofinality w are added are also strong.
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