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On the non-extendibility
of strongness and supercompactness

through strong compactness

by

Arthur W. Apter (New York, NY)

Abstract. If κ is either supercompact or strong and δ < κ is α strong or α super-
compact for every α < κ, then it is known δ must be (fully) strong or supercompact. We
show this is not necessarily the case if κ is strongly compact.

1. Introduction and preliminaries. A well-known result of Magidor
[16] states that if κ is supercompact and δ < κ is α supercompact for all
α < κ, then δ is supercompact. Indeed, the following is true.

Lemma 1.1 (Folklore). If κ is a strong cardinal and δ < κ is either α
strong , α strongly compact , or α supercompact for every α < κ, then δ must
be (fully) strong , strongly compact , or supercompact.

Proof. Let λ > κ be a cardinal so that λ = iλ, and let γ = iω(λ). Take
j : V → M as an elementary embedding witnessing the γ strongness of κ.
Since V � “δ is either α strong, α strongly compact, or α supercompact
for every α < κ” and δ < κ, M � “j(δ) = δ is either α strong, α strongly
compact, or α supercompact for every α < j(κ)”. In particular, because
j(κ) > γ > λ, M � “δ is either λ strong, λ strongly compact, or λ super-
compact”. As Vγ ⊆ M , V � “δ is either λ strong, λ strongly compact, or λ
supercompact” as well. Since λ may be chosen arbitrarily large, this proves
Lemma 1.1.

We observe that Lemma 1.1 has a local version. Specifically, if κ is mea-
surable and δ < κ is either α strong, α strongly compact, or α supercompact
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for α < κ, then δ is either κ + 1 strong, κ strongly compact, or κ super-
compact. The proof is essentially the same as the one given above, with
j replaced by an elementary embedding witnessing κ’s measurability, and
the observation that the κ closure of M with respect to V is enough to
ensure that δ is either κ+ 1 strong, κ strongly compact, or κ supercompact
in V .

Key to the proof of Lemma 1.1 is the fact that the inner model M
contains a large chunk of the universe V , something which will be true if
κ is either supercompact or, more weakly, strong. It is not necessarily the
case, however, that if κ is only strongly compact, then there is an elementary
embedding witnessing any degree of strong compactness into an inner model
M containing any more of V than Vκ+1. Thus, we can ask the following
question: If κ is a non-supercompact strongly compact cardinal and δ < κ
is either α supercompact or α strong for every α < κ, then must δ be either
(fully) supercompact or strong? Note that by a theorem of Di Prisco [7], the
answer to the analogue of this question if δ is α strongly compact for every
α < κ is yes.

The purpose of this paper is to show that the answer to the above ques-
tion is no. Specifically, we prove the following two theorems.

Theorem 1. Suppose V � “ZFC + κ1 < κ2 are supercompact”. There
is then a partial ordering P ∈ V so that V P � “ZFC + κ2 is strongly
compact but not supercompact + κ1 is α supercompact for every α < κ2 +
κ1 is not supercompact”.

Theorem 2. Suppose V � “ZFC + κ is supercompact”. There is then
a partial ordering P ∈ V and a strong cardinal δ < κ so that V P � “ZFC +
κ is strongly compact but not supercompact + δ is α strong for every α<κ +
δ is not strong”.

Before giving the proofs of Theorems 1 and 2, we briefly mention some
preliminary information. Essentially, our notation and terminology are stan-
dard, and when this is not the case, this will be clearly noted. For α < β
ordinals, [α, β], [α, β), (α, β], and (α, β) are as in standard interval notation.

When forcing, q ≥ p will mean that q is stronger than p. If G is V -generic
over P, we will use both V [G] and V P to indicate the universe obtained by
forcing with P. If x ∈ V [G], then ẋ will be a term in V for x. We may, from
time to time, confuse terms with the sets they denote and write x when we
actually mean ẋ, especially when x is some variant of the generic set G, or
x is in the ground model V .

If κ is a cardinal and P is a partial ordering, P is κ-directed closed if
for every cardinal δ < κ and every directed set 〈pα : α < δ〉 of elements
of P (where 〈pα : α < δ〉 is directed if any two elements p% and pν have
a common upper bound of the form pσ) there is an upper bound p ∈ P.
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P is κ-strategically closed if in the two-person game in which the players
construct an increasing sequence 〈pα : α ≤ κ〉, where player I plays odd
stages and player II plays even and limit stages (choosing the trivial condi-
tion at stage 0), player II has a strategy which ensures the game can always
be continued. Note that if P is κ-strategically closed and f : κ → V is a
function in V P, then f ∈ V . P is ≺κ-strategically closed if in the two-person
game in which the players construct an increasing sequence 〈pα : α < κ〉,
where player I plays odd stages and player II plays even and limit stages
(again choosing the trivial condition at stage 0), player II has a strategy
which ensures the game can always be continued.

Suppose κ < λ are regular cardinals. A partial ordering Pκ,λ that will
be used in this paper is the partial ordering for adding a non-reflecting sta-
tionary set of ordinals of cofinality κ to λ. Specifically, Pκ,λ = {s : s is a
bounded subset of λ consisting of ordinals of cofinality κ so that for every
α < λ, s ∩ α is non-stationary in α}, ordered by end-extension. Two things
which can be shown (see [5] or [2]) are that Pκ,λ is δ-strategically closed
for every δ < λ, and if G is V -generic over Pκ,λ, in V [G], a non-reflecting
stationary set S = S[G] =

⋃{Sp : p ∈ G} ⊆ λ of ordinals of cofinality κ has
been introduced. It is also virtually immediate that Pκ,λ is κ-directed closed.

We mention that we are assuming familiarity with the large cardinal no-
tions of measurability, strongness, strong compactness, and supercompact-
ness. Interested readers may consult [12] for further details. Also, unlike [12],
we will say that the cardinal κ is λ strong for λ > κ if there is j : V → M
an elementary embedding having critical point κ so that j(κ) > |Vλ| and
Vλ ⊆M . As always, κ is strong if κ is λ strong for every λ > κ.

2. The proof of Theorem 1. Let V � “ ZFC + κ1 < κ2 are super-
compact”. Without loss of generality, by first using an iteration of Laver’s
partial ordering of [13] (such as the one given in [1]) to force κi for i = 1, 2
to have its supercompactness indestructible under κi-directed closed forc-
ing, then employing an Easton support iteration to add to every measurable
cardinal δ > κ2 a non-reflecting stationary set of ordinals of cofinality κ2,
and then forcing with a κ1-directed closed partial ordering to ensure GCH
holds at and above κ1, we may also assume that V � “No cardinal λ > κ2

is measurable + κ1’s supercompactness is indestructible under κ1-directed
closed forcing + 2δ = δ+ for every cardinal δ ≥ κ1”. The fact that no cardi-
nal above κ2 is measurable in V follows from the Gap Forcing Theorem of
[10] and [11].

Take now P0 as the Easton support iteration of length κ2 which adds,
to every measurable cardinal δ ∈ (κ1, κ2), a non-reflecting stationary set
of ordinals of cofinality κ1. P0 can be defined so as to have cardinality κ2.
Since V � “No cardinal λ > κ2 is measurable + 2δ = δ+ for every cardinal
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δ ≥ κ1”, a theorem of Magidor (whose proof is given in Theorem 2 of [3]) tells
us that V P0 � “There are no measurable cardinals in the interval (κ1, κ2)
+κ2 is strongly compact”. It then immediately follows that V P

0 � “κ2 is not
2κ2 = κ+

2 supercompact”. Further, since P0, by its definition, is κ1-directed
closed, V P0 � “κ1 is supercompact”.

Work in V0 = V P
0
. For the remainder of this paper, for α an arbitrary

ordinal, let λα be the least measurable cardinal above α. Since V0 � “κ1 is
supercompact + κ2 is the least measurable cardinal above κ1”, by reflection,
A = {δ < κ1 : δ is λδ supercompact} is unbounded in κ1. Therefore, we may
define P1 in V0 as the Easton support iteration of length κ1 which first adds a
Cohen subset of ω and then adds, to every δ ∈ A, a non-reflecting stationary
set of ordinals of cofinality ω. In analogy to the definition of P0, P1 can be
defined so as to have cardinality κ1.

Lemma 2.1. V1 = V P
1

0 � “κ1 is α supercompact for every α < κ2”.

Proof. Let η < κ2 be an arbitrary inaccessible cardinal in the interval
(κ1, κ2), and let j : V0 → M be an elementary embedding witnessing the
η supercompactness of κ1 so that M � “κ1 is not η supercompact”. Since
η is below the least measurable cardinal above κ1, M � “κ1 is not λκ1

supercompact”. This means j(P1) = P1 ∗ Q̇, where Q̇ is a term for a partial
ordering that does not add a non-reflecting stationary set of ordinals of
cofinality ω to κ1, and the least M -cardinal above κ1 to which Q̇ is forced
to add a non-reflecting stationary set of ordinals of cofinality ω must also
be above η.

Let G0 be V0-generic over P1, and let H be V0[G0]-generic over Q.
Standard arguments show that M [G0] remains η closed with respect to
V0[G0]. Further, j”G0 ⊆ G0 ∗ H. This means that in V0[G0][H], j lifts to
j : V0[G0] → M [G0][H]. By its definition, the closure properties of M [G0],
and the last sentence of the preceding paragraph, H is V0[G0]-generic over
a partial ordering which is η-strategically closed in both V0[G0] and M [G0].
Therefore, V0[G0] � “κ1 is α supercompact for every α < η”. Since η was
chosen as an arbitrary inaccessible cardinal in the interval (κ1, κ2), this
proves Lemma 2.1.

We remark that by the observation made immediately following the proof
of Lemma 1.1, Lemma 2.1 actually shows that κ1 is κ2 supercompact in V1.

Lemma 2.2. V1 = V P
1

0 � “κ1 is not 2κ2 = κ+
2 supercompact”.

Proof. We begin by noting that V1 = V P
1

0 � “κ2 is the least measurable
cardinal above κ1 + κ2 is strongly compact but is not 2κ2 = κ+

2 supercom-
pact”. This follows by the fact κ2 is both the least measurable and least
strongly compact cardinal above κ1 in V0, the fact that P1 has cardinality
κ1 < κ2 in V0, and the Lévy–Solovay results [14].
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Work in V0. For any α, write P1 = Q0 ∗Q̇1, where Q0 adds non-reflecting
stationary sets of ordinals of cofinality ω to cardinals at most α, and Q̇1 is a
term for the rest of P1. Since |Q0| ≤ 2α < λα, the results of [14] and the fact

Q0 “Q̇1 is λα-strategically closed” together imply that (λα)V0 = (λα)V1 .

Write P1 = P′∗Ṗ′′, where |P′| = ω and 
P′ “Ṗ′′ is ℵ1-strategically closed”.
In Hamkins’ terminology of [9], [10], and [11], P1 “admits a gap at ℵ1”, so
by the Gap Forcing Theorem of [10] and [11], any cardinal δ which is λδ
supercompact in V1 had to have been λδ supercompact in V0. Since by its
definition, forcing with P1 over V0 destroys the weak compactness of any
cardinal δ < κ1 that was λδ supercompact in V0, the preceding sentence
implies that V1 = V P

1

0 � “No cardinal δ < κ1 is λδ supercompact”. This
immediately implies that V1 � “κ1 is not 2κ2 = κ+

2 supercompact”, since
otherwise, by choosing k : V1 → N as an elementary embedding witnessing
the 2κ2 supercompactness of κ1 and reflecting the fact that N � “κ1 is κ2

supercompact and κ2 is the least measurable cardinal above κ1”, we would
infer that {δ < κ1 : δ is λδ supercompact} is unbounded in κ1 in V1. This
proves Lemma 2.2.

By defining P = P0 ∗ Ṗ1, Lemmas 2.1 and 2.2 complete the proof of
Theorem 1.

We conclude Section 2 with some observations. It is possible to change
the definition of P1 so as to ensure κ1 will satisfy a greater degree of super-
compactness in V1. If, e.g., we modify the definition of P1 so that we add
non-reflecting stationary sets of ordinals of cofinality ω to every cardinal
δ < κ1 which is iδ(λδ) supercompact (and by the supercompactness of κ1,
there are unboundedly in κ1 many such cardinals), then in V1, κ1 will be
iκ1(κ2) supercompact but not 2[iκ1 (κ2)]<κ1 = 2iκ1 (κ2) = (iκ1(κ2))+ super-
compact. However, due to the restrictions on the proof of Theorem 2 of [3],
we need to know that V � “No cardinal λ > κ2 is measurable”. No such
restrictions, however, are required in the proof of Theorem 2 of this paper,
which we give below.

3. The proof of Theorem 2. Let V � “ ZFC + κ is supercompact”.
By Lemma 2.1 of [4] and the succeeding remark, we know that {δ < κ : δ
is a strong cardinal} is unbounded in κ. Without loss of generality, by first
forcing GCH, then choosing a strong cardinal δ < κ, and then forcing with
Gitik and Shelah’s indestructibility partial ordering of [8] (which can be
defined so as to have cardinality δ), we may further assume that V �“GCH
holds for cardinals at and above δ + δ is a strong cardinal whose strongness
is indestructible under forcing with an iteration of Prikry forcing as defined
by Magidor in [15] which adds Prikry sequences to cardinals above δ”.
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Take now P0 as Magidor’s iterated Prikry forcing of [15] which adds, to
every measurable cardinal γ ∈ (δ, κ), a Prikry sequence. By the indestruc-
tibility properties of V and Magidor’s work of [15], V P0 = V0 �“GCH holds
for cardinals at and above δ + δ is a strong cardinal + κ is strongly compact
+ There are no measurable cardinals in the interval (δ, κ)”. As in the proof
of Theorem 1, V0 � “κ is not 2κ = κ+ supercompact”.

Work in V0. Since V0 � “δ is strong + κ is the least measurable cardinal
above δ”, by reflection, B = {γ < δ : γ is λγ strong} is unbounded in δ.
Therefore, in analogy to the proof of Theorem 1, we may define P1 in V0 as
the Easton support iteration which begins by adding a Cohen subset of ω
and then adds, to every γ ∈ B, a non-reflecting stationary set of ordinals
of cofinality ω. As in the proof of Theorem 1, P1 can be defined so as to
have cardinality δ. By the preceding paragraph, this has as an immediate
consequence that in V1, GCH holds for cardinals at and above δ.

Lemma 3.1. V P1
0 = V1 � “δ is α strong for every α < κ”.

Proof. The proof is very similar to the proof of Lemma 2.5 of [4]. We
use the notation and terminology from the introductory section of [6]. Fix
η > δ, η < κ an inaccessible cardinal which is not also a Mahlo cardinal. Let
j : V0 → M be an elementary embedding witnessing the η + 1 strongness
of δ generated by a (δ, η + 1)-extender of width δ so that M � “δ is not
η + 1 strong”, and let i : V0 → N be the elementary embedding witnessing
the measurability of δ generated by the normal ultrafilter U = {x ⊆ δ : δ ∈
j(x)}. We then have the commutative diagram

V0 M

N

j //

i

�
�

�
�

�
�   

k�
�

�
�

�
� >>

where j = k ◦ i and the critical point of k is above δ.
Since η is below the least measurable cardinal above δ and η is not a

Mahlo cardinal, M � “There are no measurable cardinals in the interval
(δ, η] + δ is not λδ strong”. Define % to be the least cardinal in M above
δ which is λ% strong. By the next to last sentence, we can now infer that
% > η.

Define f : δ → δ as f(α) = The least inaccessible cardinal above λα.
By our choice of η and the preceding paragraph, δ < η < j(f)(δ) < %.
Observe that % is also the least M -cardinal above δ to which j(P1) adds a
non-reflecting stationary set of ordinals of cofinality ω.

Note now that M={j(g)(a) : a ∈ [η+]<ω, dom(g)=[δ]|a|, g : [δ]|a|→V0}
= {k(i(g))(a) : a ∈ [η+]<ω, dom(g) = [δ]|a|, g : [δ]|a| → V0}. By defining γ =
i(f)(δ), we have k(γ) = k(i(f)(δ)) = j(f)(δ) > η+. This means j(g)(a) =
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k(i(g))(a) = k(i(g)�[γ]|a|)(a), i.e., M = {k(h)(a) : a ∈ [η+]<ω, h ∈ N ,
dom(h) = [γ]|a|, h : [γ]|a| → N}. By elementariness, we must have N � “δ
is not λδ strong and δ < γ = i(f)(δ) < δ0 = The least cardinal ζ in N
above δ which is λζ strong = The least cardinal to which i(P1) − δ adds a
non-reflecting stationary set of ordinals of cofinality ω”, since M � “k(δ) = δ
is not λδ strong and k(δ) = δ < k(γ) = k(i(f)(δ)) = j(f)(δ) < k(δ0) = %”.
Therefore, k can be assumed to be generated by an N -extender of width
γ ∈ (δ, δ0).

Write i(P1) = P1 ∗Q̇0, where Q̇0 is a term for the portion of i(P1) adding
non-reflecting stationary sets of ordinals of cofinality ω to N -cardinals in the
interval [δ, i(δ)). Since N � “δ is not λδ strong”, Q̇0 is actually a term for a
partial ordering adding non-reflecting stationary sets of ordinals of cofinality
ω to N -cardinals in the interval (δ, i(δ)), or more precisely, to N -cardinals
in the interval [δ0, i(δ)).

Let G0 be V0-generic over P1. By the definition of P1 and the fact GCH
holds in V0 for cardinals at and above δ, N [G0] � “|Q0| = i(δ) + |2Q0 | =
i(δ+) = (i(δ))+”. As N is an ultrapower via a normal measure over δ, this
means V0 � “|(i(δ))+| = δ+”, so we can let 〈Dα : α < δ+〉 ∈ V0[G0] be
an enumeration of the dense open subsets of Q0 present in N [G0]. For the
purposes of the argument to be given below, we also assume that 〈Dα :
α < δ+〉 has been defined so that for every dense open subset D ⊆ Q0

found in N [G0], for some odd ordinal β + 1, D = Dβ+1. Further, since
V0 � “|P1| = δ”, standard arguments show that N [G0] remains δ closed with
respect to V0[G0]. Therefore, as N [G0] � “Q0 is ≺δ+-strategically closed”,
this fact is true in V0[G0] as well.

We can now construct an N [G0]-generic object, G∗1, in V0[G0] as follows.
Players I and II play a game of length δ+. The initial pair of moves is gener-
ated by player II choosing the trivial condition q0 and player I responding by
choosing q1 ∈ D1. Then, at an even stage α+ 2, player II picks qα+2 ≥ qα+1

by using some fixed strategy S, where qα+1 was chosen by player I to be so
that qα+1 ∈ Dα+1 and qα+1 ≥ qα. If α is a limit ordinal, player II uses S to
pick qα extending each qβ for β < α. By the ≺δ+-strategic closure of Q0 in
both N [G0] and V [G0], the sequence 〈qα : α < δ+〉 as just described exists.
By construction, G∗1 = {p ∈ Q0 : ∃α < δ+ [qα ≥ p]} is our N [G0]-generic
object over Q0. Since i′′G0 ⊆ G0 ∗G∗1, i lifts to i : V0[G0]→ N [G0][G∗1], and
since k′′G0 = G0 and k(δ) = δ, k lifts to k : N [G0]→ M [G0]. By Fact 3 of
Section 1.2.2 of [6], k : N [G0]→M [G0] can also be assumed to be generated
by an extender of width γ ∈ (δ, δ0).

In analogy to the above, write j(P1) = P1 ∗ Q̇1. By the last sentence of
the preceding paragraph and the fact δ0 is the least N -cardinal to which
Q̇0 is forced to add a non-reflecting stationary set of ordinals of cofinality
ω, we can use Fact 2 of Section 1.2.2 of [6] to infer that H = {p ∈ Q1 :
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∃q ∈ k′′G∗1 [q ≥ p]} is M [G0]-generic over k(Q0) = Q1. Thus, k lifts to
k : N [G0][G∗1]→M [G0][H], and we get the new commutative diagram

V0[G0] M [G0][H]

N [G0][G∗1]

j //

i

�
�

�
�

�
�

�
�

� && k
�

�
�

�
�

�
�

�
�

� 88

Since % > η, the M -cardinals to which Q̇1 is forced to add non-reflecting
stationary sets of ordinals of cofinality ω lie in the interval (η+, j(δ)). There-
fore, as Vη+1 ⊆ M , Vη+1[G0] ⊆ M [G0], and as Q1 adds non-reflecting sta-
tionary sets of ordinals of cofinality ω to certain inaccessible M -cardinals in
the interval (η+, j(δ)), Vη+1[G0] is the set of all sets of rank below η + 1 in
M [G0][H]. Hence, j is an η+ 1 strong embedding. Since η was an arbitrary
non-Mahlo inaccessible cardinal below κ, this proves Lemma 3.1.

We remark that by the observation made immediately following the proof
of Lemma 1.1, Lemma 3.1 actually shows that δ is κ+ 1 strong in V1.

Lemma 3.2. V1 � “δ is not κ+ 2 strong”.

Proof. We argue in analogy to the proof of Lemma 2.2. We again begin
by noting that V1 = V P

1

0 � “κ is the least measurable cardinal above δ +
κ is strongly compact but is not 2κ = κ+ supercompact”. This follows by
the fact κ is both the least measurable and least strongly compact cardinal
above δ in V0, the fact that P1 has cardinality δ < κ in V0, and the results
of [14].

Work in V0. As in the proof of Lemma 2.2, for any ordinal α, (λα)V0 =
(λα)V1 . Also, we can once more write P1 = P′ ∗ Ṗ′′, where |P′| = ω and

P′ “Ṗ′′ is ℵ1-strategically closed”. As before, P1 “admits a gap at ℵ1”, so
by the Gap Forcing Theorem of [10] and [11], any cardinal ζ which is λζ
strong in V1 had to have been λζ strong in V0. Since by its definition, forcing
with P1 over V0 destroys the weak compactness of any cardinal ζ < δ that
was λζ strong in V0, the preceding sentence implies that V1 = V P

1

0 � “No
cardinal ζ < δ is λζ strong”. This immediately implies that V1 � “δ is not
κ + 2 strong”, since otherwise, by choosing ` : V1 → M∗ as an elementary
embedding witnessing the κ+ 2 strongness of δ and reflecting the fact that
M∗ � “δ is κ strong and κ is the least measurable cardinal above δ”, we
would infer that {ζ < δ : ζ is λζ strong} is unbounded in δ in V1. This
proves Lemma 3.2.

By defining P = P0 ∗ Ṗ1, Lemmas 3.1 and 3.2 complete the proof of
Theorem 2.
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We conclude Section 3 and this paper with several observations. First,
as the referee has essentially indicated, if V � “ ZFC + GCH + δ < κ are so
that δ is strong and κ is strongly compact”, then we may force over V with
the partial ordering P as just defined in order to obtain the conclusions of
Theorem 2. In addition, as before, it is possible to change the definition of P1

so as to ensure δ will satisfy a greater degree of strongness in V1. If, e.g., we
change the definition of P1 so that we add non-reflecting stationary sets of
ordinals of cofinality ω to every cardinal ζ < δ which is iζ(λζ) strong (and
by the strongness of δ, there are unboundedly in δ many such cardinals),
then in V1, δ will be iδ(κ) strong but not iδ(κ) + 1 strong. Also, since
Magidor’s proof from [15] that iterated Prikry forcing preserves the strong
compactness of κ is valid regardless of the large cardinal structure of the
universe above κ, unlike Theorem 1, there is no need to do an initial forcing
to ensure that V � “No cardinal λ > κ is measurable”.

Finally, we note that under the same hypotheses as in Theorem 1, i.e.,
that V � “ ZFC + κ1 < κ2 are supercompact”, it is possible to modify the
definition of the partial ordering P of Theorem 1 so that V P � “ ZFC + κ2

is strongly compact but not supercompact + κ1 is α supercompact for every
α < κ2 + κ1 is not supercompact + κ1 is strong”. To do this, we observe
that Lemma 2.1 of [4] and the succeeding remark actually imply that if
j : V → M is an elementary embedding witnessing (at least) the 2λκ1 su-
percompactness of κ1, then M � “κ1 is a strong cardinal and κ1 is λκ1

supercompact”, meaning that A = {δ < κ1 : δ is a strong cardinal and δ is
λδ supercompact} is unbounded in κ1. Therefore, if P0 is as in the definition
given in the proof of Theorem 1, V0 = V P0 , and P1 is defined in V0 as the
Easton support iteration of length κ1 which first adds a Cohen subset of ω
and then adds, to every δ ∈ A, a non-reflecting stationary set of ordinals of
cofinality ω, the exact same arguments as before show that V P � “ ZFC +
κ2 is strongly compact but not supercompact + κ1 is α supercompact for
every α < κ2”. If in the proof of Lemma 2.2, we replace the property “δ is
λδ supercompact” with “δ is a strong cardinal and δ is λδ supercompact”,
then the same proof as given in Lemma 2.2 remains valid and shows V P � “κ1

is not 2κ2 = κ+
2 supercompact”. Further, if we choose λ > κ2 as any cardinal

so that λ = ℵλ = iλ and j : V0 →M as an elementary embedding witness-
ing the λ strongness of κ1 so that M � “κ1 is not λ strong”, then either the
argument given in the proof of Lemma 2.5 of [4] or the one in the proof of
Lemma 3.1 shows that V P1

0 = V P � “κ1 is λ strong”. Since λ may be chosen
arbitrarily large, this means that V P � “κ1 is strong”. And, in analogy to
what was mentioned in the concluding remarks of Section 2, it is possible to
change the definition of P1 to ensure that κ1 witnesses a greater degree of su-
percompactness in V P, assuming that the cardinals to which non-reflecting
stationary sets of ordinals of cofinality ω are added are also strong.
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