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Some combinatorics involving ¢-large sets
by

Teresa Bigorajska (Warszawa) and
Henryk Kotlarski (Warszawa and Siedlce)

Abstract. We prove a version of the Ramsey theorem for partitions of (increasing)
n-tuples. We derive this result from a version of Konig’s infinity lemma for £-large trees.
Here £ < g9 and the notion of largeness is in the sense of Hardy hierarchy.

In this paper we prove some Ramsey style results for partitions of n-
tuples of finite sets. This paper is a continuation of [1], and, in fact, in
order to avoid repetitions we assume that the reader has a copy of [1] at
hand.

The ideas are taken from Ketonen—Solovay [3] (they were interested only
in the existence of w-large homogeneous sets, see [3, Theorem 5.6]). We
believe that our approach, using the Hardy hierarchy, is much simpler than
that of [3]. On a more personal level our work was influenced by Z. Rataj-
czyk’s work (see [7, 4, 5, 8]).

The main result of this paper is a version of the Ramsey theorem involv-
ing partitions of increasing n-tuples of elements of large (in the Hardy sense)
sets of natural numbers, where n is an arbitrary fixed positive integer. We
begin with the case n = 2 for clarity.

In both cases (n = 2 and arbitrary n) we have no idea how to get lower
bounds. Ketonen and Solovay work merely with w-large homogeneous sets
and their ideas do not seem to generalize. The only results in this direction
we know about are: the lower bound from [1, p. 36], which concerns the case
n = 1, and the result due to Erdés and Mills (see [2, Theorem 2, p. 171]).
But this last result also concerns only the existence of w-large homogeneous
sets, as in [3].

Let (A, <) be a tree. Thus, A is a finite subset of N, the relation < is a
tree (in the usual set-theoretic sense) on A and x < y implies x < y for all
x,y € A. Trees in this sense were studied in greater depth by G. Mills [6].
Let v < g9. We say that the tree (A, <) is y-large if its underlying set A
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is y-large. We say that the tree (A, <) is y-unbranching if for every a € A,
{a}U{b € A:bis an immediate successor of a} is not y-large. In particular,
an at most binary tree is 3-unbranching in this terminology.

THEOREM 1. If the tree (A, <) is w*-large, w-unbranching and min A
> 1, then it has a branch G such that G \ {max G} is a-large.

In order to prove Theorem 1 we shall prove the following:

LEMMA 2. For every a we have: for every 3> « and every tree (A, <),
if Ais WPt large, the tree (A, <) is w-unbranching, and min A > 1, then
there exists ¢ € A such that {a € A:a < c} is a-large and {a € A: c < a}
is wP-large.

Lemma 2 implies Theorem 1 immediately (just substitute 5 = 0).

Proof of Lemma 2. By induction on a. If « = 0 then ¢ = min A4, i.e., the
root of A satisfies our demand.

Assuming the assertion holds for «, we prove it for a+1. So let 8 > a+1,
hence 3 > a. Let the tree (A, <) be wft®Tllarge. Let a = min A be its
root. Let U; denote its first level, i.e., the set of all immediate successors of a.
By the assumption, {a} UU; is not w-large, so it has at most a elements. It
follows that U; has strictly less than a elements. But A itself is w®T* 1 large,
so wite . g-large. It follows that A\ {a} is w®t® - (a — 1)-large. Moreover,
we have a partition A \ {a} = Uyey, By, where B, = {x € A: u < z}. By
the result of [1], at least one of these parts, say By, is w®t®-large. By the
inductive assumption, there exists ¢ € By, such that {x € By, : © < ¢} is
a-large and {x € By, : ¢ < x} is w’-large. This c satisfies our demand.

Assume the lemma for all @ < A, A limit. Let 3 > A\. Then 8 > {\}(a)
for all @, in particular for @ = min A. The tree (A, <) is w? T @) Jarge, so
by the inductive assumption there exists ¢ € A such that {z € A: 2 < ¢} is
{\}(a)-large and {x € A : ¢ < x} is wP-large; this c satisfies our demand. m

Our next goal is a result analogous to the classical Ramsey theorem for
&-large sets. We adapt one of the usual proofs of the Ramsey theorem.

Let P : [A)?> — c be a partition of (increasing) pairs of elements of A4;
we shall also use the notation [A]? = U;~.B;, where B; = {(z,y) € [4]? :
P(z,y) =1} for ¢ < c¢. This partition determines an ordering < on A so that
(A, <) is a tree. We write A = {ao, ...,as—1} in increasing order and define
a sequence <, of relations on {ao, ..., an}. We let <g= 0, <1= {(ag,a1)}.
Further steps are inductive. We let a; <, 41 a; iff

(i<j<m&a; <maj)V
{i <m&j=m+1&Vt[as <m a; = P(at,a;) = P(ay, a;)]}.

It is well known (and easy to verify) that the relation < & <s—1 is a tree
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on A. Its main property is:
(1) Ve,ye Az <y=(z <y&Vz <z P(z,x2) = P(z,9))].

We claim that every b € A has at most ¢ immediate successors in the tree
(A,<). So let b = a,, € A. Put f(i) = min{j > m : P(am,a;) = i}. This
function is defined on a subset of (< ¢) and every u > b is <-greater than
some f(7). It follows that if min A > ¢ then this tree is w-unbranching. By
Theorem 1 we obtain:

LEMMA 3. If min A > ¢, A is w®-large and [A]? = U;j<.B; is a parti-
tion of [A]? into c parts, then the tree (A, <) has a branch G such that
G\ {max G} is a-large. m

Let G = {a;y,...,a; } be a branch in the tree (A, <). Thus, by (1), we
have

Ve,y € G [x <y = Vz <z P(z,z) = P(z,9)].

It follows that for z € G'\ {max G} the following function, F', is well defined:
F(z) = the unique ¢ such that P(z,z) = i for every x € G with = > z.
The function F' determines a partition of G\ {max G} into ¢ parts. By the
results of [1] we obtain:

LEMMA 4. Under the notation introduced above, if the branch G is such
that G \ {max G} is w® - c-large then there exists an w®-large set which is
homogeneous for F.

Let us sum up:

THEOREM 5. Let A be an w*"-large set and let P : [A]?> — (< c) be
a partition of [A]? into c parts as indicated. Assume also min A > c. Then
there exists an w®-large homogeneous set for this partition.

Proof. If A is w*““large and P is a partition of [4]? into at most c
parts, then there exists a branch G in the tree (A, <) such that G\ {max G}
is w® - c-large, by Lemma 3. By Lemma 4, the partition F' of this branch
(without its maximum) as described above has an w®-large homogeneous set.
It is easy to check that such a set is homogeneous for the original partition P:
this follows from (1). m

Let us use the following notation, taken from Ramsey theory (cf. [2]):

a — (B)7 iff for every a-large set A with min A > ¢ and every
partition P : [A]" — (< ¢) there exists a [-large homogeneous

set.

Theorem 5 may be stated as the following partition property:

(2) W = (W)
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Let us go to a proof of a version of the Ramsey theorem for n-tuples. As
usual at first we work out a lemma about trees. We need one more notation.
Let a < gp. Let

a=w* aqy+... +Fw* -a,
be the Cantor normal form expansion of «, i.e., @« > ag > ... > ag. For
every n € N we define a(-)n = w® - (ag-n) + ... + w* - (as - n).
THEOREM 6. For every a < gq, every n € N\ {0} and every tree (A, <)

which is w™-unbranching and A is w*)"-large and min A > 1, there exists
a branch B in (A, <) such that B\ {max B} is a-large.

Theorem 6 is a corollary to the following lemma.

LEMMA 7. For every a < e, every n € N\ {0}, every 5 < eg and every
tree (A, <) such that

(i) {A}(min A) > «,

(ii) min A > 1,

(iii) the tree (A, <) is w™-unbranching,

(iv) the set A is wPTOn Jarge,
there exists ¢ € A such that {x € A:x < ¢} is a-large and {x € A: c =2 x}
is w’-large.

The proof of Lemma 7 will be inductive on a. In the limit step we shall
need the following lemma.

LEMMA 8. For every a < gg, every 3 < ey and every set A such that
(i) {A}(min A) > LM(a),
(ii) min A > 1,
(iii) A is w® - a-large,
the set A is wPHmnA) - 1grge.

Lemma 8 is a particular case of the following observation.

LEMMA 9. For every a, 3 < €q, every A such that {#}(min A) > LM(«)
and every x € A, if hys., ()], then h,symin )., ()]

Proof of Lemma 9 (by induction on «). If @ = 0 then the conclusion
is obvious. Assume the conclusion holds for «. Pick 8 and A such that
{B}(a) > LM(a + 1) = LM(«), where a = min A. By the results of [3]
(see [1, Lemma 2(iv), (vii)]) w? =, w#H® for every z > a. It follows that

(3) for every z€ A, if hs(z)], then h, 6} (z)] and h 6} (r)<h,s(x)

(see [1, Lemma 4(i)]). Let x € A and hyp.(qq1)(z)]. Then hyps.o(hys(z))].
By (3) and the inductive assumption we get h(s1(a).o (R, 81 (2))], so the
conclusion for a4 1 holds.
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Let A be limit and assume {8}(a) > LM(A). Assume the conclusion
holds for all @ < A. If z € A and hys.\(2)] then hg,s.5y(,) (). But for
every v > LM(A) and every z, {w? - A}(z) = w7{A}(x) (see [1, Lemma 3]).
By the inductive assumption we get the conclusion for A. =

Proof of Lemma 7 (by induction on «). Let a = 0. Let n, 3 and the tree
(A, <) satisfy the hypothesis. Then ¢ = min A has the desired property.

Assume the conclusion holds for a. Let the set A be w?T(@FDOn Jarge.
Let @ = minA > 1, {#}(a) > a + 1 and let the tree (A4,<) be w"-
unbranching. Let Wi = {aop,...,ar} be the set consisting of a and all its
immediate successors in the tree (A, <). Assume also that ag = a. Consider
the partition A = U;<;B;, where By = {ao}, B; = {x € A : a; < x} for
i > 0. This partition is w"-small (}) (because (A, <) is w™-unbranching), so
by the main result of [1] there exists ig < k such that Bj, is w®T*()"large.
Obviously, ig # 0. By the inductive assumption applied to the tree (B;,, <)
there exists ¢ such that {z € B;, : ¢ < ¢} is a-large and {x € B;, : ¢ < z}
is wP-large. This ¢ has the desired property in the original tree (A, <).

Assume the conclusion holds for all & < A, where A is limit. Let

A=w a1 +...+w* - as
be the Cantor expansion of A, i.e. o > ... > a;. Define
y=war+ ...+ w* - (as— 1),
so that A = v + w® and v > w®. Let A be an wPt ) Jarge set, where
B> A. Hence A is w7 ()n+@® n Jar06. We apply Lemma 8 to the ordinals
B+y()n+w* - (n—1) and wlw® @)
B+~()n+w* - (n—2) and wlv®ia)2

B+ y()n + wa and w{w*Ha)(n=1)

and infer that A is wfHOnHe*Ha)n Jarge. Hence A is wfHAH OO Jarge.
By the inductive assumption there exists ¢ with the desired properties. m

Our next goal is one more version of a result analogous to the classical
Ramsey theorem for £-large sets. We adapt the same proof of the Ramsey
theorem as before.

For every a < gg and every ¢ € N\ {0} we define wq)(a,c) = 1,

a,c)

) (00,0) = W™ - €, wiay (00, 6) = WO, g (0, 6) = W @93,

THEOREM 10. Let n € N\{0} and let A be an w,(«, c)-large set, where
a<ep,c<minA. If P:[A]" — (< ¢) is a partition of the set [A]" into at
most ¢ parts then there exists an w®-large homogeneous set.

(*) Recall from [1] that a set or partition is y-small if it is not y-large.
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Proof. By induction on n. The case n = 1 is the main result of [1].
The case n = 2 was proved above. Assuming the conclusion holds for n,
we derive it for n + 1. Let A be an w(,1(«, c)-large set, where a < g9 and
c <min A. Let P : [A]""! — (< ¢) be a partition of (increasing) n + 1-tuples
of elements of A; we shall also use the notation [A] ntl — U, .B;, where B; =
{(zo,...,2zn) € [A]"*L: P(x,y) =i} for i < c. This partition determines an
ordering < on A so that (A, <) is a tree. We write A = {ag,...,as_1} in
increasing order and define a sequence <, of relations on {aq, ..., an}. We
let <o= 0, <1= {(ao,a1)}. Further steps are inductive. We let a; <m+1 a@;
iff

(t,j <m&a; <m a;)V
{i<m&j=m+1&Vty,...,th—1 [atg <m -+ <m Gt,,_, <m @i =

P(ay,...,at, ,,a;) = Playy,...,as, ,,a5)]}.

Once again, it is well known (and easy to verify) that the relation < def s—1
is a tree on A. Its main property is:

(4) Ve,yeAz<y=(rx<y&Vz<...<zp1 <z
P(z0,...,2n-1,2) = P(20,. .., 2n-1,Y))].

Let, for each z € A, rank(z) = Card({y € A : y < x}), the rank of z
in the tree (A, <), and let W, denote the set consisting of x and all its

immediate successors. It is easy to see that for every z € A if x < an,_1
rank(z)+1

then Card(W,) = 2, while if z > a,,—1 then Card(W,) < ) 1. The
binomial coefficient in the exponent is just the cardinality of the set of all
n-tuples of elements of the set {z € A : z < z}. Each set W, is w3-small
because ¢ < ag < z and rank(z) < z. By Theorem 6 the tree (A, <) has a
branch G such that G'\ {max G} is w(,)(a, c)-large. Let G = {aiy, ..., a;,.}
be such a branch in the tree (A, <). Thus, by (4), we have
Ve,y e Glr <y =
V2o < ... < zp—1 < P(20,...,2n-1,2) = P(20,...,2n-1,9)].

It follows that for an increasing n-tuple zp,...,2,—1 € [G \ {maxG}]"
the following function is well defined: F(zq,...,2n—1) = the ¢ such that
P(zo,...2p-1,2) = i for every x € G with x > z,_1. The function F
determines a partition of [G \ {max G}]" into ¢ parts. Clearly, every set ho-

mogeneous for F' is homogeneous for P. By the inductive assumption we
infer the conclusion for n + 1. m

Still using the notation taken from Ramsey theory, Theorem 10 may be
stated as the following partition property:

() Win) (@, €) = (W)
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We remark that Ketonen and Solovay [3], working with a slightly different
notion of largeness, show that if

0 = w + w® 4+ max(c, |af|) + 3

then for every f-large set X and every F : [X|™ — c there exists an a-large
set Y C X and a map G : [Y]""! — ¢ such that

F(zo,-..y2n-1) = G(z0y...,2n-2)
(see [3, Theorem 5.6]). From this they derive the following fact:

Let wo(a) = a and let wy, 11 (a) = w*r(®) (they write W, (a) rather
than wy, (a)). Then whenever X is wy,—1(w-(c+3))-large then every
partition F': [X]" — ¢ has an w-large homogeneous set.

Of course, as pointed out above, our main result (i.e., Theorem 10) is
similar and was suggested by theirs.
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