Some combinatorics involving ξ -large sets

by

Teresa Bigorajska (Warszawa) and Henryk Kotlarski (Warszawa and Siedlce)

Abstract. We prove a version of the Ramsey theorem for partitions of (increasing) *n*-tuples. We derive this result from a version of König's infinity lemma for ξ -large trees. Here $\xi < \varepsilon_0$ and the notion of largeness is in the sense of Hardy hierarchy.

In this paper we prove some Ramsey style results for partitions of n-tuples of finite sets. This paper is a continuation of [1], and, in fact, in order to avoid repetitions we assume that the reader has a copy of [1] at hand.

The ideas are taken from Ketonen–Solovay [3] (they were interested only in the existence of ω -large homogeneous sets, see [3, Theorem 5.6]). We believe that our approach, using the Hardy hierarchy, is much simpler than that of [3]. On a more personal level our work was influenced by Z. Ratajczyk's work (see [7, 4, 5, 8]).

The main result of this paper is a version of the Ramsey theorem involving partitions of increasing *n*-tuples of elements of large (in the Hardy sense) sets of natural numbers, where *n* is an arbitrary fixed positive integer. We begin with the case n = 2 for clarity.

In both cases (n = 2 and arbitrary n) we have no idea how to get lower bounds. Ketonen and Solovay work merely with ω -large homogeneous sets and their ideas do not seem to generalize. The only results in this direction we know about are: the lower bound from [1, p. 36], which concerns the case n = 1, and the result due to Erdős and Mills (see [2, Theorem 2, p. 171]). But this last result also concerns only the existence of ω -large homogeneous sets, as in [3].

Let $\langle A, \prec \rangle$ be a tree. Thus, A is a finite subset of \mathbb{N} , the relation \prec is a tree (in the usual set-theoretic sense) on A and $x \prec y$ implies x < y for all $x, y \in A$. Trees in this sense were studied in greater depth by G. Mills [6]. Let $\gamma < \varepsilon_0$. We say that the tree $\langle A, \prec \rangle$ is γ -large if its underlying set A

²⁰⁰⁰ Mathematics Subject Classification: Primary 05A18.

is γ -large. We say that the tree $\langle A, \prec \rangle$ is γ -unbranching if for every $a \in A$, $\{a\} \cup \{b \in A : b \text{ is an immediate successor of } a\}$ is not γ -large. In particular, an at most binary tree is 3-unbranching in this terminology.

THEOREM 1. If the tree $\langle A, \prec \rangle$ is ω^{α} -large, ω -unbranching and min A > 1, then it has a branch G such that $G \setminus \{\max G\}$ is α -large.

In order to prove Theorem 1 we shall prove the following:

LEMMA 2. For every α we have: for every $\beta \gg \alpha$ and every tree $\langle A, \prec \rangle$, if A is $\omega^{\beta+\alpha}$ -large, the tree $\langle A, \prec \rangle$ is ω -unbranching, and $\min A > 1$, then there exists $c \in A$ such that $\{a \in A : a \preceq c\}$ is α -large and $\{a \in A : c \preceq a\}$ is ω^{β} -large.

Lemma 2 implies Theorem 1 immediately (just substitute $\beta = 0$).

Proof of Lemma 2. By induction on α . If $\alpha = 0$ then $c = \min A$, i.e., the root of A satisfies our demand.

Assuming the assertion holds for α , we prove it for $\alpha+1$. So let $\beta \gg \alpha+1$, hence $\beta \gg \alpha$. Let the tree $\langle A, \prec \rangle$ be $\omega^{\beta+\alpha+1}$ -large. Let $a = \min A$ be its root. Let U_1 denote its first level, i.e., the set of all immediate successors of a. By the assumption, $\{a\} \cup U_1$ is not ω -large, so it has at most a elements. It follows that U_1 has strictly less than a elements. But A itself is $\omega^{\beta+\alpha+1}$ -large, so $\omega^{\beta+\alpha} \cdot a$ -large. It follows that $A \setminus \{a\}$ is $\omega^{\beta+\alpha} \cdot (a-1)$ -large. Moreover, we have a partition $A \setminus \{a\} = \bigcup_{u \in U_1} B_u$, where $B_u = \{x \in A : u \preceq x\}$. By the result of [1], at least one of these parts, say B_{u_0} , is $\omega^{\beta+\alpha}$ -large. By the inductive assumption, there exists $c \in B_{u_0}$ such that $\{x \in B_{u_0} : x \preceq c\}$ is α -large and $\{x \in B_{u_0} : c \preceq x\}$ is ω^{β} -large. This c satisfies our demand.

Assume the lemma for all $\alpha < \lambda$, λ limit. Let $\beta \gg \lambda$. Then $\beta \gg \{\lambda\}(a)$ for all a, in particular for $a = \min A$. The tree $\langle A, \prec \rangle$ is $\omega^{\beta + \{\lambda\}(a)}$ -large, so by the inductive assumption there exists $c \in A$ such that $\{x \in A : x \preceq c\}$ is $\{\lambda\}(a)$ -large and $\{x \in A : c \preceq x\}$ is ω^{β} -large; this c satisfies our demand.

Our next goal is a result analogous to the classical Ramsey theorem for ξ -large sets. We adapt one of the usual proofs of the Ramsey theorem.

Let $P: [A]^2 \to c$ be a partition of (increasing) pairs of elements of A; we shall also use the notation $[A]^2 = \bigcup_{i < c} B_i$, where $B_i = \{(x, y) \in [A]^2 : P(x, y) = i\}$ for i < c. This partition determines an ordering \prec on A so that $\langle A, \prec \rangle$ is a tree. We write $A = \{a_0, \ldots, a_{s-1}\}$ in increasing order and define a sequence \prec_m of relations on $\{a_0, \ldots, a_m\}$. We let $\prec_0 = \emptyset$, $\prec_1 = \{(a_0, a_1)\}$. Further steps are inductive. We let $a_i \prec_{m+1} a_j$ iff

$$(i < j \le m \& a_i \prec_m a_j) \lor \{i \le m \& j = m + 1 \& \forall t [a_t \prec_m a_i \Rightarrow P(a_t, a_i) = P(a_t, a_j)] \}$$

It is well known (and easy to verify) that the relation $\prec \stackrel{\mathrm{def}}{=} \prec_{s-1}$ is a tree

on A. Its main property is:

(1)
$$\forall x, y \in A \ [x \prec y \equiv (x < y \& \forall z \prec x \ P(z, x) = P(z, y))].$$

We claim that every $b \in A$ has at most c immediate successors in the tree $\langle A, \prec \rangle$. So let $b = a_m \in A$. Put $f(i) = \min\{j > m : P(a_m, a_j) = i\}$. This function is defined on a subset of (< c) and every $u \succ b$ is \prec -greater than some f(i). It follows that if $\min A > c$ then this tree is ω -unbranching. By Theorem 1 we obtain:

LEMMA 3. If min A > c, A is ω^{α} -large and $[A]^2 = \bigcup_{i < c} B_i$ is a partition of $[A]^2$ into c parts, then the tree $\langle A, \prec \rangle$ has a branch G such that $G \setminus \{\max G\}$ is α -large.

Let $G = \{a_{i_0}, \ldots, a_{i_r}\}$ be a branch in the tree $\langle A, \prec \rangle$. Thus, by (1), we have

$$\forall x, y \in G \ [x \prec y \ \Rightarrow \ \forall z \prec x \ P(z, x) = P(z, y)].$$

It follows that for $z \in G \setminus \{\max G\}$ the following function, F, is well defined: F(z) = the unique i such that P(z, x) = i for every $x \in G$ with $x \succ z$. The function F determines a partition of $G \setminus \{\max G\}$ into c parts. By the results of [1] we obtain:

LEMMA 4. Under the notation introduced above, if the branch G is such that $G \setminus \{\max G\}$ is $\omega^{\alpha} \cdot c$ -large then there exists an ω^{α} -large set which is homogeneous for F.

Let us sum up:

THEOREM 5. Let A be an $\omega^{\omega^{\alpha} \cdot c}$ -large set and let $P : [A]^2 \to (\langle c \rangle)$ be a partition of $[A]^2$ into c parts as indicated. Assume also min A > c. Then there exists an ω^{α} -large homogeneous set for this partition.

Proof. If A is $\omega^{\omega^{\alpha} \cdot c}$ -large and P is a partition of $[A]^2$ into at most c parts, then there exists a branch G in the tree $\langle A, \prec \rangle$ such that $G \setminus \{\max G\}$ is $\omega^{\alpha} \cdot c$ -large, by Lemma 3. By Lemma 4, the partition F of this branch (without its maximum) as described above has an ω^{α} -large homogeneous set. It is easy to check that such a set is homogeneous for the original partition P: this follows from (1).

Let us use the following notation, taken from Ramsey theory (cf. [2]):

 $\alpha \to (\beta)_c^n$ iff for every α -large set A with min A > c and every partition $P : [A]^n \to (< c)$ there exists a β -large homogeneous set.

Theorem 5 may be stated as the following partition property:

(2)
$$\omega^{\omega^{\alpha} \cdot c} \to (\omega^{\alpha})_c^2.$$

Let us go to a proof of a version of the Ramsey theorem for *n*-tuples. As usual at first we work out a lemma about trees. We need one more notation. Let $\alpha < \varepsilon_0$. Let

$$\alpha = \omega^{\alpha_0} \cdot a_0 + \ldots + \omega^{\alpha_s} \cdot a_s$$

be the Cantor normal form expansion of α , i.e., $\alpha > \alpha_0 > \ldots > \alpha_s$. For every $n \in \mathbb{N}$ we define $\alpha(\cdot)n = \omega^{\alpha_0} \cdot (a_0 \cdot n) + \ldots + \omega^{\alpha_s} \cdot (a_s \cdot n)$.

THEOREM 6. For every $\alpha < \varepsilon_0$, every $n \in \mathbb{N} \setminus \{0\}$ and every tree $\langle A, \prec \rangle$ which is ω^n -unbranching and A is $\omega^{\alpha(\cdot)n}$ -large and $\min A > 1$, there exists a branch B in $\langle A, \prec \rangle$ such that $B \setminus \{\max B\}$ is α -large.

Theorem 6 is a corollary to the following lemma.

LEMMA 7. For every $\alpha < \varepsilon_0$, every $n \in \mathbb{N} \setminus \{0\}$, every $\beta < \varepsilon_0$ and every tree $\langle A, \prec \rangle$ such that

(i) $\{\beta\}(\min A) \gg \alpha$,

(ii) $\min A > 1$,

(iii) the tree $\langle A, \prec \rangle$ is ω^n -unbranching,

(iv) the set A is $\omega^{\beta+\alpha(\cdot)n}$ -large,

there exists $c \in A$ such that $\{x \in A : x \leq c\}$ is α -large and $\{x \in A : c \leq x\}$ is ω^{β} -large.

The proof of Lemma 7 will be inductive on α . In the limit step we shall need the following lemma.

LEMMA 8. For every $\alpha < \varepsilon_0$, every $\beta < \varepsilon_0$ and every set A such that

- (i) $\{\beta\}(\min A) \gg \operatorname{LM}(\alpha),$
- (ii) $\min A > 1$,
- (iii) A is $\omega^{\beta} \cdot \alpha$ -large,

the set A is $\omega^{\{\beta\}(\min A)} \cdot \alpha$ -large.

Lemma 8 is a particular case of the following observation.

LEMMA 9. For every $\alpha, \beta < \varepsilon_0$, every A such that $\{\beta\}(\min A) \gg \operatorname{LM}(\alpha)$ and every $x \in A$, if $h_{\omega^{\beta} \cdot \alpha}(x) \downarrow$, then $h_{\omega^{\{\beta\}}(\min A) \cdot \alpha}(x) \downarrow$.

Proof of Lemma 9 (by induction on α). If $\alpha = 0$ then the conclusion is obvious. Assume the conclusion holds for α . Pick β and A such that $\{\beta\}(a) \gg \text{LM}(\alpha + 1) = \text{LM}(\alpha)$, where $a = \min A$. By the results of [3] (see [1, Lemma 2(iv), (vii)]) $\omega^{\beta} \Rightarrow_x \omega^{\{\beta\}(a)}$ for every x > a. It follows that

 $(3) \quad \text{for every } x \in A, \text{ if } h_{\omega^{\beta}}(x) \downarrow, \text{ then } h_{\omega^{\{\beta\}(a)}}(x) \downarrow \text{ and } h_{\omega^{\{\beta\}(a)}}(x) \leq h_{\omega^{\beta}}(x)$

(see [1, Lemma 4(i)]). Let $x \in A$ and $h_{\omega^{\beta} \cdot (\alpha+1)}(x) \downarrow$. Then $h_{\omega^{\beta} \cdot \alpha}(h_{\omega^{\beta}}(x)) \downarrow$. By (3) and the inductive assumption we get $h_{\omega^{\{\beta\}(a)} \cdot \alpha}(h_{\omega^{\{\beta\}(a)}}(x)) \downarrow$, so the conclusion for $\alpha + 1$ holds. Let λ be limit and assume $\{\beta\}(a) \gg \operatorname{LM}(\lambda)$. Assume the conclusion holds for all $\alpha < \lambda$. If $x \in A$ and $h_{\omega^{\beta} \cdot \lambda}(x) \downarrow$ then $h_{\{\omega^{\beta} \cdot \lambda\}(x)}(x) \downarrow$. But for every $\gamma \gg \operatorname{LM}(\lambda)$ and every x, $\{\omega^{\gamma} \cdot \lambda\}(x) = \omega^{\gamma}\{\lambda\}(x)$ (see [1, Lemma 3]). By the inductive assumption we get the conclusion for λ .

Proof of Lemma 7 (by induction on α). Let $\alpha = 0$. Let n, β and the tree $\langle A, \prec \rangle$ satisfy the hypothesis. Then $c = \min A$ has the desired property.

Assume the conclusion holds for α . Let the set A be $\omega^{\beta+(\alpha+1)(\cdot)n}$ -large. Let $a = \min A > 1$, $\{\beta\}(a) \gg \alpha + 1$ and let the tree $\langle A, \prec \rangle$ be ω^n unbranching. Let $W_1 = \{a_0, \ldots, a_k\}$ be the set consisting of a and all its immediate successors in the tree $\langle A, \prec \rangle$. Assume also that $a_0 = a$. Consider the partition $A = \bigcup_{i \leq k} B_i$, where $B_0 = \{a_0\}$, $B_i = \{x \in A : a_i \leq x\}$ for i > 0. This partition is ω^n -small (1) (because $\langle A, \prec \rangle$ is ω^n -unbranching), so by the main result of [1] there exists $i_0 \leq k$ such that B_{i_0} is $\omega^{\beta+\alpha(\cdot)n}$ -large. Obviously, $i_0 \neq 0$. By the inductive assumption applied to the tree $\langle B_{i_0}, \prec \rangle$ there exists c such that $\{x \in B_{i_0} : x \leq c\}$ is α -large and $\{x \in B_{i_0} : c \leq x\}$ is ω^{β} -large. This c has the desired property in the original tree $\langle A, \prec \rangle$.

Assume the conclusion holds for all $\alpha < \lambda$, where λ is limit. Let

$$\lambda = \omega^{\alpha_1} \cdot a_1 + \ldots + \omega^{\alpha_s} \cdot a_s$$

be the Cantor expansion of λ , i.e. $\alpha_1 > \ldots > \alpha_s$. Define

$$\gamma = \omega^{\alpha_1} \cdot a_1 + \ldots + \omega^{\alpha_s} \cdot (a_s - 1),$$

so that $\lambda = \gamma + \omega^{\alpha_s}$ and $\gamma \gg \omega^{\alpha_s}$. Let A be an $\omega^{\beta+\lambda(\cdot)n}$ -large set, where $\beta \gg \lambda$. Hence A is $\omega^{\beta+\gamma(\cdot)n+\omega^{\alpha_s}\cdot n}$ -large. We apply Lemma 8 to the ordinals

$$\begin{array}{ll} \beta + \gamma(\cdot)n + \omega^{\alpha_s} \cdot (n-1) & \text{and} & \omega^{\{\omega^{\alpha_s}\}(a)} \\ \beta + \gamma(\cdot)n + \omega^{\alpha_s} \cdot (n-2) & \text{and} & \omega^{\{\omega^{\alpha_s}\}(a)\cdot 2} \\ \dots \\ \beta + \gamma(\cdot)n + \omega^{\alpha_s} & \text{and} & \omega^{\{\omega^{\alpha_s}\}(a)\cdot (n-1)} \end{array}$$

and infer that A is $\omega^{\beta+\gamma(\cdot)n+\{\omega^{\alpha_s}\}(a)\cdot n}$ -large. Hence A is $\omega^{\beta+\{\lambda\}(a)(\cdot)n}$ -large. By the inductive assumption there exists c with the desired properties.

Our next goal is one more version of a result analogous to the classical Ramsey theorem for ξ -large sets. We adapt the same proof of the Ramsey theorem as before.

For every $\alpha < \varepsilon_0$ and every $c \in \mathbb{N} \setminus \{0\}$ we define $\omega_{(0)}(\alpha, c) = 1$, $\omega_{(1)}(\alpha, c) = \omega^{\alpha} \cdot c, \ \omega_{(2)}(\alpha, c) = \omega^{\omega_{(1)}(\alpha, c)}, \ \omega_{(n+1)}(\alpha, c) = \omega^{\omega_{(n)}(\alpha, c) \cdot 3}.$

THEOREM 10. Let $n \in \mathbb{N} \setminus \{0\}$ and let A be an $\omega_{(n)}(\alpha, c)$ -large set, where $\alpha < \varepsilon_0, c < \min A$. If $P : [A]^n \to (< c)$ is a partition of the set $[A]^n$ into at most c parts then there exists an ω^{α} -large homogeneous set.

^{(&}lt;sup>1</sup>) Recall from [1] that a set or partition is γ -small if it is not γ -large.

Proof. By induction on n. The case n = 1 is the main result of [1]. The case n = 2 was proved above. Assuming the conclusion holds for n, we derive it for n + 1. Let A be an $\omega_{(n+1)}(\alpha, c)$ -large set, where $\alpha < \varepsilon_0$ and $c < \min A$. Let $P : [A]^{n+1} \to (< c)$ be a partition of (increasing) n+1-tuples of elements of A; we shall also use the notation $[A]^{n+1} = \bigcup_{i < c} B_i$, where $B_i = \{(x_0, \ldots, x_n) \in [A]^{n+1} : P(x, y) = i\}$ for i < c. This partition determines an ordering \prec on A so that $\langle A, \prec \rangle$ is a tree. We write $A = \{a_0, \ldots, a_{s-1}\}$ in increasing order and define a sequence \prec_m of relations on $\{a_0, \ldots, a_m\}$. We let $\prec_0 = \emptyset, \prec_1 = \{(a_0, a_1)\}$. Further steps are inductive. We let $a_i \prec_{m+1} a_j$ iff

$$(i, j \le m \& a_i \prec_m a_j) \lor \{i \le m \& j = m + 1 \& \forall t_0, \dots, t_{n-1} \ [a_{t_0} \prec_m \dots \prec_m a_{t_{n-1}} \prec_m a_i \Rightarrow P(a_{t_0}, \dots, a_{t_{n-1}}, a_i) = P(a_{t_0}, \dots, a_{t_{n-1}}, a_j)] \}.$$

Once again, it is well known (and easy to verify) that the relation $\prec \stackrel{\text{def}}{=} \prec_{s-1}$ is a tree on A. Its main property is:

(4)
$$\forall x, y \in A \ [x \prec y \equiv (x < y \& \forall z_0 \prec \ldots \prec z_{n-1} \prec x) \\ P(z_0, \ldots, z_{n-1}, x) = P(z_0, \ldots, z_{n-1}, y))].$$

Let, for each $x \in A$, rank $(x) = \operatorname{Card}(\{y \in A : y \prec x\})$, the rank of xin the tree $\langle A, \prec \rangle$, and let W_x denote the set consisting of x and all its immediate successors. It is easy to see that for every $x \in A$ if $x < a_{n-1}$ then $\operatorname{Card}(W_x) = 2$, while if $x \ge a_{n-1}$ then $\operatorname{Card}(W_x) \le c^{\binom{\operatorname{rank}(x)+1}{n}} + 1$. The binomial coefficient in the exponent is just the cardinality of the set of all n-tuples of elements of the set $\{z \in A : z \preceq x\}$. Each set W_x is ω^3 -small because $c < a_0 \le x$ and $\operatorname{rank}(x) \le x$. By Theorem 6 the tree $\langle A, \prec \rangle$ has a branch G such that $G \setminus \{\max G\}$ is $\omega_{(n)}(\alpha, c)$ -large. Let $G = \{a_{i_0}, \ldots, a_{i_r}\}$ be such a branch in the tree $\langle A, \prec \rangle$. Thus, by (4), we have

$$\forall x, y \in G [x \prec y \Rightarrow \\ \forall z_0 \prec \ldots \prec z_{n-1} \prec x \ P(z_0, \ldots, z_{n-1}, x) = P(z_0, \ldots, z_{n-1}, y)].$$

It follows that for an increasing *n*-tuple $z_0, \ldots, z_{n-1} \in [G \setminus \{\max G\}]^n$ the following function is well defined: $F(z_0, \ldots, z_{n-1}) =$ the *i* such that $P(z_0, \ldots, z_{n-1}, x) = i$ for every $x \in G$ with $x \succ z_{n-1}$. The function *F* determines a partition of $[G \setminus \{\max G\}]^n$ into *c* parts. Clearly, every set homogeneous for *F* is homogeneous for *P*. By the inductive assumption we infer the conclusion for n + 1.

Still using the notation taken from Ramsey theory, Theorem 10 may be stated as the following partition property:

(5)
$$\omega_{(n)}(\alpha, c) \to (\omega^{\alpha})^n_c.$$

We remark that Ketonen and Solovay [3], working with a slightly different notion of largeness, show that if

$$\theta = \omega^{\alpha} + \omega^3 + \max(c, \|\alpha\|) + 3$$

then for every θ -large set X and every $F: [X]^n \to c$ there exists an α -large set $Y \subseteq X$ and a map $G: [Y]^{n-1} \to c$ such that

$$F(z_0, \ldots, z_{n-1}) = G(z_0, \ldots, z_{n-2})$$

(see [3, Theorem 5.6]). From this they derive the following fact:

Let $\omega_0(\alpha) = \alpha$ and let $\omega_{n+1}(\alpha) = \omega^{\omega_n(\alpha)}$ (they write $W_n(\alpha)$ rather than $\omega_n(\alpha)$). Then whenever X is $\omega_{n-1}(\omega \cdot (c+3))$ -large then every partition $F : [X]^n \to c$ has an ω -large homogeneous set.

Of course, as pointed out above, our main result (i.e., Theorem 10) is similar and was suggested by theirs.

References

- T. Bigorajska and H. Kotlarski, A partition theorem for α-large sets, Fund. Math. 160 (1999), 27–37.
- [2] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, 1990.
- [3] J. Ketonen and R. Solovay, *Rapidly growing Ramsey functions*, Ann. of Math. 113 (1981), 267–314.
- H. Kotlarski and Z. Ratajczyk, *Inductive full satisfaction classes*, Ann. Pure Appl. Logic 47 (1990), 199–223.
- [5] —, —, More on induction in the language with a satisfaction class, Z. Math. Logik 36 (1990), 441–454.
- [6] G. Mills, A tree analysis of unprovable combinatorial statements, in: Model Theory of Algebra and Arithmetic (Karpacz, 1979), Lecture Notes in Math. 834, Springer, 1980, 248–311.
- [7] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in $I\Sigma_n$, Fund. Math. 130 (1988), 191–213.
- [8] —, Subsystems of true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic 64 (1993), 95–152.

Teresa Bigorajska Faculty of Mathematics Cardinal Stefan Wyszyński University Dewajtis 5, 01-815 Warszawa, Poland E-mail: teresabi@impan.gov.pl

Henryk Kotlarski Faculty of Mathematics Cardinal Stefan Wyszyński University Dewajtis 5, 01-815 Warszawa, Poland E-mail: hkl@impan.gov.pl

> Institute of Mathematics Academy of Podlasie 08-110 Siedlce, Poland

Received 31 May 2001; in revised form 22 July 2002