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Some combinatorics involving ξ-large sets

by
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Abstract. We prove a version of the Ramsey theorem for partitions of (increasing)
n-tuples. We derive this result from a version of König’s infinity lemma for ξ-large trees.
Here ξ < ε0 and the notion of largeness is in the sense of Hardy hierarchy.

In this paper we prove some Ramsey style results for partitions of n-
tuples of finite sets. This paper is a continuation of [1], and, in fact, in
order to avoid repetitions we assume that the reader has a copy of [1] at
hand.

The ideas are taken from Ketonen–Solovay [3] (they were interested only
in the existence of ω-large homogeneous sets, see [3, Theorem 5.6]). We
believe that our approach, using the Hardy hierarchy, is much simpler than
that of [3]. On a more personal level our work was influenced by Z. Rataj-
czyk’s work (see [7, 4, 5, 8]).

The main result of this paper is a version of the Ramsey theorem involv-
ing partitions of increasing n-tuples of elements of large (in the Hardy sense)
sets of natural numbers, where n is an arbitrary fixed positive integer. We
begin with the case n = 2 for clarity.

In both cases (n = 2 and arbitrary n) we have no idea how to get lower
bounds. Ketonen and Solovay work merely with ω-large homogeneous sets
and their ideas do not seem to generalize. The only results in this direction
we know about are: the lower bound from [1, p. 36], which concerns the case
n = 1, and the result due to Erdős and Mills (see [2, Theorem 2, p. 171]).
But this last result also concerns only the existence of ω-large homogeneous
sets, as in [3].

Let 〈A,≺〉 be a tree. Thus, A is a finite subset of N, the relation ≺ is a
tree (in the usual set-theoretic sense) on A and x ≺ y implies x < y for all
x, y ∈ A. Trees in this sense were studied in greater depth by G. Mills [6].
Let γ < ε0. We say that the tree 〈A,≺〉 is γ-large if its underlying set A
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is γ-large. We say that the tree 〈A,≺〉 is γ-unbranching if for every a ∈ A,
{a}∪{b ∈ A : b is an immediate successor of a} is not γ-large. In particular,
an at most binary tree is 3-unbranching in this terminology.

Theorem 1. If the tree 〈A,≺〉 is ωα-large, ω-unbranching and minA
> 1, then it has a branch G such that G \ {maxG} is α-large.

In order to prove Theorem 1 we shall prove the following:

Lemma 2. For every α we have: for every β � α and every tree 〈A,≺〉,
if A is ωβ+α-large, the tree 〈A,≺〉 is ω-unbranching , and minA > 1, then
there exists c ∈ A such that {a ∈ A : a � c} is α-large and {a ∈ A : c � a}
is ωβ-large.

Lemma 2 implies Theorem 1 immediately (just substitute β = 0).

Proof of Lemma 2. By induction on α. If α = 0 then c = minA, i.e., the
root of A satisfies our demand.

Assuming the assertion holds for α, we prove it for α+1. So let β � α+1,
hence β � α. Let the tree 〈A,≺〉 be ωβ+α+1-large. Let a = minA be its
root. Let U1 denote its first level, i.e., the set of all immediate successors of a.
By the assumption, {a} ∪U1 is not ω-large, so it has at most a elements. It
follows that U1 has strictly less than a elements. But A itself is ωβ+α+1-large,
so ωβ+α · a-large. It follows that A \ {a} is ωβ+α · (a − 1)-large. Moreover,
we have a partition A \ {a} = ∪u∈U1Bu, where Bu = {x ∈ A : u � x}. By
the result of [1], at least one of these parts, say Bu0 , is ωβ+α-large. By the
inductive assumption, there exists c ∈ Bu0 such that {x ∈ Bu0 : x � c} is
α-large and {x ∈ Bu0 : c � x} is ωβ-large. This c satisfies our demand.

Assume the lemma for all α < λ, λ limit. Let β � λ. Then β � {λ}(a)
for all a, in particular for a = minA. The tree 〈A,≺〉 is ωβ+{λ}(a)-large, so
by the inductive assumption there exists c ∈ A such that {x ∈ A : x � c} is
{λ}(a)-large and {x ∈ A : c � x} is ωβ-large; this c satisfies our demand.

Our next goal is a result analogous to the classical Ramsey theorem for
ξ-large sets. We adapt one of the usual proofs of the Ramsey theorem.

Let P : [A]2 → c be a partition of (increasing) pairs of elements of A;
we shall also use the notation [A]2 = ∪i<cBi, where Bi = {(x, y) ∈ [A]2 :
P (x, y) = i} for i < c. This partition determines an ordering ≺ on A so that
〈A,≺〉 is a tree. We write A = {a0, . . . , as−1} in increasing order and define
a sequence ≺m of relations on {a0, . . . , am}. We let ≺0= ∅, ≺1= {(a0, a1)}.
Further steps are inductive. We let ai ≺m+1 aj iff

(i < j ≤ m& ai ≺m aj) ∨
{i ≤ m& j = m+ 1 & ∀t [at ≺m ai ⇒ P (at, ai) = P (at, aj)]}.

It is well known (and easy to verify) that the relation ≺ def= ≺s−1 is a tree
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on A. Its main property is:

∀x, y ∈ A [x ≺ y ≡ (x < y& ∀z ≺ x P (z, x) = P (z, y))].(1)

We claim that every b ∈ A has at most c immediate successors in the tree
〈A,≺〉. So let b = am ∈ A. Put f(i) = min{j > m : P (am, aj) = i}. This
function is defined on a subset of (< c) and every u � b is ≺-greater than
some f(i). It follows that if minA > c then this tree is ω-unbranching. By
Theorem 1 we obtain:

Lemma 3. If minA > c, A is ωα-large and [A]2 = ∪i<cBi is a parti-
tion of [A]2 into c parts, then the tree 〈A,≺〉 has a branch G such that
G \ {maxG} is α-large.

Let G = {ai0 , . . . , air} be a branch in the tree 〈A,≺〉. Thus, by (1), we
have

∀x, y ∈ G [x ≺ y ⇒ ∀z ≺ x P (z, x) = P (z, y)].

It follows that for z ∈ G\{maxG} the following function, F , is well defined:
F (z) = the unique i such that P (z, x) = i for every x ∈ G with x � z.
The function F determines a partition of G \ {maxG} into c parts. By the
results of [1] we obtain:

Lemma 4. Under the notation introduced above, if the branch G is such
that G \ {maxG} is ωα · c-large then there exists an ωα-large set which is
homogeneous for F .

Let us sum up:

Theorem 5. Let A be an ωω
α·c-large set and let P : [A]2 → (< c) be

a partition of [A]2 into c parts as indicated. Assume also minA > c. Then
there exists an ωα-large homogeneous set for this partition.

Proof. If A is ωω
α·c-large and P is a partition of [A]2 into at most c

parts, then there exists a branch G in the tree 〈A,≺〉 such that G\{maxG}
is ωα · c-large, by Lemma 3. By Lemma 4, the partition F of this branch
(without its maximum) as described above has an ωα-large homogeneous set.
It is easy to check that such a set is homogeneous for the original partition P :
this follows from (1).

Let us use the following notation, taken from Ramsey theory (cf. [2]):

α → (β)nc iff for every α-large set A with minA > c and every
partition P : [A]n → (< c) there exists a β-large homogeneous
set.

Theorem 5 may be stated as the following partition property:

ωω
α·c → (ωα)2

c .(2)
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Let us go to a proof of a version of the Ramsey theorem for n-tuples. As
usual at first we work out a lemma about trees. We need one more notation.
Let α < ε0. Let

α = ωα0 · a0 + . . .+ ωαs · as
be the Cantor normal form expansion of α, i.e., α > α0 > . . . > αs. For
every n ∈ N we define α(·)n = ωα0 · (a0 · n) + . . .+ ωαs · (as · n).

Theorem 6. For every α < ε0, every n ∈ N \ {0} and every tree 〈A,≺〉
which is ωn-unbranching and A is ωα(·)n-large and minA > 1, there exists
a branch B in 〈A,≺〉 such that B \ {maxB} is α-large.

Theorem 6 is a corollary to the following lemma.

Lemma 7. For every α < ε0, every n ∈ N \ {0}, every β < ε0 and every
tree 〈A,≺〉 such that

(i) {β}(minA)� α,
(ii) minA > 1,

(iii) the tree 〈A,≺〉 is ωn-unbranching ,
(iv) the set A is ωβ+α(·)n-large,

there exists c ∈ A such that {x ∈ A : x � c} is α-large and {x ∈ A : c � x}
is ωβ-large.

The proof of Lemma 7 will be inductive on α. In the limit step we shall
need the following lemma.

Lemma 8. For every α < ε0, every β < ε0 and every set A such that

(i) {β}(minA)� LM(α),
(ii) minA > 1,

(iii) A is ωβ · α-large,

the set A is ω{β}(minA) · α-large.

Lemma 8 is a particular case of the following observation.

Lemma 9. For every α, β < ε0, every A such that {β}(minA)� LM(α)
and every x ∈ A, if hωβ ·α(x)↓, then hω{β}(minA)·α(x)↓.

Proof of Lemma 9 (by induction on α). If α = 0 then the conclusion
is obvious. Assume the conclusion holds for α. Pick β and A such that
{β}(a) � LM(α + 1) = LM(α), where a = minA. By the results of [3]
(see [1, Lemma 2(iv), (vii)]) ωβ ⇒x ω

{β}(a) for every x > a. It follows that

(3) for every x∈A, if hωβ(x)↓, then hω{β}(a)(x)↓ and hω{β}(a)(x)≤hωβ(x)

(see [1, Lemma 4(i)]). Let x ∈ A and hωβ ·(α+1)(x)↓. Then hωβ ·α(hωβ(x))↓.
By (3) and the inductive assumption we get hω{β}(a)·α(hω{β}(a)(x))↓, so the
conclusion for α+ 1 holds.
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Let λ be limit and assume {β}(a) � LM(λ). Assume the conclusion
holds for all α < λ. If x ∈ A and hωβ ·λ(x)↓ then h{ωβ·λ}(x)(x)↓. But for
every γ � LM(λ) and every x, {ωγ · λ}(x) = ωγ{λ}(x) (see [1, Lemma 3]).
By the inductive assumption we get the conclusion for λ.

Proof of Lemma 7 (by induction on α). Let α = 0. Let n, β and the tree
〈A,≺〉 satisfy the hypothesis. Then c = minA has the desired property.

Assume the conclusion holds for α. Let the set A be ωβ+(α+1)(·)n-large.
Let a = minA > 1, {β}(a) � α + 1 and let the tree 〈A,≺〉 be ωn-
unbranching. Let W1 = {a0, . . . , ak} be the set consisting of a and all its
immediate successors in the tree 〈A,≺〉. Assume also that a0 = a. Consider
the partition A = ∪i≤kBi, where B0 = {a0}, Bi = {x ∈ A : ai � x} for
i > 0. This partition is ωn-small (1) (because 〈A,≺〉 is ωn-unbranching), so
by the main result of [1] there exists i0 ≤ k such that Bi0 is ωβ+α(·)n-large.
Obviously, i0 6= 0. By the inductive assumption applied to the tree 〈Bi0 ,≺〉
there exists c such that {x ∈ Bi0 : x � c} is α-large and {x ∈ Bi0 : c � x}
is ωβ-large. This c has the desired property in the original tree 〈A,≺〉.

Assume the conclusion holds for all α < λ, where λ is limit. Let

λ = ωα1 · a1 + . . .+ ωαs · as
be the Cantor expansion of λ, i.e. α1 > . . . > αs. Define

γ = ωα1 · a1 + . . .+ ωαs · (as − 1),

so that λ = γ + ωαs and γ � ωαs . Let A be an ωβ+λ(·)n-large set, where
β � λ. Hence A is ωβ+γ(·)n+ωαs ·n-large. We apply Lemma 8 to the ordinals

β + γ(·)n+ ωαs · (n− 1) and ω{ω
αs}(a)

β + γ(·)n+ ωαs · (n− 2) and ω{ω
αs}(a)·2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β + γ(·)n+ ωαs and ω{ω
αs}(a)·(n−1)

and infer that A is ωβ+γ(·)n+{ωαs}(a)·n-large. Hence A is ωβ+{λ}(a)(·)n-large.
By the inductive assumption there exists c with the desired properties.

Our next goal is one more version of a result analogous to the classical
Ramsey theorem for ξ-large sets. We adapt the same proof of the Ramsey
theorem as before.

For every α < ε0 and every c ∈ N \ {0} we define ω(0)(α, c) = 1,
ω(1)(α, c) = ωα · c, ω(2)(α, c) = ωω(1)(α,c), ω(n+1)(α, c) = ωω(n)(α,c)·3.

Theorem 10. Let n ∈ N\{0} and let A be an ω(n)(α, c)-large set , where
α < ε0, c < minA. If P : [A]n → (< c) is a partition of the set [A]n into at
most c parts then there exists an ωα-large homogeneous set.

(1) Recall from [1] that a set or partition is γ-small if it is not γ-large.
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Proof. By induction on n. The case n = 1 is the main result of [1].
The case n = 2 was proved above. Assuming the conclusion holds for n,
we derive it for n+ 1. Let A be an ω(n+1)(α, c)-large set, where α < ε0 and
c < minA. Let P : [A]n+1 → (< c) be a partition of (increasing) n+1-tuples
of elements of A; we shall also use the notation [A]n+1 = ∪i<cBi, where Bi =
{(x0, . . . , xn) ∈ [A]n+1 : P (x, y) = i} for i < c. This partition determines an
ordering ≺ on A so that 〈A,≺〉 is a tree. We write A = {a0, . . . , as−1} in
increasing order and define a sequence ≺m of relations on {a0, . . . , am}. We
let ≺0= ∅, ≺1= {(a0, a1)}. Further steps are inductive. We let ai ≺m+1 aj
iff

(i, j ≤ m& ai ≺m aj)∨
{i ≤ m& j = m+ 1 & ∀t0, . . . , tn−1 [at0 ≺m . . . ≺m atn−1 ≺m ai ⇒

P (at0 , . . . , atn−1 , ai) = P (at0 , . . . , atn−1 , aj)]}.

Once again, it is well known (and easy to verify) that the relation ≺ def= ≺s−1
is a tree on A. Its main property is:

(4) ∀x, y ∈ A [x ≺ y ≡ (x < y& ∀z0 ≺ . . . ≺ zn−1 ≺ x
P (z0, . . . , zn−1, x) = P (z0, . . . , zn−1, y))].

Let, for each x ∈ A, rank(x) = Card({y ∈ A : y ≺ x}), the rank of x
in the tree 〈A,≺〉, and let Wx denote the set consisting of x and all its
immediate successors. It is easy to see that for every x ∈ A if x < an−1

then Card(Wx) = 2, while if x ≥ an−1 then Card(Wx) ≤ c(rank(x)+1
n ) + 1. The

binomial coefficient in the exponent is just the cardinality of the set of all
n-tuples of elements of the set {z ∈ A : z � x}. Each set Wx is ω3-small
because c < a0 ≤ x and rank(x) ≤ x. By Theorem 6 the tree 〈A,≺〉 has a
branch G such that G \ {maxG} is ω(n)(α, c)-large. Let G = {ai0 , . . . , air}
be such a branch in the tree 〈A,≺〉. Thus, by (4), we have

∀x, y ∈ G [x ≺ y ⇒
∀z0 ≺ . . . ≺ zn−1 ≺ x P (z0, . . . , zn−1, x) = P (z0, . . . , zn−1, y)].

It follows that for an increasing n-tuple z0, . . . , zn−1 ∈ [G \ {maxG}]n
the following function is well defined: F (z0, . . . , zn−1) = the i such that
P (z0, . . . zn−1, x) = i for every x ∈ G with x � zn−1. The function F
determines a partition of [G \ {maxG}]n into c parts. Clearly, every set ho-
mogeneous for F is homogeneous for P . By the inductive assumption we
infer the conclusion for n+ 1.

Still using the notation taken from Ramsey theory, Theorem 10 may be
stated as the following partition property:

ω(n)(α, c)→ (ωα)nc .(5)
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We remark that Ketonen and Solovay [3], working with a slightly different
notion of largeness, show that if

θ = ωα + ω3 + max(c, ‖α‖) + 3

then for every θ-large set X and every F : [X]n → c there exists an α-large
set Y ⊆ X and a map G : [Y ]n−1 → c such that

F (z0, . . . , zn−1) = G(z0, . . . , zn−2)

(see [3, Theorem 5.6]). From this they derive the following fact:

Let ω0(α) = α and let ωn+1(α) = ωωn(α) (they writeWn(α) rather
than ωn(α)). Then whenever X is ωn−1(ω·(c+3))-large then every
partition F : [X]n → c has an ω-large homogeneous set.

Of course, as pointed out above, our main result (i.e., Theorem 10) is
similar and was suggested by theirs.
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