Some combinatorics involving ξ-large sets

by
Teresa Bigorajska (Warszawa) and Henryk Kotlarski (Warszawa and Siedlce)

Abstract

We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here $\xi<\varepsilon_{0}$ and the notion of largeness is in the sense of Hardy hierarchy.

In this paper we prove some Ramsey style results for partitions of n tuples of finite sets. This paper is a continuation of [1], and, in fact, in order to avoid repetitions we assume that the reader has a copy of [1] at hand.

The ideas are taken from Ketonen-Solovay [3] (they were interested only in the existence of ω-large homogeneous sets, see [3, Theorem 5.6]). We believe that our approach, using the Hardy hierarchy, is much simpler than that of [3]. On a more personal level our work was influenced by Z. Ratajczyk's work (see $[7,4,5,8]$).

The main result of this paper is a version of the Ramsey theorem involving partitions of increasing n-tuples of elements of large (in the Hardy sense) sets of natural numbers, where n is an arbitrary fixed positive integer. We begin with the case $n=2$ for clarity.

In both cases ($n=2$ and arbitrary n) we have no idea how to get lower bounds. Ketonen and Solovay work merely with ω-large homogeneous sets and their ideas do not seem to generalize. The only results in this direction we know about are: the lower bound from [1, p. 36], which concerns the case $n=1$, and the result due to Erdős and Mills (see [2, Theorem 2, p. 171]). But this last result also concerns only the existence of ω-large homogeneous sets, as in [3].

Let $\langle A, \prec\rangle$ be a tree. Thus, A is a finite subset of \mathbb{N}, the relation \prec is a tree (in the usual set-theoretic sense) on A and $x \prec y$ implies $x<y$ for all $x, y \in A$. Trees in this sense were studied in greater depth by G. Mills [6]. Let $\gamma<\varepsilon_{0}$. We say that the tree $\langle A, \prec\rangle$ is γ-large if its underlying set A

[^0]is γ-large. We say that the tree $\langle A, \prec\rangle$ is γ-unbranching if for every $a \in A$, $\{a\} \cup\{b \in A: b$ is an immediate successor of $a\}$ is not γ-large. In particular, an at most binary tree is 3 -unbranching in this terminology.

THEOREM 1. If the tree $\langle A, \prec\rangle$ is ω^{α}-large, ω-unbranching and min A >1, then it has a branch G such that $G \backslash\{\max G\}$ is α-large.

In order to prove Theorem 1 we shall prove the following:
Lemma 2. For every α we have: for every $\beta \gg \alpha$ and every tree $\langle A, \prec\rangle$, if A is $\omega^{\beta+\alpha}$-large, the tree $\langle A, \prec\rangle$ is ω-unbranching, and $\min A>1$, then there exists $c \in A$ such that $\{a \in A: a \preceq c\}$ is α-large and $\{a \in A: c \preceq a\}$ is ω^{β}-large.

Lemma 2 implies Theorem 1 immediately (just substitute $\beta=0$).
Proof of Lemma 2. By induction on α. If $\alpha=0$ then $c=\min A$, i.e., the root of A satisfies our demand.

Assuming the assertion holds for α, we prove it for $\alpha+1$. So let $\beta \gg \alpha+1$, hence $\beta \gg \alpha$. Let the tree $\langle A, \prec\rangle$ be $\omega^{\beta+\alpha+1}$-large. Let $a=\min A$ be its root. Let U_{1} denote its first level, i.e., the set of all immediate successors of a. By the assumption, $\{a\} \cup U_{1}$ is not ω-large, so it has at most a elements. It follows that U_{1} has strictly less than a elements. But A itself is $\omega^{\beta+\alpha+1}$-large, so $\omega^{\beta+\alpha} \cdot a$-large. It follows that $A \backslash\{a\}$ is $\omega^{\beta+\alpha} \cdot(a-1)$-large. Moreover, we have a partition $A \backslash\{a\}=\cup_{u \in U_{1}} B_{u}$, where $B_{u}=\{x \in A: u \preceq x\}$. By the result of [1], at least one of these parts, say $B_{u_{0}}$, is $\omega^{\beta+\alpha}$-large. By the inductive assumption, there exists $c \in B_{u_{0}}$ such that $\left\{x \in B_{u_{0}}: x \preceq c\right\}$ is α-large and $\left\{x \in B_{u_{0}}: c \preceq x\right\}$ is ω^{β}-large. This c satisfies our demand.

Assume the lemma for all $\alpha<\lambda, \lambda$ limit. Let $\beta \gg \lambda$. Then $\beta \gg\{\lambda\}(a)$ for all a, in particular for $a=\min A$. The tree $\langle A, \prec\rangle$ is $\omega^{\beta+\{\lambda\}(a)}$-large, so by the inductive assumption there exists $c \in A$ such that $\{x \in A: x \preceq c\}$ is $\{\lambda\}(a)$-large and $\{x \in A: c \preceq x\}$ is ω^{β}-large; this c satisfies our demand.

Our next goal is a result analogous to the classical Ramsey theorem for ξ-large sets. We adapt one of the usual proofs of the Ramsey theorem.

Let $P:[A]^{2} \rightarrow c$ be a partition of (increasing) pairs of elements of A; we shall also use the notation $[A]^{2}=\cup_{i<c} B_{i}$, where $B_{i}=\left\{(x, y) \in[A]^{2}\right.$: $P(x, y)=i\}$ for $i<c$. This partition determines an ordering \prec on A so that $\langle A, \prec\rangle$ is a tree. We write $A=\left\{a_{0}, \ldots, a_{s-1}\right\}$ in increasing order and define a sequence \prec_{m} of relations on $\left\{a_{0}, \ldots, a_{m}\right\}$. We let $\prec_{0}=\emptyset, \prec_{1}=\left\{\left(a_{0}, a_{1}\right)\right\}$. Further steps are inductive. We let $a_{i} \prec_{m+1} a_{j}$ iff

$$
\begin{aligned}
& \left(i<j \leq m \& a_{i} \prec_{m} a_{j}\right) \vee \\
& \left\{i \leq m \& j=m+1 \& \forall t\left[a_{t} \prec_{m} a_{i} \Rightarrow P\left(a_{t}, a_{i}\right)=P\left(a_{t}, a_{j}\right)\right]\right\}
\end{aligned}
$$

It is well known (and easy to verify) that the relation $\prec \stackrel{\text { def }}{=} \prec_{s-1}$ is a tree
on A. Its main property is:

$$
\begin{equation*}
\forall x, y \in A[x \prec y \equiv(x<y \& \forall z \prec x P(z, x)=P(z, y))] \tag{1}
\end{equation*}
$$

We claim that every $b \in A$ has at most c immediate successors in the tree $\langle A, \prec\rangle$. So let $b=a_{m} \in A$. Put $f(i)=\min \left\{j>m: P\left(a_{m}, a_{j}\right)=i\right\}$. This function is defined on a subset of $(<c)$ and every $u \succ b$ is \prec-greater than some $f(i)$. It follows that if $\min A>c$ then this tree is ω-unbranching. By Theorem 1 we obtain:

Lemma 3. If $\min A>c, A$ is ω^{α}-large and $[A]^{2}=\cup_{i<c} B_{i}$ is a partition of $[A]^{2}$ into c parts, then the tree $\langle A, \prec\rangle$ has a branch G such that $G \backslash\{\max G\}$ is α-large.

Let $G=\left\{a_{i_{0}}, \ldots, a_{i_{r}}\right\}$ be a branch in the tree $\langle A, \prec\rangle$. Thus, by (1), we have

$$
\forall x, y \in G[x \prec y \Rightarrow \forall z \prec x P(z, x)=P(z, y)]
$$

It follows that for $z \in G \backslash\{\max G\}$ the following function, F, is well defined: $F(z)=$ the unique i such that $P(z, x)=i$ for every $x \in G$ with $x \succ z$. The function F determines a partition of $G \backslash\{\max G\}$ into c parts. By the results of [1] we obtain:

Lemma 4. Under the notation introduced above, if the branch G is such that $G \backslash\{\max G\}$ is $\omega^{\alpha} \cdot c$-large then there exists an ω^{α}-large set which is homogeneous for F.

Let us sum up:
Theorem 5. Let A be an $\omega^{\omega^{\alpha} \cdot c}$-large set and let $P:[A]^{2} \rightarrow(<c)$ be a partition of $[A]^{2}$ into c parts as indicated. Assume also $\min A>c$. Then there exists an ω^{α}-large homogeneous set for this partition.

Proof. If A is $\omega^{\omega^{\alpha} \cdot c}$-large and P is a partition of $[A]^{2}$ into at most c parts, then there exists a branch G in the tree $\langle A, \prec\rangle$ such that $G \backslash\{\max G\}$ is $\omega^{\alpha} \cdot c$-large, by Lemma 3. By Lemma 4, the partition F of this branch (without its maximum) as described above has an ω^{α}-large homogeneous set. It is easy to check that such a set is homogeneous for the original partition P : this follows from (1).

Let us use the following notation, taken from Ramsey theory (cf. [2]):
$\alpha \rightarrow(\beta)_{c}^{n}$ iff for every α-large set A with $\min A>c$ and every partition $P:[A]^{n} \rightarrow(<c)$ there exists a β-large homogeneous set.

Theorem 5 may be stated as the following partition property:

$$
\begin{equation*}
\omega^{\omega^{\alpha} \cdot c} \rightarrow\left(\omega^{\alpha}\right)_{c}^{2} \tag{2}
\end{equation*}
$$

Let us go to a proof of a version of the Ramsey theorem for n-tuples. As usual at first we work out a lemma about trees. We need one more notation. Let $\alpha<\varepsilon_{0}$. Let

$$
\alpha=\omega^{\alpha_{0}} \cdot a_{0}+\ldots+\omega^{\alpha_{s}} \cdot a_{s}
$$

be the Cantor normal form expansion of α, i.e., $\alpha>\alpha_{0}>\ldots>\alpha_{s}$. For every $n \in \mathbb{N}$ we define $\alpha(\cdot) n=\omega^{\alpha_{0}} \cdot\left(a_{0} \cdot n\right)+\ldots+\omega^{\alpha_{s}} \cdot\left(a_{s} \cdot n\right)$.

Theorem 6. For every $\alpha<\varepsilon_{0}$, every $n \in \mathbb{N} \backslash\{0\}$ and every tree $\langle A, \prec\rangle$ which is ω^{n}-unbranching and A is $\omega^{\alpha(\cdot) n}$-large and $\min A>1$, there exists a branch B in $\langle A, \prec\rangle$ such that $B \backslash\{\max B\}$ is α-large.

Theorem 6 is a corollary to the following lemma.
Lemma 7. For every $\alpha<\varepsilon_{0}$, every $n \in \mathbb{N} \backslash\{0\}$, every $\beta<\varepsilon_{0}$ and every tree $\langle A, \prec\rangle$ such that
(i) $\{\beta\}(\min A) \gg \alpha$,
(ii) $\min A>1$,
(iii) the tree $\langle A, \prec\rangle$ is ω^{n}-unbranching,
(iv) the set A is $\omega^{\beta+\alpha(\cdot) n}$-large,
there exists $c \in A$ such that $\{x \in A: x \preceq c\}$ is α-large and $\{x \in A: c \preceq x\}$ is ω^{β}-large.

The proof of Lemma 7 will be inductive on α. In the limit step we shall need the following lemma.

Lemma 8. For every $\alpha<\varepsilon_{0}$, every $\beta<\varepsilon_{0}$ and every set A such that
(i) $\{\beta\}(\min A) \gg \operatorname{LM}(\alpha)$,
(ii) $\min A>1$,
(iii) A is $\omega^{\beta} \cdot \alpha$-large,
the set A is $\omega^{\{\beta\}(\min A)} \cdot \alpha$-large.
Lemma 8 is a particular case of the following observation.
Lemma 9. For every $\alpha, \beta<\varepsilon_{0}$, every A such that $\{\beta\}(\min A) \gg \operatorname{LM}(\alpha)$ and every $x \in A$, if $h_{\omega^{\beta} \cdot \alpha}(x) \downarrow$, then $h_{\omega\{\beta\}(\min A) \cdot \alpha}(x) \downarrow$.

Proof of Lemma 9 (by induction on α). If $\alpha=0$ then the conclusion is obvious. Assume the conclusion holds for α. Pick β and A such that $\{\beta\}(a) \gg \mathrm{LM}(\alpha+1)=\operatorname{LM}(\alpha)$, where $a=\min A$. By the results of [3] (see [1, Lemma 2(iv), (vii)]) $\omega^{\beta} \Rightarrow_{x} \omega^{\{\beta\}(a)}$ for every $x>a$. It follows that
(3) for every $x \in A$, if $h_{\omega^{\beta}}(x) \downarrow$, then $h_{\omega^{\{\beta\}(a)}}(x) \downarrow$ and $h_{\omega^{\{\beta\}(a)}}(x) \leq h_{\omega^{\beta}}(x)$ (see [1, Lemma 4(i)]). Let $x \in A$ and $h_{\omega^{\beta} \cdot(\alpha+1)}(x) \downarrow$. Then $h_{\omega^{\beta} \cdot \alpha}\left(h_{\omega^{\beta}}(x)\right) \downarrow$. By (3) and the inductive assumption we get $h_{\omega\{\beta\}(a) \cdot \alpha}\left(h_{\omega\{\beta\}(a)}(x)\right) \downarrow$, so the conclusion for $\alpha+1$ holds.

Let λ be limit and assume $\{\beta\}(a) \gg \operatorname{LM}(\lambda)$. Assume the conclusion holds for all $\alpha<\lambda$. If $x \in A$ and $h_{\omega^{\beta \cdot \lambda}}(x) \downarrow$ then $h_{\left\{\omega^{\beta \cdot \lambda\}(x)}\right.}(x) \downarrow$. But for every $\gamma \gg \operatorname{LM}(\lambda)$ and every $x,\left\{\omega^{\gamma} \cdot \lambda\right\}(x)=\omega^{\gamma}\{\lambda\}(x)$ (see [1, Lemma 3]). By the inductive assumption we get the conclusion for λ.

Proof of Lemma 7 (by induction on α). Let $\alpha=0$. Let n, β and the tree $\langle A, \prec\rangle$ satisfy the hypothesis. Then $c=\min A$ has the desired property.

Assume the conclusion holds for α. Let the set A be $\omega^{\beta+(\alpha+1)(\cdot) n}$-large. Let $a=\min A>1,\{\beta\}(a) \gg \alpha+1$ and let the tree $\langle A, \prec\rangle$ be $\omega^{n_{-}}$ unbranching. Let $W_{1}=\left\{a_{0}, \ldots, a_{k}\right\}$ be the set consisting of a and all its immediate successors in the tree $\langle A, \prec\rangle$. Assume also that $a_{0}=a$. Consider the partition $A=\cup_{i \leq k} B_{i}$, where $B_{0}=\left\{a_{0}\right\}, B_{i}=\left\{x \in A: a_{i} \preceq x\right\}$ for $i>0$. This partition is ω^{n}-small (${ }^{1}$) (because $\langle A, \prec\rangle$ is ω^{n}-unbranching), so by the main result of [1] there exists $i_{0} \leq k$ such that $B_{i_{0}}$ is $\omega^{\beta+\alpha(\cdot) n}$-large. Obviously, $i_{0} \neq 0$. By the inductive assumption applied to the tree $\left\langle B_{i_{0}}, \prec\right\rangle$ there exists c such that $\left\{x \in B_{i_{0}}: x \preceq c\right\}$ is α-large and $\left\{x \in B_{i_{0}}: c \preceq x\right\}$ is ω^{β}-large. This c has the desired property in the original tree $\langle A, \prec\rangle$.

Assume the conclusion holds for all $\alpha<\lambda$, where λ is limit. Let

$$
\lambda=\omega^{\alpha_{1}} \cdot a_{1}+\ldots+\omega^{\alpha_{s}} \cdot a_{s}
$$

be the Cantor expansion of λ, i.e. $\alpha_{1}>\ldots>\alpha_{s}$. Define

$$
\gamma=\omega^{\alpha_{1}} \cdot a_{1}+\ldots+\omega^{\alpha_{s}} \cdot\left(a_{s}-1\right)
$$

so that $\lambda=\gamma+\omega^{\alpha_{s}}$ and $\gamma \gg \omega^{\alpha_{s}}$. Let A be an $\omega^{\beta+\lambda(\cdot) n}$-large set, where

$$
\begin{array}{ccr}
\beta+\gamma(\cdot) n+\omega^{\alpha_{s}} \cdot(n-1) & \text { and } & \omega^{\left\{\omega^{\alpha_{s}}\right\}(a)} \\
\beta+\gamma(\cdot) n+\omega^{\alpha_{s}} \cdot(n-2) & \text { and } & \omega^{\left\{\omega^{\alpha_{s}}\right\}(a) \cdot 2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \ldots & \ldots \ldots \ldots \ldots \ldots \\
\beta+\gamma(\cdot) n+\omega^{\alpha_{s}} & \text { and } & \omega^{\left\{\omega^{\alpha_{s}}\right\}(a) \cdot(n-1)}
\end{array}
$$

and infer that A is $\left.\omega^{\beta+\gamma(\cdot) n+\left\{\omega^{\alpha}\right.}\right\}(a) \cdot n$-large. Hence A is $\omega^{\beta+\{\lambda\}(a)(\cdot) n}$-large. By the inductive assumption there exists c with the desired properties.

Our next goal is one more version of a result analogous to the classical Ramsey theorem for ξ-large sets. We adapt the same proof of the Ramsey theorem as before.

For every $\alpha<\varepsilon_{0}$ and every $c \in \mathbb{N} \backslash\{0\}$ we define $\omega_{(0)}(\alpha, c)=1$, $\omega_{(1)}(\alpha, c)=\omega^{\alpha} \cdot c, \omega_{(2)}(\alpha, c)=\omega^{\omega_{(1)}(\alpha, c)}, \omega_{(n+1)}(\alpha, c)=\omega^{\omega_{(n)}(\alpha, c) \cdot 3}$.

Theorem 10. Let $n \in \mathbb{N} \backslash\{0\}$ and let A be an $\omega_{(n)}(\alpha, c)$-large set, where $\alpha<\varepsilon_{0}, c<\min A$. If $P:[A]^{n} \rightarrow(<c)$ is a partition of the set $[A]^{n}$ into at most c parts then there exists an ω^{α}-large homogeneous set.

[^1]Proof. By induction on n. The case $n=1$ is the main result of [1]. The case $n=2$ was proved above. Assuming the conclusion holds for n, we derive it for $n+1$. Let A be an $\omega_{(n+1)}(\alpha, c)$-large set, where $\alpha<\varepsilon_{0}$ and $c<\min A$. Let $P:[A]^{n+1} \rightarrow(<c)$ be a partition of (increasing) $n+1$-tuples of elements of A; we shall also use the notation $[A]^{n+1}=\cup_{i<c} B_{i}$, where $B_{i}=$ $\left\{\left(x_{0}, \ldots, x_{n}\right) \in[A]^{n+1}: P(x, y)=i\right\}$ for $i<c$. This partition determines an ordering \prec on A so that $\langle A, \prec\rangle$ is a tree. We write $A=\left\{a_{0}, \ldots, a_{s-1}\right\}$ in increasing order and define a sequence \prec_{m} of relations on $\left\{a_{0}, \ldots, a_{m}\right\}$. We let $\prec_{0}=\emptyset, \prec_{1}=\left\{\left(a_{0}, a_{1}\right)\right\}$. Further steps are inductive. We let $a_{i} \prec_{m+1} a_{j}$ iff

$$
\begin{aligned}
& \left(i, j \leq m \& a_{i} \prec_{m} a_{j}\right) \vee \\
& \quad \begin{array}{l}
\left\{i \leq m \& j=m+1 \& \forall t_{0}, \ldots, t_{n-1}\left[a_{t_{0}} \prec_{m} \ldots \prec_{m} a_{t_{n-1}} \prec_{m} a_{i} \Rightarrow\right.\right. \\
\\
\left.\left.P\left(a_{t_{0}}, \ldots, a_{t_{n-1}}, a_{i}\right)=P\left(a_{t_{0}}, \ldots, a_{t_{n-1}}, a_{j}\right)\right]\right\} .
\end{array}
\end{aligned}
$$

Once again, it is well known (and easy to verify) that the relation $\prec \stackrel{\text { def }}{=} \prec_{s-1}$ is a tree on A. Its main property is:

$$
\begin{align*}
& \forall x, y \in A\left[x \prec y \equiv \left(x<y \& \forall z_{0} \prec \ldots \prec z_{n-1} \prec x\right.\right. \tag{4}\\
& \left.\left.P\left(z_{0}, \ldots, z_{n-1}, x\right)=P\left(z_{0}, \ldots, z_{n-1}, y\right)\right)\right] .
\end{align*}
$$

Let, for each $x \in A, \operatorname{rank}(x)=\operatorname{Card}(\{y \in A: y \prec x\})$, the rank of x in the tree $\langle A, \prec\rangle$, and let W_{x} denote the set consisting of x and all its immediate successors. It is easy to see that for every $x \in A$ if $x<a_{n-1}$ then $\operatorname{Card}\left(W_{x}\right)=2$, while if $x \geq a_{n-1}$ then $\operatorname{Card}\left(W_{x}\right) \leq c^{(\underset{\operatorname{rank}(x)+1}{n})}+1$. The binomial coefficient in the exponent is just the cardinality of the set of all n-tuples of elements of the set $\{z \in A: z \preceq x\}$. Each set W_{x} is ω^{3}-small because $c<a_{0} \leq x$ and $\operatorname{rank}(x) \leq x$. By Theorem 6 the tree $\langle A, \prec\rangle$ has a branch G such that $G \backslash\{\max G\}$ is $\omega_{(n)}(\alpha, c)$-large. Let $G=\left\{a_{i_{0}}, \ldots, a_{i_{r}}\right\}$ be such a branch in the tree $\langle A, \prec\rangle$. Thus, by (4), we have

$$
\begin{aligned}
\forall x, y \in G[x \prec y & \Rightarrow \\
& \left.\forall z_{0} \prec \ldots \prec z_{n-1} \prec x P\left(z_{0}, \ldots, z_{n-1}, x\right)=P\left(z_{0}, \ldots, z_{n-1}, y\right)\right] .
\end{aligned}
$$

It follows that for an increasing n-tuple $z_{0}, \ldots, z_{n-1} \in[G \backslash\{\max G\}]^{n}$ the following function is well defined: $F\left(z_{0}, \ldots, z_{n-1}\right)=$ the i such that $P\left(z_{0}, \ldots z_{n-1}, x\right)=i$ for every $x \in G$ with $x \succ z_{n-1}$. The function F determines a partition of $[G \backslash\{\max G\}]^{n}$ into c parts. Clearly, every set homogeneous for F is homogeneous for P. By the inductive assumption we infer the conclusion for $n+1$.

Still using the notation taken from Ramsey theory, Theorem 10 may be stated as the following partition property:

$$
\begin{equation*}
\omega_{(n)}(\alpha, c) \rightarrow\left(\omega^{\alpha}\right)_{c}^{n} . \tag{5}
\end{equation*}
$$

We remark that Ketonen and Solovay [3], working with a slightly different notion of largeness, show that if

$$
\theta=\omega^{\alpha}+\omega^{3}+\max (c,\|\alpha\|)+3
$$

then for every θ-large set X and every $F:[X]^{n} \rightarrow c$ there exists an α-large set $Y \subseteq X$ and a map $G:[Y]^{n-1} \rightarrow c$ such that

$$
F\left(z_{0}, \ldots, z_{n-1}\right)=G\left(z_{0}, \ldots, z_{n-2}\right)
$$

(see [3, Theorem 5.6]). From this they derive the following fact:
Let $\omega_{0}(\alpha)=\alpha$ and let $\omega_{n+1}(\alpha)=\omega^{\omega_{n}(\alpha)}$ (they write $W_{n}(\alpha)$ rather than $\left.\omega_{n}(\alpha)\right)$. Then whenever X is $\omega_{n-1}(\omega \cdot(c+3))$-large then every partition $F:[X]^{n} \rightarrow c$ has an ω-large homogeneous set.

Of course, as pointed out above, our main result (i.e., Theorem 10) is similar and was suggested by theirs.

References

[1] T. Bigorajska and H. Kotlarski, A partition theorem for α-large sets, Fund. Math. 160 (1999), 27-37.
[2] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, 1990.
[3] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981), 267-314.
[4] H. Kotlarski and Z. Ratajczyk, Inductive full satisfaction classes, Ann. Pure Appl. Logic 47 (1990), 199-223.
[5] -, 一, More on induction in the language with a satisfaction class, Z. Math. Logik 36 (1990), 441-454.
[6] G. Mills, A tree analysis of unprovable combinatorial statements, in: Model Theory of Algebra and Arithmetic (Karpacz, 1979), Lecture Notes in Math. 834, Springer, 1980, 248-311.
[7] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in $I \Sigma_{n}$, Fund. Math. 130 (1988), 191-213.
[8] -, Subsystems of true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic 64 (1993), 95-152.

Teresa Bigorajska
Faculty of Mathematics
Cardinal Stefan Wyszyński University Dewajtis 5, 01-815 Warszawa, Poland
E-mail: teresabi@impan.gov.pl

Henryk Kotlarski
Faculty of Mathematics Cardinal Stefan Wyszyński University Dewajtis 5, 01-815 Warszawa, Poland E-mail: hkl@impan.gov.pl

Institute of Mathematics
Academy of Podlasie
08-110 Siedlce, Poland

[^0]: 2000 Mathematics Subject Classification: Primary 05A18.

[^1]: $\left({ }^{1}\right)$ Recall from [1] that a set or partition is γ-small if it is not γ-large.

