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Unstable homotopy invariance for finite fields

by

Kevin P. Knudson (Mississippi State, MS)

Abstract. We prove that if k is a finite field with pd elements, then the natural map
Hi(GLn(k),Z)→ Hi(GLn(k[t]),Z) is an isomorphism for 0 ≤ i < d(p− 1) and for all n.

Introduction. In [2] we proved that if k is an infinite field, then for all
n the natural map

j∗ : H•(SLn(k),Z)→ H•(SLn(k[t]),Z)

induced by the inclusion is an isomorphism. The same result is then true
for GLn. The method of proof was to examine the action of SLn(k[t]) on
a suitable building X and then use the resulting spectral sequence. The
hypothesis that k be infinite was crucial for the computation of the homology
of the various simplex stabilizers.

If k is finite, then one may use the same approach, but the calculation of
the homology of the stabilizers is more difficult. In this note, we carry this
out and prove the following result.

Theorem 3.1. Let k be a finite field with pd elements. Then for 0 ≤
i < d(p− 1) and for all n, the restriction map

j∗ : H i(GLn(k[t]),Z)→ H i(GLn(k),Z)

is an isomorphism.

The same result is therefore true for homology. The bound on i is optimal;
see Remark 2.2 below.

Note that this result is in keeping with one’s intuition that if the field k is
large, then the map j∗ should be an isomorphism “most of the time”. Also,
it is independent of n and therefore complements what van der Kallen’s
stability theorem [1] gives:

j∗ : H i(GLn(k[t]),Z)→ H i(GLn(k),Z)
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is an isomorphism for i ≥ 2n + 1. One may be able to say more about the
map j∗ in specific cases, but Theorem 3.1 seems to be the best possible
general result.

The calculation of the cohomology of the stabilizers is similar to Quillen’s
computation of the mod p cohomology of GLn(k). Indeed, one need only
compute the invariants of the action of the diagonal subgroup T ⊂ GLn(k)
on the cohomology of various Sylow p-subgroups. It was Quillen’s paper [3]
that motivated the proof of Theorem 3.1.

This paper is organized as follows. In Section 1 we describe the building
X and the stabilizers of the GLn(k[t]) action on it. In Section 2 we calculate
the cohomology of the stabilizers. Finally in Section 3 we prove Theorem 3.1.

1. The spectral sequence. Denote by X the Bruhat–Tits building
associated to the vector space k(t)n. Recall that the vertices of X are equiv-
alence classes of O-lattices in k(t)n (here, O consists of the set of a/b with
deg b ≥ deg a), where two lattices L and L′ are equivalent if there is an
x ∈ k× with L′ = xL. A collection of vertices Λ0, Λ1, . . . , Λm forms an
m-simplex if there are representatives Li of the Λi with

t−1L0 ⊂ Lm ⊂ Lm−1 ⊂ . . . ⊂ L0.

It is possible to put a metric on X so that each edge in X has length one.
When we speak of the distance between vertices we implicitly use this metric.
For a more complete description of X , see, for example, [2].

The group GLn(k[t]) acts on X with fundamental domain an infinite
contractible wedge T , which is the subcomplex of X spanned by the vertices

[e1t
r1 , . . . , en−1t

rn−1 , en], r1 ≥ . . . ≥ rn−1 ≥ 0,

where e1, . . . , en denotes the standard basis of k(t)n (see [4]).
Denote by v0 the vertex [e1, . . . , en] and by vi the vertex

[e1t, . . . , eit, ei+1, . . . , en], i = 1, . . . , n− 1.

For a q-element subset I = {i1, . . . , iq} of {1, . . . , n−1}, define E(q)
I to be the

subcomplex of T which is the union of all rays with origin v0 passing through
the (q − 1)-simplex 〈vi1 , . . . , viq〉. There are

(
n−1
q

)
such E

(q)
I . Observe that

if I = {1, . . . , n− 1}, then E(n−1)
I = T . When we write E(l)

J , the superscript
l denotes the cardinality of the set J .

The structure of the various simplex stabilizers was described in [2]. If
(xij(t)) ∈ GLn(k[t]) stabilizes the vertex [e1t

r1 , . . . , en−1t
rn−1 , en], then we

have
deg xij(t) ≤ ri − rj

(set rn = 0). Note that since r1 ≥ . . . ≥ rn−1, some of the xij(t) with i > j
may be 0. Denote the stabilizer of σ by Γσ. The group Γσ is the intersection
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of the stabilizers Γv where v ranges over the vertices of σ. In this case
deg xij(t) ≤ minv∈σ{r(v)

i − r
(v)
j }. Observe that in any case, the group Γσ

has a block form where the blocks along the diagonal are matrices with
entries in k, blocks below are zero, and blocks above contain polynomials of
bounded degree. In the case n = 3, we have the following block forms:

v0 : Γv0 = GL3(k)

σ ∈ E(1)
{1} : Γσ =



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗


,

σ ∈ E(1)
{2} : Γσ =



∗ ∗ ∗
∗ ∗

0 0 ∗


,

σ ∈ T − (E(1)
{1} ∪ E

(1)
{2}) : Γσ =



∗ ∗ ∗
0 ∗ ∗
0 0 ∗


.

We have a short exact sequence

1→ Cσ → Γσ
t=0−→ Pσ → 1

where Pσ is a parabolic subgroup of GLn(k). From the above description
of Γσ, we see that the group Cσ has a block form where blocks along the di-
agonal are identity matrices, blocks below are zero, and blocks above contain
polynomials of bounded degree which are divisible by t.

Filter the complex T by setting W (0) = v0 and

W (l) =
⋃

|I|=l
E

(l)
I , 1 ≤ l ≤ n− 1.

Observe that if σ and τ are simplices in the same component of W (i) −
W (i−1), then Pσ = Pτ since on such a component the relationships among
the ri defining the vertices do not vary from vertex to vertex (i.e., if ri > ri+1
for one vertex in the component, then the same holds for every vertex in the
component; since these relations determine which entries below the diagonal
are zero, we see that the stabilizers of these vertices all have the same block
form and hence so does the stabilizer of any simplex in the component).

The action of GLn(k[t]) on X gives rise to a spectral sequence converging
to H•(GLn(k[t]),Z) with E1-term

Ep,q1 =
∏

dimσ=p

Hq(Γσ,Z)(1)
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where Γσ denotes the stabilizer of the simplex σ ∈ T . Now we shall compute
the terms Ep,02 .

Proposition 1.1. The bottom row of the spectral sequence (1) satisfies

Ep,02 = 0, p > 0.

Proof. The bottom row of the spectral sequence consists of the groups

Ep,q1 =
∏

dimσ=p

H0(Γσ,Z).

This is simply the cochain complex C•(T ,Z). Since T is contractible, we see
that Ep,02 = 0 for p > 0.

We now consider cohomology with Fl-coefficients, l 6= p. In this case we
see that since in the extensions

1→ Cσ → Γσ → Pσ → 1

the subgroups Cσ are p-groups, the map Γσ → Pσ induces an isomorphism

H•(Pσ,Fl)→ H•(Γσ,Fl).(2)

Now, for each q, we have a coefficient system Hq on T defined by

Hq(σ) = Hq(Γσ,Fl).

In this notation, then, the qth row of the spectral sequence (1) is the cochain
complex C•(T ,Hq). Using the isomorphism (2), we see that on each com-
ponent of W (i)−W (i−1) the system Hq is constant for each q. By Lemma 5
of [4] the inclusion v0 → T induces an isomorphism

H•(T ,Hq) ∼=−→ H•(v0,Hq)
for all q. It follows that

Epq2 =
{
Hq(GLn(k),Fl), p = 0,
0, p > 0.

Hence we have the following result, due to Soulé [4].

Proposition 1.2. If l 6= p, then the natural map GLn(k)→ GLn(k[t])
induces an isomorphism

H•(GLn(k[t]),Fl)→ H•(GLn(k),Fl)

for all n.

It remains to calculate the Fp-cohomology of the various Γσ; we do this
in the next section.
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2. Mod p cohomology. In this section cohomology is with Fp coeffi-
cients. We shall write H•(G) for H•(G,Fp).

Let Γσ be the stabilizer of the simplex σ and consider the extension

1→ Cσ → Γσ → Pσ → 1,

where Pσ is a parabolic subgroup of GLn(k). Observe that the Sylow p-
subgroup of Pσ is the group Un(k) consisting of upper triangular unipotent
matrices over k. Indeed, if Q is a Sylow p-subgroup of Pσ, then Q ⊇ Un(k)
since Un(k) is a p-subgroup of Pσ. But since Q is a p-subgroup of GLn(k),
we must have Q ⊆ Un(k). Thus, denoting by Uσ a Sylow p-subgroup of Γσ,
we have an extension

1→ Cσ → Uσ → Un(k)→ 1.

The group Uσ consists of matrices whose i, j entry has degree less than lij ,
where

lij = min
v∈σ
{r(v)
i − r

(v)
j }

(see Section 1).
Now, the restriction map

j∗ : H•(Γσ)→ H•(Uσ)

is injective. If T denotes the diagonal subgroup of GLn(k), then since T
normalizes Uσ, the image of j∗ lies in the subgroup of T -invariants.

Proposition 2.1. H i(Uσ)T = 0 for 0 < i < d(p− 1).

Proof. Let ∆+ be the set of positive roots (t 7→ ti/tj , 1 ≤ j < i ≤ n,
where ti is the ith entry of the diagonal matrix t). Order ∆+ by setting
(i′, j′) ≤ (i, j) if either i′ < i, or i′ = i and j′ ≤ j. If a ∈ ∆+, let Ua be the
subgroup of Uσ generated by the one-parameter subgroups corresponding to
roots > a. For each a ∈ ∆+, we have an extension

1→ (ka)la → Uσ/Ua → Uσ/Ua′ → 1,

where ka is the T -module k with T acting via the root a, la = lij for
a = (i, j), and a′ is the element of ∆+ immediately preceding a (if a = (1, 2),
then Ua′ = Uσ). The group T acts on this extension. Since the extension is
central, the associated Hochschild–Serre spectral sequence has the form

E2 = H•(Uσ/Ua′)⊗H•(ka)⊗la ⇒ H•(Uσ/Ua).(3)

Denote by PS(M) the Poincaré series of the T -module M . By Lemma
15 of [3], we have

PS(H•(ka)) =
d−1∏

b=0

(1 + a−p
b
z)/(1− a−pbz2).
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The spectral sequence (3) shows that

PS(H•(Uσ/Ua))� PS(H•(Uσ/Ua′))PS(H•(ka))la ,

where � means that each term in the series on the left is less than or equal
to the corresponding term on the right. Combining these for all a ∈ ∆+, we
have, letting M = maxa∈∆+{la},

PS(H•(Uσ))�
∏

a∈∆+

PS(H•(ka))la �
∏

a∈∆+

PS(H•(ka))M

=
[ ∏

a∈∆+

d−1∏

b=0

(1 + a−p
b
z)
∑

j≥0

a−jp
b
z2j
]M

=
[∑

I

( ∏

a∈∆+

a−Ma(I)
)
zD(I)

]M
,

where I runs over families (mab, nab) with 0 ≤ mab ≤ 1 and nab ≥ 0, and

Ma(I) =
d−1∑

b=0

(mab + nab)pb, D(I) =
∑

a∈∆+

d−1∑

b=0

(mab + 2nab).

It follows that

PS(H•(Uσ))�
∑

r≥0

( ∑

I1,...,IM :
∑
D(Ij)=r

( ∏

a∈∆+

a−
∑M
j=1Ma(Ij)

))
zr.

Now, it suffices to show that if I1, . . . , IM satisfy
∏

a∈∆+

a−
∑M
j=1Ma(Ij) = ε

where ε is the trivial character of T , then

M∑

j=1

D(Ij) ≥ d(p− 1).

Let ai(t) = ti+1/ti, 1 ≤ i ≤ n − 1, be the simple roots. Then if a =
tj/th ∈ ∆+, we may write

a =
n−1∏

i=1

(ai)cai

where cai = 1 for h ≤ i < j and 0 otherwise. Then our equation becomes

∏

a

a−
∑M
j=1 Ma(Ij) =

n−1∏

i=1

a
−cai

∑M
j=1 Ma(Ij)

i =
n−1∏

i=1

a−eii
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where

ei = cai

M∑

j=1

d−1∑

b=0

(m(j)
ab + n

(j)
ab )pb,

and Ij = {(m(j)
ab , n

(j)
ab )}.

Since k× is cyclic of order pd − 1, for each 1 ≤ i < n we have
M∑

j=1

d−1∑

b=0

cai(m
(j)
ab + n

(j)
ab )pb ≡ 0 mod (pd − 1),

and hence
d−1∑

b=0

M∑

j=1

cai(m
(j)
ab + n

(j)
ab )pb ≡ 0 mod (pd − 1).

By Lemma 16 of [3], we have
d−1∑

b=0

M∑

j=1

cai(m
(j)
ab + n

(j)
ab ) ≥ d(p− 1),

provided at least one of the
∑

j cai(m
(j)
ab + n

(j)
ab ) is nonzero.

Now, suppose that for some j, D(Ij) > 0. Then for some a, b, we have

mab + nab > 0 and hence
∑

j cai(m
(j)
ab + n

(j)
ab ) > 0 for some b and i. Thus,

M∑

j=1

D(Ij) =
M∑

j=1

(∑

a,b

(m(j)
ab + 2n(j)

ab )
)
≥

M∑

j=1

(∑

a,b

(m(j)
ab + n

(j)
ab )
)

≥
M∑

j=1

(∑

a,b

cai(m
(j)
ab + n

(j)
ab )
)
≥ d(p− 1)

as required.

Remark 2.2. Note that this bound is optimal. Indeed, if k = Fp, σ = v0,
then Γσ = GLn(k), Uσ = Un(k), and Hp−1(Un(k)) contains H1(ka)⊗(p−1),
which is a trivial T -module by Fermat’s Little Theorem. Another example
is provided by the group GL2(F2[t]). Using the amalgamated free product
decomposition of this group, one can show that H1(GL2(F2[t]),Z) contains
an infinite-dimensional F2-vector space, while H1(GL2(F2),Z) is finite.

3. The main theorem

Theorem 3.1. If 0 ≤ i < d(p− 1), then the restriction map

j∗ : H i(GLn(k[t]),Z)→ H i(GLn(k),Z)

is an isomorphism.
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Proof. We know that j∗ is an isomorphism for all i with Fl-coefficients,
and for i = 0 with Z-coefficients. Let us consider Fp-cohomology. By Propo-
sition 2.1, the E1-term of the spectral sequence (1) satisfies

Ep,q1 = 0, 0 < q < d(p− 1).

It follows then that Ep,q
∞ = 0 for 0 < q < d(p− 1). Since Ep,0

∞ = 0 for p > 0,
we see that

H i(GLn(k[t]),Fp) = 0, 0 < i < d(p− 1).

Since the same is true for H i(GLn(k),Fp) (see [3]), we conclude that j∗ is
an isomorphism for 0 ≤ i < d(p− 1).
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