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A strong boundedness result for separable

Rosenthal compacta

by

Pandelis Dodos (Paris)

Abstract. It is proved that the class of separable Rosenthal compacta on the Can-
tor set having a uniformly bounded dense sequence of continuous functions is strongly
bounded.

1. Introduction. Our main result is a strong boundedness result for the
class of separable Rosenthal compacta (that is, separable compact subsets
of the first Baire class—see [ADK] and [Ro2]) on the Cantor set having a
uniformly bounded dense sequence of continuous functions. We shall denote
this class by SRC. The phenomenon of strong boundedness, which was first
touched by A. S. Kechris and W. H. Woodin in [KW], is a strengthening of
the classical property of boundedness of Π1

1-ranks. Abstractly, one has a Π1
1

set B, a natural notion of embedding between elements of B and a canonical
Π1

1-rank φ on B which is coherent with the embedding, in the sense that if
x, y ∈ B and x embeds into y, then φ(x) ≤ φ(y). The strong boundedness of
B is the fact that for every analytic subset A of B there exists y ∈ B such
that x embeds into y for every x ∈ A. Basic examples of strongly bounded
classes are the well-orderings WO and the well-founded trees WF (although
in these cases strong boundedness is easily seen to be equivalent to bound-
edness). Recently, it was shown (see [AD] and [DF]) that several classes of
separable Banach spaces are strongly bounded, where the corresponding no-
tion of embedding is that of (linear) isomorphic embedding. These results
have, in turn, important consequences in the study of universality problems
in Banach space theory.

We will add another example to the list of strongly bounded classes,
namely the class SRC. We notice that every K in SRC can be naturally
coded by its dense sequence of continuous functions. Hence, we identify
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SRC with the set

{(fn) ∈ B(2N)N : {fn}
p
⊆ B1(2

N) and fn 6= fm if n 6= m}

where B(2N) stands for the closed unit ball of the separable Banach space
C(2N). With this identification, the set SRC is Π1

1-true. A canonical Π1
1-

rank on SRC comes from the work of H. P. Rosenthal. Specifically, for every
f = (fn) in SRC one is looking at the order of the ℓ1-tree of the sequence (fn).
One also has a natural notion of topological embedding between elements
of SRC. In particular, if f = (fn) and g = (gn) are in SRC, then we say that
g topologically embeds into f if there exists a homeomorphic embedding of
the compact set {gn}

p
into {fn}

p
. This topological embedding, however, is

rather weak and not coherent with the Π1
1-rank on SRC. Thus, we strengthen

the notion of embedding by imposing extra metric conditions on the relation
between g and f . To motivate our definition, assume that g = (gn) and
f = (fn) are in addition Schauder basic sequences. In this case the most
natural thing to consider is equivalence of basic sequences, i.e. g embeds
into f if there exists L = {l0 < l1 < · · · } ∈ [N] such that (gn) is equivalent
to (fln). In such a case, it is easily seen that the order of the ℓ1-tree of g is
dominated by the one of f .

Although not every sequence f ∈ SRC is Schauder basic, the following
condition incorporates the above observation. We say that g = (gn) strongly

embeds into f = (fn) if g topologically embeds into f , and moreover, for
every ε > 0 there exists Lε = {l0 < l1 < · · · } ∈ [N] such that for every
k ∈ N and all a0, . . . , ak ∈ R we have

∣∣∣ max
0≤i≤k

∥∥∥
i∑

n=0

angn

∥∥∥
∞

−
∥∥∥

k∑

n=0

anfln

∥∥∥
∞

∣∣∣ ≤ ε
k∑

n=0

|an|

2n+1
.

The notion of strong embedding is coherent with the Π1
1-rank on SRC and

is consistent with our motivating observation, in the sense that if g = (gn)
strongly embeds into f = (fn) and (gn) is Schauder basic, then there exists
L = {l0 < l1 < · · · } ∈ [N] such that (fln) is Schauder basic and equivalent
to (gn). Under the above terminology, we prove the following.

Main Theorem. Let A be an analytic subset of SRC. Then there exists

f ∈ SRC such that for every g ∈ A the sequence g strongly embeds into f .

2. Background material. We let N = {0, 1, 2, . . .}. For every infinite
set L we denote by [L] the set of all infinite subsets of L. For every Polish
space X we let B1(X) denote the set of all real-valued, Baire-1 functions
on X. If F is a subset of R

X , then F
p

denotes the closure of F in R
X .

Our descriptive set theoretic notation and terminology follows [Ke]. If
X,Y are Polish spaces, A ⊆ X and B ⊆ Y , then we say that A is Wadge

(respectively Borel) reducible to B if there exists a continuous (respectively
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Borel) map f : X → Y such that f−1(B) = A. If A is Π1
1, then a map

φ : A → ω1 is said to be a Π1
1-rank on A if there exist relations ≤Σ,≤Π in

Σ1
1 and Π1

1 respectively such that for all y ∈ A we have

x ∈ A and φ(x) ≤ φ(y) ⇔ x ≤Σ y ⇔ x ≤Π y.

We notice that if B is Borel reducible to a set A via a Borel map f and φ
is a Π1

1-rank on A, then the map ψ : B → ω1 defined by ψ(y) = φ(f(x)) for
all y ∈ B is a Π1

1-rank on B.

2.1. Trees. Let Λ be a non-empty set. We denote by Λ<N the set of
all finite sequences in Λ. We view Λ<N as a tree equipped with the (strict)
partial order ⊏ of end-extension. If t ∈ Λ<N, then the length |t| of t is defined
to be the cardinality of the set {s ∈ Λ<N : s ⊏ t}. If s, t ∈ Λ<N, then sat
denotes their concatenation. Two nodes s, t ∈ Λ<N are said to be comparable

if either s ⊑ t or t ⊑ s; otherwise they are called incomparable. A subset of
Λ<N consisting of pairwise comparable nodes is said to be a chain. If Λ = N

and L ∈ [N], then FIN(L) denotes the subset of L<N consisting of all finite
strictly increasing sequences in L. For every x ∈ ΛN and every n ≥ 1 we set
x|n = (x(0), . . . , x(n− 1)) ∈ Λ<N while x|0 = ∅.

A tree T on Λ is a downwards closed subset of Λ<N. We denote by Tr(Λ)
the set of all trees on Λ. Hence

T ∈ Tr(Λ) ⇔ ∀s, t ∈ Λ<N (t ∈ T ∧ s ⊑ t⇒ s ∈ T ).

A tree T on Λ is said to be pruned if for every t ∈ T there exists s ∈ T
with t ⊏ s. If T ∈ Tr(Λ), then the body [T ] of T is defined to be the set
{x ∈ ΛN : x|n ∈ T ∀n}. A tree T is said to be well-founded if [T ] = ∅. The
subset of Tr(Λ) consisting of all well-founded trees on Λ will be denoted by
WF(Λ). If T ∈ WF(Λ), we let T ′ = {t : ∃s ∈ T with t ⊏ s} ∈ WF(Λ).
By transfinite recursion we define the iterated derivatives T (ξ) of T . The
order o(T ) of T is defined to be the least ordinal ξ such that T (ξ) = ∅.
If S, T are well-founded trees, then a map φ : S → T is called monotone

if s1 ⊏ s2 in S implies that φ(s1) ⊏ φ(s2) in T . Notice that in this case
o(S) ≤ o(T ). If Λ,M are non-empty sets, then we identify every tree T on
Λ ×M with the set of all pairs (s, t) ∈ Λ<N ×M<N such that |s| = |t| = k
and ((s(0), t(0)), . . . , (s(k−1), t(k−1))) ∈ T . If Λ = N, then we shall simply
denote by Tr and WF the sets of all trees and well-founded trees on N

respectively. For every countable set Λ the set WF(Λ) is Π1
1-complete and

the map T 7→ o(T ) is a Π1
1-rank on WF(Λ) (see [Ke]).

2.2. Schauder basic sequences. A sequence (xn) of non-zero vectors in a
Banach space X is said to be a Schauder basic sequence if it is a Schauder
basis of its closed linear span (see [LT]). This is equivalent to saying that
there exists a constant K ≥ 1 such that for all m, k ∈ N with m < k and all
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a0, . . . , ak ∈ R we have

(1)
∥∥∥

m∑

n=0

anxn

∥∥∥ ≤ K
∥∥∥

k∑

n=0

anxn

∥∥∥.

The least constant K for which inequality (1) holds is called the basis con-

stant of (xn). A Schauder basic sequence (xn) is said to be monotone if
K = 1. It is said to be seminormalized (respectively normalized) if there
exists M > 0 such that 1/M ≤ ‖xn‖ ≤ M (respectively ‖xn‖ = 1) for all
n ∈ N.

Let X and Y be Banach spaces. If (xn) and (yn) are two sequences in
X and Y respectively and C ≥ 1, then we say that (xn) is C-equivalent to
(yn) (or simply equivalent, if C is understood) if for every k ∈ N and all
a0, . . . , ak ∈ R we have

1

C

∥∥∥
k∑

n=0

anyn

∥∥∥
Y
≤

∥∥∥
k∑

n=0

anxn

∥∥∥
X

≤ C
∥∥∥

k∑

n=0

anyn

∥∥∥
Y
.

We denote by (xn)
C
∼ (yn) the fact that (xn) is C-equivalent to (yn).

3. Coding SRC. Let X be a compact metrizable space and let SRC(X)
be the family of all separable Rosenthal compacta in X having a dense set
of continuous functions which is uniformly bounded with respect to the
supremum norm. We denote by B(X) the closed unit ball of the separable
Banach space C(X). Notice that every K ∈ SRC(X) is naturally coded by
its dense sequence of continuous functions. Hence we may identify SRC(X)
with the set

{(fn) ∈ B(X)N : {fn}
p
⊆ B1(X) and fn 6= fm if n 6= m}.

Denote by B(X) the Gδ subset of B(X)N consisting of all sequences f = (fn)
in B(X)N such that fn 6= fm if n 6= m. With the above identification the set
SRC(X) becomes a subset of the Polish space B(X). Moreover, as for every
compact metrizable space X the Banach space C(X) embeds isometrically
into C(2N), we denote by SRC the set SRC(2N) and we view SRC as the
set of all separable Rosenthal compacta having a uniformly bounded dense
sequence of continuous functions and defined on a compact metrizable space
(it is crucial that C(X) embeds isometrically into C(2N)—this will be clear
later on). The following lemma provides an estimate for the complexity of
the set SRC(X).

Lemma 1. For every compact metrizable space X the set SRC(X) is Π1
1.

Moreover , the set SRC is Π1
1-true.

Proof. Instead of calculating the complexity of SRC(X) we will actually
find a Borel map Φ : B(X) → Tr such that Φ−1(WF) = SRC(X). In other
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words, we will find a Borel reduction of SRC(X) to WF. This will not only
show that SRC(X) is Π1

1, but it will also provide a natural Π1
1-rank on

SRC(X). This canonical reduction comes from the work of H. P. Rosenthal.

Specifically, let (ei) be the standard basis of ℓ1. To every d ∈ N with
d ≥ 1 and every f = (fn) in B(X) we associate a tree T d

f on N defined by

s ∈ T d
f ⇔ s = (n0 < · · · < nk) ∈ FIN(N) and (ei)

k
i=0

d
∼ (fni

)k
i=0.

Notice that (ei)
k
i=0

d
∼ (fni

)k
i=0 if for all a0, . . . , ak ∈ R we have

1

d

k∑

i=0

|ai| ≤
∥∥∥

k∑

i=0

aifni

∥∥∥
∞

≤ d
k∑

i=0

|ai|.

Observe that for every t ∈ N
<N the set {f : t ∈ T d

f } is a closed subset
of B(X). This shows that the map B(X) ∋ f 7→ T d

f ∈ Tr is Borel (actually
it is Baire-1). Next we glue together the sequence of trees {T d

f : d ≥ 1} to
obtain a tree Tf on N defined by the rule

s ∈ Tf ⇔ ∃d ≥ 1 ∃s′ with s = das′ and s′ ∈ T d
f .

The tree Tf is usually called the ℓ1-tree of the sequence f = (fn). Clearly
the map Φ : B(X) → Tr defined by Φ(f) = Tf is Borel.

We observe that

f = (fn) ∈ SRC(X) ⇔ Tf ∈ WF.

This equivalence is essentially Rosenthal’s dichotomy [Ro1] (see also [Ke] and
[To]). Indeed, let f = (fn) be such that Tf is well-founded. By Rosenthal’s
dichotomy, every subsequence of (fn) has a further pointwise convergent
subsequence. By the Main Theorem in [Ro2], the closure of {fn} in R

X is in
B1(X), and so f ∈ SRC(X). Conversely, assume that Tf is ill-founded. There
exists L = {l0 < l1 < · · · } ∈ [N] such that the sequence (fln) is equivalent
to the standard basis of ℓ1. Using the fact that (fn) is uniformly bounded
and Lebesgue’s dominated convergence theorem we find that (fln) has no
pointwise convergent subsequence. This implies that the closure of {fn} in
R

X contains a homeomorphic copy of βN, and so f /∈ SRC(X). It follows
that Φ determines a Borel reduction of SRC(X) to WF. Hence SRC(X) is
Π1

1 and the map φX : SRC(X) → ω1 defined by φX(f) = o(Tf ) is a Π1
1-rank

on SRC(X).

We proceed to show that SRC is Π1
1-true. Denote by φ the canonical

Π1
1-rank φ2N on SRC defined above. In order to prove that SRC is Π1

1-true,
by [Ke, Theorem 35.23], it is enough to show that sup{φ(f) : f ∈ SRC} = ω1.
In the argument below we shall use the following simple fact.

Fact 2. Let X,Y be compact metrizable spaces and e : X → Y a con-

tinuous onto map. Let f = (fn) ∈ SRC(Y ) and define g = (gn) ∈ C(X)N by
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gn(x) = fn(e(x)) for every x ∈ X and every n ∈ N. Then g ∈ SRC(X) and

φY (f) = φX(g).

Now let F be a family of finite subsets of N which is hereditary (i.e. if
F ∈ F and G ⊆ F , then G ∈ F) and compact in the pointwise topology
(i.e. compact in 2N). To every such family F one associates its order o(F),
which is simply the order of the downwards closed, well-founded tree TF on
N defined by

s ∈ TF ⇔ s = (n0 < · · · < nk) ∈ FIN(N) and {n0, . . . , nk} ∈ F .

Such families are well-studied in combinatorics and functional analysis and
a detailed exposition can be found in [AT]. What we need is the simple fact
that for every countable ordinal ξ one can find a compact hereditary family
F with o(F) ≥ ξ.

So, fix a countable ordinal ξ and let F be a compact hereditary family
with o(F) ≥ ξ. We will additionally assume that {n} ∈ F for all n ∈ N.
Define πFn : F → R by πFn (F ) = χF (n) for all F ∈ F . Clearly for every
n ∈ N we have πFn ∈ C(F) and ‖πFn ‖∞ = 1. Moreover, as the family F
contains all singletons, we get πFn 6= πFm if n 6= m. It is easy to see that the
sequence (πFn ) converges pointwise to 0, and so (πFn ) ∈ SRC(F).

Claim 3. We have φF ((πFn )) ≥ o(F) ≥ ξ.

Proof of Claim 3. The proof is essentially based on the fact that F is

hereditary. Indeed, notice that if F = {n0 < · · · < nk} ∈ F , then (ei)
k
i=0

2
∼

(πFni
)k
i=0 or equivalently F ∈ T 2

(πF
n )

. To see this, fix F = {n0 < · · · < nk} ∈ F

and let a0, . . . , ak ∈ R be arbitrary. We set

I+ = {i ∈ {0, . . . , k} : ai ≥ 0} and I− = {0, . . . , k} \ I+.

Then either
∑

i∈I+
ai ≥ 1

2

∑k
i=0 |ai| or −

∑
i∈I−

ai ≥ 1
2

∑k
i=0 |ai|. Assume

that the second case occurs (the argument is symmetric). Let F− = {ni :
i ∈ I−} ⊆ F ∈ F . Then F− ∈ F as F is hereditary. Now observe that

1

2

k∑

i=0

|ai| ≤ −
∑

i∈I−

ai =
∣∣∣

k∑

i=0

aiπ
F
ni

(F−)
∣∣∣ ≤

∥∥∥
k∑

i=0

aiπ
F
ni

∥∥∥
∞

≤ 2
k∑

i=0

|ai|.

It follows by the above discussion that the identity map Id : TF → T 2
(πF

n )
is

a well-defined monotone map. The claim is proved. ♦

By Fact 2 and Claim 3, we conclude that sup{φ(f) : f ∈ SRC} = ω1 and
the entire proof is complete.

4. Topological and strong embedding. Consider the classes SRC(X)
and SRC(Y ), where X and Y are compact metrizable spaces, as they were
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coded in the previous section. There is a canonical notion of embedding
between elements of SRC(X) and SRC(Y ), defined as follows.

Definition 4. Let X,Y be compact metrizable spaces, f = (fn) ∈
SRC(X) and g = (gn) ∈ SRC(Y ). We say that g topologically embeds into f ,

in symbols g < f , if there exists a homeomorphic embedding of {gn}
p

into

{fn}
p
.

Clearly the notion of topological embedding is natural and meaningful,
as f1 < f2 and f2 < f3 imply that f1 < f3. However, in this setting, one
also has a canonical Π1

1-rank on SRC and any notion of embedding between
elements of SRC should be coherent with this rank, in the sense that if
g < f , then φY (g) ≤ φX(f). Unfortunately, the topological embedding is
not strong enough in order to have this property.

Example 1. Let F1 and F2 be two compact hereditary families of finite
subsets of N. As in the proof of Lemma 1, consider the sequences (πF1

n ) ∈
SRC(F1) and (πF2

n ) ∈ SRC(F2). Both of them are pointwise convergent
to 0. Hence, they are topologically equivalent and clearly bi-embeddable.
However, it is easy to see that the corresponding ranks of the two sequences
depend only on the order of the families F1 and F2, and so they are totally
unrelated.

We are going to strengthen the notion of topological embedding between
the elements of SRC. To motivate our definition, let f = (fn),g = (gn) ∈
SRC and assume that both (fn) and (gn) are Schauder basic sequences.
In this case, the most natural notion of embedding is that of equivalence,
i.e. g embeds into f if there exists L = {l0 < l1 < · · · } ∈ [N] such that
the sequence (gn) is equivalent to (fln). It is easy to verify that, in this
case, we do have φ(g) ≤ φ(f). Although not every f ∈ SRC is a Schauder
basic sequence, there is a metric relation we can impose on f and g which
incorporates the above observation.

Definition 5. Let X,Y be compact metrizable spaces, f = (fn) ∈
SRC(X) and g = (gn) ∈ SRC(Y ). We say that g strongly embeds into f ,
in symbols g ≺ f , if g topologically embeds into f , and moreover, for every
ε > 0 there exists Lε = {l0 < l1 < · · · } ∈ [N] such that for every k ∈ N and
all a0, . . . , ak ∈ R we have

(2)
∣∣∣ max
0≤i≤k

∥∥∥
i∑

n=0

angn

∥∥∥
∞

−
∥∥∥

k∑

n=0

anfln

∥∥∥
∞

∣∣∣ ≤ ε
k∑

n=0

|an|

2n+1
.

Below we gather the basic properties of the notion of strong embedding.

Proposition 6. Let X and Y be compact metrizable spaces. The fol-

lowing hold.
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(i) If f ∈ SRC(X) and g ∈ SRC(Y ) with g ≺ f , then g < f .

(ii) If f ∈ SRC(X), g ∈ SRC(Y ) with g ≺ f and the sequence (gn) is

a normalized Schauder basic sequence, then there exists L = {l0 <
l1 < · · · } ∈ [N] such that the sequence (fln) is Schauder basic and

equivalent to (gn).
(iii) If f1 ≺ f2 and f2 ≺ f3, then f1 ≺ f3.

(iv) If f ∈ SRC(X) and g ∈ SRC(Y ) with g ≺ f , then φY (g) ≤ φX(f).
(v) Let Z be a compact metrizable space and e : Z → X be onto

continuous. Let f = (fn) ∈ SRC(X) and define, as in Fact 2,
h = (hn) ∈ SRC(Z) by hn(z) = fn(e(z)) for every n ∈ N and

every z ∈ Z. If g ∈ SRC(Y ) is such that g ≺ f , then g ≺ h.

Proof. (i) This is straightforward.

(ii) Let K ≥ 1 be the basis constant of (gn). We are going to show that
there exists L = {l0 < l1 < · · · } ∈ [N] such that (gn) is 2K-equivalent to
(fln). Indeed, let 0 < ε < 1/4K and select Lε = {l0 < l1 < · · · } ∈ [N] such
that inequality (2) is satisfied. Let k ∈ N and a0, . . . , ak ∈ R. Notice that

(3)
∥∥∥

k∑

n=0

angn

∥∥∥
∞

≤ max
0≤i≤k

∥∥∥
i∑

n=0

angn

∥∥∥
∞

≤ K
∥∥∥

k∑

n=0

angn

∥∥∥
∞
.

Moreover, for every m ∈ {0, . . . , k} we have

(4) |am| ≤ 2K
∥∥∥

k∑

n=0

angn

∥∥∥
∞

as (gn) is a normalized Schauder basic sequence (see [LT]). Plugging in
inequalities (3) and (4) into (2) we get

∥∥∥
k∑

n=0

anfln

∥∥∥
∞

≤ K
∥∥∥

k∑

n=0

angn

∥∥∥
∞

+ 2Kε
∥∥∥

k∑

n=0

angn

∥∥∥
∞

≤ 2K
∥∥∥

k∑

n=0

angn

∥∥∥
∞

by the choice of ε. Arguing similarly, we see that

1

2K

∥∥∥
k∑

n=0

angn

∥∥∥
∞

≤
∥∥∥

k∑

n=0

anfln

∥∥∥
∞
.

Thus (gn) is 2K-equivalent to (fln), as desired.

(iii) This is a simple calculation, similar to that of part (ii), and we prefer
not to bother the reader with it.

(iv) Let d≥1. We fix ε>0 with ε<1/2d and we select Lε = {l0<l1< · · ·}
∈ [N] such that inequality (2) is satisfied. For every s = (m0 < · · ·<mk)
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∈ T d
g we set ts = (lm0 < · · · < lmk

) ∈ FIN(N). Observe that for every k ∈ N

and all a0, . . . , ak ∈ R we have

2d
k∑

n=0

|an| ≥
∥∥∥

k∑

n=0

anflmn

∥∥∥
∞

≥ max
0≤i≤k

∥∥∥
i∑

n=0

angmn

∥∥∥
∞

− ε
k∑

n=0

|an|

≥
∥∥∥

k∑

n=0

angmn

∥∥∥
∞

− ε
k∑

n=0

|an|

≥
1

d

k∑

n=0

|an| −
1

2d

k∑

n=0

|an| =
1

2d

k∑

n=0

|an|.

This shows that ts ∈ T 2d
f . It follows that s 7→ ts is a monotone map from

T d
g to T 2d

f . Hence o(T d
g ) ≤ o(T 2d

f ). As d was arbitrary, this implies that
φY (g) ≤ φX(f), as desired.

(v) This is also straightforward, as the map e induces an isometric em-
bedding of C(X) into C(Z).

We are going to present another property of the notion of strong em-
bedding which has a Banach space theoretic flavor. To this end, we give the
following definition.

Definition 7. Let E be a compact metrizable space and g = (gn) be
a bounded sequence in C(E). We denote by Xg the completion of c00(N)
under the norm

(5) ‖x‖g = sup
{∥∥∥

k∑

n=0

x(n)gn

∥∥∥
∞

: k ∈ N

}
.

We denote by (egn) the standard Hamel basis of c00(N) regarded as a
sequence in Xg. Let us isolate some elementary properties of (egn).

(P1) The sequence (egn) is a monotone basis of Xg. Moreover, (egn) is
normalized (respectively seminormalized) if and only if (gn) is.

(P2) If (gn) is Schauder basic with basis constant K, then (egn) is K-
equivalent to (gn).

Less trivial is the fact (which we will see in the next section) that g ∈
SRC(E) if and only if (egn) is in SRC(K), where K is the closed unit ball of
X∗

g with the weak∗ topology. In light of property (P2) above, the sequence

(egn) can be regarded as a sort of “approximation” of (gn) by a Schauder
basic sequence.

The following proposition relates the strong embedding of a sequence
g = (gn) into a sequence f = (fn)n to the existence of subsequences of (fn)
which are “almost isometric” to (egn). Its proof, which is left to the interested
reader, is based on arguments similar to the proof of Proposition 6.
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Proposition 8. Let X and Y be compact metrizable spaces, g = (gn) ∈
SRC(X) and f = (fn) ∈ SRC(Y ). If g strongly embeds into f , then for

every ε > 0 there exists Lε = {l0 < l1 < · · · } ∈ [N] such that (egn) is

(1 + ε)-equivalent to (fln).

5. The main result. We are ready to state and prove the strong bound-
edness result for the class SRC.

Theorem 9. Let A be an analytic subset of SRC. Then there exists

f ∈ SRC such that for every g ∈ A we have g ≺ f .

We record the following consequence of Theorem 9 and Proposition 8.

Corollary 10. Let X be a compact metrizable space and g = (gn) ∈
SRC(X). Then (egn) is in SRC(K), where K is the closed unit ball of X∗

g

with the weak∗ topology.

We proceed to the proof of Theorem 9.

Proof of Theorem 9. We fix a norm dense sequence (dn) in the closed
unit ball of C(2N) such that dn 6= dm if n 6= m and dn 6= 0 for every n ∈ N.
We also fix a sequence (Dn) of infinite subsets of N such that Dn ∩Dm = ∅
if n 6= m and N =

⋃
nDn. Let A be an analytic subset of SRC and define

Ã ⊆ N
N by

σ ∈ Ã ⇔ ∃g = (gn) ∈ A ∃ε > 0 such that

[∀n ∀k (k ∈ Dn ⇒ ‖gn − dσ(k)‖∞ ≤ ε/2k+1)] and

[∀n ∀m (n 6= m⇒ σ(n) 6= σ(m))].

Then Ã is Σ1
1. Let T be the unique downwards closed, pruned tree on N×N

such that Ã = proj[T ]. We define a sequence (ht)t∈T in C(2N) as follows.
If t = (∅, ∅), then we set ht = 0. If t ∈ T with t 6= (∅, ∅), then t = (s, w)
with s = (n0, . . . , nm) ∈ N

<N. We set ht = dnm . Clearly ‖ht‖∞ ≤ 1 for every
t ∈ T . We notice the following properties of the sequence (ht)t∈T .

(P1) For every σ ∈ [T ] there exists g = (gn) ∈ A and ε > 0 such
that for every n ∈ N and every k ≥ 1 with k − 1 ∈ Dn we have
‖gn − hσ|k‖∞ ≤ ε/2k.

(P2) For every g = (gn) ∈ A and every ε > 0 there exists σ ∈ [T ] such
that for every n ∈ N and every k ≥ 1 with k − 1 ∈ Dn we have
‖gn − hσ|k‖∞ ≤ ε/2k.

We pick an embedding φ : T → 2<N such that for all t, t′ ∈ T we have
φ(t) ⊏ φ(t′) if and only if t ⊏ t′. Let also e : T → N be a bijection such that
e(t) < e(t′) if t ⊏ t′ for all t, t′ ∈ T . We enumerate the nodes of T as (tn)
according to e. Now for every n ∈ N we define fn : 2N × 2N → R by

(6) fn(σ1, σ2) = χVφ(tn)
(σ1) · htn(σ2)
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where Vφ(tn) = {σ ∈ 2N : φ(tn) ⊏ σ}. Clearly fn ∈ C(2N×2N) and ‖fn‖∞ ≤ 1
for all n ∈ N. Moreover, it is easy to check that fn 6= fm if n 6= m.

It will be convenient to adopt the following notation. For every function
g : 2N → R and τ ∈ 2N we denote by g ∗ τ : 2N × 2N → R the function
defined by g ∗ τ(σ1, σ2) = δτ (σ1) · g(σ2) for (σ1, σ2) ∈ 2N × 2N (δτ stands for
the Dirac function at τ).

Claim 11. We have (fn) ∈ SRC(2N × 2N).

Proof of Claim 11. By the Main Theorem in [Ro2], it is enough to
show that every subsequence of (fn) has a further pointwise convergent
subsequence. So, let N ∈ [N] arbitrary. By Ramsey’s theorem, there exists
M ∈ [N ] such that the family {φ(tn) : n ∈M} either consists of pairwise in-
comparable nodes, or of pairwise comparable ones. In the first case (fn)n∈M

is pointwise convergent to 0. In the second case, by the properties of φ and
the enumeration of T , for any n,m ∈ M with n < m we have tn ⊏ tm. It
follows that there exists σ ∈ [T ] such that tn ⊏ σ for every n ∈ M . We
may also assume that tn 6= (∅, ∅) for all n ∈ M . By property (P1) above,
there exist g = (gn) ∈ A, ε > 0 and a sequence (kn)n∈M in N (with possible
repetitions) such that ‖gkn

− htn‖∞ ≤ ε/2|tn| for all n ∈ M . As g ∈ SRC,
there exists L ∈ [M ] such that (gkn

)n∈L is pointwise convergent to a Baire-1
function g. Since limn∈L |tn| = ∞, the sequence (htn)n∈L is also pointwise
convergent to g. Finally, (χVφ(tn)

)n∈L converges pointwise to δτ , where τ is

the unique element of 2N determined by the infinite chain {φ(tn) : n ∈ L}
of 2<N. It follows that (fn)n∈L is pointwise convergent to g ∗ τ . The claim
is proved. ♦

Claim 12. For every g = (gn) ∈ A, g topologically embeds into (fn).

Proof of Claim 12. Let g = (gn) ∈ A. By (P2), there exists σ ∈ [T ]
such that for every n ∈ N and every k ≥ 1 with k − 1 ∈ Dn we have
‖gn − hσ|k‖∞ ≤ 1/2k. By the choice of φ, there exists a unique τ ∈ 2N such
that φ(σ|k) ⊏ τ for all k ∈ N. Fix n0 ∈ N. Since there exist infinitely many
k with ‖gn0 − hσ|k‖∞ ≤ 1/2k, arguing as in Claim 11 we find that gn0 ∗ τ

belongs to the closure of {fn} in R
2N×2N

. It follows that

{gn}
p
∋ g 7→ g ∗ τ ∈ {fn}

p

is a homeomorphic embedding and the claim is proved. ♦

Claim 13. For every g = (gn) ∈ A, g strongly embeds into (fn).

Proof of Claim 13. Fix g = (gn) ∈ A. By Claim 12, it is enough to
show that for every ε > 0 there exists Lε = {l0 < l1 < · · · } ∈ [N] such
that inequality (2) is satisfied for (gn) and (fln). So, let ε > 0 be arbitrary.
By property (P2), there exists σ ∈ [T ] such that for every n ∈ N and
every k ≥ 1 with k − 1 ∈ Dn we have ‖gn − hσ|k‖∞ ≤ ε/2k. There exists
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D = {m0 < m1 < · · ·} ∈ [N] with m0 ≥ 1 and mn−1 ∈ Dn for all n ∈ N. By
the properties of the enumeration e of T , there exists L = {l0 < l1 < · · ·}
∈ [N] such that tln = σ|mn for every n ∈ N. We isolate, for future use, the
following facts.

(F1) For every n ∈ N we have ‖gn − htln
‖∞ ≤ ε/2mn ≤ ε/2n+1.

(F2) For any n,m ∈ N with n < m we have tln ⊏ tlm .

We claim that the sequences (gn) and (fln) satisfy inequality (2) for the
given ε > 0. Indeed, let k ∈ N and a0, . . . , ak ∈ R. By (F1), for every
i ∈ {0, . . . , k} we have

∣∣∣
∥∥∥

i∑

n=0

angn

∥∥∥
∞

−
∥∥∥

i∑

n=0

anhtln

∥∥∥
∞

∣∣∣ ≤ ε
i∑

n=0

|an|

2n+1
.

This implies that

∣∣∣ max
0≤i≤k

∥∥∥
i∑

n=0

angn

∥∥∥
∞

− max
0≤i≤k

∥∥∥
i∑

n=0

anhtln

∥∥∥
∞

∣∣∣ ≤ ε
k∑

n=0

|an|

2n+1
.

The above inequality is a consequence of the following elementary fact. If
(ri)

k
i=0, (θi)

k
i=0 and (δi)

k
i=0 are finite sequences of positive reals such that

|ri − θi| ≤ δi for all i ∈ {0, . . . , k}, then

| max
0≤i≤k

ri − max
0≤i≤k

θi| ≤ max
0≤i≤k

δi.

So the claim will be proved once we show that

max
0≤i≤k

∥∥∥
i∑

n=0

anhtln

∥∥∥
∞

=
∥∥∥

k∑

n=0

anfln

∥∥∥
∞
.

To this end we argue as follows. For every t ∈ T the function ht is continuous.
So there exist j ∈ {0, . . . , k} and σ2 ∈ 2N such that

max
0≤i≤k

∥∥∥
i∑

n=0

anhtln

∥∥∥
∞

=
∣∣∣

j∑

n=0

anhtln
(σ2)

∣∣∣.

By (F2), we have tl0 ⊏ · · · ⊏ tlk . Hence, by the properties of φ, we see
that φ(tl0) ⊏ · · · ⊏ φ(tlk). It follows that there exists σ1 ∈ 2N such that
χVφ(tln

)
(σ1) = 1 if n ∈ {0, . . . , j} while χVφ(tln

)
(σ1) = 0 otherwise. So

∥∥∥
k∑

n=0

anfln

∥∥∥
∞

≥
∣∣∣

k∑

n=0

anfln(σ1, σ2)
∣∣∣ =

∣∣∣
j∑

n=0

anhtln
(σ2)

∣∣∣.

Conversely, let (σ3, σ4) ∈ 2N × 2N be such that

∥∥∥
k∑

n=0

anfln

∥∥∥
∞

=
∣∣∣

k∑

n=0

anfln(σ3, σ4)
∣∣∣.
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We notice that if χVφ(tln
)
(σ3) = 1 for some n ∈ N, then for every m ∈ N

with m ≤ n we also have χVφ(tlm
)
(σ3) = 1. Hence, there exists p ∈ {0, . . . , k}

such that χVφ(tln
)
(σ3) = 1 if n ∈ {0, . . . , p} while χVφ(tln

)
(σ3) = 0 otherwise.

This implies that

∥∥∥
k∑

n=0

anfln

∥∥∥
∞

=
∣∣∣

k∑

n=0

anfln(σ3, σ4)
∣∣∣ =

∣∣∣
p∑

n=0

anfln(σ3, σ4)
∣∣∣

=
∣∣∣

p∑

n=0

anhtln
(σ4)

∣∣∣ ≤ max
0≤i≤k

∥∥∥
i∑

n=0

anhtln

∥∥∥
∞

and the claim is proved. ♦

As 2N × 2N is homeomorphic to 2N, by Claims 11 and 13 and invoking
Proposition 6(v), the proof of the theorem is complete.
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[DF] P. Dodos and V. Ferenczi, Some strongly bounded classes of Banach spaces, Fund.

Math. 193 (2007), 171–179.
[Ke] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156,

Springer, 1995.
[KW] A. S. Kechris and W. H. Woodin, A strong boundedness theorem for dilators,

Ann. Pure Appl. Logic 52 (1991), 93–97.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, II, Springer, 1996.
[Ro1] H. P. Rosenthal, A characterization of Banach spaces not containing ℓ1, Proc.

Nat. Acad. Sci. USA 71 (1974), 2411–2413.
[Ro2] —, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977),

362–378.
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