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On the accessible points in the Julia sets
of some entire functions

by

Bogusława Karpińska (Warszawa)

Abstract. We prove that for some families of entire functions whose Julia set is the
complement of the basin of attraction every branch of a tree of preimages starting from
this basin is convergent.

1. Introduction. We consider a class of entire maps on the complex
plane which includes the functions described by Devaney and Tangerman
in [5] which admit a Cantor bouquet in their Julia sets. The simplest ex-
amples of such maps are λ exp z, λ sin z, λ cos z. Another class of interesting
examples is described in [12] and [13].

Let E be a transcendental entire function such that

(1) its asymptotic and critical values are contained in a bounded set.

Let D be a closed topological disk in C containing all the critical and
asymptotic values of E in its interior and let Γ be the complement of D.
Denote by T a connected component of E−1(Γ ). The set T is called an
exponential tract ; it is a topological disk whose closure contains infinity and
E|T is an infinite degree covering (see [5]). There can be finitely or infinitely
many exponential tracts. Let Tr (r = 0, 1 . . .) be the exponential tracts for E.

We shall assume that

(2) 0 ∈ D and every exponential tract satisfies Tr ∩D = ∅.
Then E has an attracting fixed point in D whose basin of attraction A
contains D. We shall also assume that

(3) the Julia set is the complement of the basin of attraction A.
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If E is critically finite (i.e. has finitely many critical and asymptotic values)
then (3) is satisfied because E has neither wandering domains nor Baker
domains (see [6] and [1]).

We shall denote by F the class of entire functions satisfying (1)–(3). Let
γ : [0,∞)→ Ĉ be a smooth curve disjoint from the union of the exponential
tracts and such that z = γ(0) ∈ D, γ(0,∞) ∩ D = ∅, and limt→∞ γ(t)
= ∞. We use this curve to define the fundamental domains in every Tr by
taking components of the preimage of Γ \ γ[0,∞). Denote by γri , i ∈ Z, the
components of E−1(γ[0,∞)) so that γri and γri+1 bound one fundamental
domain P ri (see Fig. 1).

Fig. 1. Exponential tracts and fundamental domains

It is proved in [5] that under certain assumptions concerning the growth
of E in each Tr, for E critically finite, the set

ΛN =
{
z : Ej(z) ∈

N⋃

i=−N
P ri for all j ≥ 0

}

is homeomorphic to the Cantor N -bouquet which we define below.
For a positive integer N we consider the space of sequences of integers

between −N and N :

ΣN = {(s0, s1, . . .) : sj ∈ Z, |sj | ≤ N}.
The set ΣN is homeomorphic to a Cantor set. Define σ : ΣN → ΣN by
σ(s0, s1, s2, . . .) = (s1, s2, . . .). We call a closed subset CN of C a Cantor
N-bouquet for an entire function f if f(CN ) ⊂ CN and there exists a hom-
eomorphism h : ΣN × [0,∞)→ CN with the following properties:
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(a) (π ◦ h−1 ◦ f ◦ h)(s, t) = σ(s) for all t ∈ [0,∞), where π : ΣN × [0,∞)
→ ΣN is the projection π(s, t) = s.

(b) limt→∞ h(s, t) =∞.
(c) limn→∞ fn(h(s, t)) =∞ if t > 0.

The simplest example of a Cantor bouquet (i.e. C =
⋃∞
N=1CN ) arising

in the dynamics of entire maps is the Julia set for the map Eλ(z) = λez,
where z ∈ C and λ ∈ (0, 1/e), described in detail in [4] and [5]. The function
Eλ has two real fixed points, one of them attracting, denote it by pλ, and
the other repelling, denote it by qλ. Choose νλ such that νλ < qλ and if
Re z ≥ νλ then |E′λ(z)| > 1, and denote by H the half-plane {z : Re z ≥ νλ}.
This is the only exponential tract T . The left half-plane C \ H is mapped
by Eλ into itself, it is contained in the basin of attraction. The Julia set of
Eλ is contained in H (H is the only exponential tract). We divide H into
infinitely many strips: for k ∈ Z,

P (k) = {z ∈ C : Re z ≥ νλ, (2k − 1)π ≤ Im z < (2k + 1)π}.
This way we get fundamental domains (the half-line {z : Re z < −Eλ(νλ),
Im z = 0} plays the role of γ). If the forward orbit of z is completely
contained in H then the itinerary of z is defined to be the sequence s =
(s0, s1, . . .) such that sj = k if Ejλ(z) ∈ P (k).

The set of points which have a given sequence s as itinerary either forms
a curve Xs lying in the Julia set Jλ or is empty in C. Each Xs is the image
of a continuous embedding φs : [0, 1)→ C with φs(t)→∞ as t→ 1. The set
Jλ \∞ is a disjoint union of curves Xs called hairs. Devaney and Goldberg
[3] proved that the point zs = φs(0) is accessible from the basin of attraction
(i.e. there exists a path β : [0, 1) → Ωλ such that limt→1 β(t) = zs). The
points zs can be obtained as the limit points of the branches of the tree
of preimages which we describe below; moreover all branches converge to
points zs or to infinity. Devaney and Goldberg also proved that zs is the
unique point in Xs accessible from the basin of attraction. It is shown in
[8] and [9] that the set of accessible points for Eλ has Hausdorff dimension
2 while the rest of the Julia set (i.e. hairs without their endpoints) has
Hausdorff dimension 1. We expect that in the class F the structure of the
Julia set is similar (under some additional assumptions). In particular this
leads to the question whether the Hausdorff dimension of the set of accessible
points equals the dimension of the whole Julia set. Here we make a first step
towards an answer: we prove the convergence of all branches in Ĉ.

In this paper we assume the following:

(i) For a given exponential tract Tr all the fundamental domains extend
to infinity in the same direction, i.e. for all j ∈ Z, γrj are C1-asymptotic
to a straight line with fixed direction θr. Moreover we assume that there
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exists a constant c such that for every r and every j ∈ Z, if z ∈ P r
j then

dist(z, lθr) < c, where dist means Euclidean distance and lθr is a straight
line with direction θr.

(ii) There exist constants R > 0 and ε < π/2 such that for every branch
G of E−1 and for any z1, z2 such that E(z1), E(z2) lie in the same funda-
mental domain and |E(z1)|, |E(z2)| > R the following inequality holds:

|ArgG′(E(z1))− ArgG′(E(z2))| < ε.

(iii) There exists a constant K such that dist(D,T ) > K for every expo-
nential tract T .

The Julia set of E consists precisely of those points which remain in⋃
r Tr under iteration of E (because we assume that the Julia set is the

complement of the basin of attraction).
For every z ∈ J(E) we define the itinerary of z to be the sequence of

symbols s(z) = (ε0, s0, ε1, s1, . . . , εn, sn, . . .), where si ∈ Z and εi ∈ N if the
number of exponential tracts is infinite, while εi ∈ {0, . . . , p} if there are
p+ 1 exponential tracts, such that

εi = t and si = j if Ei(z) ∈ P tj .
We use double coding to distinguish fundamental domains in different tracts.

We will consider the tree of preimages for E (introduced in [7], see also
[11]) defined as follows. Fix z0 ∈ A \ D such that 1

2K < dist(z0,D) < K.
The preimage of {z0} is contained in the union of exponential tracts; for
each r ∈ N and j ∈ Z there is exactly one zrj ∈ P rj such that E(zrj ) = z0.

Consider arcs βrj : [0, 1] → A \ D joining z0 to the corresponding zrj ,
j ∈ Z (pairwise disjoint except for βrj (0)). They can be chosen such that
βrj ∩ {z : dist(z,D) < K/2} = ∅. For a given sequence of symbols s =
(ε0, s0, ε1, s1, . . . , εn, sn, . . .) we define β0(s) = βrs0 and βn(s) by induction:
Suppose we have already defined βi : [i, i+1]→ A\D for 0 ≤ i ≤ n in such a
way that for i ≥ 1, βi(s)(i) = βi−1(s)(i) and E(βi(s)) = βi−1(σ(s)), where σ
is the shift map σ(ε0, s0, ε1, s1, . . . , εn, sn, . . .) = (ε1, s1, . . . , εn, sn, . . .). Then
we define βn+1(s) to be the curve parameterized on [n+ 1, n+ 2] such that

βn+1(s)(n+ 1) = βn(s)(n+ 1), E(βn+1(s)) = βn(σ(s)).

Joining the curves βn(s) for n ∈ N we obtain the curve β(s) parameterized
on [0,∞] which is called the branch of the tree of preimages for a given
itinerary s. The curve β(s) is contained in the basin of attraction. If β(s) is
convergent then its limit point belongs to the boundary of A (that is, J(E))
or it is infinity.

In the next section we shall make one more assumption concerning the
behavior of the branches β0 of the first generation.
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The purpose of this paper is to prove that under the above assumptions
the following holds:

Theorem. Every branch of the tree of preimages is convergent in Ĉ.

In particular, this means that for every itinerary s there exists at least
one accessible point in J(E) ∪ {∞} whose itinerary is s.

Examples. 1. The example described above, Eλ(z) = λ exp z, where
λ ∈ (0, 1/e), satisfies all our assumptions.

2. Now consider the function Sλ(z) = λ(ez − e−z)/2, where λ ∈ (0, 1),
i.e. λ sin z after a change of coordinates. It has one attracting fixed point at
0 and two real repelling fixed points with the same modulus q. The vertical
lines {z : Re z = ν} and {z : Re z = −ν}, where 0 < ν < q, are mapped
onto an ellipse with center at 0 which intersects the real axis at Sλ(ν) < ν.
The half-planes {z : Re z > ν} and {z : Re z < −ν} are mapped onto
the exterior of this ellipse. These half-planes are exponential tracts for Sλ.
Critical values of Sλ are attracted to 0 and there are no asymptotic values.
The Julia set for Sλ contains of a pair of Cantor bouquets, one tending to
∞ in the direction of the positive real axis and the other in the direction of
the negative real axis (see [5]).

3. Consider the function defined by

f(z) =
1

2πi

�

L

exp(exp t)
t− z dt,

where L is the boundary of the region

G = {z : Re z > 0, −π < Im z < π}
described in the clockwise direction, and z ∈ C \ G. The function f can
be analytically continued to a transcendental entire function; denote it also
by f . This function was investigated by Stallard [12] who proved that the
Julia sets for the functions fK(z) = f(z)−K for K sufficiently large have
Hausdorff dimension arbitrarily close to 1. It turns out (see [12]) that there
exists a constant c such that |f(z)| < c for z ∈ C \ G, hence for large K,
fK maps C \G into a bounded subset of the left half-plane {z : Re z < 0}.
Moreover, for z ∈ G,

f(z) = exp(ez) +O(1/z) as z →∞.
All critical and asymptotic values of fK are contained in a bounded subset
of the left half-plane. Let D be a topological disk in the left half-plane
containing all critical and asymptotic values. Since D is mapped into itself
there exists an attracting fixed point in D. It follows from [2] that fK has
no wandering domains. Hence the basin of attraction is the only component
of the Fatou set. All exponential tracts for fK are contained in G; there are
infinitely many of them.
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2. Convergence of the branches in the tree of preimages. Let
z1, z2 be points belonging to the same exponential tract T with asymp-
totic direction θ. We will say that z1 precedes z2 and write z1 ≺ z2 if
|Re(Lθ(z1))| ≤ |Re(Lθ(z2))|, where Lθ denotes rotation through the an-
gle −θ. Similarly one can define the relation ≺ in the case that only one of
the points z1, z2 belongs to an exponential tract: if z1 6∈

⋃
j Tj and z2 ∈ Ti

for some i then we say that z1 ≺ z2 if Dist(z1, 0) ≤ Dist(Ti, 0), where Dist
denotes the spherical metric in Ĉ. In what follows, Diam denotes diameter
in the spherical metric.

Our aim is to prove

Theorem 2.1. Let E be a transcendental entire function in the class F
satisfying assumptions (i)–(iii). Assume that there exists j such that for
every itinerary s,

if a ∈ β(s)|[0,1), b ∈ β(s)|[j,∞) then a ≺ b.
Then for every itinerary s the branch β(s) is convergent (to a point in J(E)
∪ {∞}).

The proof of the theorem is based on the following observation:

Proposition 2.2. Let E be a transcendental entire function in the
class F satisfying (i)–(iii). Then there exists C > 0 such that for every
x ∈ Γ with dist(x,D) > 1

2K, every y ∈ ⋃r Tr and every branch G of the
inverse function for E, if x ≺ y and G(y) ≺ G(x) then

min{Dist(G(x),∞),Dist(G(y),∞)} ≥ C Dist(G(x), G(y)).

Proof. Let α : [0,∞)→ Ĉ be a curve joining x to infinity and containing y
such that α(0) = x and such that there exists t0 with α|[t0,∞) contained in
one fundamental domain and close to a straight line (assumption (i)). Then
G(α) is contained in some exponential tract and it tends to infinity (because
E has no poles). The condition G(y) ≺ G(x) means that G(α) turns back
in the part between x and y.

If α ⊂ {z : |z| > R} then it follows from (ii) that

|G(x)−G(y)| < c′,

where c′ is close to c, the “width” of the fundamental domain. But this
means that there exists C > 0 such that

min{Dist(G(x),∞),Dist(G(y),∞)} ≥ C Dist(G(x), G(y)).

If α is not contained in {z : |z| > R} then we can choose a point z = α(tz)
such that |z| ≤ R and

Dist(G(x), G(y)) ≤ Dist(G(x), G(z))
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(if |y| < R then we take z = y). Let M be a topological disk containing x
and z such that M ⊂ B(0, R) and Dist(M,D) > 1

2K. Let

N =
{
z : ∀m ∈M Dist(z,m) < 1

4K
}
,

N ′ =
{
z : ∀m ∈M Dist(z,m) < 1

2K
}
.

Since N ′ does not meet D we may use the spherical version of the Koebe
Distortion Theorem (see [10, Lemma 1.2]). Take any w ∈ ∂N . Then there
exists a constant L such that

Dist(G(x), G(z))
Dist(G(x), G(w))

≤ L Dist(x, z)
Dist(x,w)

.

But the ratio Dist(x, z)/Dist(x,w) is bounded from above for all w so it
follows that there exists C > 0 such that for an appropriate w,

Dist(G(x),∞) ≥ Dist(G(x), G(w)) ≥ C Dist(G(x), G(z))

≥ C Dist(G(x), G(y)).

Since G(x) ≺ G(y) we also have

Dist(G(y),∞) ≥ C Dist(G(x), G(y)).

Now we give the proof of the theorem:

Proof of Theorem 2.1. Assume that for some itinerary s the branch
β = β(s) : [0,∞) → C of the tree of preimages has two different limit
points x and y. Let y ≺ x. Then one can choose two sequences of points in
β: xn = β(un), yn = β(vn), un, vn ∈ [0,∞), xn → x, yn → y as n → ∞,
such that the pair (xn, yn) lies in reverse order for every n, that is,

yn ≺ xn, un < vn, for n = 1, 2, . . .

We may assume that for every n, xn ∈ βin and yn ∈ βjn , where in 6= jn. By
our assumptions for every n there exists tn ∈ N such that

Etn(xn) ≺ Etn(yn), Et
′
n(yn) ≺ Et′n(xn) for every t′n < tn.

Note that tn 6= 0 (because xn and yn are in reverse order). Moreover at least
one of Etn(xn), Etn(yn) belongs to an exponential tract. Then by Proposi-
tion 2.2,

min{Dist(Etn−1(xn),∞),Dist(Etn−1(yn),∞)}
≥ C Dist(Etn−1(xn), Etn−1(yn)).

Now we consider two cases:

Case I: tn → ∞. Let mn = tn − 1. By the above inequality for every
n we can find topological disks Bn in C \ {z : Dist(z,D) ≤ K/4} containing
Emn(xn) and Emn(yn) with the following property:

DiamBn
Dist(Bn,∞)

≤ 2
C



96 B. Karpińska

and such that Bn = pn(D), where D is the unit disk and the distortion of
the map pn is bounded by a constant which does not depend on n. The
preimage of Bn is contained in the union of the exponential tracts. Let Wn

be the component of E−mn(Bn) containing xn and yn. Using the spherical
version of the Koebe Distortion Theorem ([10, Lemma 1.2]) we find that for
any branch H of E−mn the distortion of H on Bn is bounded independently
of n and of the choice of H. If n is large enough, say n ≥ n0, then x, y ∈Wn

and U =
⋂
n≥n0

Wn contains an open set V such that x, y ∈ V .
The family Emn : V → Bn is normal. This is a contradiction, as x, y ∈

J(E). Hence there cannot be two limit points for β.

Case II: tn 6→ ∞. If tn contains an unbounded sequence we are back in
case I. So assume that the sequence tn is bounded. Then there exists m1 ≥ 0
such that

min{Dist(Em1(xn),∞),Dist(Em1(yn),∞)} ≥ C Dist(Em1(xn), Em1(yn))

for infinitely many n, and hence

min{Dist(Em1(x),∞),Dist(Em1(y),∞)} ≥ C Dist(Em1(x), Em1(y)).

Now consider Em1+1(β). It has (at least) two limit points: Em1+1(x) and
Em1+1(y). We can find two sequences x1

n, y
1
n of points in Em1+1(β) lying in

reverse order such that

x1
n → Em1+1(x), y1

n → Em1+1(y).

This means that there exists a sequence t1n such that Et
1
n(x1

n) ≺ Et1n(y1
n). If

t1n contains a subsequence tending to ∞ we are in case I. Otherwise we can
find m2 such that

min{Dist(Em2(x1
n),∞),Dist(Em2(y1

n),∞)} ≥ C Dist(Em2(x1
n), Em2(y1

n))

for infinitely many n, and hence

min{Dist(Em2(Em1+1(x)),∞),Dist(Em2(Em1+1(y)),∞)}
≥ C Dist(Em2(Em1+1(x)), Em2(Em1+1(y))).

We now proceed by induction. Assume that we have integers m1, . . . ,mk ≥ 0
such that

min{Dist(Em1+1+m2+1+...+mk(x),∞),Dist(Em1+1+m2+1+...+mk(y),∞)}
≥ C Dist(Em1+1+m2+1+...+mk(x), Em1+1+m2+1+...+mk(y)).

Consider Em1+1+...+mk+1(β). We find two sequences xkn, y
k
n of points in

Em1+...+mk+1(β) lying in reverse order such that

xkn → Em1+m2+1+...+mk+1(x), ykn → Em1+1+m2+1+...+mk+1(y).
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So we can find mk+1 such that

min{Dist(Emk+1(xkn),∞),Dist(Emk+1(ykn),∞)}
≥ C Dist(Emk+1(xkn), Emk+1(ykn))

for infinitely many n (if such an mk+1 does not exist we are in case I). Hence

min{Dist(Em1+1+...+mk+1+mk+1(x),∞),Dist(Em1+1+...+mk+1+mk+1(y),∞)}
≥ C Dist(Em1+1+...+mk+1+mk+1(x), Em1+1+...+mk+1+mk+1(y)).

Let Bmk be a topological disk in C \ {z : Dist(z,D) ≤ K/4} containing
Em1+1+...+mk(x) and Em1+1+...+mk(y) with

DiamBmk
Dist(Bmk ,∞)

≤ 2
C

and such that each Bmk is the image of the unit disk under a map whose
distortion is bounded independently of mk. Let Wmk denote the component
of E−(m1+1+...+mk)(Bmk) containing x and y. Since the distortion of the
branches of E−(m1+1+...+mk) is bounded on each Bmk the set

⋂∞
k=1Wmk

contains an open set U . The family {Em1+1+...+mk}∞k=1 is normal on U and
we get a contradiction. Therefore β cannot have two limit points.
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