Homotopy types of one-dimensional Peano continua

by

Katsuya Eda (Tokyo)

Abstract. Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

1. Introduction and definitions. In this paper we prove:

Theorem 1.1. Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent.

Theorem 1.2. Let X be a one-dimensional Peano continuum, Y a one-dimensional metric space and $x \in X$ and $y \in Y$. For each homomorphism $h : \pi_1(X,x) \to \pi_1(Y,y)$ there exists a continuous map $f : X \to Y$ and a path q from $f(x)$ to y such that $h = \varphi_q \circ f_*$, where φ_q is the base point change isomorphism.

Corollary 1.3. Let X and Y be one-dimensional Peano continua and $f : X \to Y$ a continuous map. If f induces an isomorphism between the fundamental groups of X and Y, then f is a homotopy equivalence between X and Y.

It seems that the first theorem was conjectured in the middle 1990’s; the author heard of it from G. Conner. If the spaces X and Y are locally simply connected in addition to the conditions in Theorems 1.1 and 1.2 then X and Y are homotopy equivalent to finite graphs and their fundamental groups are free groups and consequently the conclusions of Theorems 1.1 and 1.2 are obvious. But in general they are rather nontrivial. On the other hand, if X and Y are not locally simply connected at any point, the isomorphism h...
between the fundamental groups of X and Y induces a homeomorphism \tilde{h} between X and Y, which is not so trivial. Hearing Theorem 1.1 U. Karimov asked the author whether Corollary 1.3 holds and this is an affirmative answer to his question. Since our proofs extend those in [8], some of whose notions are uncommon, we restate a few definitions.

For $a \leq b$, a continuous map $f : [a, b] \to X$ is called a path from $f(a)$ to $f(b)$. The points $f(a)$ and $f(b)$ are called the initial point and the terminal point of f respectively. When $a = b$, the path f is said to be degenerate. A loop f is a path with $f(a) = f(b)$. For a path $f : [a, b] \to X$, f^- denotes a path such that $f^-(s) = f(a + b - s)$ for $a \leq s \leq b$. Two paths $f : [a, b] \to X, g : [c, d] \to X$ are equivalent, denoted by $f \equiv g$, if there exists a homeomorphism $\varphi : [a, b] \to [c, d]$ such that $\varphi(a) = c, \varphi(b) = d$ and $f = g \circ \varphi$. Two paths $f : [a, b] \to X$ and $g : [c, d] \to X$ are homotopic, denoted by $f \sim g$, if there exists a continuous map H whose domain is the quadrangle in the plane with the vertices $(a, 0), (b, 0), (c, 1)$ and $(d, 1)$ such that

$$
\begin{align*}
H(s, 0) &= f(s) \quad \text{for } a \leq s \leq b, \\
H(s, 1) &= g(s) \quad \text{for } c \leq s \leq d, \\
H((1 - t)a + tc, t) &= f(a) = g(c) \quad \text{for } 0 \leq t \leq 1, \\
H((1 - t)b + td, t) &= f(b) = g(d) \quad \text{for } 0 \leq t \leq 1.
\end{align*}
$$

The homotopy class containing a path f is denoted by $[f]$. The homotopy defined above is usually called a “homotopy relative to end points”. We drop the phrase “relative to end points” for simplicity.

A path $f : [a, b] \to X$ is reduced if no subloop of f is null-homotopic, that is, for each pair $u < v$ with $f(u) = f(v)$, $f|[u, v]$ is not null-homotopic. Note that a constant map is reduced if and only if it is degenerate. For paths $f : [a, b] \to X$ and $g : [c, d] \to X$ with $f(b) = g(c)$, fg denotes the concatenation of f and g, that is, a path from $[a, b + d - c]$ to X such that $fg(s) = f(s)$ for $a \leq s \leq b$ and $fg(s) = g(s - b + c)$ for $b \leq s \leq b + d - c$. A loop f is cyclically reduced if ff is reduced. An arc is a subspace of X which is homeomorphic to the unit interval $[0, 1]$. The Hawaiian earring is the plane continuum $\mathbb{H} = \bigcup_{n=1}^{\infty}\{(x, y) : (x - 1/n)^2 + y^2 = 1/n^2\}$ and o denotes the origin $(0, 0)$. Each simple closed curve of the Hawaiian earring is parametrized as follows:

$$
e_n(t) = \left((1 + \cos(\pi + 2\pi t))/n, \sin(\pi + 2\pi t)/n \right) \quad \text{for } 1 \leq n < \omega, 0 \leq t \leq 1.
$$

Let O^X consist of all elements $x \in X$ such that X is locally simply connected at x. If X is locally path-connected, then O^X is an open subset of X. We define $X^w = X \setminus O^X$. For a homomorphism $h : \pi_1(X, x) \to G$, let X_h^w be the set of all points $x_0 \in X$ such that, for each neighborhood U of x_0, there exists a loop f in U such that $h(\varphi_g([f])) \neq e$ for some path
g from x_0 to x. Let $O^X_h = X \setminus X^w_h$. We remark that in this definition the choice of a path g does not affect anything. When h is injective, we have $X^w_h = X^w$. We also remark that X^w_h is closed and O^X_h is open for a locally path-connected space X.

2. Reduction of one-dimensional Peano continua. A subset A of a space X is called an open arc if A is open in X and is homeomorphic to the open interval $(0, 1)$. An open arc in a Peano continuum has at least one and at most two end points; we denote them by A^0 and A^1. We remark that $A^0 = A^1$ may happen.

The next theorem has been proved in the master thesis of M. Meilstrup [15]. Since our proof will be modified to prove Theorem 1.2, we prove this precisely.

Theorem 2.1 (M. Meilstrup [15]). Every one-dimensional Peano continuum is homotopy equivalent to a one-dimensional Peano continuum X such that X is a finite connected graph or O^X is an at most countable union of open arcs the end points of which belong to X^w.

Our proof is a modification of the proof of [8, Theorem 1.2], particularly that of the implication (3) \Rightarrow (2), and hence we recommend the reader to review [8, Section 4] before proceeding.

A metric space (X, ρ) is uniformly locally connected if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $\rho(x, y) < \delta$ then x and y are contained in a connected open set of diameter less than ε. We refer the reader to [14, Section 2.1.1] for the notion of brick partition and facts around it. An important fact is: if O is a uniformly locally connected, connected open set in a Peano continuum, then \overline{O} is also a Peano continuum.

A partition \mathcal{P} of a space is a pairwise disjoint family of finitely many connected open sets such that $\bigcup \mathcal{P}$ is dense. A partition \mathcal{P} is of order 2 if $\overline{P_1} \cap \overline{P_2} \cap \overline{P_3} = \emptyset$ for distinct $P_1, P_2, P_3 \in \mathcal{P}$. A partition \mathcal{P} is a brick partition if \mathcal{P} consists of regular open sets and $\text{int}(\overline{P} \cup \overline{Q})$ is uniformly locally connected for each $P, Q \in \mathcal{P}$. Consequently, each element of \mathcal{P} is uniformly locally connected.

For a subset S of X, the diameter of S is denoted by $\text{diam}(S)$, i.e. $\text{diam}(S) = \sup\{\rho(x, y) : x, y \in S\}$ and $\text{Mesh}(\mathcal{P}) = \max\{\text{diam}(P) : P \in \mathcal{P}\}$. Since our construction is based on the proof of [14, Theorem 2.9], we state that result in a form suitable for our case.

Proposition 2.2 ([14, Theorem 2.9]). Let X be a one-dimensional Peano continuum, K a 0-dimensional closed subset of X and $x_0, x_1, \ldots, x_n \in X$. Then, for every $\varepsilon > 0$, there exists a brick partition \mathcal{P} of X of order 2 such that
we have a brick partition
of ∂P.

Next let X be a finite connected graph. We therefore assume that $X^w \neq \emptyset$.

Our first goal is to construct dendrites D_n and open arcs A_i so that

- D_n is a dendrite such that $D_n \cap X^w = \{x_n\}$, $D_n \setminus \{x_n\} \subseteq O^X$ and $\partial D_n \subseteq \bigcup_i \partial A_i \cup \{x_n\}$;
- $A_i \subseteq O^X$;
- $D_m \cap D_n \subseteq X^w$ for $m \neq n$ and $A_i \cap A_j = \emptyset$ for $i \neq j$;
- $X^w \cup \bigcup_i D_n \cup \bigcup_i A_i$ is a strong deformation retract of X;
- $\lim_{n \to \infty} \text{diam}(D_n) = 0$ and $\lim_{i \to \infty} \text{diam}(A_i) = 0$.

For this we construct brick partitions P_m, open arcs A_i, parts of dendrites D_{mn}, and points y_{mn} by induction.

In the 0th step we let $P_0 = \{X\}$, but we do not define A_i and so on. After the mth step, we have finitely many points y_{mn} on the boundary of $\bigcup\{P : P \in P_m, P \cap X^w \neq \emptyset\}$. First we work in each P for $P \in P_m$. Applying Proposition 2.2 to the 0-dimensional closed set ∂P and points y_{mn} in ∂P, we have a brick partition P_P of \overline{P} satisfying

- P_P is of order 2 and $\text{Mesh}(P_P) < 1/(m + 1)$;
- if $\overline{Q} \cap X^w = \emptyset$ for $Q \in P_P$, then \overline{Q} is simply connected;
- if $\overline{Q} \cap X^w = \emptyset$ for $Q \in P_P$, then $\overline{Q} \cap \overline{Q'}$ is at most one point for $Q' \in P_P$ with $Q' \neq Q$.
- If $y_{mn} \in P$, then there exists $Q \in P_P$ such that $y_{mn} \in Q$ and $\overline{Q} \cap X^w = \emptyset$.

Next let P_{m+1} be the family

$$\{Q \setminus \partial P : Q \in P_P, P \in P_m, \overline{P} \cap X^w \neq \emptyset\}.$$

Since ∂P does not separate any nonempty connected open set in \overline{P} [14, Proposition 2.5], P_{m+1} is a partition of $\bigcup\{P : P \in P_m, \overline{P} \cap X^w \neq \emptyset\}$ and also a brick partition of it. Since $\partial P \subseteq \bigcup P_P$, P_{m+1} is of order 2. Hence P_{m+1} is a brick partition of $\bigcup\{P : P \in P_m, \overline{P} \cap X^w \neq \emptyset\}$ which satisfies the following:

1. P_{m+1} is of order 2 and $\text{Mesh}(P_{m+1}) < 1/(m + 1)$;
2. P_{m+1} refines the restriction of P_m to $\bigcup\{P : P \in P_m, \overline{P} \cap X^w \neq \emptyset\}$;
3. if $\overline{Q} \cap X^w = \emptyset$ for $Q \in P_{m+1}$, then \overline{Q} is simply connected.
(4) if $\overline{Q} \cap X^w = \emptyset$ for $Q \in \mathcal{P}_{m+1}$, then $\overline{Q} \cap Q'$ is at most one point for $Q' \in \mathcal{P}_{m+1}$ with $Q' \neq Q$.

(5) If $y_{mn} \in \overline{P}$ for $P \in \mathcal{P}_m$ with $\overline{P} \cap X^w \neq \emptyset$, then there exists $Q \in \mathcal{P}_{m+1}$ such that $Q \subseteq P$, $y_{mn} \in \overline{Q}$ and $\overline{Q} \cap X^w = \emptyset$.

For each $Q \in \mathcal{P}_{m+1}$ with $\overline{Q} \cap X^w = \emptyset$, ∂Q is finite and so we connect these points by arcs and have a finite tree T_Q which is a strong deformation retract of \overline{Q}, since \overline{Q} is a uniquely arcwise connected Peano continuum. Then $\bigcup\{T_Q : Q \in \mathcal{P}_{m+1}, \overline{Q} \cap X^w = \emptyset\} = G_{m+1}$ is a finite graph, where we consider branching points in T_Q and points in ∂Q as vertices. Then $G_{m+1} \cap \bigcup\{Q : Q \in \mathcal{P}_{m+1}, \overline{Q} \cap X^w = \emptyset\}$ is a finite set, which we enumerate without repetition as $y_{m+1,n}$.

For y_{ml} we have a unique $P \in \mathcal{P}_m$ such that $y_{ml} \in \overline{P}$ and $\overline{P} \cap X^w \neq \emptyset$. According to (5) in the construction of \mathcal{P}_{m+1}, every point y_{ml} is connected to at least one point $y_{m+1,n}$ by an arc A so that $y_{m+1,n} \in \overline{Q}$ for $Q \in \mathcal{P}_{m+1}$ with $Q \subseteq P$ and $\overline{Q} \cap X^w \neq \emptyset$, and $A \setminus \{y_{ml}\} \subseteq P$. By working in each P we have a tree $T^P_n \subseteq G_{m+1}$ so that y_{ml} are connected to $y_{m+1,n}$ by T^P_n. Accordingly, if $y_{m+1,n}$ is connected to some y_{ml}, then $y_{m+1,n}$ belongs to a unique $P \in \mathcal{P}_m$. Therefore, there exists at most one P such that a tree T^P_n is connected to $y_{m+1,n}$; we then let T_n be T^P_n. When no T^P_n is connected to $y_{m+1,n}$ we let T_n be the singleton of $y_{m+1,n}$. In such a case $y_{m+1,n}$ may belong to $\overline{P} \cap \overline{P}'$ for distinct $P, P' \in \mathcal{P}_m$. But there exists a unique $P \in \mathcal{P}_m$ such that $y_{m+1,n} \in \overline{Q}$ for $Q \in \mathcal{P}_{m+1}$ with $Q \subseteq P$ and $\overline{Q} \cap X^w \neq \emptyset$. We work in the unique $P \in \mathcal{P}_m$ for such T_n in the following procedure. We remark that the T_ns are pairwise disjoint.

Vertices in G_{m+1} which are in \overline{P} may not belong to any T_n. Next we expand T_ns in G_{m+1} so that every vertex of G_{m+1} belongs to one of the extensions of the trees T_n. We want to control the sizes of the expanded trees and so we work in each \overline{P}. By induction on n we construct a maximal tree $T^*_n \in G_{m+1} \cap \overline{P}$ or $G_{m+1} \cap (\overline{P}_0 \cup \overline{P}_1)$ such that $T_n \subseteq T^*_n$, but $T^*_n \cap \bigcup_{k<n} T^*_k = \emptyset$ and $T^*_n \cap \bigcup_{k>n} T_k = \emptyset$. Inductively, we assume that if D_ml has been defined for y_{ml} then D_ml is connected to a unique T^*_n and we connect all such D_ml to T^*_n, thus forming $D_{m+1,n}$. We remark that any D_ml may not be connected to some T^*_n and that T^*_n may be even a singleton of $y_{m+1,n}$. Then we add all open edges of $G_{m+1} \setminus \bigcup_n T^*_n$ to the list of A_i. We remark that the size of A_i added in the $(m+1)$st step is less than $1/(m+1)$.

Continuing, we have D_{mk} which are contained in a unique $D_{m+1,k'}$. Since we pick y_{mk} in each separated small area, a sequence consisting of y_{mks} converges to one point in X^w. We enumerate these points as x_n and let the increasing union of D_{mk} for which y_{mk} converges to x_n, together with the singleton $\{x_n\}$, be D_n, which is a dendrite by construction. For each m, there
are only finitely many D_n which contain y_{mk} for some k, and if D_n does not contain y_{mk} for any k, then D_n is contained in some $\overline{P_0} \cup \overline{P_1}$ for $P_0, P_1 \in \mathcal{P}_m$ and hence $\text{diam}(D_n) \leq 2/m$. For each $P \in \mathcal{P}_m$ with $\overline{P} \cap X^w = \emptyset$, we have a strong deformation retraction from \overline{P} to TP. Since $\lim_{n \to \infty} \text{Mesh}(\mathcal{P}_n) = 0$, we can take a union of strong deformation retractions of \overline{P} to TP as a strong deformation retraction of X to $X^w \cup \bigcup_n D_n \cup \bigcup_i A_i$. Now we have achieved the first goal.

Let $X_0 = X^w \cup \bigcup_n D_n \cup \bigcup_i A_i$. Since $x_m = x_n$ may happen for $m \neq n$, we form a union of D_n's when $x_m = x_n$. It is still a dendrite. Hence we suppose that $D_m \cap D_n = \emptyset$ for $m \neq n$. Let Z be the quotient space of X_0 obtained by regarding each D_n as one point. Since $\lim_{n \to \infty} \text{diam}(D_n) = 0$, Z is a compact metrizable space (see [5] Propositions I.2.2 and I.2.3). Since Z is a countable sum of one-dimensional closed sets X^w and \overline{A}_is, Z is one-dimensional by [12] Theorem 7.2.1] and hence Z is a one-dimensional Peano continuum. The remaining task is to show that X_0 is homotopy equivalent to Z.

Let $f : X_0 \to Z$ be the quotient map. To define $g : Z \to X_0$, we take strong contractions $r_n : D_n \times [0,1] \to D_n$ such that $r_n(x_n,t) = x_n$ and $r_n(u,1) = x_n$ for each $u \in D_n$, and we take continuous maps $a_i : [0,1] \to \overline{A}_i$ so that $a_i(0) = A_i^0$ and $a_i(1) = A_i^1$ and $a_1|[0,1)$ is a homeomorphism.

We define $g(u) = u$ for $u \in X^w$ and so it suffices to define $g(u)$ for u in each A_i. There exists a unique n_0 such that $A_i^0 \in D_{n_0}$ and also a unique n_1 such that $A_i^1 \in D_{n_1}$. Define g on A_i by

$$g(u) = \begin{cases} r_{n_0}(A_i^0,1-3s) & \text{if } u = a_i(s) \text{ for } 0 \leq s \leq 1/3, \\ a_i(3s-1) & \text{if } u = a_i(s) \text{ for } 1/3 < s < 2/3, \\ r_{n_1}(A_i^1,3s-2) & \text{if } u = a_i(s) \text{ for } 2/3 \leq s \leq 1. \end{cases}$$

The continuity of g on $\bigcup_i A_i$ is obvious and so we consider the continuity at $x \in X^w$. For an open neighborhood U of $g(x) = x$ in X_0, choose a neighborhood U_0 of x in X_0 so that $\overline{U_0} \subseteq U$. Let $I_0 = \{i : A_i^0 \in D_n \text{ or } A_i^1 \in D_n, x_n \in U_0\}$. There exist at most finitely many $x_n \in U_0$ for which the set $D_n \cup \bigcup \{A_i : A_i^0 \in D_n \text{ or } A_i^1 \in D_n\}$ is not contained in U. For such an $x_n \in U_0$, consider the connected component C_n of $U \cap (D_n \cup \bigcup \{A_i : A_i^0 \in D_n \text{ or } A_i^1 \in D_n\})$ containing x_n. Then there exist at most finitely many A_i such that $A_i^0 \in D_n$ or $A_i^1 \in D_n$ and $\overline{A}_i \subsetneq C_n$. Collecting these we have an at most finite subset I_1 of I_0 such that $g(A_i) \subseteq U$ for all $i \in I_0 \setminus I_1$.

Since $(U_0 \cap X^w) \cup \bigcup_{i \in I_0} A_i$ is an open neighborhood of x in Z, just shrinking on A_i for $i \in I_1$ we have the desired neighborhood V_0 of x such that $g(V_0) \subseteq U$, i.e. g is continuous at x. Since it is comparatively easy to prove $f \circ g$ is homotopic to id_Z, we only prove that $g \circ f$ is homotopic to id_{X_0}.
Define $H : X_0 \times [0, 1] \to X_0$ by

\[
H(x, 0) = x \quad \text{for } x \in X_0,
\]

\[
H(x, t) = x \quad \text{for } x \in X^w,
\]

\[
H(x, t) = r_n(x, t) \quad \text{for } x \in D_n,
\]

and

\[
H(a_i(s), t) = \begin{cases}
 r_{n_0}(A_i^0, t - s - 2st) & \text{if } 0 \leq s \leq 1/3 \text{ and } s + 2st - t < 0, \\
 a_i(s + 2st - t) & \text{if } 0 \leq s \leq 1/3 \text{ and } s + 2st - t \geq 0, \\
 a_i(s + 2st - t) & \text{if } 1/3 \leq s \leq 2/3, \\
 r_{n_1}(A_i^1, s + 2st - t - 1) & \text{if } 2/3 \leq s \leq 1 \text{ and } s + 2st - t > 1.
\end{cases}
\]

Then $H(x, 1) = g \circ f(x)$ for $x \in X_0$. The continuity of H at (x, t) for $x \in X^w$ is shown by similar considerations to those for g.

Remark 2.3. We remark a difference between the proof of [8, Theorem 1.2] and the above one. In the former case D_mks and A_is converge to one point automatically and the care for the sizes of connecting paths between y_m and y_{m+1} is not necessary. But in the above case, if we do not take care, we might not be able to find the end point of D_n in X^w. So, we connect them in each P for $P \in P_m$ separately.

3. Lemmas for paths.

First we recall some material from [8].

Lemma 3.1 ([8 Lemma 5.1]). Let X be a first countable space and Y be a one-dimensional metric space and $h : \pi_1(X, x) \to \pi_1(Y, y)$ be a homomorphism. Then for $x_0 \in X^w_h$ there exists a unique point $y_0 \in Y$ which satisfies the following condition:

- For a path $p : [0, 1] \to X$ with $p(0) = x_0$ and $p(1) = x$, there exists a unique path $q : [0, 1] \to Y$ from $y_0 = q(0)$ to $y = q(1)$ up to homotopy which satisfies the following:
 - For each continuous map $f : (\mathbb{H}, o) \to (X, x_0)$ there exists a continuous map $g : (\mathbb{H}, o) \to (Y, y_0)$ such that $h \circ \varphi_p \circ f_* = \varphi_q \circ g_*$. Using this lemma we defined $\tilde{h} : X^w_h \to Y$ in [8, p. 497]. We want to extend \tilde{h} to X. For this purpose we recall the setting from [8, Section 6]. Here we generalize it a little.

For a one-dimensional space X, a point $x \in X$ and a subset S of X,

- $P(X)$ is the set of all paths in X,
- $P_x(X)$ is the set of all paths which terminate at x,
- $P_S(X)$ is the set of all paths which connect points in S,

One-dimensional Peano continua

33
\begin{itemize}
 \item $P_{S,x}(X)$ is the set of all paths which start from points in S and terminate at x,
 \item $P^h(X)$ is the set of all homotopy classes of paths in X,
 \item $RP(X)$ is the set of all reduced paths in X,
 \item $RP_x(X)$ is the set of all reduced paths in X which terminate at x,
 \item $P^h_x(X)$ is the homotopy classes that are represented by the paths in $P_x(X)$.
\end{itemize}

Since any path is homotopic to a reduced path (see [4]), there is a one-to-one correspondence between $P^h(X)$ (or $P^h_x(X)$) and the quotient of $RP(X)$ (or $RP_x(X)$) modulo equivalence. According to our definition of homotopies between paths, homotopies are relative to end points, the initial point and the terminal point of the class $[p]$ are well-defined for a homotopy class $[p] \in P^h(X)$. If pq is a path for two paths p and q, then $[p][q]$ is defined as $[pq]$. An element of $P^h(X)$ is degenerate if it is the equivalence class of a degenerate path.

For an open set U containing the initial point of $[p]$, let $O(U, [p]) = \{[f] : f$ is homotopic to gp for some g with $\text{Im}(g) \subseteq U\}$. The tail-limit topology is the topology on $P^h_x(X)$ which has the collection of all $O(U, [p])$’s as a neighborhood base for $[p]$. Let $\sigma : P^h_x(X) \rightarrow X$ be the map which sends $[p]$ to the initial point of p.

Lemma 3.2 ([8 Lemma 6.6]). Let X be a one-dimensional metric space and $F : [0,1] \rightarrow P^h_x(X)$ be a path such that $F(0)$ is degenerate. If $f \in RP_x(X)$ represents $F(1)$, then $\sigma \circ F$ and $f^−$ are homotopic.

We remark that this statement was wrongly stated as “$\sigma \circ F$ and f are homotopic” in [8].

For a homomorphism $h : \pi_1(X,x) \rightarrow \pi_1(Y,y)$, we define $\psi : P_{X^w_h,x}(X) \rightarrow RP_Y(Y)$ and $\xi : P_{X^w_h}(X) \rightarrow RP(Y)$ as follows. For a path p from $x_0 \in X^w_h$ to x, we have a reduced path q from $\tilde{h}(x_0)$ to y according to Lemma 3.1 such that the properties there hold. We define $\psi(p) = q$. For a path p_0 from $x_1 \in X^w_h$ to $x_0 \in X^w_h$ in X, p_0p is a path from x_1 to x. We define $\xi(p_0)$ to be a reduced path homotopic to $\psi(p_0)p(\psi(p)^-)$. We remark that in case $x = x_0$, $\psi(p_0)$ and $\xi(p_0)$ are defined, but may be distinct. In particular, for the constant loop c_x at x, $\xi(c_x)$ is a degenerate path, but $\psi(c_x)$ may not be.

Lemma 3.3. Let p and p' be paths from $x_0 \in X^w_h$ to x. Then $h([p^{-}p']) = [\psi(p^-)\psi(p')]$. Consequently, for a loop l with base point x_0, $h \circ \varphi_l([l]) = \varphi\psi(p)([\xi(l)])$.

Proof. Let $q = \psi(p)$ and $q' = \psi(p')$. Then, as in Lemma 3.1, for each continuous $f : (\mathbb{H}, o) \rightarrow (X, x_0)$ there is a continuous map $g : (\mathbb{H}, o) \rightarrow (Y, y_0)$ such that $h \circ \varphi_{pp^{-}p'} \circ f_\ast = h \circ \varphi_{p'} \circ f_\ast = \varphi_{q'} \circ g_\ast$. Since $h \circ \varphi_{pp^{-}p'}([u]) = h(([p^{-}p'])^{-})h((p^{-}(f \circ u)p))h((p^{-}p'))$ for a loop $u : [0,1] \rightarrow \mathbb{H}$ with $u(0) = 0 = u(1)$, it follows that $h \circ \varphi_l([l]) = \varphi\psi(p)([\xi(l)])$. The proof is complete.
u(1) = o, we have
\[h([p−p'])[q−][g ∘ u][q']h([p−p'])^{-1} = h([p−p'])\varphi_q(g_*([u]))h([p−p'])^{-1} \]
\[= h([p−p'])h ∘ \varphi_{pp−p'} ∘ f_*([u])h([p−p'])^{-1} \]
\[= h([p−(f ∘ u)p]) \]
\[= \varphi_q(g_*([u])) = [q−][g ∘ u][q]. \]

Since \(q \) is unique up to homotopy, we have \(h([p−p'])[q−] = [q−] \) and hence \(h([p−p']) = [q−] = [\psi(p)−\psi(p')] \).

Next let \(p' = lp \). Then we have
\[h ∘ \varphi_p([l]) = h([p−p']) = [\psi(p)−\psi(lp)] = [\psi(p)−\psi(lp)\psi(p)−\psi(p)] \]
\[= \varphi_{\psi(p)}([\xi(l)]). \]

Lemma 3.4. The definition of \(\xi(p_0) \) does not depend on \(p \). More precisely \(\xi(p_0) \) is defined by the homotopy class \([p_0] \) of \(p_0 \) and \(h \) uniquely up to the equivalence.

Proof. To see this let \(p' \) be another path from \(x_0 \) to \(x \). By Lemma 3.3, \(h([p−p']) = [\psi(p)−\psi(p')] \) and \(h(([p_0p']−(p_0p)]) = [\psi(p_0p')−\psi(p_0p)]. \) Thus
\[[\psi(p_0p')−\psi(p_0p)] = h(([p_0p']−(p_0p)]) = h([p'−p]) = [\psi(p')−\psi(p)] \]
and hence \([\psi(p_0p')−\psi(p_0p)\psi(p)−\psi(p') = e, \) which implies that
\[\xi(p_0) ≃ θ(p_0p)p(p)− ≃ \psi(p_0p)'(p')−. \]

Lemma 3.5. Let \(x_0, x_1, x_2 \in X_h \) and \(p_0 \) be a path from \(x_1 \) to \(x_2 \) and \(p_1 \) be a path from \(x_2 \) to \(x_1 \) and \(p \) be a path from \(x_0 \) to \(x \). Then \(θ(p_0p) ≃ θ(p_0p)θ(p) \) and \(θ(p_1p_0) ≃ θ(p_1p_0)θ(p_0p) \).

Proof. Since \(θ(p_0) ≃ θ(p_0p)p(p)−, \) we have \(θ(p_0p) ≃ θ(p_0p)p(p)− \) and \(θ(p_1p_0) ≃ θ(p_1p_0)p(p)− \) by Lemma 3.4. Hence
\[θ(p_1p_0) ≃ θ(p_1p_0)p(p)− ≃ θ(p_1)p(p)−. \]

Lemma 3.6. Let \(X, Y \) and \(Z \) be one-dimensional metric spaces and \(g : π_1(X, x) → π_1(Y, y) \) and \(h : π_1(Y, y) → π_1(Z, z) \) be homomorphisms. Let \(ψ_0 : P_{X_{g,x}}(X) → RP_y(Y), υ_0 : P_{X_{g,x}}(X) → RP(Y), υ_1 : P_{Y_{g,y}}(Y) → RP_z(Z), υ_1 : P_{Y_{g,y}}(Y) → RP(Z) \) and \(ψ : P_{X_{h,o}}(X) → RP_z(Z), υ_2 : P_{X_{h,o}}(X) → RP(Z) \).

Then \(ψ_1(ψ_0(p)) ≃ ψ(p) \) for \(p ∈ P_{X_{g,x}}(X) \), and \(ψ_1(ψ_0(p)) ≃ ψ(p) \) for \(p_0 ∈ P_{X_{h,o}}(X) \).

Proof. We remark that \(X_{h,o} ⊆ X_{g,o} \) and \(g(x_0) ∈ Y_{h} \) for \(x_0 ∈ X_{h,o} \).

Since \(ψ_0(p) \) is determined by a continuous map \(f : (H, o) → (X, x_0) \) such that \(Im(f_*) \) is infinitely generated instead of a continuous map from \((H, o)\) to \((Y, y_0)\), we easily get \(ψ_1(ψ_0(p)) ≃ ψ_1(p) \) for \(p ∈ P_{X_{g,x}}(X). \)
Now we have $\psi_1(\psi_0(p_0)) \sim \psi_2(p_0)$ and hence
\[\xi_1(\xi_0(p_0)) \psi_1(\psi_0(p)) \sim \psi_1(\psi_0(p_0)) \sim \xi_2(p_0) \psi_2(p) \]
by Lemma 3.5. It follows that $\xi_1(\xi_0(p_0)) \sim \xi_2(p_0)$. ■

The next lemma strengthens the continuity of \tilde{h} on X^w_h [8 Lemma 5.3] and hence its proof is a modification of that of [8 Lemma 5.3].

Lemma 3.7. Let X and Y be one-dimensional metric spaces, X be locally path-connected and $h : \pi_1(X, x) \to \pi_1(Y, y)$ be a homomorphism. Let $x_n \in X^w_h$ and p_n be a path from x_n to x_∞ for each $n < \omega$ such that $\text{Im}(p_n)$ converges to $x_\infty \in X^w_h$. Then $\text{Im}(\xi(p_n))$ converges to $\bar{h}(x_\infty)$.

Proof. Aiming for a contradiction, suppose that there is a neighborhood U of $\tilde{h}(x_\infty)$ such that $\text{Im}(\xi(p_n)) \not\subseteq U$ for all n. Let p be a path from x_∞ to x. According to [8, Lemma 6.1] we have an arbitrary small loop l_n with base point x_n such that $h \circ \varphi_{p_n, p}([l_n])$ is represented as a reduced loop $\psi(p_n)\, l'_n \psi(p_n)$ for a cyclically reduced loop l'_n. Hence we have a continuous map $f : (\mathbb{H}, o) \to (X, x_\infty)$ such that $f \circ e_n = p_n l_n p_n$. Lemma 3.1 implies that we have a path q from $h(x_\infty)$ to y such that $h \circ \varphi_q \circ f_* = \varphi_q \circ g_*$ for a continuous map $g : (\mathbb{H}, o) \to (Y, \bar{h}(x_\infty))$. For a sufficiently large n, we have $\text{Im}(g \circ e_n) \subseteq U$. On the other hand,
\[
\varphi_q \circ g_*(e_n) = h \circ \varphi_q \circ f_*(e_n) = h \circ \varphi_q([p_n l_n p_n]) = h \circ \varphi_{p_n, p}([l_n]) = [\psi(p_n)\, l'_n \psi(p_n)] = [\psi(p)\, l'_n \xi(p_n)\psi(p)] = \varphi_q([\xi(p_n)\, l'_n \xi(p_n)])
\]
and hence $[g \circ e_n] = [\xi(p_n)\, l'_n \xi(p_n)]$. Since $\xi(p_n)$ is a reduced path and l' is cyclically reduced, one of $\xi(p_n)\, l'$ and $l'_n \xi(p_n)$ is reduced. Hence the image of the reduced loop of $\xi(p_n)\, l'_n \xi(p_n)$ is not contained in U by [8 Lemma 2.6]. Now $\xi(p_n)\, l'_n \xi(p_n)$ is not homotopic to a loop in U (see the first three lines of Section 4) and we have a contradiction. ■

Lemma 3.8. Let X and Y be one-dimensional metric spaces and X be locally path-connected and path-connected, and $h : \pi_1(X, x) \to \pi_1(Y, y)$ be a homomorphism. Let $x_n, y_n \in X^w_h$ and p_n be a path from y_n to x_n for each $n < \omega$ such that $\text{Im}(p_n)$ converges to $x_\infty \in X^w_h$. Then $\text{Im}(\xi(p_n))$ converges to $\bar{h}(x_\infty)$.

Proof. By the path-connectivity and local path-connectivity, we have a path f_n from x_n to x_∞ for each n such that $\text{Im}(f_n)$ converges to x_∞. As in the proof of Lemma 3.7, suppose there is a neighborhood U of $\bar{h}(x_\infty)$ such that $\text{Im}(\xi(p_n)) \not\subseteq U$ for all n. Since $\xi(p_n) \sim \xi(p_n f_n f_n)$, we have $\text{Im}(\xi(f_n)) \not\subseteq U$ or $\text{Im}(\xi(p_n f_n)) \not\subseteq U$. We choose x_n if $\text{Im}(f_n) \not\subseteq U$, and y_n otherwise. Then we have paths contradicting Lemma 3.7. ■
Let X be a locally path-connected, path-connected, one-dimensional metric space, Y a one-dimensional metric space and suppose that for a homomorphism $h : \pi_1(X, x) \to \pi_1(Y, y)$, $X = X_h^w \cup \bigcup_{i \in I} A_i$, where A_is are open arcs and $A_0 \cup A_1 \in X_h^w$. Note that $\lim_{i \to \infty} \text{diam}(A_i) = 0$. Then $\tilde{h} : X_h^w \to Y$ is a continuous map by [8, Lemma 5.3]. We extend \tilde{h} on X as follows. Let $p \in X$ and $0 \leq t \leq 1$. In Lemma 3.10 we suppose that Y also has the additional properties which X has.

Lemma 3.9. Let $h : \pi_1(X, x) \to \pi_1(Y, y)$ be a homomorphism and r be a reduced path from $x_1 \in X_h^w$ to $x_0 \in X_h^w$. Then $\xi(r)$ is homotopic to $\tilde{h} \circ r$.

Proof. Let p_t be the restriction of r to $[1 - t, 1]$ for $0 \leq t \leq 1$, e.g. $p_1 = r$ and p_0 is the degenerate path at x_0. Define $F : [0, 1] \to P_{h(x_0)}^h(Y)$ as follows. Let $F(t) = [\xi(p_t)]$ if $\sigma([p_t]) \in X_h^w$. Otherwise, we have $i \in I$ and $0 \leq t_0 < t_1 \leq 1$ such that $t_0 < t < t_1$, $\sigma([p_{t_0}]), \sigma([p_{t_1}]) \in X_h^w$ and $r[1 - t_1, 1 - t_0] \sim a_i$ or $r[1 - t_1, 1 - t_0] \sim a_i^-$. Let

$$F(t) = \begin{cases}
[\xi(a_i^{-1}((t_1 - t)/(t_1 - t_0), 1))] & \text{if } r[1 - t_1, 1 - t_0] \sim a_i,
[\xi(a_i^{-1}((t_1 - t)/(t_1 - t_0), 1))] & \text{if } r[1 - t_1, 1 - t_0] \sim a_i^-.
\end{cases}$$

If $\sigma([p_t]) \notin X_h^w$, the continuity of F at t is obvious. Otherwise, the continuity of F at t follows from Lemma 3.8. Since $F(1) = [\xi(r)]$ and $\tilde{h}(r(1 - t)) = \sigma \circ F(t)$, the conclusion follows from Lemma 3.2.

Lemma 3.10. Let $h_0 : \pi_1(X, x) \to \pi_1(Y, y)$ be an isomorphism and h_1 be its inverse. Let p be a path between points in X_h^w. Then p is homotopic to $\tilde{h}_1 \circ \tilde{h}_0 \circ p$. In particular $\tilde{h}_1 \circ \tilde{h}_0(x_0) = x_0$ for $x_0 \in X_h^w$.

Proof. Since every path is homotopic to a reduced path, it suffices to show this lemma for a reduced path p. Let $\xi_0 : P_{X_h^w}(X) \to RP(Y)$ and $\xi_1 : P_{Y_h^w}(Y) \to RP(X)$ be the maps induced from h_0 and h_1 respectively. We remark that $X_h^w = X^w$ and $Y_h^w = Y^w$. Then $[\xi_1(\xi_0(p))] = [p]$ by Lemma 3.6. The conclusion follows from Lemma 3.9.

4. **Proofs of Theorems 1.1 and 1.2.** The following lemma is well-known and can be proved if we notice that any path is homotopic to a reduced path in its image [4] and the reduced path is unique up to equivalence.
LEMMA 4.1 (Folklore). Let X be a one-dimensional space. Then two homotopic paths in X are homotopic in the union of their ranges.

Proof of Theorem 1.1. By Theorem 2.1 we may assume that $X = X^w \cup \bigcup_{i \in I} A_i$ and $Y = Y^w \cup \bigcup_{j \in J} B_j$, where I and J are at most countable, A_i and B_j are open arcs. Let $h_0 : \pi_1(X, x) \to \pi_1(Y, y)$ be an isomorphism and $h_1 : \pi_1(Y, y) \to \pi_1(X, x)$ be its inverse. We assume that \tilde{h}_0 and \tilde{h}_1 are extensions on X and Y respectively according to the description before Lemma 3.9. By Lemma 3.10 a_i and $\tilde{h}_1 \circ h_0 \circ a_i$ are homotopic for each i. By Lemma 4.1 we have a homotopy $H_i : [0, 1] \times [0, 1] \to X$ such that
\[
H_i(s, 0) = a_i(s), \quad H_i(s, 1) = \tilde{h}_1 \circ h_0 \circ a_i(s), \\
H_i(0, t) = a_i(0), \quad H_i(1, t) = a_i(1)
\]
and $\text{Im}(H_i) \subset \text{Im}(a_i) \cup \text{Im}(\tilde{h}_1 \circ h_0 \circ a_i)$. Since $\lim_{i \to \infty} \text{diam}(A_i) = 0$, we have $\lim_{i \to \infty} \text{diam}(\text{Im}(H_i)) = 0$. Define $\tilde{H}_i : A_i \times [0, 1] \to X$ by $\tilde{H}_i(x, t) = H_i(a_i^{-1}(x), t)$. Then
\[
\tilde{H}_i(x, 0) = a_i(a_i^{-1}(x)) = x, \quad \tilde{H}_i(A_i^0, t) = a_i(0) = A_i^0, \\
\tilde{H}_i(A_i^1, t) = a_i(1) = A_i^1, \quad \tilde{H}_i(x, 1) = \tilde{h}_1 \circ h_0 \circ a_i(a_i^{-1}(x)) = \tilde{h}_1 \circ \tilde{h}_0(x).
\]
Define $\tilde{H} : X \times [0, 1] \to X$ by $\tilde{H}(x, t) = x$ for $x \in X^w$ and $0 \leq t \leq 1$ and $\tilde{H}(x, t) = \tilde{H}_i(x, t)$ for $x \in A_i$ and $0 \leq t \leq 1$. Then the continuity of \tilde{H} follows from that of all \tilde{H}_i and the fact that $\lim_{i \to \infty} \text{diam}(\text{Im}(\tilde{H}_i)) = 0$. Hence $\tilde{h}_1 \circ \tilde{h}_0$ is homotopic to the identity map on X and similarly $\tilde{h}_0 \circ \tilde{h}_1$ is homotopic to the identity map on Y. □

For our proof of Theorem 1.2 one more notion is necessary. Let $h : \pi_1(x, x) \to G$ be a homomorphism. We call a subset S of X h-simply connected if for every point x_0 in S, every loop l in S with base point x_0 and every path q from x_0 to x, $h(\varphi_q([l]))$ is trivial. We remark that if $h(\varphi_q([l]))$ is trivial, then $h(\varphi_q'([l]))$ is also trivial for every path q' from x_0 to x.

Proof of Theorem 1.2. If X^w_h is empty, then $O^X_h = X$ and we have a brick partition \mathcal{P} such that
\begin{itemize}
 \item \mathcal{P} is of order 2;
 \item if $P \cap Q \neq \emptyset$, then $P \cup Q$ is h-simply connected for $P, Q \in \mathcal{P}$.
\end{itemize}
Hence this is the case when our procedure stops at the first step and we can easily get the conclusion from the following arguments. Hence we proceed to the case when $X^w_h \neq \emptyset$. We construct a retract $K \cup X^w_h$ of X, where K is locally homeomorphic to finite graphs in O^X_h. This is a modification of the proof of Theorem 2.1 in Section 2.

Starting from the 0th step we let $\mathcal{P}_0 = \{X\}$, but do not define A_i’s and so on as before. We trace the previous proof, but we set buffers around
Let X be the proof of Theorem 2.1 and have D in T such that end points of ∂P take a brick partition P_{m+1} of R_m which satisfies the following:

- P_{m+1} is of order 2 and $\operatorname{Mesh}(P_{m+1}) < 1/(m+1);
- P_{m+1} refines the restriction of P_m to R_m;
- if $P \in P_m$ is a buffer element, then $\overline{P} \cap R_m$ is a disjoint union of sets of the form $\overline{P} \cap \overline{Q}$ with $Q \in P_{m+1}$ and $Q \cap R_{m+1} = \emptyset$;
- if $\overline{Q} \cap \overline{Q}' \neq \emptyset$, $\overline{Q} \cap X_h^w = \emptyset$ and $\overline{Q}' \cap X_h^w = \emptyset$ for $Q, Q' \in P_{m+1}$, then $\overline{Q} \cup \overline{Q}'$ is h-simply connected;
- if $Q \cap P \neq \emptyset$ and $Q \cap X_h^w = \emptyset$ for $Q \in P_{m+1}$ and a buffer element $P \in P_m$, then $\overline{Q} \cup \overline{P}$ is h-simply connected.

We successively construct a finite tree T_P for each buffer element $P \in P_m$ such that end points of T_P are chosen from ∂P as follows. First we choose one point from each nonempty $\overline{P} \cap \overline{P}'$ for $P' \in P_m$ with $P' \notin R_m$ and $P' \neq P$, making sure this point is among the points y_{mn} whenever possible and making sure that our choice is consistent with whichever point from $\partial P'$ might have already been chosen. Then we choose one point from each nonempty $\overline{P} \cap \overline{Q}$ with $Q \in P_{m+1}$. Since P is connected, we have a tree $T_P \subseteq \overline{P}$ such that $T_P \cap P$ is connected and the end points of T_P are the elements chosen from ∂P. Now each end point of T_P corresponds to some $\overline{P} \cap \overline{P}'$ or to some $\overline{P} \cap \overline{Q}$. Since T_P is an absolute extensor, we have a retraction $r_P : \overline{P} \rightarrow T_P$ so that $r_P(\overline{P} \cap \overline{P}') = \{v\}$ or $r_P(\overline{P} \cap \overline{Q}) = \{v\}$ for each end point $v \in T_P$ with $v \in \overline{P} \cap \overline{P}'$ or $v \in \overline{P} \cap \overline{Q}$ respectively. Next we define trees T_Q and retractions $r_Q : \overline{Q} \rightarrow T_Q$ for $Q \in P_{m+1}$ with $\overline{Q} \cap R_{m+1} = \emptyset$ just as for $P \in P_m$. We define neither T_Q nor r_Q for buffer elements $Q \in P_{m+1}$ in this step. But, on a part of ∂Q for a buffer element Q retractions r_P or r_Q have been defined. We enumerate the retracted points of those parts of boundaries as y_{m+1n} ($n \in I_{m+1}$). More exactly, y_{m+1n} ($n \in I_{m+1}$) is the one-to-one enumeration of the points in $T_P \cap \overline{Q}$ for buffer elements $P \in P_m$ and buffer elements $Q \in P_{m+1}$ or in $T_Q \cap \overline{Q}'$ for nonbuffer elements $Q \in P_{m+1}$ and buffer elements $Q' \in P_{m+1}$.

For each $y_{ml} \in \overline{P}$ where $P \in P_m$ is a buffer element, we have some $P' \in P_m$ such that $\overline{P} \cap \overline{P}' \neq \emptyset$ and $\overline{P}' \cap X_h^w \neq \emptyset$. Then we have some y_{m+1n} in \overline{P}', since $\overline{P}' \cap X_h^w \neq \emptyset$. We can connect y_{ml} and y_{m+1n} by an arc in T_P and T_Qs for $Q \subseteq P'$. Using these arcs we construct D_{mn} and A_i similarly to the proof of Theorem 2.1 and have D_n, A_i and the desired $K = \bigcup_n D_n \cup \bigcup_i A_i$. Let $X_0 = X_h^w \cup \bigcup_n D_n \cup \bigcup_i A_i$ and $r : X \rightarrow X_0$ be the retraction obtained as the union of r_P and the identity on X_h^w.

\[\bigcup \{ \overline{P} : P \in P_m, \overline{P} \cap X_h^w \neq \emptyset \} (= R_m). \] We call $P \in P_m$ a buffer element if $\overline{P} \cap R_m \neq \emptyset$ but $P \cap R_m = \emptyset$.

After the mth step, we have at most finitely many points y_{mn} on the boundary of $\bigcup \{ \overline{P} : P \in P_m, \overline{P} \cap R_m \neq \emptyset \}$. Applying Proposition 2.2 we take a brick partition P_{m+1} of R_m which satisfies the following:

- P_{m+1} is of order 2 and $\operatorname{Mesh}(P_{m+1}) < 1/(m+1);
- P_{m+1} refines the restriction of P_m to R_m;
- if $P \in P_m$ is a buffer element, then $\overline{P} \cap R_m$ is a disjoint union of sets of the form $\overline{P} \cap \overline{Q}$ with $Q \in P_{m+1}$ and $Q \cap R_{m+1} = \emptyset$;
- if $\overline{Q} \cap \overline{Q}' \neq \emptyset$, $\overline{Q} \cap X_h^w = \emptyset$ and $\overline{Q}' \cap X_h^w = \emptyset$ for $Q, Q' \in P_{m+1}$, then $\overline{Q} \cup \overline{Q}'$ is h-simply connected;
- if $Q \cap P \neq \emptyset$ and $Q \cap X_h^w = \emptyset$ for $Q \in P_{m+1}$ and a buffer element $P \in P_m$, then $\overline{Q} \cup \overline{P}$ is h-simply connected.
First we assume $x \in X^w_h$. We remark $r(x) = x$. To trace our previous proof, we show $h([l]) = h([r \circ l])$ for any loop l with base point x. By [10] Theorem 1, $\pi_1(Y,y)$ is a subgroup of an inverse limit of free groups. It suffices to show that $g \circ h([l^{-1}(r \circ l)]) = e$ for every homomorphism g from $\pi_1(Y,y)$ to a free group. By [9] Theorem 1.3 (cf. [32]), we have $\varepsilon > 0$ such that any open connected subset of X of diameter less than ε is $g \circ h$-simply connected. Since $\lim_{m \to \infty} \text{Mesh}(P_m) = 0$, we may choose P_m so that $\text{Mesh}(P_m) < \varepsilon/2$. We have a brick partition P of X such that P consists of $P \in P_m$ with $P \cap R_m \neq \emptyset$ and $P \in P_i$ with $P \cap R_i = \emptyset$.

For a given loop l with base point x, we have $0 = u_0 < u_1 < \cdots < u_k = 1$ such that $l([u_i, u_{i+1}]) \subseteq \overline{P} \cup \overline{P'}$ for $P, P' \in P$. If $\overline{P} \cap \overline{P'} \neq \emptyset$ for $P \in P \cap P_i$ with $i < m$ and $P' \in P$, then $\overline{P} \cup \overline{P'}$ is h-simply connected according to the effect of buffers. On the other hand, if $\overline{P} \cap \overline{P'} \neq \emptyset$ for $P, P' \in P \cap P_m$, then $\text{diam}(\overline{P} \cup \overline{P'}) < \varepsilon$ and hence $\overline{P} \cup \overline{P'}$ is $g \circ h$-simply connected. Since each $P \in P$ is path-connected, working from k to 0 we see that $l^{-1}(r \circ l)$ is homotopic to a concatenation of loops $l_k \cdots l_1$ such that $g \circ h([l_i]) = e$. Now we have proved that $g \circ h([l^{-1}(r \circ l)]) = e$ and hence $h([r \circ l]) = h([l])$. Let $i : X_0 \hookrightarrow X$ be the inclusion map. Then for each loop l in X_0 with base point x we have $h \circ i_*([l]) = h([l])$ and $X^w_h \subseteq (X_0)^w_{hoi} \subseteq X^w_0 \subseteq X^w_h$.

The space Z obtained from this X_0 as in the proof in Section [2] is a one-dimensional Peano continuum which is homotopy equivalent to X_0. Let $g_0 : X_0 \to Z$ and $g_1 : Z \to X_0$ be the homotopy equivalence. According to our construction we have $X^w_h \subseteq Z$, and g_0 and g_1 are the identity on X^w_h. Hence $Z^w_{hoi,og1*} = (X_0)^w_{hoi} = X^w_h$. Let $h_0 = h \circ i_* \circ g_1*$ and $Z = Z^w_{h_0} \cup \bigcup_i A_i$ where A_is are open arcs. We use h_0 for the extension on Z defined just before Lemma [3.9]. Let c_x be the constant path x and $q = \psi(c_x)$, where ψ and ξ are defined for h_0. For a loop l with base point x in X, using Lemma [3.3] we have

$h([l]) = h \circ i_*([r \circ l]) = h \circ i_* \circ g_1*([g_0 \circ r \circ l]) = \varphi_q([\xi(g_0 \circ r \circ l)])$

$= \varphi_q(h_0*([g_0 \circ r \circ l])) = \varphi_q(h_0 \circ g_0 \circ r)_*([l])$.

Now $\tilde{h}_0 \circ g_0 \circ r$ is the desired continuous map.

When $x \notin X^w_h$, we choose a path p from $x_0 \in X^w_h$ to x. Then we have $h \circ \varphi_p : \pi_1(X,x_0) \to \pi_1(Y,y)$. By the preceding we have a continuous map $f : X \to Y$ and a path q from $f(x_0)$ to y such that $h \circ \varphi_p = \varphi_q \circ f_*$. Let l be a loop with base point x. Then

$h([l]) = h \circ \varphi_p \circ \varphi_p^{-}([l]) = h \circ \varphi_p([plp^-])$

$= \varphi_q \circ f_*([plp^-]) = \varphi_q(([f \circ p] f \circ l (f \circ p)^-))$

$= \varphi_q \circ \varphi(f \circ p)^- \circ f_*([l]) = \varphi(f \circ p)^- \circ q \circ f_*([l])$,

which completes our proof.
Proof of Corollary 1.3. By Theorem 2.1 we may assume $X = X^w \cup \bigcup_i A_i$ where each A_i is an open arc. If $X^w = \emptyset$, then we obtain the conclusion easily. We suppose that $x_0 \in X^w$. Since f_* is injective, we have $X^w = X^w_{f_*}$ and we can define $(f_*)^\sim$ on X according to the definition just before Lemma 3.9. For $x \in X^w_{f_*}$, $(f_*)^\sim(x)$ is the unique point determined by Lemma 3.1. Let $\psi : P_{X^w_{f_*}x_0}(X) \to RP_y(Y)$ and $\xi : P_{X^w_{f_*}}(X) \to RP(Y)$ be defined as before Lemma 3.3. For $x \in A_i$, we have $(f_*)^\sim(x) = \xi(a_i)(a_i^{-1}(x))$. Let p be a path from A_i to x_0. Then $\xi(a_i) \sim \psi(a_ip)\psi(p)^\sim$. By the uniqueness of $[\psi(p)]$ according to Lemma 3.1, we have $[\psi(p)] = [f \circ p]$ and $[\psi(a_ip)] = [f \circ (a_ip)]$ by the same argument. Now,

$$\xi(a_i) \sim \psi(a_ip)\psi(p)^\sim \sim (f \circ a_i)(f \circ p)(f \circ p)^\sim \sim f \circ a_i$$

and so $(f_*)^\sim = \xi(a_i) \circ a_i^{-1}$ and the restriction of f to A_i are homotopic. By Lemma 4.1, f and $(f_*)^\sim$ are homotopic as in the proof of Theorem 1.1. Now Lemma 3.10 implies the conclusion. \[\]

Remark 4.2. (1) Theorem 1.2 can most probably be proved in the case where Y is a planar continuum using a method of C. Kent [13].

(2) For topologists who are not familiar with wild topology, it seems to be difficult to understand what ideas work in the proofs of this paper. Theorem 2.1 reduces Peano continua to simple ones. The idea of its proof is standard in continuum theory going back to [1]. More unfamiliar parts seem to be in Section 3 which extend [8]. In [8] we show that many things about wild algebraic topology can be reduced to the Hawaiian earring and how the homomorphic image of the fundamental group of the Hawaiian earring can detect a point in the space in question due to the noncommutative Specker phenomenon. This phenomenon goes back to G. Higman and is explained in [8, Remark 3.16(4)]. The Higman theorem is related to the fundamental group and the shape of the Hawaiian earring. An application to topology of this theorem appeared in [6], which was used in [11]. A more apparent topological use can be seen in [7,Corollary 2.11], where it is shown that every endomorphism of the fundamental group of the Hawaiian earring is conjugate to the homomorphism induced from a continuous map. This is a prototype of Lemma 3.1 by which we define \hat{h} on X^w_h for a homomorphism h between the fundamental groups of one-dimensional Peano continua. In the present paper we have extended the domain of \hat{h} to the whole space X using Theorem 2.1 and strengthening results in [8] according to the ideas there. In other published papers topological use of the noncommutative Specker phenomenon can be seen in [2] and [16], though it is used implicitly there.

Acknowledgements. The author thanks G. Conner, U. Karimov, K. Kawamura and D. Repovš for their interest in this subject. The author
Katsuya Eda
School of Science and Engineering
Waseda University
Tokyo 169-8555, Japan
E-mail: eda@logic.info.waseda.ac.jp

Received 27 January 2009;
in revised form 22 April 2010

is grateful to the referee for his very careful reading of this paper and of [8] as well, and his suggestions and detecting errors. The author was supported by the Grant-in-Aid for Scientific research (C) of Japan No. 20540097.

References